离散数学期末试卷1-B-2016-12

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

最新离散数学期末考试试题与答案[1]课件ppt

最新离散数学期末考试试题与答案[1]课件ppt

19. (5分) 已知公理 A: (pq) ((qp) (pq)) B: pp∨q
C: pp D: (pr) ((qr) ((p∨q) r)) E: p∧qp 证明定理: p(p∨p)
证明:
(1) pp∨q
公理B
(2) pp∨p
代入
(3) (pr) ((qr) ((p∨q) r))
公理D
(4) (pp) ((pp) ((p∨p) p)) 代入
∑d(v) ≥1+2(|V|-1)=2|E|+1, 这与结论 ∑ d(v) =2|E| 矛盾! 矛盾说明 T 不止
一片树叶。
12. (8分) (G, ·)是一个群,取定u ∊ G. ∀g1,g2∊G,定义: g1*g2= g1·u-1·g2. 证明: (G,*)是群。
证明: (1) 封闭性 (2) 可以结合性 (3) 幺元 e*=u. 事实上, g*e*=g*u=g·u-1·u=g·e=g e**g=u*g=u·u-1·g=e·g=g (4) 逆元 对于∀g∊G, 在代数运算*下的逆元记为g*-1 于是, g*-1=u·g-1·u
所以,根据连通的定义知:G的补图一定连通 。
9. (4分) 一个有奇数条边、偶数个顶点的欧拉图,但不是哈 密尔顿图。
10 (6分) 画出K4,4,判断K4,4是否平面图. 否!
11. (5分) 证明: 多于一个顶点的树,至少有两片树叶。
证明:设 T=(V,E)是一棵树,若T中最多只有一片树叶, 则有
g*a*g-1H,
g*a*g-1K, 从而有g*a*g-1HK, 故HK是G的正规子群。
14. (4分) 已知(G, *),(A, △)是两个群,f: G→A是群同态的。
证明: (1) f(eG)=eA (eG G是幺元, eA A是幺元). (2) ∀g∊G, f(g-1)=(f(g))-1.

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

离散数学期末测试卷I及答案

离散数学期末测试卷I及答案
答案:R(x,y) 21.图论的创始人是谁?
答案:瑞士数学家 L.Euler(欧拉) 22.两个图同构是指其中一个图近经过哪些变换可以变为另一个图?
答案:1.挪动点的位置; 2.伸缩边的长短。
23. 什么是孤立点和悬挂点? 答案:孤立点:在任意图 G(V,E)中,度数为 0 的结点。
悬挂点:在任意图 G(V,E)中,度数为 1 的结点。 24.域和环相比增加了哪些要求? 答案:域:设(F,+,•)是环,若(F-{0},•)是阿贝尔群,则称(F,+,•)是域。 25.阿贝尔群具有哪些特点?比普通群增加了什么? 答案:阿贝尔群:设(G,•)是群,若其运算•是可交换的,则称(G,•)为阿贝尔群。 二、填空题 1.鸽笼原理是指什么? 答:n+1 只或更多的鸽子飞进 n 个笼子时,一定有一个笼子里面至少有 2 只鸽子。 2.哪位挪威数学家和法国数学家先后为群的研究做出了杰出的贡献? 答案:挪威数学家 Niels Henrik Abel (尼尔斯· 亨利克·阿贝尔)和法国数学家 Évariste Galois(埃瓦里斯特•伽罗瓦) 为群的研究做出了杰出的贡献。 3.单独一个节点 v 构成的序列 v 到 v 的长度为多少的路?叫做什么? 答案:单独一个节点 v 构成的序列 v 到 v 的长度为 0 的路叫做平凡路 4.命题公式(p→q)→r 的析取范式与合取范式各为什么?
7.设 A, 是一个偏序集,如果 A 中任意两个元素都有上确界和下确界,则称 A, 是一个格。 答:正确。也称(A, )为偏序格。
8.命题公式 P Q 的逆反式是 Q P 。
答:正确。左边= P Q P Q Q P Q P =右边
9.图
是弱连通图。
答:正确。该图为强连通图且属于弱连通图。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。

