高考复习资料:解析几何问题的题型与方法
高考复习中解析几何题型分析及解法梳理
一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。
高考数学复习解析几何的题型及方法
高考数学复习解析几何的题型及方法佚名知识整合高考中解析几何试题一样共有4题(2个选择题,1个填空题,1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一样紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的差不多知识和向量的差不多方法,这一点值得强化。
1。
能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程动身推导出直线方程的其他形式,斜截式、两点式、截距式;能依照已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了。
观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。
我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观看过程中指导。
我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。
有的小孩说“乌云跑得飞速。
”我加以确信说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这确实是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得如何样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观看,让幼儿把握“倾盆大雨”那个词。
雨后,我又带幼儿观看晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
解析几何题型及解题方法总结
解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。
解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。
2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。
3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。
例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。
线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。
高考解析几何的题型及思路
高考解析几何的题型及思路解析几何是必考的,常作为压轴题,特点是计算量大。
不过解几题其实很有规律性,解题思路并不难掌握,就是要用代数方法(方程、函数、不等式的思想和方法)研究几何问题,而数形结合思想(主要是利用定义或平面几何知识分析问题)是减少解几综合题计算量的主要手段。
常见的类型题有:(1)、求曲线(动点)的方程:若曲线类型已知,用待定系数法列方程组求解即可。
若给出了单个动点满足的条件,可先判断其是否符合某种曲线的定义,符合即可用待定系数求解,否则用直接法求解。
若条件有两个动点,一般用代入法求解;若条件有三个以上的动点,一般用参数法求解。
(2)求参数或曲线的特征量(如a、b、c、p、离心率、斜率、倾角、面积等)的值。
这类题要用到方程思想求解,即想办法把题目的条件(等量关系)转化为所求变量的方程(组)解之。
(3)求参数或几何量(如角、面积、斜率)的取值范围的问题。
主要是利不等式法或函数法求解。
其中判别式是列不等式的一个重要途径。
通常用韦达定理或题目给出的其它条件来列出变量间的等量关系,再把等量关系代入判别式消元化简解出相关参数的范围。
或利用韦达定理或其它等量关系建立变量间的关系式,把所求变量表示为其它变量的函数,利用求函数值域的方法确定变量的取值范围。
这个函数的定义域通常由判别式或其它条件确定。
(4)直(曲)线过定点问题:关键是求出直(曲)线的方程,当然这个方程必定含有一个参数。
求出方程后观察什么定点的坐标满足。
若观察不出,只要令参数取两个特殊值,然后把得到的两条具体的直(曲)线求交点即得所求定点。
(5)证明定值:证某个式子为定值,即是要求出这个式子的值是什么。
把条件转化为相关的方程(组),消去其中的参数即得。
(6)探索性(存在性)问题:通常转化为对方程根的存在性的讨论。
▲注意向量与解析几何的密切联系.由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,大量的解析几何问题都是以向量作为背景编拟的;▲判别式和韦达定理是解决以直线和圆锥曲线的位置关系为背景的综合问题的必用工具。
高考专题:解析几何常规题型及方法
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考察的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考察。
选择题和填空题考察直线, 圆, 圆锥曲线中的根底知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考察圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要表达在以下几个方面:〔1〕解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、围、参系数等多种问题,因而成为高中数学综合 能力要求最高的容之一〔2〕解析几何的计算量相对偏大〔3〕在大家的"拿可拿之分〞 的理念下,大题的前三道成了兵家必争之地,而排放位置比拟为难的第21题或22题〔有 时20题〕就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比拟普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓根底。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在稳固根底、对付"跳一跳便可够得到〞的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解根本概念〔如直线的倾斜角、斜率、距离、截距等〕2、熟练掌握根本公式〔如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等〕3、熟练掌握求直线方程的方法〔如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等〕4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中根本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法〔如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等〕8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
