LED陶瓷基板

合集下载

阐述LED封装用到的陶瓷基板现状与发展

阐述LED封装用到的陶瓷基板现状与发展

阐述LED封装用到的陶瓷基板现状与发展作者:秩名2013年03月08日 16:47[导读]陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模组等领域。

本文简要介绍了目前陶瓷基板的现状与以后的发展。

关键词:陶瓷基板LED封装LED陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模组等领域。

本文简要介绍了目前陶瓷基板的现状与以后的发展。

1、塑胶和陶瓷材料的比较塑胶尤其是环氧树脂由于比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。

相对于塑胶材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等优点。

在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜或和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。

2、各种陶瓷材料的比较2.1Al2O3到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。

2.2BeO具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展。

AlN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。

缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。

目前大规模的AlN生产技术国内还是不成熟,相对于Al2O3,AlN价格相对偏高许多,这个也是制约其发展的瓶颈。

综合以上原因,可以知道,氧化铝陶瓷由于比较优越的综合性能,在目前微电子、功率电子、混合微电子、功率模组等领域还是处于主导地位而被大量运用。

七大方面解析氮化铝陶瓷基板的分类和特性

七大方面解析氮化铝陶瓷基板的分类和特性

七大方面解析氮化铝陶瓷基板的分类和特性氮化铝陶瓷基板在大功率器件模组,航天航空等领域备受欢迎,那么氮化铝陶瓷基板都有哪些种分类以及氮化铝陶瓷基板特性都体现在哪些方面?一,什么是氮化铝陶瓷基板以及氮化铝陶瓷基板的材料氮化铝陶瓷基板是以氮化铝(AIN)为主晶相的陶瓷基板,也叫氮化铝陶瓷基片。

热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是大功率集成电路和散热功能的重要器件。

二,氮化铝陶瓷基板分类1,按电镀要求来分氮化铝陶瓷覆铜基板(氮化铝覆铜陶瓷基板),旨在氮化铝陶瓷基板上面做电镀铜,有做双面覆铜和单面覆铜的。

2,按应用领域分LED氮化铝陶瓷基板(氮化铝led陶瓷基板),主要用于LED大功率灯珠模块,极大的提高了散热性能。

igbt氮化铝陶瓷基板,一般用于通信高频领域。

3,按工艺来分氮化铝陶瓷基板cob(氮化铝陶瓷cob基板),主要用于Led倒装方面。

dpc氮化铝陶瓷基板,采用DPC薄膜制作工艺,一般精密较高。

dpc氮化铝陶瓷基板(AlN氮化铝dbc陶瓷覆铜基板),是一种厚膜工艺,一般可以实现大批量生产。

氮化铝陶瓷基板承烧板3,按地域分有的客户对特定的氮化铝陶瓷基板希望是特定地域的陶瓷基板生产厂家,因此有了:日本氮化铝陶瓷基板氮化铝陶瓷基板台湾氮化铝陶瓷基板成都福建氮化铝陶瓷基板东莞氮化铝陶瓷基板台湾氮化铝陶瓷散热基板氮化铝陶瓷基板珠海氮化铝陶瓷基板上海4,导热能力来分高导热氮化铝陶瓷基板,导热系数一般较高,一般厚度较薄,一般导热大于等于170W的。

氮化铝陶瓷散热基板,比氧化铝陶瓷基板散热好,大于等于50W~170W.三,氮化铝陶瓷基板特性都有哪一些?1,氮化铝陶瓷基板pcb优缺点材料而言:陶瓷基板pcb是陶瓷材料因其热导率高、化学稳定性好、热稳定性和熔点高等优点,很适合做成电路板应用于电子领域。

许多特殊领域如高温、腐蚀性环境、震动频率高等上面都能适应。

氮化铝陶瓷基板,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。

陶瓷基板金属化的应用

陶瓷基板金属化的应用

陶瓷基板金属化的应用
陶瓷基板金属化在许多领域都有应用,以下是一些具体的例子:
1. 电力电子领域:金属化陶瓷基板具有优良的导热性和绝缘性,可以用于制造高效率、高可靠性的电力电子器件,如开关电源、变频器等。

