概率论知识点总结材料

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论总结

目录

一、前五章总结

第一章随机事件和概率 (1)

第二章随机变量及其分布 (5)

第三章多维随机变量及其分布 (10)

第四章随机变量的数字特征 (13)

第五章极限定理 (18)

二、学习概率论这门课的心得体会 (20)

一、前五章总结

第一章随机事件和概率

第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结

果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。

在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件:在试验中必然出现的事情,记为S或Ω。

2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体

样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。

基本事件—单点集,复合事件—多点集

一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件间的关系及运算,就是集合间的关系和运算。

3、定义:事件的包含与相等

若事件A发生必然导致事件B发生,则称B包含A,记为B⊃A

或A⊂B。

若A⊂B且A⊃B则称事件A与事件B相等,记为A=B。

定义:和事件

“事件A与事件B至少有一个发生”是一事件,称此事件为事件

A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。

定义:积事件

称事件“事件A与事件B都发生”为A与B的积事件,记为A∩

B或AB,用集合表示为AB={e|e∈A且e∈B}。

定义:差事件

称“事件A发生而事件B不发生,这一事件为事件A与事件B的差

事件,记为A-B,用集合表示为 A-B={e|e∈A,e∉B} 。

定义:互不相容事件或互斥事件

如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件

B是互不相容事件或互斥事件。

定义6:逆事件/对立事件

称事件“A不发生”为事件A的逆事件,记为Ā。A与Ā满足:A

∪Ā= S,且AĀ=Φ。

运算律:

设A,B,C为事件,则有

(1)交换律:A∪B=B∪A,AB=BA

(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C

A(BC)=(AB)C=ABC

(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)

A(B∪C)=(A∩B)∪(A∩C)= AB∪AC

(4)德摩根律:B

A

=

A

B

=

A

B

A

B

小结:

事件的关系、运算和运算法则可概括为 四种关系:包含、相等、对立、互不相容; 四种运算:和、积、差、逆;

四个运算法则:交换律、结合律、分配律、对偶律。 第二节:

1、 设试验E 是古典概型, 其样本空间S 由n 个样本点组成 , 事件A

由k 个样本点组成 . 则定义事件A 的概率为:P(A)=k/n =A 包含的样本点数/S 中的样本点数。 2、 几何概率:设事件A 是S 的某个区域,它的面积为 μ(A ),则

向区域S 上随机投掷一点,该点落在区域A 的概率为:

P (A )=μ(A )/μ(S ) 假如样本空间S 可用

一线段,或空间中某个区域表示,并且向S 上随机投掷一点的含义如前述,则事件A 的概率仍可用(*)式确定,只不过把 理解为长度或体积即可. 概率的性质: (1)P(φ)=0, (2)

(3)

(4) 若A ⊂B ,则P(B-A)=P(B)-P(A), P(B) ≥ P(A).

第四节:条件概率:在事件B 发生的条件下,事件A 发生的概率称为A 对B 的条件概率,记作P (A |B ).

而条件概率P (A |B )是在原条件下又添加“B 发生”这个条件时A 发生的可能性大小,即P (A |B )仍是概率.

()∑∞=∞==⎪⎪⎭⎫ ⎝⎛1

1m m P P ΦΦ ();

,,,,2,1,,,11∑===⎪⎪⎭⎫ ⎝⎛≠=n

k k n k k j i A P A P j i n j i A A 则两两互不相容,),

(1)(A P A P -=()()

B P AB P B A P =

)|(

乘法公式: 若P (B )>0,则P (AB )=P (B )P (A |B ) P(A)>0,则P(AB)=P(A)P(B|A)

全概率公式:设A 1,A 2,…,A n 是试验E 的样本空间Ω的一个划分,且

P (A i )>0,i =1,2,…,n , B 是任一事件, 则

贝叶斯公式:设A 1,A 2,…,A n 是试验E 的样本空间Ω的一个划分,且P (A i )>0,i =1,2,…,n , B 是任一事件且P (B )>0, 则

第五节 :若两事件A 、B 满足

P (AB )= P (A ) P (B ) 则称A 、B 独立,或称A 、B 相互独立. 将两事件独立的定义推广到三个事件: 对于三个事件A 、B 、C ,若 P (AC )= P (A )P (C ) P (AB )= P (A )P (B )

P (ABC )= P (A )P (B )P (C ) P (BC )= P (B )P (C ) 四个等式同时 成立,则称事件 A 、B 、C 相互独立.

第六节:定理 对于n 重贝努利试验,事件A 在n 次试验中出现k 次的概率为 总结:

1. 条件概率是概率论中的重要概念,其与独立性有密切的关系,

在不具有独立性的场合,它将扮演主要的角色。 2. 乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,请牢固掌握。 3. 独立性是概率论中的最重要概念之一,亦是概率论特有的概念,应正确理解并应用于概率的计算。 4. 贝努利概型是概率论中的最重要的概型之一,在应用上相当广泛。 第二章:随机变量及其分布

1 、随机变量:分为离散型随机变量和连续型随机变量。

分布函数:设 X 是一个 r.v ,x 为一个任意实数,称函数

∑==n i i i A B P A P B P 1

)

()()(|∑==n

j j

j

i i i A B P A P A B P A P B A P 1

)

()()

()()|(||p

q n k q

p C k P k

n k k n n -===-1,

,,1,0)(

相关文档
最新文档