高考解析几何题型归纳总结
高考解析几何题型归纳总结随着高考的逼近,几何题成为了考生备考中不可忽视的一部分。
几何题在高考中占据了相当大的比重,解析几何题更是考生普遍认为难度较高的题型之一。
为了帮助考生更好地备考解析几何题,本文将对高考解析几何题型进行归纳总结,从而帮助考生更好地应对高考几何题。
1. 二维几何题目二维几何题目主要涉及平面图形的性质、面积、周长以及平行线、垂直线的性质等。
在解答二维几何题目时,考生应注意以下几个方面:(1) 论证步骤的完整性:解答二维几何题目时,应充分体现论证的完整性,即从已知条件出发,一步一步进行推导,最终得出结论。
(2) 图形的准确画法:在画图时应确保图形的准确性,边长、角度等应与给定条件一致,以避免答案误差。
(3) 重点关注特殊性质:几何题中常涉及到平行线、垂直线以及等边等特殊性质,考生应注意识别和运用这些特殊性质来解答题目。
2. 三角形相关题目三角形相关的题目主要涉及三角形的面积、周长、角度等性质。
在解答三角形题目时,考生应注意以下几个方面:(1) 利用相似三角形性质:在解答三角形的题目时,经常会用到相似三角形的性质。
考生应注意观察题目中是否存在相似三角形,以便能够灵活地运用相似三角形性质来解题。
(2) 角度关系的应用:三角形中的角度关系常常是解题的关键,考生应深入理解角的概念,并能够巧妙利用角度关系解答题目。
(3) 三角形的分类:根据不同的三角形分类,可以利用其特定性质解答题目。
例如,等边三角形具有所有边相等的性质,而等腰三角形具有两边相等的性质。
考生应注意灵活运用不同种类三角形的性质。
3. 圆相关题目圆相关的题目主要涉及圆的性质、弧长、面积等。
在解答圆相关题目时,考生应注意以下几个方面:(1) 圆的性质的应用:圆的性质是解答圆相关题目的基础,考生应深刻理解圆的定义、圆心角、弧长等基本概念,并能够合理运用这些性质。
(2) 弧长和扇形面积的计算:在解答涉及弧长和扇形面积的题目时,考生应熟记相应的计算公式,并注意计算过程中的单位换算。
高考专题复习—解析几何的题型与方法(精髓版)
⾼考专题复习—解析⼏何的题型与⽅法(精髓版)20XX 届⾼三数学题型与⽅法专题七:解析⼏何1【基础知识梳理】班级:姓名:[例1]已知直线1l 的斜率是33,直线2l 过坐标原点且倾斜⾓是1l 倾斜⾓的两倍,则直线2l 的⽅程为___x y 3=.[例2]已知直线l 的⽅程为)0(,0≠=++ab c by ax 且l 不经过第⼆象限,则直线l 的倾斜⾓⼤⼩为( B )A 、arctana b ; B 、arctan(-a b ); C 、p +arctan a b ; D 、p -arctan a b. [例3]与圆1)2()1(22=-+-y x 相切,且在两坐标轴上截距相等的直线有――( B )A 、2条;B 、3条;C 、4条;D 、5条. [例4]过点)3,2(P 与坐标原点距离为2的直线⽅程是___026125=+-y x 与2=x.[例5]直线21,l l 斜率相等是21//l l 的――――――――――――――――――( D ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分⼜不必要条件. [例6]直线l 过点)3,2(P 与以)3,1(),2,3(--B A 为端点的线段AB 有公共点,则直线l 倾斜⾓的取值范围是______.]43,2[πarctg . [例7]将⼀张画有直⾓坐标系的图纸折叠使点)0,2(A 与点(0,6)B 重合,若点)0,3(C 与点D 重合,则点D 的坐标为_;)528,51(D . [例8]抛物线C 1:x y 22=关于直线02=+-y x 对称的抛物线为C 2,则C 2的焦点坐标为____.)25,2(-. [例9]已知点),(b a 是圆222r yx =+外的⼀点,则直线2r by ax =+与圆的位置关系是( C )A 、相离;D 、相交且过圆⼼. [例10]若圆O :222r yx =+上有且只有两点到直线01543:=-+y x l 的距离为2,则圆的半径r 的取值范围是____.51<.[例11]⼆次⽅程022=+++++F Ey Dx Cy Bxy Ax 表⽰圆的充要条件是_____;04,0,022>-+=≠=AF E D B C A .[例12]已知圆C 被y 轴截得的弦长是2,被x 轴分成的两段弧长之⽐为3:1,求圆⼼C 的轨迹⽅程.1222=-x y .[例13]直线l 过定点)0,4(M 与圆422=+yx 交于A 、B 两点,则弦AB 中点N 的轨迹⽅程为_____;4)2(22=+-y x ()10<≤x . [例14]直线l 过定点)0,4(M 与圆422=+y x 交于A 、B 两点,O 是坐标原点,则△AOB ⾯积的最⼤值为_______;2.[例15]已知A 是圆064222=-+-+y ax y x 上任意⼀点,点A 关于直线012=++y x 的对称点也在圆上,那么实数a 的值为___3__.[例16]已知动圆C 与定圆M :1)2(22=+-y x 相切,且与y 轴相切,则圆⼼C 的轨迹⽅程是__;)21(62-=x y 与232()2y x =-.[例17]已知)3,0(M ,⼀动圆I 过点M 与圆N :16)3(22=++y x 内切.(1)求动圆圆⼼I 的轨迹C 的⽅程;(2)经过点(2,0)Q 作直线l 交曲线C 于A 、B 两点,设OB OA OP +=,当四边形OAPB 的⾯积最⼤时,求直线l 的⽅程.(1)14=+y x . (2)由+=知,四边形OAPB 是平⾏四边形.要使得四边形OAPB ⾯积最⼤,则△OAB 的⾯积最⼤,注意变化中的定值条件.△OAB 的⾯积是△AOQ 的⾯积与△BOQ 的⾯积之差.