酶活力测定的一般原理和方法

合集下载

酶活力测定方法

酶活力测定方法

3批rhIL 11制品的RP HPLC图谱 完全一致,说明该厂rhIL 11的生产工艺是 稳定的;与GI公司生产的rhIL 11对照品 比较有20个峰与对照品一致,但第6 峰的峰高和 峰面积均明显较小,且在第9和第10 峰之间多一 个峰,说明该厂rhIL 11蛋白质结构与GI 公司生产的rhIL 11比较存在细小差别。
2)酶促反应的条件及影响因素 底物的浓度:一般选用底物的浓度[S]=100Km。 pH:选用一个适宜的缓冲离子和离子强度、 适宜的pH值的缓冲系统来控制pH。 温度:酶反应的温度通常选用25℃、30℃或 37℃,实验中温度变动应控制在±0.1℃以内。 辅助因子:有些酶需要金属离子,有些需要 相应的辅酶。
2.酶活力测定法
1)基本原理: 酶活力是指酶催化一定化学反应的能力。
酶活力测定实质上是测定一个被酶所催化的化 学反应速度。酶反应速度越快所表示的酶活力 越高。
酶反应速度可以用单位时间反应底 物的减少或产物的增加来表示。
通常酶活力测定时,先制备酶反应 进程曲线和酶浓度曲线。通过酶反应速 度的测定,求得酶的浓度或含量。
1。酶切条件
取浓度为3mg·mL-1的样品0 4mL对1%N H4HCO3充分透析,然后取透析样品250μL至 微量进样瓶,加0 3mg·mL-1TPCK处理的胰 蛋白酶10μL混匀,于37℃温控自动进样器酶切, 每80min进样一针,进样量6μL,用Mill ennium32色谱软件选择214nm进行分析, 直至rhIL 11完全酶解。按此方法摸索最佳 酶切时间,在第14针后rhIL 11已被完全酶切, 酶切时间在18~22h范围内肽图图谱基本一致, 即确定最佳酶切条件为37℃保温20h。
酶反应进程曲线 纵坐标为底物或产物的变化 量,横坐标为反应时间,曲线斜率表示反应速 度。从酶反应进程曲线求得反应的初速度。 酶浓度曲线 纵坐标为反应速度,横坐标为酶 量。通过酶浓度曲线检验反应测定系统是否适 宜。

酶活性的测定

酶活性的测定

式中
A—对照KMnO4滴定毫升数; B—酶反应后KMnO4滴定毫升数;
VT—酶液总量(ml); V1—反应所用酶液量(ml);
W—样品鲜重(g);
1.7mg
1.7—1ml H2O2。
0.1mol/L旳KMnO4相当于
紫外分光光度法:
H化测2O氢量2在,吸2使光40反率nm应旳波溶变长液化下吸速有光度强度即烈可(吸A测2收40出),随过过反氧氧应化化时氢氢间酶酶而旳能降活分低性解。。过根氧据 以1min内A240降低0.1旳酶量为1个酶活单位(u)。
硫酸盐缓冲液,盐酸羟胺,黄嘌呤,黄嘌 呤氧化酶,醋酸等。
试验环节:
计算措施:
每毫升反应液中SOD 抑止率达50%时相应 旳SOD 量为一种SOD 活力单位(U),待测 样品中旳SOD 活力由下式计算:
SOD克制率(%)=(A2-A1)/A2×100% SOD 活力(U/ml)=(A2-A1)
据此,可根据H2O2旳消耗量或O2旳生成量测定该酶活力大小。 在反应系统中加入一定量(反应过量)旳H2O2溶液,经酶促反 应后,用原则高锰酸钾溶液(在酸性条件下)滴定多出旳H2O2

即可求出消耗旳H2O2旳量。
酶表活达性 :用每克鲜重样品1min内分解H2O2旳毫克数
酶活(mgH2O2/gFW·min)=
测定茶树鲜叶APX活性旳最佳条件
PVPP旳加入量为鲜叶重旳1.5倍,提取液pH 为7.8,反应液pH为7.0,底物AsA浓度为 0.5mmol/L。
注意事项:
(1)因为测定反应是经过加液量控制在60s内,使产生旳A290光值下 降呈良好旳线性关系。
1.试剂: 0.1mol/L Tris-HCl 缓冲液
(pH8.2

蛋白酶活性的测定

蛋白酶活性的测定

实验四蛋白酶活力的测定一、实验目的1、了解蛋白酶活力测定的原理;2、掌握蛋白酶活力测定的方法。

二、实验原理蛋白酶在一定条件下不仅能够水解蛋白质中的肽键,也能够水解酰胺键和酯键,因此可用蛋白质或人工合成的酰胺及酯类化合物作为底物来测定蛋白酶的活力。

本实验选用酪蛋白为底物,测定微生物蛋白酶水解肽键的活力。

酪蛋白经蛋白酶作用后,降解成相对分子质量较小的肽和氨基酸,在反应混合物中加入三氯醋酸溶液,相对分子质量较大的蛋白质和肽就沉淀下来,相对分子质量较小的肽和氨基酸仍留在溶液中,溶解于三氯醋酸溶液中的肽的数量正比于酶的数量和反应时间。

在280nm波长下测定溶液吸光度的增加,就可计算酶的活力。

三、实验试剂①微生物蛋白酶萃取液(0.01g/ml):称取1.0g酶制剂,加100ml蒸馏水搅拌30min,在4℃下离心分离后,将上层清夜置于冰箱中保存,使用前稀释一定倍数;② 0.02mol/L磷酸盐缓冲液(pH7.5);③ 1%酪蛋白溶液:取1.0g酪蛋白,加100ml 0.2mol/L磷酸盐缓冲液(PH7.5),加热并搅拌使它完全分散,然后置于冰箱中保存;④ 5%三氯醋酸(TCA)溶液。