2. 汽车领域:金属化陶瓷基板具有较好的耐高温和耐腐蚀性能,可以用于制造汽车的发动机和排气系统部件,以及燃料系统和控制系统部件。

3. 航空航天领域:金属化陶瓷基板具有优良的耐高温和耐腐蚀性能,可以用于制造航空航天器的高温部件和结构部件。

4. 微电子领域:金属化陶瓷基板可以作为电子器件的散热基板,如集成电路、微处理器等。

5. 照明领域:金属化陶瓷基板可以作为高亮度LED灯具的散热基板,具有
优良的导热性和耐候性。

总之,陶瓷基板金属化的应用非常广泛,可以在各种恶劣环境下工作,具有优良的性能和可靠性。

led陶瓷基板导热系数

led陶瓷基板导热系数

led陶瓷基板导热系数(实用版)目录一、LED 陶瓷基板的特点二、LED 陶瓷基板的导热系数三、导热系数对 LED 陶瓷基板的影响四、提高 LED 陶瓷基板导热系数的方法五、总结正文一、LED 陶瓷基板的特点LED 陶瓷基板是 LED 照明领域中常用的一种材料,它具有许多优点,如良好的导热性能、较高的机械强度、良好的抗热性能和耐腐蚀性能等。

由于其优异的性能,LED 陶瓷基板被广泛应用于 LED 灯珠、LED 灯带、LED 面板灯等产品中。

二、LED 陶瓷基板的导热系数LED 陶瓷基板的导热系数是指其在单位时间内,单位面积上导热的能力。

导热系数越高,表示材料的导热性能越好。

对于 LED 陶瓷基板而言,其导热系数一般在 30-100W/m·K 之间。

一般来说,导热系数越高,LED 陶瓷基板的散热性能越好,从而能够提高 LED 的寿命和稳定性。

三、导热系数对 LED 陶瓷基板的影响导热系数对 LED 陶瓷基板的性能影响很大。

较高的导热系数可以有效地传递和分散 LED 产生的热量,降低 LED 的温度,从而延长 LED 的使用寿命和提高其稳定性。

此外,高导热系数的 LED 陶瓷基板还有助于提高整个照明系统的光效和节能效果。

四、提高 LED 陶瓷基板导热系数的方法为了提高 LED 陶瓷基板的导热系数,可以采用以下几种方法:1.选择高导热性能的材料:常见的高导热材料有氧化铝、氮化铝、碳纳米管等。