设A ),(),,(2211y x B y x ,则12||||||AOB S y y ?=-.可在联⽴⽅程组时,消去变量x ,保留y .设直线l 的⽅程为2x my =+,由22221(41)1612042y x m y my x my ?+=??+++=??=+?.由△=22(16)412(41)0m m -??+>,得2430m ->. 由韦达定理得:1212221612,4141m y y y y m m +=-=++知021>y y .则12||||||AOBS y y ?=-=||21y y-==.令243(0)m t t -=>,那么:2S ==≤=,当16t t =时等号成⽴.此时274m =,即所求的直线⽅程为42x y =±+.[例18]已知复数z 满⾜4|2||2|=++-i z i z ,则z 对应点的轨迹是_______;以i 2与i 2-对应点为端点的线段.[例19]设P 是以21,F F 为焦点的椭圆)0(12222>>=+b a by a x 上的⼀点,若点P 满⾜:2121; B 、32; C 、31; D 、35.[例20]⼀直线l 过椭圆12422=+y x 的左焦点,被椭圆截得的弦长为2,则直线l 的⽅程2-=x .[例21]椭圆13422=+y x 上有2007个不同的点200721,,,P P P ,椭圆的右焦点为F ,数列)2007,,3,2,1|}({| =n FP n 是公差为d 的等差数列,则d 的取值范围是_____.]10031,0()0,10031[ -∈d .[例22]已知点)0,2(),0,2(B A -,点C 在直线1=y 上满⾜BC AC ⊥,则以A 、B 为焦点过点C 的椭圆⽅程为___.12622=+y x . [例23]⼀双曲线C 以椭圆12422=+x x 的焦点为顶点,长轴顶点为焦点,则此双曲线的⽅程为___.12222=-y x . [例24]⼀双曲线与1322=-y x 有共同渐近线且与椭圆1322=+y x 有共同焦点,则此双曲线的⽅程为________;21322=-y x .[例25]若关于x 的⽅程)2(12+=-x k x 有两个不等的实数根,则实数k 的取值范围是___.10<≤k.[例26]已知双曲线的⽅程为116922=-y x ,P 是双曲线上的⼀点,F 1、F 2分别是它的两个焦点,若7||1=PF ,则=||2PF _13;[例27]椭圆12622=+y x 和双曲线221x y a-=的公共焦点为21,F F ,P 是它们的⼀个公共点,则=∠21cos PF F _____;31>=-n y nx 的两焦点为P F F ,,21是此双曲线上的⼀点,且满⾜||||21PF PF +=22+n ,则△21F PF 的⾯积为___1_____.[例29]抛物线24x y =的焦点坐标是__)161,0(___;准线⽅程是__161-=y __[例30]已知抛物线的焦点为)1,1(F ,对称轴为x y =,且过M (3,2),则此抛物线的准线⽅程为__0105=±-+y x _;[例31]直线l 过抛物线y x 42=的焦点与抛物线交于A 、B 两点,若A 、B 两点到x 轴的距离之和等于3,则这样的直线l 有( B )A 、1条;B 、2条;C 、3条;D 、不存在.[例32]直线l 过抛物线的焦点与抛物线交于A 、B 两点,O 是抛物线的顶点,则△ABO 的形状是( C )A 、直⾓三⾓形;B 、锐⾓三⾓形;C 、钝⾓三⾓形;D 、不确定与抛物线的开⼝⼤⼩有关. [例33]求证:过抛物线)0(22>=p px y 焦点的所有弦长的最⼩值是p 2.分析:本例的证明⽅法很多.设其焦点弦为AB ,),(),,(2211y x B y x A ,则由抛物线的定义知12||2AB x x p p p p=++≥==.当且仅当21xx=时等号成⽴.此时直线AB与对称轴垂直.[例34]已知点M是椭圆12=+byax的⼀条不垂直于对称轴的弦AB的中点,O是坐标原点,设OM、AB的斜率分别为21,kk,则21kk?=―――――――――――――( C )A、22ba;B、22ab;C、22ab-;D、22[例35]设直线l过椭圆1422=+yx的右焦点,与椭圆相交于A、B两点,O是坐标原点,当△OAB的⾯积最⼤时,求直线l的⽅程.分析:由题可设直线l:3+=myx代⼊椭圆⽅程中得:0132)4(22=-++myym,设),(),,(2211A,可得△OAB的⾯积S=| |23|)||(|232121yyyy-=+,可得:619)1(132)4()4 ( 12 2 3 2 2 2 2 2 2 2 2 2 + + + + = + + = + + + = m m m m则当312=+m时,S有最⼤值为1.此时直线l⽅程为:32+±=yx.[例36]设点P为双曲线1422=-yx上的动点,F是它的左焦点,M是线段PF的中点,则点M的轨迹⽅程是_____;1 4)25(22=--yx[例37]已知椭圆的焦点是21,FF,P是椭圆上的⼀个动点.如果延长PFPQ=,那么动点Q的轨迹是( A )A、圆;B、椭圆;C、双曲线的⼀⽀;D、抛物线.[例38]已知直线l过点)1,1(M,双曲线C:1322=-yx.(1)若直线l与双曲线有且仅有⼀个公共点,求直线l的⽅程;(2)若直线与双曲线的右⽀有两个不同的交点,求直线l斜率的取值范围;(3)是否存在直线l使其与双曲线的有两个不同的交点A、B,且以AB为直径的圆过坐标原点?若存在求出此直线的斜率,不存在说明理由.分析:(1)当直线l与x轴垂直时,直线1=x满⾜题义.当直线l与x轴不垂直时,设直线⽅程为)1(1-=-xky,联⽴得⽅程:0)42()1(+-----kkxkkxk---(*)当032=-k时,⽅程(*)是⼀次⽅程,直线l与双曲线有⼀个公共点,此时直线l⽅程为)1(31-±=-xy.当032≠-k时,由△02448=-=k,得2=k,所以满⾜题义的直线l为:)1(3=-=--=xyyxx.(2)直线l与双曲线的右⽀有两个不同的交点,则⽅程(*)有两不等的正根.由△k2448-=0>,知2<k且>-+-=3423)1(22221221kkkxxkkkxx,得2 3<-<k02121=+y y x x .0)1())(1()1(221212=-++-++k x x k k x x k , 0142=++k k ,32±-=k (满⾜)2[例39]倾⾓为3π的直线l 过抛物线x y 42=的焦点F 与抛物线交于A 、B 两点,点C 是抛物线准线上的动点.(1)△ABC 能否为正三⾓形?(2)若△ABC 是钝⾓三⾓形,求点C 纵坐标的取值范围.