四、实验步骤1、将5%TCA溶液和1%酪蛋白溶液在37℃下保温。

2、取四支15ml具塞试管,分别标上记号A1、A0、B1和B0。

在A1和A0试管中各吸入0.20ml酶液,在B1和B0试管中各吸入0.40ml酶液,分别用0.2mol/L 磷酸盐缓冲液定容至2.00ml。

在A0和B0试管中各吸入6.00ml5%三氯醋酸溶液,上述四支试管都置于37℃水浴中保温。

3、在各试管中吸入2.00ml 1%酪蛋白溶液,在37℃下保温10min(准确计时)后,再向A1和B1试管中吸入6.00ml5%三氯醋酸溶液。

4、将试管从水浴中取出,在室温下放置1h,用少量上清液润湿滤纸后过滤,保留滤出液。

5、在280nm波长下,分别以A0和B0滤液为空白,测定A1和B1滤液的吸光度。

酶的活力测定的原理是

酶的活力测定的原理是

酶的活力测定的原理是
酶的活力测定原理是通过测量酶催化下的反应速率来间接测定酶的活力。

一般情况下,可以在一定温度、pH值和底物浓度下进行反应,然后通过测量反应产物的生成速率或底物的消耗速率来确定酶的活力。

常用的酶活力测定方法有比色法、荧光法、化学发光法、电化学法等。

其中,比色法是最常用的方法之一。

比色法的原理是将产物或底物与某种试剂作用,使其产生特定的吸光度变化,然后根据吸光度的变化来计算酶的活力。

03 实验三 碱性蛋白酶活力测定

03 实验三  碱性蛋白酶活力测定

实验三. 碱性蛋白酶活力测定【实验目的】1. 掌握测定碱性蛋白酶活力的原理和酶活力的计算方法。

2. 学习测定酶促反应速度的方法和基本操作。

【实验原理】酶活力是指酶催化某些化学反应的能力。

酶活力的大小可以用在一定条件下它所催化的某一化学反应的速度来表示。

测定酶活力实际就是测定被酶所催化的化学反应的速度。

酶促反应的速度可以用单位时间内反应底物的减少量或产物的增加量来表示,为了灵敏起见,通常是测定单位时间内产物的生成量。

由于酶促反应速度可随时间的推移而逐渐降低其增加值,所以,为了正确测得酶活力,就必须测定酶促反应的初速度。

碱性蛋白酶在碱性条件下,可以催化酪蛋白水解生成酪氨酸。

酪氨酸为含有酚羟基的氨基酸,可与福林试剂(磷钨酸与磷钼酸的混合物)发生福林酚反应。

(福林酚反应:福林试剂在碱性条件下极其不稳定,容易定量地被酚类化合物还原,生成钨蓝和钼蓝的混合物,而呈现出不同深浅的蓝色。

)利用比色法即可测定酪氨酸的生成量,用碱性蛋白酶在单位时间内水解酪蛋白产生的酪氨酸的量来表示酶活力。

【实验材料】1.实验器材电热恒温水浴槽;分析天平;容量瓶;移液管;721分光光度计2.实验试剂(1)福林试剂:在1L容积的磨口回流瓶中加入50g钨酸钠(Na2WO4·2H2O)、125g钼酸钠(Na2MoO4·2H2O)、350ml蒸馏水、25ml 85%磷酸及50ml浓盐酸,充分混匀后回流10h。

回流完毕,再加25g硫酸锂、25ml蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴,冷却后定容到500ml。

过滤,置于棕色瓶中暗处保存。

使用前加4倍蒸馏水稀释。

(2)1%酪蛋白溶液:称取酪蛋白1克于研钵中,先用少量蒸馏水湿润后,慢慢加入0.2mol/L NaOH 4ml,充分研磨,用蒸馏水洗入100ml容量瓶中,放入水浴中煮沸15分钟,溶解后冷却,定容至100ml,保存于冰箱内。

(3)pH10缓冲溶液:甲液(0.05mol/L硼砂溶液):取硼砂(Na2B4O7·10H2O) 19克,用蒸馏水溶解并定容至1000ml。

蛋白酶活性检验方法

蛋白酶活性检验方法

蛋白酶活性检验方法1 定义1g固体酶粉(或1mL液体酶),在一定温度和P H值条件下,1min水解酪素产生1ug酪氨酸为一个酶活力单位,以(u/ mL)表示。

2 福林法(第一法)2、1 原理蛋白酶在一珲的温度与P H条件下,水解底物,产生含有酚基的氨基酸(如:酪氨酸、色氨酸等),在碱性条件下,将福林试剂(Folin)还原,生成钼蓝与钨蓝,用分光度法测定,计算其酶活力。

2、2 试剂和溶液2、2、1 福林试剂的制备于2000mL磨口回流装置中加入钨酸钠(Na2Wo4·2H2O)100g、钼酸钠(Na2MoO4·2H2O)25g、水700mL、85%磷酸50mL、浓盐酸100mL,水火沸腾回流10h,取下回流冷却器,在通风橱中加入硫酸锂(Li2SO4)50g、水50mL和数滴浓溴水(99%),再微沸15min,以除去多余的溴(冷后人有绿色需再加溴水,再煮沸除去过量的溴),冷却,见水定溶至1000ml。

混匀,过滤。

制得的试剂应呈金黄色,贮存于棕色瓶内。

使用溶液:一份福林试剂与二份水混合,摇匀。

2、2、2 碳酸钠溶液c(Na2CO3)=0.4mol/L称取无水碳酸钠(Na2CO3)42.4g,用水溶解并定容至1000 mL。

2、2、3 三氯乙酸c(CCl3·COOH)=0.4mol/L称取三氯乙酸65.4g,用水溶解并定容至1000 mL。

2、2、4 氢氧化钠溶液c(NaOH)=0.5mol/L按GB601配制。

2、2、5 盐酸溶液c(HCI)=1 mol/L及0.1 mol/L按GB601配制。

2、2、6 缓冲溶液a、磷酸缓冲液(P H=7.5)适用于中性蛋白酶称取磷酸氢二钠(Na2HPO4·12H2O)6.02g和磷酸二氢钠(NaH2PO4·12H2O)0.5g,加水溶解并定容至1000mL。

b、乳酸缓冲液(P H=3.0)适用于酸性蛋白酶甲液称取乳酸(80%~90%)10.6g,加水溶解并定容至1000 mL。

酶活力的测定

酶活力的测定

4. 抑制剂和激活剂
抑制剂和激活剂是影 响酶活力的其他因素 。抑制剂会抑制酶的 活性,而激活剂则会 增强酶的活性。在测 定酶活力时,需要排 除抑制剂和激活剂的 影响,并进行适当的 样品处理和数据处理 以确保实验结果的准 确性
酶活力的测定
酶活力的测定
三、实验步骤与操作要点
酶活力测定的实验步骤包括样品准备、反应体系配制、温度控制、时间记录、产物或底物 浓度测定等。在操作过程中需要注意以下几点
酶活力是指酶催化特定化学反应的能力, 通常以单位时间内转换底物的摩尔数来 表示
通过测定酶活力,可以了解酶的性质、 作用机制以及底物特异性等方面的信息一、酶活力测 定的基本原理
酶活力测定的基本原 理是利用酶催化的化 学反应速率与酶浓度 成正比的性质,通过 测定反应速率来推算 酶的浓度和活力。常 用的方法有终点法、 动力学法和连续监测 法
酶活力测定结果受到多种因素 的影响,包括温度、pH值、底 物浓度、抑制剂和激活剂等。 为了获得准确的测定结果,需 要严格控制实验条件,并进行 适当的样品处理和数据处理
酶活力的测定
1. 温度
温度是影响酶活力的 重要因素之一。大多 数酶在一定的温度范 围内具有最佳活性, 温度过高或过低都会 影响酶的活性。因此 ,在测定酶活力时, 需要选择适当的温度 ,并进行温度控制以 确保实验结果的准确 性
酶活力的测定
四、时间记录
时间记录是酶活力测定的关键步骤之一。在酶促反应过程中,需要准确记录反应时间,以 便计算反应速率和产物生成量。在时间记录过程中,需要注意控制反应时间,避免过长或 过短的反应时间对实验结果的影响
酶活力的测定
五、产物或底物浓 度测定
产物或底物浓度的测定是酶活力 测定的关键步骤之一。通过测定 产物或底物的浓度,可以计算出 酶的活性。在浓度测定过程中, 需要注意选择适当的测定方法, 并进行准确的浓度计算。常用的 浓度测定方法有分光光度法、色 谱法等