2.优化材料结构:通过调整材料的晶粒尺寸、孔隙结构和组织形态等,以提高其导热性能。

3.采用复合材料技术:将不同类型的高导热材料进行复合,以实现更高的导热系数。

4.表面处理技术:通过表面处理技术,如金属化、氧化等,来提高陶瓷基板的导热系数。

五、总结总之,LED 陶瓷基板的导热系数是评价其性能的重要指标之一。

高导热系数有助于提高 LED 的寿命、稳定性和整个照明系统的光效和节能效果。

陶瓷基板的用途

陶瓷基板的用途

陶瓷基板的用途陶瓷基板可以广泛应用于许多领域,包括电子、照明、能源、医疗、马达、新材料等。

下面将分别从分类和应用领域两个方面进行具体介绍。

一、分类1.氧化铝陶瓷基板氧化铝陶瓷基板具有高温稳定性、高硬度、高机械强度、耐腐蚀等优点,主要应用于高功率LED、电源、变频器、电子产品等领域。

氟化铝陶瓷基板是一种新型材料,具有优良的高温、高压、高抗化学腐蚀性能,主要应用于电子、化学、航空航天等领域。

锆氧化物陶瓷基板具有高温稳定性、热膨胀系数低、介电常数小等优点,主要应用于陶瓷电容器、热敏电阻、高速通讯等领域。

二、应用领域1.电子领域陶瓷基板广泛应用于电子产品中,如手机、平板电脑、电视机等。

它可以作为印制电路板的基板,提供电子元器件的位置和电子信号的传输。

2.照明领域陶瓷基板在LED照明领域应用广泛,它可以作为LED芯片的支撑平台,提供良好的电性能和热性能,能够有效地解决LED照明产品的散热问题。

3.能源领域陶瓷基板在太阳能电池、燃料电池、电动车电池等能源领域有着重要的应用,它可以作为太阳能电池板和电池的组件,提供良好的机械强度和耐热性能。

4.医疗领域陶瓷基板在医疗器械领域应用广泛,例如骨科手术器械、牙科器械、听诊器等,它具有耐高温、抗酸碱、抗腐蚀等特性,可以耐受高温、高压的消毒处理。

5.马达领域6.新材料领域陶瓷基板在新材料领域的应用也日益增多,例如功能陶瓷、复合材料、纳米材料等。

它可以作为新材料的载体,提供良好的机械强度和热性能,有效地提高新材料的性能和使用寿命。

总之,陶瓷基板具有广泛的应用前景和重要的应用价值,在不同的领域都发挥着重要的作用。

随着科技的不断进步和发展,陶瓷基板的应用范围和应用价值还将不断扩大和提高。

led陶瓷荧光片制作工艺

led陶瓷荧光片制作工艺

LED陶瓷荧光片制作工艺1. 简介LED陶瓷荧光片是一种新型的发光材料,具有高亮度、高效能、长寿命等优点,被广泛应用于照明、显示、电子产品等领域。

本文将介绍LED陶瓷荧光片的制作工艺,包括原材料准备、工艺流程和关键步骤等内容。

2. 原材料准备LED陶瓷荧光片的制作过程需要准备以下原材料:2.1 陶瓷基板陶瓷基板是LED陶瓷荧光片的载体,通常采用氧化铝陶瓷或氮化铝陶瓷材料制成。

陶瓷基板应具有良好的导热性能和机械强度,以保证LED元件的工作稳定性和可靠性。

2.2 发光材料发光材料是LED陶瓷荧光片的关键组成部分,常用的发光材料有硒化锌、硫化锌等。

发光材料的选择应考虑其发光效率、发光波长以及对电子元件的兼容性等因素。

2.3 封装材料封装材料用于将LED芯片和发光材料固定在陶瓷基板上,并提供保护和导热功能。

常用的封装材料有环氧树脂、硅胶等。

3. 工艺流程LED陶瓷荧光片的制作工艺主要包括以下步骤:3.1 陶瓷基板制备首先,将陶瓷粉末与有机粘结剂混合,并通过成型工艺将其成型为所需形状的陶瓷基板。

然后,将成型后的陶瓷基板进行烧结,以提高其致密度和机械强度。

3.2 发光材料制备将发光材料与粘结剂混合,并通过涂覆或印刷等工艺将其均匀地涂覆在陶瓷基板的特定位置上。

然后,将涂覆后的陶瓷基板进行烘烤,使发光材料与基板充分结合。

3.3 封装将LED芯片和封装材料固定在陶瓷基板上。

首先,在陶瓷基板上涂覆封装材料,并将LED芯片放置在封装材料上。

然后,通过热压或固化等工艺将LED芯片和封装材料牢固地固定在陶瓷基板上。