下面是小编整理的离散数学期末考试试题及答案,欢迎阅读参考!一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。

[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,则AB( )。

[A] 3,8 [B]3 [C]8 [D]3,83、若X是Y的子集,则一定有( )。

[A]X不属于Y [B]X∈Y[C]X真包含于Y [D]X∩Y=X4、下列关系中是等价关系的'是( )。

[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,下列表述中错误的是( )。

[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A到A的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。

[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是( )。

[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.则G的割(点)集是( )。

离散期末考试题及答案

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是图的边数与顶点数的关系?A. 边数小于顶点数B. 边数等于顶点数C. 边数大于顶点数D. 边数与顶点数无固定关系答案:D2. 有限自动机的英文缩写是什么?A. FAB. PDAC. TMAD. NFA答案:A3. 布尔代数中,德摩根定律是指什么?A. ¬(A ∧ B) 等于¬ A ∨ ¬ BB. ¬(A ∨ B) 等于¬ A ∧ ¬ BC. A ∧ B 等于¬(A ∨ B)D. A ∨ B 等于¬(¬ A ∧ ¬B)答案:B4. 在命题逻辑中,以下哪个符号表示蕴含?A. ∧B. ∨C. →D. ↔答案:C5. 集合A = {1, 2, 3},B = {2, 3, 4},则A ∪ B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}答案:A6. 以下哪个选项是正确的递归定义?A. 一个数是偶数当且仅当它是2的倍数B. 一个数是偶数当且仅当它不是2的倍数C. 一个数是偶数当且仅当它是另一个偶数加1D. 以上都是正确的递归定义答案:A7. 有向图和无向图的主要区别是什么?A. 有向图的边有方向,无向图的边没有方向B. 有向图的顶点有方向,无向图的顶点没有方向C. 有向图的边可以相交,无向图的边不可以相交D. 有向图可以有环,无向图不可以有环答案:A8. 在命题逻辑中,以下哪个公式是矛盾的?A. A ∧ ¬ AB. A ∨ ¬ AC. A → BD. A ∧ B ∧ ¬ A答案:A9. 以下哪个是图的同义术语?A. 网络B. 矩阵C. 树D. 以上全部答案:A10. 以下哪个命题逻辑公式是有效的?A. (A → B) ∧ (B → A)B. (A ∧ B) → AC. (A ∨ B) → AD. (A ∧ B) → B答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,_________ 表示一个命题是真的,而 _________ 表示一个命题是假的。

离散数学期末考试试题(配答案)[1]

离散数学期末考试试题(配答案)[1]

离散数学期末考试试题(配答案)[1]模拟试题科 目:离散数学考试形式:闭卷 考试时间: 120 分钟 系别、班级: 姓名: 学号:一.填空题(每小题2分;共10分)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是__ ∃x ∃y¬P(x)∨Q(y) __________。

2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =__{2}__;=A _{4;5}____;=B A Y __ {1;3;4;5} _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ {{c};{a ;c};{b ;c};{a ;b ;c}} __________;=-)()(A B ρρ_____Φ_______。

4. 在代数系统(N ;+)中;其单位元是0;仅有 _1___ 有逆元。

5.如果连通平面图G 有n 个顶点;e 条边;则G 有___e+2-n ____个面。

二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 3. 在图>=<E V G ,中;结点总度数与边数的关系是( ) (A)E v i 2)deg(= (B) E v i =)deg((C)∑∈=Vv iE v 2)deg((D) ∑∈=Vv iE v )deg(4. 设D 是有n 个结点的有向完全图;则图D 的边数为( ) (A))1(-n n (B))1(+n n (C)2/)1(+n n (D)2/)1(-n n5. 无向图G 是欧拉图;当且仅当( )(A) G 的所有结点的度数都是偶数 (B)G 的所有结点的度数都是奇数(C)G 连通且所有结点的度数都是偶数 (D) G 连通且G 的所有结点度数都是奇数。