分析:(1)直线l ⽅程为)1(3-=x y ,由x y 42=可得)332,31(),32,3(-B A .若△ABC 为正三⾓形,则3π=∠CAB ,由3π=∠AFx ,那么CA 与x 轴平⾏,此时4||=AC ,⼜3162313||=++=AB .与|AC|=|AB|⽭盾,所以△ABC 不可能是下正三⾓形.(2)设),1(m C -,则}332,34{},32,4{m m --=-=,2)332(-=?m 不可以为负,所以ACB ∠不为钝⾓.若CAB ∠为钝⾓,则038{=BA ,则0)32(338332<-+m ,得3310>m . 若⾓ABC ∠为钝⾓,则032-310()332,36()36,(+∞----∞ .20XX 届⾼三数学题型与⽅法专题七:解析⼏何2【典型题型⽅法】班级:姓名:⼀、轨迹问题(2)当r ∈(1,+∞)时,求N 的轨迹G ⽅程;(3)过点Q (0,2)的直线l 与(2)中轨迹G 相交于两个不同的点A ,B ,若CA --→CB --→>0,求直线l 的斜率的取值范围.解:(1)由已知得,当r =2时,可求得M 点的坐标为(-1,0).设P (0,b ),则由MP CP k k ?=-1,得:2b =1,所以b =±1,即点P 坐标为(0,±1).(2)设N (x ,y ),由已知得,在圆⽅程中令y =0,得M 点的坐标为(1-r ,0).由MP CP k k ?=-1,得:r =2b +1.因为点P 为线段MN 的中点,所以x =r -1=2b ,y =2b ,⼜x >1,所以点N 的轨迹⽅程为:2y =4x (x >0).(3)设直线l 的⽅程为:y =kx +2,M (1x ,1y ),N (2x ,2y ),=+=xy kx y 422,消去y ,得:22x k +x k )44(-+4=0.∵直线l 与抛物线2y =4x (x >0)相交于两个不同的点A ,B ,∴△=-32k +16>0,得:k <21.⼜因为CA --→CB --→>0,∴)1)(1(21--x x +21y y >0,212)1(x x k ++))(12(21x x k +-+5>0,2k +12k >0,∴k >0或k <-12.综上可得:0<k <21或k <-12.例2、如图,已知椭圆2222:1(0)x y C a b a b+=>>的焦点和上顶点分别为1F 、2F 、B ,我们称12F BF ?为椭圆C 的特征三⾓形.如果两个椭圆的特征三⾓形是相似的,则称这两个椭圆是“相似椭圆”,且三⾓形的相似⽐即为椭圆的相似⽐.(1)已知椭圆221:14x C y +=和222:1164x y C +=,判断2C 与1C 是否相似,如果相似则求出2C 与1C 的相似⽐,若不相似请说明理由;(2)已知直线:1l y x =+,与椭圆1C 相似且半短轴长为b 的椭圆b C 的⽅程,在椭圆b C 上是否存在两点M 、N 关于直线l 对2,底边长为3的等腰三⾓形,因此两个等腰三⾓形相似,且相似⽐为2:1(2)椭圆b C 的⽅程为:)0(142222>=+b by b x . 假定存在,则设M 、N 所在直线为y x t =-+,MN 中点为()00,x y .则=++-=142222b y bx tx y 0)(485222=-+-?b t xt x . 所以5,5420210t y t x x x ==+=.中点在直线1y x =+上,所以有35-=t. 12x x -==12()f b MN x b ==-=> (3)椭圆b C 的⽅程为:)0(142222>=+b by b x . 两个相似椭圆之间的性质有:(1)两个相似椭圆的⾯积之⽐为相似⽐的平⽅;(2)分别以两个相似椭圆的顶点为顶点的四边形也相似,相似⽐即为椭圆的相似⽐;(3)两个相似椭圆被同⼀条直线所截得的线段中点重合;(4)过原点的直线截相似椭圆所得线段长度之⽐恰为椭圆的相似⽐.⼆、最值问题例3、已知椭圆,1ny m x 22=+常数m 、n +∈R 且m>n (1) 当m=25,n=21时,过椭圆左焦点F 的直线交椭圆于点P,与y 轴交于点Q, 若FP 2QF =,求直线PQ 的斜率;(2)过原点且斜率分别为k 和k -(1k ≥)的两条直线与椭圆,1ny m x 2解:(1)椭圆121y 25x 22=+,)0,2(F - ,设P )t ,0(Q ),y ,x (00 ()()00y ,2x FP ,t ,2QF +=--=,?=FP 2QF ??-=-=?=-+=-2t y 3x y 2t )2x (22000052142t k 5218t 121y 25x 2020±==?±=?=+ (2)根据椭圆的对称性知四边形ABCD 为矩形,设)0y ,0x )(y ,x (A 1111>> 设kx y :l =与椭圆⽅程,mn my nx 22=+nmk mnx mn x mk nx 21222+==+ )1k (nmk kmn4y x 4S kx y 21111≥+==?=(3))1k (kn mk mn4S ≥+=,当1mn ,n m ,m n k k n mk <∴>== 时,即⼜[)上单调递增,在∞+∈+∴≥1k k n mk ,1k 0n m kn mk >+≥+? nm mn 4S 1k ,n m mn 4S max +==+≤∴时,当例4、已知直线L 1:y=kx+1与双曲线1y x :C 221=-的左⽀交于A 、B 两点,(1)求k 的取值范围;(2)直线L 经过点P (-2,0)及线段AB 的中点Q ,CD 是y 轴上的⼀条线段,对任意的直线L 都与线段CD ⽆公共点,试问CD 长的最⼤值是否存在,若存在,求出这个最⼤值;若不存在,请说明下由。
解析几何题型及解题方法
解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。
解题方法包括直接法、参数法、代入法等。
2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。
解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。
3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。
解题方法包括公式法、参数法、极坐标法等。
4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。
解题方法包括导数法、不等式法、极坐标法等。
5. 证明不等式:通过几何图形证明不等式。
解题方法包括构造法、极坐标法、数形结合法等。