酶活测定方法

酶活测定方法

酶活测定方法还原法酶与底物在特定的条件下反应,酶可以促使底物释放出还原性的基团。

在此反应体系中添加化学试剂,酶促反应的产物可与该化学试剂发生反应,生成有色物质。

通过在特定的波长下比色,即可求出还原产物的含量,从而计算出酶活力的大小。

色原底物法通过底物与特定的可溶性生色基团物质结合,合成人工底物。

该底物与酶发生反应后,生色基团可被释放出来,用分光光度法即可测定颜色的深浅,在与已知标准酶所做的曲线比较后,即可求出待测酶的活力。

粘度法该法常用于测定纤维素酶、木聚糖酶和β-葡聚糖酶的活力。

木聚糖和β-葡聚糖溶液通常情况下可形成极高的粘度,当酶作用于粘性底物时木聚糖和β-葡聚糖会被切割成较小的分子使其粘度大为降低。

基于Poiseuille定律我们知道,只要测定一定条件下溶剂和样品溶液的运动粘度,便可计算特性粘数,并以此来判断酶的活力。

高压液相色谱法酶与其底物在特定的条件下充分反应后,在一定的色谱条件下从反应体系中提取溶液进行色谱分析,认真记录保留时间和色谱图,测量各个样的峰高和半峰高,计算出酶促反应生成物的含量,从而换算出酶活力的数值。

免疫学方法常用于酶活性分析的免疫学方法包括:免疫电泳法、免疫凝胶扩散法。

这两种方法都是根据酶与其抗体之间可发生特定的沉淀反应,通过待测酶和标准酶的比较,最终确定酶活力。

免疫学方法检侧度非常灵敏,可检侧出经过极度稀释后样品中的酶蛋白,但其缺点是不同厂家生产的酶产品需要有不同特定的抗体发生反应。

琼脂凝胶扩散法将酶作用的底物与琼脂混合熔融后,倒入培养皿中或载波片上制成琼脂平板。

用打孔器在琼脂平面上打出一个约4-5mm半径的小孔。

在点加酶样并培养24h以后,用染色剂显色或用展开剂展开显出水解区,利用水解直径和酶活力关系测定酶活力。

蛋白酶活力的测定随着生物技术的发展及环保要求的提高,越来越多的酶制剂应用于制革生产中。

比如浸水,脱毛,软化,脱脂等工序都用到大量的酶制剂,从酶的作用性质来看制革生产中用到的主要是蛋白酶和脂肪酶。

实验一α-淀粉酶活力的测定

实验一α-淀粉酶活力的测定

结果处理与计算
数据处理
根据实验数据,我们计算了酶活力、 反应速率等参数。
图表绘制
我们使用图表展示了实验结果,以便 更直观地分析数据。
结果分析
酶活力比较
通过比较不同浓度酶液的酶活力,我们可以得出酶活力与酶浓度 之间的关系。
反应速率分析
通过分析反应速率,我们可以了解酶促反应的动力学特征。
结论总结
综合以上分析,我们可以得出实验一α-淀粉酶活力测定的结论, 并为其应用提供依据。
用紫外可见分光光度计在540nm波长处测定各管 的吸光度值。
数据记录与处理
01
记录实验数据,计算α-淀粉酶活力。
02
根据实验数据绘制标准曲线和酶 活性曲线。
04
结果分析
数据记录
实验数据
在实验过程中,我们记录了不同浓度 酶液处理后的反应时间、温度、pH值 等数据。
实验误差
在实验过程中,我们尽量减小误差, 如使用精确的测量工具、多次测量取 平均值等。
05
实验总结与讨论
实验总结
01
实验原理
本实验通过测定α-淀粉酶催化淀粉水解生成可溶性糖的速率,从而确定
酶活力的大小。
02 03
实验步骤
准确称取适量淀粉和底物溶液,加入试管中,加入适量酶液,在适宜温 度下恒温水浴一定时间,然后加入碘液和氢氧化钠溶液终止反应,最后 用斐林试剂进行滴定。
实验结果
通过滴定结果计算出α-淀粉酶活力的大小。
DNS溶液
称取3,5-二硝基水杨酸6.3g,溶解于50mL蒸馏水中,加入2mol/L氢氧化钠溶液 16.8mL,再加入20%酒石酸钾钠溶液10mL和2mol/L硫酸溶液20mL,混合均匀后 加热至80℃,不断搅拌,直至溶液呈透明。冷却后用蒸馏水定容至100mL,避光保 存。

酶活性的测定

酶活性的测定
例: 反应时间短,最适温度高。 反应时间长,最适温度低。
低温酶学
五、pH 对酶反应的影响
最适pH时的酶 最适 时的酶 活力最大
•最适 因酶而异, 最适pH因酶而异 最适 因酶而异, 多数酶在7.0左右 多数酶在 左右 •是酶的特性之一 是酶的特性之一
连续监测法所需仪器
仪器 722s型分光光度计、电子分析天平、 高速冷冻离心机、微量移液器等
过氧化物酶活力的测定
操作步骤
一、酶液提取
分别精确 分别精确称取不同部位的植物样品0.2g左右,加入预冷的酶提取缓冲液约 精确 5ml,于研钵中研磨成匀浆(冰浴),匀浆转入2支离心管,用少量(约1ml)缓 冲液冲洗研钵一并转入,托盘天平平衡后于8000转/分钟离心15分钟(低温)。 将上清液倒入刻度试管,定容至10ml,插入冰浴待测。
酶活性单位(U 酶活性单位 )
按照国际酶学会议 的规定,1个酶活 力单位是指在25℃ 、测量的最适条件 (指最适pH、温 度等)下,1分钟 内能引起1微摩尔 底物转化的酶量。
术语酶活力指的是 溶液或组织提取液 中总的酶单位数。
在酶的纯化过程中 常用到另一个术语 (specific activity) )
比活
是指每毫克蛋白含有的酶单位数。 是指每毫克蛋白含有的酶单位数。随着 毫克蛋白含有的酶单位数 酶纯化的进行,比活会越来越高, 酶纯化的进行,比活会越来越高,当酶 已被纯化至纯酶时,比活是个恒定值。 已被纯化至纯酶时,比活是个恒定值。 所以比活是酶纯化程度的指标 指标。 所以比活是酶纯化程度的指标。
双分子反应、 双分子反应、一级反应
酶促反应的动力学方程式
1、米氏方程 、
1913年Michaelis和Menten提出反应速度与底 年 和 提出反应速度与底 物浓度关系的数学方程式,即米- 物浓度关系的数学方程式 ,即米 - 曼氏方程 简称米氏方程(Michaelis equation)。 式,简称米氏方程 。