离散数学试题(2016)_B(答案)-推荐下载

离散数学试题(2016)_B(答案)-推荐下载

第1页 共6页第2页 共 6页一、填空题(每小题3分,共15分)1.设F (x ):x 是苹果,H (x ,y ):x 与y 完全相同,L (x ,y ):x =y ,则命题“没有完全相同的苹果”的符号化(利用全称量词)为∀x ∀y (F (x )∧F (y )∧⌝L (x ,y )→⌝H (x ,y )).2.命题“设L 是有补格,在L 中求补元运算‘′’是L 中的一元运算”的真值是 0 .3.设G ={e ,a ,b ,c }是Klein 四元群,H =〈a 〉是G 的子群,则商群G /H ={〈a 〉,{b ,c }}={{e ,a },{b ,c }}.4.设群G =〈P ({a ,b ,c }),⊕〉,其中⊕为集合的对称差运算,则由集合{a ,b }生成的子群〈{a ,b }〉 ={∅,{a ,b }}.5.已知n 阶无向简单图G 有m 条边,则G 的补图有n (n -1)/2-m 条边.二、选择题(每小题3分,共15分)1.命题“只要别人有困难(p ),小王就会帮助他(q ),除非困难已经解决了(r )”的符号化为 【B 】A .⌝(p ∧r )→q .B .(⌝r ∧p )→q .C .⌝r →(p ∧q ).D .⌝r →(q → p ).2.设N 为自然数集合,“≤”为通常意义上的小于等于关系,则偏序集〈N ,≤〉是 【C 】A .有界格.B .有补格.C .分配格.D .布尔代数.3.设n (n ≥3) 阶无向图G =〈V ,E 〉是哈密尔顿图,则下列结论中不成立的是 【D 】A .∀V 1⊂V ,p (G -V 1)≤|V 1|.B .|E |≥n .C .无1度顶点.D .δ(G )≥n /2.4.设A ={a ,b ,c },在A 上可以定义 个二元运算,其中有 个是可交换的,有 个是幂等的. 【A 】A .39,36,36.B .39,36,33.C .36,36,33.D .39,36,39.5.下列图中是欧拉图的有【C 】A .K 4,3.B .K 6.C .K 5.D .K 3,3.三、计算与简答题(每小题10分,共50分)1.利用等值演算方法求命题公式(p ∨q ) → (q →p )的主合取范式;利用该主合取范式求公式的主析取范式,并指出该公式的成真赋值和成假赋值.(p ∨q ) → (q →p ) ⇔⌝(p ∨q )∨(⌝q ∨p ) ⇔(⌝p ∧⌝q )∨(⌝q ∨p )⇔(⌝p ∨⌝q ∨p )∧(⌝q ∨⌝q ∨p ) ⇔⌝q ∨p ⇔p ∨⌝q哈尔滨工程大学试卷考试科目:离散数学(061121,061131)考试时间: 2008.07.09 9:00-11:00题号一二三四五总分分数评卷人第5页 共6页第6页 共 6页=(a ∧b )∨((a ∨c )∧(b’ ∨c’ ∨c ))=(a ∧b )∨(a ∨c )=(a ∨(a ∨c ))∧(b ∨a ∨c )=(a ∨c )∧(a ∨c ∨b )=a ∨c四、证明题(共20分)1.在自然推理系统中,构造推理证明:前提:∀x (F (x )∨G (x ))结论:⌝∀xF (x )→ ∃xG (x )证明:(1) ⌝∀xF (x ) 附加前提引入(2) ∃x ⌝F (x ) (1)置换(3) ⌝F (c )(2)EI 规则(4) ∀x (F (x )∨G (x )) 前提引入(5) F (c )∨G (c ) (4)UI 规则(6) G (c )) (3)(5)析取三段论(7) ∃xG (x )(6)EG 规则2.设代数系统〈A ,*〉是独异点,e 是其单位元.若∀a ∈A ,有a *a =e ,证明:〈A ,*〉是Abel 群.证明:由于对∀a ∈A ,有a *a =e ,因此,A 中任意元素a 都有逆元,且a=a -1.又〈A ,*〉是有单位元的独异点,从而〈A ,*〉是群.∀a ,b ∈A ,有a *b ∈A ,且a=a -1,b=b -1,(a *b )-1=a *b .又(a *b )-1=b -1*a -1=b *a ,因此 a *b =b *a ,即〈A ,*〉是Abel 群.3.证明:若无向图G 为欧拉图,则G 无桥.证明:(1)假设G 中有桥,不妨设e =(u ,v ) 为其一座桥.这样,从中删去边e =(u ,v )后,所得图G ’一定不连通(G ’至少含有两个连通分支).由于G 为欧拉图,因此它是连通图,且有经过每条边一次且仅一次的回路,这条回路必经过G 的所有顶点.从而存在顶点v 1,v 2,…,v s ,使得uv 1v 2…v s vu 是G 的一条回路.从G 中删去边e =(u ,v )后,所得图G ’仍有从u 到v 的通路uv 1v 2…v s v ,这样G ’仍是连通图.矛盾.因此,G 中一定无桥.(2)由于G 为欧拉图,其每个顶点的度数均为偶数.假设G 中有桥,不妨设e =(u ,v ) 为其一座桥.这样,从中删去边e =(u ,v )后,所得图G ’至少有两个连通分支.而且,顶点u ,v 的度数都是奇数,这与每个连通分支为图矛盾(与握手定理矛盾),因此,G 中一定无桥.。