6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。
解题方法包括归纳法、反证法、构造法等。
以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。
同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。
高三复习阶段如何备考数学解析几何题
高三复习阶段如何备考数学解析几何题数学解析几何是高中数学中一个重要且难度较大的部分,对于广大高三学生来说,备考解析几何题是提高数学成绩的关键。
在高三复习阶段,如何备考数学解析几何题是一个需要认真思考和制定合适策略的问题。
本文将介绍一些备考数学解析几何题的方法和技巧,希望对广大高三学生有所帮助。
一、理清解析几何基本概念在备考数学解析几何题之前,首先要对解析几何的基本概念进行理解和掌握。
解析几何是通过代数方法研究几何问题的一门学科,需要对点、直线、平面、坐标系等基本概念有清晰的认识。
可以通过查阅教材、参考书或互联网资源来进行学习和总结,建立起扎实的基础。
二、掌握解析几何常用定理和公式在备考数学解析几何时,了解和记忆一些常用的定理和公式是非常重要的。
例如,直线的方程、两点间距离公式、两条直线的关系等。
可以利用复习资料和习题集进行有针对性的练习,加深对这些定理和公式的理解和记忆。
三、多做解析几何题并总结题型特点高三复习阶段,多做解析几何的相关题目是必不可少的。
在做题过程中,要注意总结题目的特点和解题方法。
可以将解析几何题型分成平面几何和空间几何两部分,分别进行钻研。
通过大量的练习,可以熟悉各种题型,掌握解析几何的解题技巧。
四、注重解析几何与其他数学知识的综合运用解析几何与代数、函数、三角等数学知识有密切关联,在备考过程中要注重解析几何与其他数学知识的综合运用能力。
可以通过做综合性的题目或者跨章节的大题来加强解析几何与其他数学知识之间的联系,提高解题的能力。
五、注意解题技巧和思维方法的培养解析几何是一门需要思维灵活的学科,解题过程中需要注意一些常用的解题技巧和思维方法。
例如,利用图形的对称性、利用坐标系进行变换等。
在备考过程中,可以参考一些解析几何解题技巧的书籍或者教材,培养自己的解题思维。
六、做好错题和习题的整理与总结在备考过程中,及时整理和总结做错的题目是非常必要的。
可以将做错的题目整理成错题集,进行详细的分析和解答。
解析几何的常见题型解题方法
解析几何的常见题型解题方法几何学是数学的一个分支,研究与形状、大小、位置等相关的问题。
在解析几何中,常见的题型包括直线方程、平面方程、距离公式、中点公式、向量运算等。
本文将从这些常见题型出发,介绍解析几何的解题方法。
1. 直线方程直线方程是解析几何中常见的题型之一。
一条直线可以用斜率截距法、两点法或点斜式等多种方式表示。
例如,已知直线过点A(2,3)且斜率为2,求直线的方程。
解法如下:首先,利用点斜式可以得到直线的方程为y-3=2(x-2)。
进一步化简,得到直线方程为y=2x-1。
2. 平面方程平面方程是解析几何中另一个常见的题型。
平面可以用点法、法向量法或截距法表示。
例如,已知平面过点A(2,3,4)、B(1,2,3)和C(3,4,5),求平面的方程。
解法如下:首先,利用两个向量来确定平面的法向量。
设AB和AC两向量,则平面的法向量可以通过叉积运算得到。
即AB×AC=(-1,1,1)。
进一步,利用点法可得平面的方程为-1(x-2)+1(y-3)+1(z-4)=0。
化简可得-x+y+z-5=0,即平面的方程为x-y-z+5=0。
3. 距离公式在解析几何中,我们常需要计算两点之间的距离。
两点间的距离可以通过距离公式来计算。
例如,已知点A(2,3)和点B(4,5),求AB两点间的距离。
解法如下:根据距离公式,AB的距离可以表示为√[(x2-x1)²+(y2-y1)²]。
带入坐标可得√[(4-2)²+(5-3)²],化简后得√8。
因此,点A(2,3)和点B(4,5)之间的距离为√8。
4. 中点公式中点公式是解析几何中常见的一个定理,用来求线段的中点坐标。
例如,已知线段AB的两个端点A(2,3)和B(4,5),求线段AB的中点坐标。
解法如下:根据中点公式,线段AB的中点坐标可以表示为[(x1+x2)/2,(y1+y2)/2]。
带入坐标可得[(2+4)/2, (3+5)/2],化简后得(3,4)。
2024高考数学解析几何知识点总结与题型分析
2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。
数学作为高考的一门重要科目,解析几何是其中的一个重点内容。
为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。
1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。
1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。
2. 空间几何体2.1 球球是解析几何中的一个重要概念。
其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。
2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。
通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。
掌握其特点和方程形式,对于解析几何的学习非常重要。
3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。
根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。
3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。
根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。
4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。
通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。
4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。
对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。