实验八 纤维素酶活力测定实验

实验八  纤维素酶活力测定实验

实验八纤维素酶酶活力的测定实验【实验目的】1、了解测定纤维酶活力及还原糖的原理。

2、掌握测定纤维酶活力及还原糖的方法。

3、获得部分纤维素酶。

【实验原理】纤维素酶是水解纤维素生成纤维二糖及葡萄糖的一类酶的总称。

它包括C1、C X酶及纤维二糖酶(β—葡萄糖苷酶)。

作用方式:C1酶C X酶纤维二糖酶天然纤维素-----→直链纤维素----→纤维二糖---------→葡萄糖其中C1酶是使天然纤维素晶体都分链,起一个分离作用和水合作用,从而使天然纤维素裂解成为直链纤维素。

C X酶不能水解天然纤维素,而能水解直链纤维素的β-1,4-葡萄糖酶键,生成纤维二糖,纤维二糖再经过纤维二糖酶水解成为葡萄糖。

本法以滤纸和羧甲基纤维素钠盐作为底物加入一定量的酶液,在一定的条件下起作用,然后观察滤纸的溃崩情况来判断C1酶活力的大小,同时,测定CMC 水解液中还原糖的含量用来表示C X酶活力的大小。

用羧甲基纤维素钠盐(CMC)作底物,经纤维素酶水解后生成还原糖,然后用DNS法测定还原糖的含量,从还原糖的数量来求得酶活力的大小。

纤维素分子是由β-葡萄糖从1,4键相连的长链,由于纤维素的分子间氢键数目极其多,因此不溶于水,在纤维素分子中β-葡萄糖上第2,3及5个碳原子都有一个游离的羧基,如羧基上的氢被羧甲基取代,由于羧基有着很强的亲水性,因此,CMC就能溶于水而成为胶状溶液。

羧甲基纤维素无论在结构上或是在性质上都很大程度地不同于纤维素。

因为它溶于水。

所以,非常容易被纤维素酶水解,在相同的条件下,同一纤维素酶水解CMC所产生的还原糖远大于水解纤维素所产生的还原糖,因此CMC酶活力只能代表CX酶的活力,而且它的数值总是比较高的,所以CMC的酶活力只能供参考。

测定还原糖的方法很多,只是采用DNS(3,5-二硝基水杨酸)法,比较简便,3,5-二硝基水杨酸是一种氧化剂,能与还原糖作用,使硝基还原成氨基,溶液变为橙色,在一定还原糖浓度范围内,橙色的深度与还原糖的浓度成正比。

各种酶活力测定方法及注意事项

各种酶活力测定方法及注意事项

各种酶活⼒测定⽅法及注意事项碱性蛋⽩酶及各种蛋⽩酶活⼒测定⽅法及测定有感因长期测定碱性蛋⽩酶酶活⼒与⾓蛋⽩酶活⼒与胶原酶活⼒和弹性蛋⽩酶活⼒,碱性蛋⽩酶活⼒测定还好,因有国家标准,测定按照国标来便可⼤⼤减少误差。

其余酶活⼒测定过程中因⽆统⼀标准且底物差异⼤,导致长期酶活⼒测定的混乱,各种酶活⼒测定⽅法与各种试剂添加,最后实际测定的酶活⼒只能仅作参考。

以下是各种蛋⽩酶活⼒测定⽅法及标曲绘制:碱性蛋⽩酶测定⽅法根据国标GB/T 23527-2009 附录B 蛋⽩酶活⼒测定福林法以下是⽅法碱性蛋⽩酶的测定⽅法参考 GB/T 23527-2009 附录 B 中福林酚法进⾏,即 1 个酶活⼒单位(U/mL)定义为 1 mL 酶液在40℃、pH= 10.5 条件下反应 1 min ⽔解酪蛋⽩产⽣ 1 µg 酪氨酸所需要的酶量,主要步骤如下。

2.2.6.1 标准曲线的绘制(1)L-酪氨酸标准溶液:按表 2-6 配制。

表 2-6 L-酪氨酸标准溶液配置表Table 2-6 L-Tyrosine standard solution form管号酪氨酸标准溶液的浓度/(µg/mL)取 100 µg/mL 酪氨酸标准溶液的体积/(mL)取⽔的体积/(mL)0 0 0 101 10 1 92 20 2 83 30 3 74 40 4 65 50 5 5(2)分别取上述溶液各 1.00 mL,各加 0.4 mol/L 碳酸钠溶液 5.0 mL,福林试剂使⽤液 1.00 mL,置于 40 ℃±0.2 ℃⽔浴锅中显⾊ 20 min,⽤分光光度计于波长 680 nm,10mm ⽐⾊⽫,以不含酪氨酸的反应管作为空⽩,分别测定其吸光度值,以吸光度值 A 为纵坐标,酪氨酸浓度 C 为横坐标,绘制 L-酪氨酸标准曲线。

图 2-1 L-酪氨酸标准曲线Fig. 2-1 L-tyrosine standard curve根据作图或⽤回归⽅程计算出当吸光度为 1 时的酪氨酸的量(µg),既为吸光度常数 K 值。

各种酶活力测定方法及注意事项

各种酶活力测定方法及注意事项

各种酶活⼒测定⽅法及注意事项碱性蛋⽩酶及各种蛋⽩酶活⼒测定⽅法及测定有感因长期测定碱性蛋⽩酶酶活⼒与⾓蛋⽩酶活⼒与胶原酶活⼒和弹性蛋⽩酶活⼒,碱性蛋⽩酶活⼒测定还好,因有国家标准,测定按照国标来便可⼤⼤减少误差。