(完整word版)离散数学期末练习题带答案

(完整word版)离散数学期末练习题带答案

4, 2 } U I A ,则对应于 R 的划分是(
)。
A. {{ 1},{2,3},{4}}
B. {{ 1,3},{2,4}}
C. {{ 1,3},{2},{4}}
D. {{ 1},{2},{3},{4}}
23.设 G A, 是群,则下列陈述不正确的是(
)。
A. (a 1) 1 a C. an a m an m
Байду номын сангаасC. a b ab 1
D. a b a b 1
19. 设简单图 G 所有结点的度数之和为 50,则 G 的边数为(
(
)
A. 50
B. 25
C. 10
D. 5
20.设简单无向图 G 是一个有 5 个顶点的 4-正则图,则 G 有(
A. 4
B. 5
C. 10
D. 20
)。 )条边。
21.设集合 A {1,2,3,4} , A 上的等价关系 R { 1,1 , 3,2 , 2,3 ,
D. x y lcm{ x, y} ,即 x, y 的最小公倍数
25. 设 X {1,2,3 }, Y { a,b, c, d}, f { 1, a , 2, b , 3, c } ,则 f 是
(
)。
A .从 X 到 Y 的双射
B.从 X 到 Y 的满射,但不是单射
C.从 X 到 Y 的单射,但不是满射
)。
A. G 的所有结点的度数全为偶数
B. G 中所有结点的度数全为奇数
C. G 连通且所有结点度数全为奇数
D. G 连通且所有结点度数全为偶数
36.下列 不.一.定.是树的是( ) A. 无回路的连通图 D
B. 有 n 个结点, n-1 条边的连通图

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 乘法答案:D2. 命题逻辑中,以下哪个命题不是基本的逻辑连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 等于(=)答案:D3. 在图论中,一个图的度数之和等于边数的几倍?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是布尔代数的基本定理?A. 德摩根定律B. 布尔代数的分配律C. 布尔代数的结合律D. 所有选项都是答案:D5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合答案:C6. 在关系数据库中,以下哪个操作不是基本的数据库操作?A. 选择B. 投影C. 连接D. 排序答案:D7. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入符号D. 所有选项都是答案:D8. 以下哪个命题逻辑表达式是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p → q) ∧ (q → p)D. (p → q) ∧ (¬p → ¬q)答案:D9. 以下哪个是归纳法证明的基本步骤?A. 基础步骤B. 归纳步骤C. 反证法D. 所有选项都是答案:B10. 以下哪个是图的遍历算法?A. 深度优先搜索(DFS)B. 广度优先搜索(BFS)C. Dijkstra算法D. 所有选项都是答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的德摩根定律。