解析几何题型方法归纳(配例题)
解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。
【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc
高考解析几何解答题题型分析及解答策略。
©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。
2024年高考数学平面解析几何的复习方法总结
2024年高考数学平面解析几何的复习方法总结一、复习前的准备1. 了解考纲:仔细阅读高考数学的考纲,明确平面解析几何部分的重点和难点,有针对性地进行复习。
2. 整理知识框架:将平面解析几何的知识点进行整理和归纳,建立知识框架,便于全面复习和查漏补缺。
3. 完善笔记:对之前学过的平面解析几何知识进行复习,逐一检查自己的笔记是否完整,如有漏洞或不理解的地方,及时补充或向同学、老师请教。
4. 制定学习计划:合理分配复习时间,将平面解析几何的复习内容分成小块,按照计划逐一进行复习。
二、基础知识的复习1. 了解基础概念:回顾平面解析几何的基本概念,如点、直线、平面等,并熟悉它们之间的关系和性质。
2. 复习坐标系:重点复习直角坐标系和极坐标系的原理和使用方法,能够熟练转换坐标系和进行坐标计算。
3. 复习向量:回顾向量的定义、运算法则和性质,同时重点理解向量的几何意义和应用。
4. 复习直线与圆的方程:回顾直线的一般方程、斜截式方程和点斜式方程的互相转换,同时复习圆的标准方程和一般方程的建立方法。
三、常见题型的练习1. 直线与圆的方程的联立:熟练掌握直线与圆的方程的联立方法,能够灵活运用,解决实际问题。
2. 直线与圆的位置关系:理解直线与圆的位置关系,掌握直线与圆的切点、交点等性质,能够准确判断直线与圆的位置关系。
3. 三角形的性质:回顾三角形的基本性质,如三角形的内心、外心、重心、垂心等,并理解它们之间的联系,能够应用这些性质解决三角形相关问题。
4. 镜面对称与旋转:通过练习镜面对称和旋转的题目,理解镜面对称和旋转的概念,并能够快速判断图形的镜面对称性和旋转对称性。
5. 预习未学内容:对于一些未学过的内容(如圆锥曲线、二次函数等),可以进行简单的预习,了解基本概念和性质,为高考后的复习打下基础。
四、真题的训练与模拟考试1. 做高考真题:通过做历年高考真题,了解平面解析几何在高考中的考查点和形式,熟悉解题思路和答题技巧,查漏补缺,增强信心。
高三数学高考总复习-解析几何解答题的题型与方法
高考解析几何解答题的类型与解决策略Ⅰ.求曲线的方程 1.曲线的形状已知 这类问题一般可用待定系数法解决。
例1 (1994年全国)已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。
分析:曲线的形状已知,可以用待定系数法。
设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0).设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为:A /(12,11222+-+-k k k k ),B /(1)1(8,116222+-+k k k k )。
因为A /、B /均在抛物线上,代入,消去p ,得:k 2-k-1=0.解得:k=251+,p=552. 所以直线L 的方程为:y=251+x,抛物线C 的方程为y 2=554x. 例2 (1993年全国)在面积为1的△PMN 中,tanM=21,tanN=-2,建立适当的坐标系,求出以M 、N 为焦点且过点P 的椭圆方程。
分析:此题虽然与例1一样都是求形状已知的曲线方程问题,但不同的是例1是在给定的坐标系下求曲线的标准方程,而此题需要自己建立坐标系。
为使方程简单,应以MN 所在直线为x 轴,以MN 的垂直平分线为y 轴。
这样就可设出椭圆的标准方程,其中有两个未知数。
1315422=+y x 2.曲线的形状未知-----求轨迹方程例3 (1994年全国)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1, 动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明它是什么曲线。
分析:如图,设MN 切圆C 于点N ,则动点M 组成的集合是:P={M||MN|=λ|MQ|},由平面几何知识可知:|MN|2=|MO|2-|ON|2=|MO|2-1,将M 点坐标代入,可得:(λ2-1)(x 2+y 2)-4λ2x+(1+4λ2)=0.当λ=1时它表示一条直线;当λ≠1时,它表示圆。
高考中解析几何问题的题型与方法
解析几何问题的题型与方法例1、椭圆22221(,0)x y a b a b+=>的两个焦点F 1、F 2,点P 在椭圆C 上,且P F 1⊥F 1F 2,,| P F 1|=34,,| P F 2|=314.(I )求椭圆C 的方程;(II )若直线L 过圆x 2+y 2+4x-2y=0的圆心M 交椭圆于A 、B 两点,且A 、B 关于点M 对称,求直线L的方程。
解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3. 在Rt △PF 1F 2中,,52212221=-=PF PF F F 故椭圆的半焦距c =5,从而b 2=a 2-c 2=4,所以椭圆C 的方程为4922y x +=1. (Ⅱ)设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2). 由圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为 y =k (x +2)+1, 代入椭圆C 的方程得 (4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0.因为A ,B 关于点M 对称. 所以.29491822221-=++-=+kk k x x 解得98=k , 所以直线l 的方程为,1)2(98++=x y 即8x -9y +25=0. (经检验,符合题意) 解法二:(Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且,1492121=+yx① ,1492222=+yx②由①-②得.04))((9))((21212121=+-++-y y y y x x x x③因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2,代入③得2121x x y y --=98,即直线l 的斜率为98, 所以直线l 的方程为y -1=98(x+2),即8x -9y +25=0.