其余酶活⼒测定过程中因⽆统⼀标准且底物差异⼤,导致长期酶活⼒测定的混乱,各种酶活⼒测定⽅法与各种试剂添加,最后实际测定的酶活⼒只能仅作参考。

以下是各种蛋⽩酶活⼒测定⽅法及标曲绘制:碱性蛋⽩酶测定⽅法根据国标GB/T 23527-2009 附录B 蛋⽩酶活⼒测定福林法以下是⽅法碱性蛋⽩酶的测定⽅法参考 GB/T 23527-2009 附录 B 中福林酚法进⾏,即 1 个酶活⼒单位(U/mL)定义为 1 mL 酶液在40℃、pH= 10.5 条件下反应 1 min ⽔解酪蛋⽩产⽣ 1 µg 酪氨酸所需要的酶量,主要步骤如下。

2.2.6.1 标准曲线的绘制(1)L-酪氨酸标准溶液:按表 2-6 配制。

表 2-6 L-酪氨酸标准溶液配置表Table 2-6 L-Tyrosine standard solution form管号酪氨酸标准溶液的浓度/(µg/mL)取 100 µg/mL 酪氨酸标准溶液的体积/(mL)取⽔的体积/(mL)0 0 0 101 10 1 92 20 2 83 30 3 74 40 4 65 50 5 5(2)分别取上述溶液各 1.00 mL,各加 0.4 mol/L 碳酸钠溶液 5.0 mL,福林试剂使⽤液 1.00 mL,置于 40 ℃±0.2 ℃⽔浴锅中显⾊ 20 min,⽤分光光度计于波长 680 nm,10mm ⽐⾊⽫,以不含酪氨酸的反应管作为空⽩,分别测定其吸光度值,以吸光度值 A 为纵坐标,酪氨酸浓度 C 为横坐标,绘制 L-酪氨酸标准曲线。

图 2-1 L-酪氨酸标准曲线Fig. 2-1 L-tyrosine standard curve根据作图或⽤回归⽅程计算出当吸光度为 1 时的酪氨酸的量(µg),既为吸光度常数 K 值。

木瓜蛋白酶酶活力测定

木瓜蛋白酶酶活力测定

木瓜蛋白酶酶活力测定1、原理蛋白酶在一定温度与pH条件下,水解酪蛋白底物,然后加入三氯乙酸终止酶反应,并使未水解的酪蛋白沉淀出去,滤液对紫外光有吸收,可用紫外分光光度法测定,根据吸收度计算酶活力。

2、酶活力定义在一定条件下,每分钟水解酪蛋白生成1ug酪氨酸所需的酶的量,为1个酶活力单位(U)。

3、仪器和设备恒温水浴(37±0.2)℃紫外分光光度计4、试剂和溶液4.1、酶稀释液称取L-半胱氨酸盐酸盐(C3H7NO2S·HC L·H2O)5.27g,氯化钠(NaCL)23.4g,加水500ml溶解,另取乙二胺四乙酸二钠2.23g加水200ml溶解,合并两液混匀,用0.1mol/l 氢氧化钠溶液或0.1mol/l盐酸溶液调至pH=5.5,加水稀释至1000ml。

4.2、0.05mol/l磷酸氢二钠溶液称取磷酸氢二钠(Na2HPO4·12H2O)17.89g,加水溶解,并定容至1000ml。

4.3、酪蛋白溶液称取经硅胶干燥器忠干燥至衡重的酪蛋白0.6g(精确到0.0002g),置烧杯中,假如0.05mol/l磷酸氢二钠溶液80ml。

在沸水浴忠边加热边搅拌,直至完全溶解,冷却后,用0.1mol/l盐酸调至pH=7.0,转移到100ml容量瓶中,加水至刻度。

临用现配。

4.4、三氯乙酸溶液称取三氯乙酸8.995g,加无水乙酸钠14.97g,冰乙酸9.45ml加适量水溶解后,加水使成500ml,振摇均匀。

4.5、酪氨酸标准溶液称取于105℃干燥至衡重的酪氨酸50mg(精确0.0002g)用0.1mol/l盐酸溶解,移入100ml容量瓶中,并用0.1mol/l盐酸调至刻度,摇匀,即可得含酪氨酸50ug/ml的溶液。

4.6、试样溶液称取木瓜蛋白酶0.9g(精确0.0002g)置于研钵中,加入少量酶稀释液研磨20min,用酶稀释液移至250ml容量瓶中,加酶稀释液至刻度,充分摇匀;取出上述液体1ml以酶稀释液稀释,定容20ml,充分摇匀,供测试用(60min内使用)。