答案:德摩根定律是命题逻辑中描述否定命题的两个重要定律。

它们分别是:- ¬(p ∧ q) ≡ ¬p ∨ ¬q- ¬(p ∨ q) ≡ ¬p ∧ ¬q2. 解释什么是图的连通分量,并给出一个例子。

答案:图的连通分量是指图中最大的连通子图。

离散数学期末考试题b及答案

离散数学期末考试题b及答案

离散数学期末考试题b及答案一、选择题(每题2分,共10分)1. 在集合论中,以下哪个符号表示"属于"关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 命题逻辑中,以下哪个符号表示"非"?A. ∧B. ∨C. ¬D. →答案:C3. 以下哪个选项是图的邻接矩阵的正确定义?A. 矩阵的元素表示顶点之间的路径数量B. 矩阵的元素表示顶点之间的边的权重C. 矩阵的元素表示顶点之间的距离D. 矩阵的元素表示顶点之间的连接关系答案:D4. 在布尔代数中,以下哪个运算是幂等的?A. 与运算B. 或运算C. 非运算D. 异或运算答案:C5. 以下哪个选项是哈希函数的基本特性?A. 快速计算B. 容易逆向C. 容易碰撞D. 难以预测答案:A二、填空题(每题3分,共15分)1. 有限自动机的三个组成部分是____、____和____。

答案:状态集、输入字母表、转移函数2. 在图论中,一个图的度是指图中一个顶点的____的个数。

答案:边3. 逻辑等价是指两个逻辑表达式在所有可能的变量赋值下都有____的真值。

答案:相同4. 在关系数据库中,____是用于唯一标识关系表中每行数据的属性或属性组。

答案:主键5. 一个算法的时间复杂度是指算法执行时间随输入规模增长的____。

答案:增长趋势三、简答题(每题5分,共20分)1. 请简述什么是图的连通分量。

答案:图的连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

2. 解释一下什么是闭包。

答案:闭包是指在关系数据库中,对于一组属性,如果它们之间存在某种函数依赖关系,则称这组属性的闭包包含了所有依赖于它们的属性。

3. 什么是归纳法证明?答案:归纳法证明是一种数学证明方法,它包括两个步骤:基础步骤(证明当n取第一个值时命题成立)和归纳步骤(假设当n=k时命题成立,然后证明当n=k+1时命题也成立)。

4. 请描述一下什么是欧拉路径和欧拉回路。

大学《离散数学》期末考试试卷及答案(1)

大学《离散数学》期末考试试卷及答案(1)

大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。

A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。

A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。

A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。

2. 有一个集合A={1,2,3},则集合A的幂集为______。

3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。

三、解答题1. 请写出离散数学中常用的数学符号及其含义。

2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。

3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。

四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。

2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。

3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。

参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。

- ∩:交,表示集合的交集操作。

- ∖:差,表示减去一个集合中的元素。

- ⊆:包含,表示一个集合包含于另一个集合。

- =:相等,表示两个集合具有相同的元素。

2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,表示两个集合A和B的并集的符号是:A. ∩B. ∪C. ⊂D. ⊆2. 以下哪个命题逻辑表达式是真命题,当P为真,Q为假时?A. ¬PB. P ∧ QC. P ∨ QD. P → Q3. 如果函数f: A → B是一个单射,那么它不能是:A. 满射B. 双射C. 恒等函数D. 逆函数4. 在图论中,一个图G是连通的,当且仅当:A. G是无向图B. G是简单图C. G是完全图D. 对于任意两个顶点,都存在一条路径5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合二、简答题(每题10分,共30分)6. 解释什么是二元关系,并给出一个例子。

7. 描述什么是有向图和无向图的区别。

8. 什么是等价关系,它有哪些性质?三、计算题(每题15分,共30分)9. 给定集合A = {1, 2, 3, 4},B = {a, b, c},定义函数f: A → B,其中f(1) = a, f(2) = b, f(3) = c, f(4) = a。