(经检验,所求直线方程符合题意.) 例2、 直线1:+=kx y l 与双曲线12:22=-y x C 的右支交于不同的两点A 、B .(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆恰好过双曲线的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解:(I )由方程组⎩⎨⎧=-+=12122y x kx y 消去y 得022)2(22=++-kx x k . 设),,(),,(2211y x B y x A 由题意,直线l 与双曲线C的右支交于不同两点,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=>--=+>--=∆≠-∴0220220)2(8)2(02221221222k x x k k x x k k k ).2,2(--∈⇒k(II )假设存在实数k ,使得以线段AB 为直径的圆恰好过)0,(c F ,则FB FA ⊥,0=⋅∴,))((2121=+--∴y y c x c x ,即)1)(1())((2121=+++--kx kx c x c x ,整理得01))(()1(221212=+++-++c x x c k x x k .将26=c 及22221--=+k k x x ,22221-=k x x 代入并化简可得066252=-+k k .解得566--=k 或566+-=k (舍去). 故存在566--=k 满足题意. 例 3 设经过点),0(m Q 且倾斜角为4π的直线l 与椭圆4422=+y x 交于不同的两点A 、B ,O 为坐标原点.(I )若QB AQ 23-=,求m 的值;(II )当AOB ∆的面积最大时,求m 的值.解:(I )直线l 的方程为m x y +=,由⎩⎨⎧=++=4422y x m x y 得0)1(48522=-++m mx x .由题意,0)1(80)8(22>--=∆m m ,∴55<<-m .设),,(),,(2211y x B y x A 则有5821mx x -=+①,5)1(4221-=m x x ②.由23-=可得,2123x x -=-③.由①②③联解可得291455±=m ,且满足0>∆.故m 的值为291455±. (II )结合图形可知AOB ∆的面积21221124)(121x x x x m x x m S AOB -+⋅⋅=-⋅⋅=∆ 5)1(16)58(2122---⋅⋅=m m m )5(5222m m -= 24552m m +-=.易知当252=m 时,AOB S ∆取得最大值, 此时m 的值为210±. (注:求AOB S ∆的表达式时,题解中用的是图形的割补思想,若用点O 到直线AB 的距离2m d =及弦长122x x AB -=来处理,可得到同样的结果.)例4 已知椭圆1222=+y x .(I)求斜率为2的平行弦中点的轨迹方程;(II)过)1,2(N 的直线l 与椭圆相交,求被l 截得的弦的中点轨迹方程;(III)求过点)21,21(P 且被P 点平分的弦所在直线的方程.解:设弦的两端点为),(),,(2211y x B y x A ,中点为),(00y x M ,则有210212,2y y y x x x =+=+.由122121=+y x ,122222=+y x 两式作差得:1))((2))((12121212=+-++-y y y y x x x x ,00121212122)(2y x y y x x x x y y -=++-=--∴.即002y xk AB -=.①I )设弦中点为),(y x M ,由①式,yx22-=,∴04=+y x .故所求的轨迹方程为04=+y x (在已知椭圆的内部). (II )不妨设l 交椭圆于A 、B ,弦中点为),(y x M .由①式,yxk k AB l 2-==,又∵12--==x y k k MN l ,122--=-∴x y y x .整理得,04222=--+y x y x 此即所求的轨迹方程. (III )由①式,弦所在的直线的斜率21200-=-=y x k ,故其方程为)21(2121--=-x y ,即0342=-+y x .例5、设双曲线C :线222x -y =1(a>0)与直l:x+y =1a相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,).2e a a e e e ==<<≠∴>≠+∞ 即离心率的取值范围为例6、已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值. 解:∵(1),332=a c 原点到直线AB :1=-b y a x 的距离.3,1.2322==∴==+=a b c abb a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k . 设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则.11,315531152002002210k x y k k kx y k k x x x BE -=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kk k k 又故所求k=±7. 例7、O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足||||AC AB ++=λ,[)∞∈+,0λ,则P 的轨迹一定通过△ABC 的( )(A )外心 (B )内心 (C )重心 (D )垂心分析:因为||||AB AC AB AC AB AC 、分别是与、同向的单位向量,由向量加法的平行四边形则知||||AB ACAB AC +是与∠ABC 的角平分线(射线)同向的一个向量,又()AB ACOP OA AP AB ACλ-==+,知P 点的轨迹是∠ABC 的角平分线,从而点P 的轨迹一定通过△ABC 的内心。
高考专题_解析几何常规题型和方法
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考查的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考查。