福林酚法测定蛋白酶活力原理

福林酚法测定蛋白酶活力原理

福林酚法测定蛋白酶活力原理1. 什么是福林酚法?福林酚法,这个名字听上去有点复杂,但其实就是一种测定蛋白酶活力的办法。

简单来说,它就像是蛋白酶的“测谎仪”,用来告诉我们这些酶到底有多能干。

要理解这个方法,我们先得知道什么是蛋白酶。

蛋白酶,顾名思义,就是能把蛋白质搞得七零八落的“拆家伙”。

它们在生物体内的作用可大了,像是消化酶,它们的“工作”就是分解我们吃下去的食物中的蛋白质。

2. 福林酚法的工作原理2.1 准备材料好,咱们先说说准备工作。

你得有几个“主角”,分别是蛋白质底物、蛋白酶、福林酚试剂和氢氧化钠。

底物就是我们用来测试的“蛋白质样品”,而福林酚试剂则是测定结果的“显色剂”。

氢氧化钠用来调整酸碱度,确保反应顺利进行。

2.2 反应过程这个过程就像是做菜一样。

首先,把蛋白质底物和蛋白酶混合,放在一定温度下孵育一段时间。

这时候,蛋白酶开始“拆解”蛋白质了。

接下来,加入福林酚试剂,它会和被分解出来的小分子反应,变成有颜色的化合物。

颜色的深浅,就像是菜的颜色一样,直接反映了反应的程度。

然后,我们用光度计来测量这个颜色,颜色越深,说明蛋白酶的活力越强。

3. 数据分析和结果解读3.1 数据分析有了测量数据后,我们得拿出计算器了。

通过比色计测得的光吸收值,可以告诉我们有多少蛋白质被分解了。

这时候,咱们要把这些数据代入标准曲线中,得出最终的结果。

标准曲线就像是我们的“食谱”,按照它来判断蛋白酶的活力高低。

3.2 结果解读结果解读这一步就像是看天气预报一样。

通过分析,我们可以知道蛋白酶的活力究竟如何。

如果蛋白酶的活力高,那说明它的“拆家”能力强;如果低,那可能就是“效率不高”了。

这样,我们就能了解蛋白酶的实际情况,为后续的实验提供依据。

4. 实际应用福林酚法可不仅仅是在实验室里用得上,它在很多领域都有实际应用。

比如,在制药行业,它能帮助我们评估药物的效果;在食品工业,它可以帮助检测食品中的酶活性,确保食品的质量。

蛋白酶活力的测定

蛋白酶活力的测定

实验三蛋白酶活力的测定一、目的掌握用分光光度计法测定蛋白酶活力的原理与操作技术。

二、原理蛋白酶水解酪蛋白,其产物酪氨酸能在碱性条件下使福林——酚试剂还原,生成鉬蓝与钨蓝,以比色法测定。

三、试剂及仪器1.福林—酚试剂称取50g钨酸钠(Na2WO4•2H2O),12.5g钼酸钠(Na2MoO4•2H2O),置入1000mL原底烧瓶中,加350mL水,25mL85%磷酸,50mL浓盐酸,文火微沸回流10h,取下回流冷凝器,加50g硫酸锂(Li2SO4)和25mL水,混匀后,加溴水脱色,直至溶液呈金黄色,再微沸15min,驱除残余的溴,冷却,用4号耐酸玻璃过滤器抽滤,滤液用水稀释至500mL。

使用时用2倍体积的水稀释。

2.0.4mol/L碳酸钠溶液:称取42.4g碳酸钠,用水溶解并定容至1000mL。

3.0.4mol/L三氯乙酸溶液:称取65.5g三氯乙酸,用水溶解并定容至1000mL。

4.2%酪蛋白溶液称取2.00g酪蛋白(又名干酪素),加约40mL水和2~3滴浓氨水,于沸水浴中加热溶解,冷却后,用pH7.2磷酸缓冲溶液稀释定容至100mL,贮存于冰箱中。

5.pH7.2磷酸缓冲液0.2mol/L 磷酸二氢钠溶液:称取31.2g磷酸二氢钠(NaH2PO4•2H2O),用水溶解稀释至1000mL;0.2mol/L 磷酸氢二钠溶液:称取71.6g磷酸氢二钠(Na2HPO4•12H2O),用水溶解稀释至1000mL;pH7.2磷酸缓冲溶液:取28mL 0.2mol/L磷酸二氢钠溶液和72mL 0.2mol/L磷酸氢二钠溶液,用水稀释至1000mL。

6.标准酪氨酸溶液:准确称取0.1g DL-酪氨酸,加少量0.2mol/L盐酸溶液(取1.7mL浓盐酸,用水稀释至100mL),加热溶解,用水定容至1000mL,每毫升含DL-酪氨酸100微克。

7.仪器:分光光度计、试管四、操作步骤1.标准曲线绘制编号0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8标准酪氨酸溶液(mL)[100g/mL]水(mL) 10 9 8 7 6 5 4 3 2稀释酪氨酸溶液浓度(g/mL) 0 10 20 30 40 50 60 70 80在上述各管中各取1mL,分别加入5mL 0.4mol/L碳酸钠溶液,1mL福林—酚试剂,于400C水浴显色20min,在680nm波长下测吸光度,绘制标准曲线,在标准曲线上求得吸光度为1时相当的酪氨酸g数,即为K值。

酶活力测定的原理和方法

酶活力测定的原理和方法
酶的分析检测技术?酶促反应分析?酶活力测定方法酶活力测定方?常见酶类的活力测定方法維持酵素活性緩衝液?緩衝液可維持溶液的恆定酸鹼度及離子濃度兩者都會影響酵素的活性?經常在緩衝液中加入一些物質?經常在緩衝液中加入一些物質以增加酵素安定或保持活性?溫度的影響?濃度的影響以增加試劑的保存?避免潮解分裝凍藏?分裝凍藏
柱法测定:
• 将一定量的固定化酶装进具有恒温装置 的反应柱中,让条件适宜的底物溶液, 以一定的速率流过酶柱,收集流出的反 应液。按常规方法测定底物的消耗量或 产物的生成量。测定方法与游离酶反应 液的测定方法相同。
连续测定
• 利用连续分光光度法等方法可对固定化酶反应 液进行连续测定,从而连续测定酶活力。测定 时,可将振荡反应器中的反应液用泵连续引到 连续测定仪(例如,双束紫外分光光度计等) 的流动比色杯中进行连续分光测定。或者使固 定化酶柱流出的反应液连续流经流动比色杯进 行连续分光测定。
酶反应的中止
• 使酶停止作用常使用强酸、强碱、三氯 乙酸或过氯酸,亦可用SDS(十二烷基硫 酸钠)使酶失活,或迅速加热使酶变性 等。酶反应的底物或产物一般可用化学 法,放射性化学法,酶偶联法进行测定。
三、连续法测定酶活力
• 连续法测定酶活力,不需要取样中止反应,而 是基于反应过程中光谱吸收,气体体积、酸碱 度、温度、粘度等的变化用仪器跟踪监测反应 进行的过程,记录结果,算出酶活性。连续法 使用方便,一个样品可多次测定,且有利于动 力学研究,但很多酶反应还不能用该法测定。
酶反应速度和底物浓度的关系
V 反应速度
Vmax
1/2Vmax 混合级反应
零级反应
一级反应
Km
[S] 底物浓度
米氏方程
• v=Vmax[S]/(Km+[S]) • Km为酶反应速度达到最大反应速度一半 时的底物浓度,为酶的特征常数。 • 同一酶对不同底物Km不同。 • Km最小的底物为该酶的最适底物。

酶活力的测定方法

酶活力的测定方法

实验四α-淀粉酶实验活力的测定方法一、实验目的了解并掌握淀粉酶的测定步骤,掌握其方法。

二、实验原理液化型淀粉酶(α-淀粉酶)能催化水解淀粉,生成分子较小的糊精和少量的麦芽糖及葡萄糖。

本实验利用呈色反应来测定液化型淀粉酶水解淀粉作用的速度,从而测定淀粉酶活力的大小。

三、器材和试剂1.器材多孔白瓷斑、50ml三角瓶或大试管(25mm*200mm)、恒温水浴箱、烧杯、容量瓶、漏斗、吸管、纱布。

2.试剂(1)原碘液称取I211g、KI22g,加少量水完全溶解后,再定容至500ml,于棕色瓶中保存。

(2)稀碘液吸取原碘液2ml,加入KI20g,用蒸馏水溶解定容至500ml,于棕色瓶中保存。

(3)标准“终点色”溶液。

①准确称取氯化钴40.2439g、重铬酸钾0.4878g,加水溶解并定容至500ml。

②0.04%铬黑T溶液。

准确称取铬黑T40mg,加水溶解定容至100ml。

取①液80ml与②液10ml混合,即为标准色。

冰箱保存。

(4)2%可溶性淀粉称取烘干可溶性淀粉2.00g,先一少许蒸馏水混匀,倾入80ml沸水中。

继续煮沸至透明,冷却后用水定容至100ml。

此溶液需要新鲜配制。

(5)0.02mol/L、pH6.0磷酸氢二钠溶液称取Na2HPO4·12H2O45.23g和C6H8O7·H2O8.07g,用蒸馏水溶解定溶至1000ml,配好后以酸度计或精密试纸校正pH。