判断f是否是单射、满射或双射,并给出理由。

10. 计算以下命题逻辑表达式的真值表:(P ∧ Q) → (¬P ∨ R),其中P、Q、R是命题变量。

四、证明题(每题20分,共20分)11. 证明:如果一个图G是连通的,那么它的任意子图也是连通的。

答案一、选择题1. B2. C3. A4. D5. D二、简答题6. 二元关系是定义在两个集合上的一个关系,它将第一个集合中的每个元素与第二个集合中的元素相关联。

例如,如果A是人名的集合,B是年龄的集合,关系R可以是“比...年长”,那么(Alice, 30) ∈ R表示Alice比30岁年长。

7. 有向图由顶点和有向边组成,每条边都有一个方向,表示从一个顶点指向另一个顶点。

无向图由顶点和无向边组成,边没有方向。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案1. 题目描述:以下是离散数学期末考试的题目。

请仔细阅读每个问题,并在题后给出相应的答案。

请注意,答案应尽量详细和准确,以确保得分。

1.1 命题与谓词逻辑(20分)1.1.1 什么是命题逻辑?它可以用于解决哪些问题?1.1.2 简要解释谓词逻辑的概念和其在离散数学中的应用。

1.2 集合和图论(30分)1.2.1 定义两个集合的并、交和差的概念。

1.2.2 解释有向图和无向图的区别,并给出一个实际应用中的例子。

1.3 关系和函数(40分)1.3.1 什么是关系?请给出一个实际应用中关系的例子。

1.3.2 定义函数的概念,并解释函数与关系的区别。

1.4 计数原理(20分)1.4.1 简要阐述乘法原理和加法原理的概念,并给出一个应用实例。

1.4.2 什么是排列和组合?请说明它们的应用场景,并给出一个例子。

2. 答案解析:2.1 命题与谓词逻辑1.1.1 命题逻辑是一种数学分支,用于研究命题之间的关系和推理规则。

其应用范围广泛,包括数学、计算机科学、哲学等领域。

1.1.2 谓词逻辑是一种扩展了命题逻辑的逻辑体系,它考虑了命题中的变量、谓词和量词等元素。

在离散数学中,谓词逻辑常用于描述集合、函数和关系等概念。

2.2 集合和图论1.2.1 集合的并(∪)是指将两个或多个集合中的所有元素取出形成一个新的集合;交(∩)指仅包含两个或多个集合中共有的元素;差(-)是指从一个集合中去除另一个集合中的元素。

1.2.2 有向图中,边是具有方向性的;而在无向图中,边是没有方向性的。

例如,在社交网络中,有向图可以表示人与人之间的关注关系,而无向图可以表示人与人之间的好友关系。

2.3 关系和函数1.3.1 关系是集合之间的一种特殊的子集,它描述了元素之间的某种联系。

例如,家族中的血亲关系可以看作是一个关系。

关系可以用图、矩阵等方式表示。

1.3.2 函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

(完整word版)《离散数学》期末试题及答案

(完整word版)《离散数学》期末试题及答案

326《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f ο是单射,证明f 是单射,并举例说明g不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ∅}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数. 二、1.22,2,m mn mn .2.g , g , g .3.1,2,4.4.8,不存在,不存在.5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ∅, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}.5.9.四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f οο=. 由于g f ο是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f =ο是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{(ο,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为).()()()()()(r q p r q p r q p r q p r q p r q p A ⌝∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧∨∧⌝∧∨∧∧=A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数()x x x x x x x E +⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++=1!21!3!21)(23265432121211219619431x x x x x x ++++++=, 因而38!412194=⋅=a .。

离散数学期末考试试题(有几套带答案)

离散数学期末考试试题(有几套带答案)