选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓基础。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14讲 解析几何问题的题型与方法一、知识整合高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。
1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、近几年高考试题知识点分析2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 (04江苏)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2(04辽宁)已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是 (A )26(B )23 (C )3(D )21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查例3(04天津文)若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是 (A)0k <<(B)0k <<(C)0k << (D )05k <<2.解答题解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4(04江苏)已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.=,求直线l 的斜率.本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高. 解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x (II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m kmMQ QF x m y km +-⨯-=-==-==---当时.于是.0,134422222==+k mm k m m 解得 故直线l 的斜率是0,62±.例5(04全国文科Ⅰ)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,(2,).e a a e e e ==<<≠∴>≠+∞即离心率的取值范围为(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6(04全国文科Ⅱ)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点. (Ⅰ)设l 的斜率为1,求OB OA与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若AF FB ,求l 在y 轴上截距的变化范围. 解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x OB OA.41143||||),cos(-=⋅=OB OA 所以与夹角的大小为.41143arccos -π (Ⅱ)由题设λ= 得 ),,1(),1(1122y x y x --=-λ即⎩⎨⎧-=-=-.1212),1(1y y x x λλ 由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③ 联立①、③解得λ=2x ,依题意有.0>λ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或由 ,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.三、热点分析与2005年高考预测1.重视与向量的综合在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.例7(02年新课程卷)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R,且α+β=1,则点C 的轨迹方程为(A )(x -1)2+(y -2)2=5 (B )3x +2y -11=0 (C )2x -y =0 (D )x +2y -5=0 例8(04辽宁)已知点)0,2(-A 、)0,3(B ,动点2),(x PB PA y x P =⋅满足,则点P 的轨迹是 (A )圆 (B )椭圆 (C )双曲线 (D )抛物线2.考查直线与圆锥曲线的位置关系几率较高在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大.① ②3.与数列相综合在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.例9(04年浙江卷)如图,ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n), .2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn (Ⅲ)若记,,444*+∈-=N n y y b n n n证明{}n b 是等比数列.解:(Ⅰ)因为43,21,153421=====y y y y y ,所以2321===a a a ,又由题意可知213+++=n n n y y y , ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++∴{}n a 为常数列.∴.,21*∈==N n a a n(Ⅱ)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y 又∵2214++++=n n n y y y ,∴.414n n yy -=+(Ⅲ)∵)41()41(44444841n n n n n yy y y b ---=-=+++-)(41444n n y y --=+,41n b -=又∵,041431≠-=-=y y b∴{}n b 是公比为41-的等比数列.4.与导数相综合近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.例10(04年湖南文理科试题)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。