(6)α-淀粉酶粉。

四、操作步骤1.待测酶液的制备(1)精密称取酶粉1-2g,放入小烧杯中。

(2)用少量的40℃0.02mol/L(恒温水浴箱中进行) pH6.0的磷酸氢二盐-柠檬酸缓冲液溶解,并用玻璃棒捣研3-4次,最后全部转入容量瓶中,用缓冲溶液定容至刻度,摇匀,通过四层纱布过滤,滤液供测定用。

(如为液体样品,可直接过滤,取一定量滤液入容量瓶中,加入缓冲溶液稀释至刻度,摇匀,备用。

)2.测定(1)将“标准色”溶液滴于白瓷板的左上角空穴内,作为比较终点色的标准。

两种常用纤维素酶活力测定方法---滤纸酶活-CMC酶活

两种常用纤维素酶活力测定方法---滤纸酶活-CMC酶活

检测纤维素酶酶活力—滤纸酶活力(FPA)滤纸酶活力代表了纤维素酶的三种酶组分协同作用后的总酶活。

采用3,5一二硝基水杨酸法测定酶活:(简称DNS法)1、原理:纤维素经纤维素酶水解后生成还原糖,还原糖能将3,5一二硝基水杨酸中硝基还原成氨基,溶液变为橙色的氨基化合物,即:3一氨基一5二硝基水杨酸,在一定的还原糖浓度范围内,橙色的深度与还原糖的浓度成正比,据此可以推算出纤维素酶的活力。

2、采用的滤纸酶活单位定义:滤纸酶活反映了纤维素酶的3种水解酶,即内切型葡聚糖酶、外切型葡聚糖酶和β葡聚糖苷酶组成的诱导复合酶系的协同水解纤维素能力。

是该菌株整个纤维素酶系的酶活力水平的综合体现。

代表了纤维素酶的三种酶组分协同作用后的总酶活。

在此滤纸酶活单位定义为:以滤纸为底物,在一定反应条件(pH4.8,50℃,恒温lh)下,以水解反应中,1ml纤维素酶液1min催化纤维素生成lug葡萄糖为1个滤纸酶活单位,以U表示。

3、滤纸酶活力(FPA)的测定:①取0.5ml适当稀释的酶液,加入PH值为4.8,0.1mol/L的乙酸-乙酸钠缓冲液lml或柠檬酸-柠檬酸钠缓冲液lml;②再加入50±0.5mg滤纸(1cmx6cm)一条,于50℃保温酶解反应1小时,(先预热5分钟);③加入DNS显色液3ml(标准曲线用量是1.5ml),放入已沸腾的水中沸水浴lOmin,流水冷却后在540nm下测吸光度;④同时用100℃煮沸lOmin后失活的酶液做对照,扣除本底;⑤根据吸光度从葡萄糖标准曲线中查出相应的葡萄糖含量,根据生成的葡萄糖克数计算出酶活值。

滤纸酶活按下面公式计算:X=(WxNxlOOO)/(TxM)X:为滤纸酶酶活力,单位U/mL。

W:为从葡萄糖标准曲线中查得的葡萄糖的浓度。

N:为酶液稀释总倍数。

T:为反应时间。

M:为样品的体积。

4、葡萄糖标准曲线绘制方法标准曲线绘制:取25ml具塞刻度试管6支,加入1.0 mg /ml的葡萄糖标准溶液0.0、0.4、0.8、1.2、1.6、2.0ml,加蒸馏水2.0、1.6、1.2、0.8、0.4、0.0ml,加DNS试剂1.5 ml,混匀后在沸水浴中加热5分钟,取出立即用冷水冷却,用水定容至25 ml,摇匀,测吸光度A,以吸光度为纵坐标,葡萄糖的含量为横坐标,绘制标准曲线。

酶活力测定的一般原理和方法

酶活力测定的一般原理和方法

酶活⼒测定的⼀般原理和⽅法酶活⼒测定的⼀般原理和⽅法(2012⼴东)29 .(16分)⾷品种类多,酸碱度范围⼴。

⽣物兴趣⼩组拟探究在⾷品⽣产应⽤范围较⼴的蛋⽩酶,查阅相关⽂献,得知:(1)pH对不同蛋⽩酶的活⼒影响有差异。

据图12可知,_________更适宜作为⾷品添加剂,理由是________。

蛋⽩酶的活⼒可⽤________的量来表⽰。

(1)该蛋⽩酶的提取⼯艺流程如下:兴趣⼩组分别对酶保护剂浓度、提取液pH进⾏了探究实验。

结果显⽰,酶保护剂浓度在0.02~0.06mol/L范围内,酶活⼒较⾼;提取液pH在6.0~8.0范围内,酶活⼒较⾼。

他们认为,要进⼀步提⾼粗酶制剂的酶活⼒,以达到最佳提取效果,还需对酶保护剂浓度和提取液pH进⾏优化,并确定以此为探究课题。

请拟定该课题名称,设计实验结果记录表。

【答案】(1)⽊⽠蛋⽩酶由图可以看出,⽊⽠蛋⽩酶的活性不随pH的变化⽽变化单位时间内底物消耗(产物产⽣)(2)课题:探究酶保护剂的最适浓度和提取液的最适pH【解析】(1)审题结合图形和⽂字,在题⽬中已经提供了信息“⾷品种类多,酸碱度范围⼴”,所以选择的⾷品添加剂应该有较⼴的酸碱适应范围。

从图形中,可以看出⽊⽠蛋⽩酶的适应范围最⼴,所以可以选作⾷品添加剂。

酶的活⼒,⼀般⽤酶催化的底物消耗量或者产物⽣成量来表⽰。

(2)实验设计,应该明确实验⽬的:探究酶保护剂的最适浓度和提取液的最适pH值,所以可以将酶保护剂的浓度和提取液的pH值作为⾃变量,因变量为单位时间内底物的消耗量。