离散试卷及答案离散数学试题(A 卷及答案)一、证明题(10分) 1)(P ∧(Q ∧R))∨(Q ∧R)∨(P ∧R)R证明: 左端(P ∧Q ∧R)∨((Q ∨P)∧R)((P ∧Q)∧R))∨((Q ∨P)∧R)((P ∨Q)∧R)∨((Q ∨P)∧R)((P ∨Q)∨(Q ∨P))∧R ((P ∨Q)∨(P ∨Q))∧RT ∧R(置换)R2)x(A(x)B(x))xA(x)xB(x) 证明 :x(A(x)B(x))x(A(x)∨B(x))xA(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)二、求命题公式(P ∨(Q ∧R))(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))(P ∧Q ∧R)(P ∨(Q ∧R))∨(P ∧Q ∧R))(P ∧(Q ∨R))∨(P ∧Q ∧R) (P ∧Q)∨(P ∧R))∨(P ∧Q ∧R) (P ∧Q ∧R)∨(P ∧Q ∧R)∨(P ∧Q ∧R))∨(P ∧Q ∧R))∨(P ∧Q ∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6三、推理证明题(10分) 1)C ∨D, (C ∨D) E, E (A ∧B), (A ∧B)(R ∨S)R ∨S证明:(1) (C ∨D) E(2) E (A ∧B) (3) (C ∨D)(A ∧B)(4) (A ∧B)(R ∨S)(5) (C ∨D)(R ∨S)(6) C ∨D (7) R ∨S 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x)(2)P(a) (3)x(P(x)Q(y)∧R(x)) (4)P(a)Q(y)∧R(a)(5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)x(P(x)∧R(x))(11)Q(y)∧x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

请将选择题答案填入下表
一、单项选择题(请从4个备选答案中选择最适合的一项,每小题2分,共30分)
1.下列哪个命题是真命题( ).
A .如果2+3=5,则太阳从西方升起;
B .严禁吸烟;
C .如果2+5=6,则太阳从东方升起;
D .我正在说谎.
2.设集合{0,1,2}X =,R 是X 上的二元关系,{0,0,0,2,1,2,2,0,2,1}R =〈〉〈〉〈〉〈〉〈〉,则R 的关系
矩阵R M 是( ) .
A .111001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
B .101001110⎡⎤
⎢⎥⎢⎥
⎢⎥⎣⎦
C . 000101010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
D .101110000⎡⎤
⎢⎥⎢⎥⎢⎥⎣⎦
3.令()F x :x 是金属,()G y :y 是液体,(,)H x y :x 可以溶解在y 中,则命题“任何金属可
以溶解在某种液体中”可符号化为( ) .
A .(()(()(,)))x F x y G y H x y ∀→∃→
B .(()(()(,)))x xF x G y H x y ∀∃→→
C .(()(()(,)))x F x y G y H x y ∀∧∃∧
D .(()(()(,)))x F x y G y H x y ∀→∃∧
4.设{,,}A a b c =,集合A 上的等价关系R 所确定的A 的划分是{{},{,}}a b c ,则R =( ) .
A .{,,,,,}a b b a c b
B .{,,,,,,,}a b a b c c b
C .{,,,,,,,,,}a a b b c c b c c
D .{,,,,,,,,,,,}a a a b b a c c b c c 5.下列等价公式错误的是( ).
A .()P P Q Q ∨∧⇔;
B .P Q P Q →⇔⌝∨;
C .P Q Q P →⇔⌝→⌝;
D .()P P Q P ∨∧⇔.
6.下图中是哈密尔顿图的是( ) .
7.谓词公式(()(,))()x P x yR x y Q x ∀∨∃→中量词(x ∀)辖域是( ).
A .(()(,))x P x yR x y ∀∨∃;
B .()P x ;
C .()Q x ;
D .(()(,))P x yR x y ∨∃. 8. 设:f A B →,:g B C →,下列哪个命题是真命题( ).
A .若g f 是单射,则f 是单射.
B .若g f 是单射,则g 是单射.
C .若g f 是双射,则f 和g 都是双射.
D .若g f 是满射,则f 是满射. 9.下列等价式不成立的是( ).
A .(,)(,)x yF x y y xF x y ∀∀⇔∀∀;
B .(())()x F x G xF x G ∃∧⇔∃∧;
C .(,)(,)x yF x y y xF x y ∃∃⇔∃∃ ;
D .(,)(,)x yF x y y xF x y ∀∃⇔∃∀.
10.以下推理错误的是( ).
A .P Q P ∨⇒;
B .,P P Q Q →⇒
C .P Q P ∧⇒;
D .P Q Q ∧⇒. 11.下面哪一种图不一定是树( ). A .无圈连通图; B .有n 个结点1n -条边的连通图;
C .每对结点间都有路的图;
D .连通但删去一条边就不连通的图. 12.下面哪个图是强连通的( ).
13.设{1,2,3}X =上的关系R 的关系图如右图,从关系图可知R 具有 的性质是( ).
A .自反性、对称性和传递性;
B .自反性、反对称性和传递性;
C .反自反性、对称性和传递性;
D .反自反性、反对称性和传递性.
14.设A 是图,G V E =的邻接矩阵,()()k k ij A a =,则()k ij
a 为( ).
A.图,
G V E
=中由
i
v到
j
v长度为k的路径的条数;B.结点
j
v的度数;
C.结点
i
v的度数;D.结点
i
v的入度.
15.下列各图是欧拉图的是().
二、填空题(每空2分,共40分)
得分
1.谓词公式(,)
x yP x y
⌝∀∃⇔.
2.设集合A={1,2,3,4,6,8,12,14},≤是A中的整除关系,则在偏序集,A≤中,集合D={2,3,4,6} 的极小元是,最小元是,下确界是.
3.若集合A的基数为4,则集合A上的共有个不同的等价关系.
4.设图,
G V E
=(V={
1
v,
2
v,
3
v,
4
v})的邻接矩阵()
A G=
0110
0011
0100
0110
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎣⎦
,则从
1
v到
4
v长度
为2的路共有条.
5.设命题公式A的真值表为
P
Q
R
1
1
1
1
1
1
1
1
1
1
1
1
A 1 1 0 1 0 1 1 1
则命题公式A的主合取范式为.6.设f是A到B的函数,如果f是,则1-f是B到A的函数,此时有f
f 1-= .
7.设P表示:上午下雨,Q表示:我去看电影,R表示:我在家里读书,S表示:我在家里看报纸。