【试题点评】本题以蛋⽩酶在⾷品⽅⾯的应⽤为背景,考查了蛋⽩酶的应⽤、活⼒测定、蛋⽩酶的提取流程等内容和学⽣绘制表格的能⼒,难度不⼤。

(2009⼴东)38. (10分)⽣物技术实践汉⽔丑⽣的⽣物同⾏”超级群整理校对2012-7-5(1)商品化植酸酶主要来⾃微⽣物。

在产酶菌株筛选过程中,常在基本培养基中添加不溶于⽔的植酸钙制成固体平板,植酸钙被植酸酶分解后可在平板上产⽣,可根据其⼤⼩选择⽬的菌株,所得菌株需要进⼀步测定植酸酶活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兴趣小组分别对酶保护剂浓度、提取液pH进行了探究实验。 结果显示,酶保护剂浓度在0.02~0.06mol/L范围内,酶活力较 高;提取液pH在6.0~8.0范围内,酶活力较高。他们认为,要进 一步提高粗酶制剂的酶活力,以达到最佳提取效果,还需对酶保 护剂浓度和提取液pH进行优化,并确定以此为探究课题。请拟定 该课题名称,设计实验结果记录表。
(1)pH对不同蛋白酶的活力影响有差异。据图12可知,木__瓜__蛋__白__酶_ 更适宜作为食品添加剂,理由是_由__图__可__以__看__出__,__木__瓜__蛋__白__酶__的_ _活__性__不__随__p_H_的__变__化__而__变__化_____________________。 蛋白酶的活力可用单__位__时__间__内__底__物__消__耗__(__产__物__产__生__)的量来表示。
(2008江苏34A题)。为探究洗衣粉加酶后的洗涤效果,将一种 “汉水丑生的生物同行”超级群大型公 益活动:历年高考题PPT版制作。本
课件为公益作品,版权所有,不得以 任何形式用于商业目的。2012年1月15 日,汉水丑生标记。
无酶洗衣粉分成3等份,进行3组实验。甲、乙组在洗衣粉中加
入1种或2种酶,丙组不加酶,在不同温度下清洗同种化纤布上
(2)该蛋白酶的提取工艺流程如下:
课题:探究酶保护剂的最适浓度和提取液的最适pH
单位时
提取液的pH
间内底
物的消 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 耗量
酶 0.02 保 0.03 护 剂 0.04 的 0.05 浓 度 0.06
【解析】 (1)审题结合图形和文字,在题目中已经提供了信息“食 品种类多,酸碱度范围广”,所以选择的食品添加剂应该有 较广的酸碱适应范围。从图形中,可以看出木瓜蛋白酶的适 应范围最广,所以可以选作食品添加剂。酶的活力,一般用 酶催化的底物消耗量或者产物生成量来表示。 (2)实验设计,应该明确实验目的:探究酶保护剂的最适 浓度和提取液的最适pH值,所以可以将酶保护剂的浓度和提 取液的pH值作为自变量,因变量为单位时间内底物的消耗量。
清除血渍时间(min) 67 66 88 52 51 83 36 34 77 11 12 68 9 11 67
清除油渍时间(min) 93 78 95 87 63 91 82 46 85 75 27 77 69 8 68
(3)如果甲、乙和丙3组均在水温为80℃时洗涤同一种污渍, “汉水丑生的生物同行”超级群大型公 益活动:历年高考题PPT版制作。本 课件为公益作品,版权所有,不得以 任何形式用于商业目的。2012年1月15 日,汉水丑生标记。
的2种污渍,其他实验条件均相同,下表为实验记录。请回答下
列水问温题/℃。
10
20
30
40
50
组别
甲 乙 丙 甲 乙 丙 甲 乙 丙 甲 乙 丙 甲乙丙
清除血渍时间(min) 67 66 88 52 51 83 36 34 77 11 12 68 9 11 67
清除油渍时间(min) 93 78 95 87 63 91 82 46 85 75 27 77 69 8 68
29 .(16分)食品种类多,酸碱度范围广。生物兴趣小组拟 探究在食品生产应用范围较广的蛋白酶,查阅相关文献,得知:
(2)该蛋白酶的提取工艺流程如下:
“汉水丑生的生物同行”超级群大型 公益活动:历年高考题PPT版制作。
本课件为公益作品,版权所有,不得 以任何形式用于商业目的。2012年1月 15日,汉水丑生标记。
A题。为探究洗衣粉加酶后的洗涤效果,将一种无酶洗衣粉分成 3等份,进行3组实验。甲、乙组在洗衣粉中加入1种或2种酶, 丙组不加酶,在不同温度下清洗同种化纤布上的2种污渍,其他 实验条件均相同,下表为实验记录。请回答下列问题。
水温/℃
10
20
30
40
50
组别
甲 乙 丙 甲 乙 丙 甲 乙 丙 甲 乙 丙 甲乙丙
10
20
30
40
50
组别
甲 乙 丙 甲 乙 丙 甲 乙 丙 甲 乙 丙 甲乙丙
清除血渍时间(min) 67 66 88 52 51 83 36 34 77 11 12 68 9 11 67
(1)提高洗衣粉去污能力的方法有_加___酶__和__适___当__提___高__温__度____。 甲组在洗衣粉中加入了_蛋__白__酶___。乙组在洗衣粉中加入了 ____蛋__白___酶__和___脂__肪__酶_________。 (2)甲、乙组洗涤效果的差异,说明酶的作用具有_专___一__性____。
酶活力测定的一般原理和方法
(2012广东29 ).(16分)食品种类多,酸碱度范围广。生 物兴趣小组拟探究在食品生产应用范围较广的蛋白酶,查阅相 关文献,得知:
“汉水丑生的生物同行”超级群大型 公益活 动:历年高考题PPT版制作。本课件 为公益 作品,版权所有,不得以任何形式用 于商业 目的。2012年1月15日,汉水丑生标记 。
请比较这3组洗涤效果之间的差异并说明理由。
没有差异,因为高温使酶失活
A题。为探究洗衣粉加酶后的洗涤效果,将一种无酶洗衣粉分成 3等份,进行3组实验。甲、乙组在洗衣粉中加入1种或2种酶, 丙组不加酶,在不同温度下清洗同种化纤布上的2种污渍,其他 实验条件均相同,下表为实验记录。请回答下列问题。
水温/℃
成固体平板,植酸钙被植酸酶分解后可在平板上产
生_透__明___圈___,可根据其大小选择目的菌株,所得菌
株需要进一步测定植酸酶活性。活性测定可以植酸
钠作为底物,活性可用一定条件下单位时
间__植__酸__钠__的__消__耗__量__(__肌__醇__和__磷__酸__的__生__成__量__)__表示。
(2009广东38 “汉水丑生的生物同行”超级群大型公 益活动:历年高考题PPT版制作。本
课件为公益作品,版权所有,不得以 任何形式用于商业目的。2012年1月15 日,汉水丑生标记。
(1)).(10分)生物技术实践
商品化植酸酶主要来自微生物。在产酶菌株筛选过
程中
相关文档
最新文档