则命题“如果上午不下雨,我就去看电影,否则我就在家里读书或看报纸。

” 符
号化为.
8.谓词公式()()()()
x F x x G x
∀∨⌝∃的前束范式为.9.设有40盏灯,拟公用一个电源,则至少需要4插头的接线板的数目为.10.设A=Φ,则(())
P P A= .其中()
P A表示集合A的幂集.
11.写出下表中各列所定义的命题联结词.
12.设个体域{,,}
A a b c
=,消去公式中的量词,则()()
x P x
∀∧()()
x Q x
∃⇔.13.在一棵根树中,有且只有一个结点的入度为,其余所有结点的入度均为1.
其中入度为0的结点称为树根,出度为_____的结点称为树叶.
14.一棵树有2个4度结点,3个3度结点,其余结点都是叶子,则T有
个叶结点.
15.设()
G x表示“x是金子”,()
F x表示“x是闪光的”,则命题“金子是闪光的,但闪光的不一
定是金子”符号化为.三、计算题(每小题6分,共18分)
1.以给定权6,9,10,10,15,20,30构造一棵最优二叉树.
2.设A ={2,3,6,12,24,36},”/”为A 的整除关系. 说明〈A ,/〉是否为偏序集,若是,
画出其哈斯图.
3.设 A ={1,2,3,4,5,6},集合A 上的关系{1,3,1,5,2,5,4,4,4,5,5,4,,6,6}R =
求(),()r R S R 及 ()t R .
四、证明题(每小题6分,共12分)
1.证明:A B ∨, B P →⌝,Q R →⌝,Q P ⌝→,R ⇒A .
2.用谓词演算的推理规则证明:
∀→⌝∧∀∨∧∃⌝⇒∃⌝
((()())(()())())(())
x M x S x x S x A x x A x x M x。

相关文档
最新文档