3.4 测试和修整对制作好的LED陶瓷荧光片进行测试,检查其发光效果和电气性能。

如果发现问题,需要进行修整,如重新涂覆发光材料或更换LED芯片等。

3.5 包装和质检对合格的LED陶瓷荧光片进行包装,并进行质量检验。

包装通常采用防静电袋和泡沫箱等方式,以保护LED陶瓷荧光片的完整性和安全性。

质检包括外观检查、光电参数测试等环节,以确保LED陶瓷荧光片符合相关标准和要求。

led陶瓷基板导热系数

led陶瓷基板导热系数

led陶瓷基板导热系数
LED陶瓷基板的导热系数是指在稳定传热条件下,1m厚的陶瓷基板,在上下两侧表面的温差为1度(K,C)时,通过1m2面积传递的热量。

导热系数(热导率)反映了介质或介质间的传热能力的大小,单位为W/m·K(瓦特每米·开尔文)。

至于具体的导热系数数值,会根据不同的陶瓷材料、制备工艺等因素而有所不同。

例如,常见的氧化铝(Al2O3)陶瓷基板的导热系数一般在10-20W/m·K左右,而氮化铝(AlN)陶瓷基板的导热系数可以达到30W/m·K以上。

需要注意,LED陶瓷基板的导热系数不仅与材料本身有关,还受到加工精度、表面处理等因素的影响。

在实际应用中,为了提高LED陶瓷基板的导热性能,通常需要选择高导热材料、优化制备工艺,并采取适当的散热设计来增加热传导效率。

至于测试方法,一般采用热阻测试分析仪来测量LED陶瓷基板的导热系数。

热阻测试分析仪通过在不同温度下测量热流经过基板时的电阻变化,从而计算出导热系数。

常见的
测试方法有稳态法、非稳态法、热线法等。

测试时需要将陶瓷基板置于恒温环境中,通过加热器和温度传感器测量基板两侧的温度差,并根据热阻公式计算导热系数。

总之,LED陶瓷基板的导热系数是一个重要的性能指标,影响着LED器件的散热性能和可靠性。

在实际应用中,需要根据具体需求选择合适的陶瓷基板材料和制备工艺,并进行相应的测试和分析,以保证LED器件的性能和寿命。

以上是关于LED陶瓷基板导热系数的一些基本知识和概述,希望对您有所帮助。

如果您有其他具体的问题或需要进一步的信息,请随时提问。

电子封装用陶瓷基板材料及其制备工艺

电子封装用陶瓷基板材料及其制备工艺

泛。

陶瓷基片主要包括氧化铍(BeO)、氧化铝(Al2O3)和氮化铝(AlN)、氮化硅(Si3N4)。

与其他陶瓷材料相比,Si3N4陶瓷基片具有很高的电绝缘性能和化学稳定性,热稳定性好,机械强度大,可用于制造高集成度大规模集成电路板。

几种陶瓷基片材料性能比较从结构与制造工艺而言,陶瓷基板又可分为HTCC、LTCC、TFC、DBC、DPC等。

高温共烧多层陶瓷基板(HTCC)HTCC,又称高温共烧多层陶瓷基板。

制备过程中先将陶瓷粉(Al2O3或AlN)加入有机黏结剂,混合均匀后成为膏状浆料,接着利用刮刀将浆料刮成片状,再通过干燥工艺使片状浆料形成生坯;然后依据各层的设计钻导通孔,采用丝网印刷金属浆料进行布线和填孔,最后将各生坯层叠加,置于高温炉(1600℃)中烧结而成。

此制备过程因为烧结温度较高,导致金属导体材料的选择受限(主要为熔点较高但导电性较差的钨、钼、锰等金属),制作成本高,热导率一般在20~200W/(m·℃)。

低温共烧陶瓷基板(LTCC)LTCC,又称低温共烧陶瓷基板,其制备工艺与HTCC类似,只是在Al2O3粉中混入质量分数30%~50%的低熔点玻璃料,使烧结温度降低至850~900℃,因此可以采用导电率较好的金、银作为电极材料和布线材料。

因为LTCC采用丝网印刷技术制作金属线路,有可能因张网问题造成对位误差;而且多层陶瓷叠压烧结时还存在收缩比例差异问题,影响成品率。

为了提高LTCC导热性能,可在贴片区增加导热孔或导电孔,但成本增加。

厚膜陶瓷基板(TFC)相对于LTCC和HTCC,TFC为一种后烧陶瓷基板。

采用丝网印刷技术将金属浆料涂覆在陶瓷基片表面,经过干燥、高温烧结(700~800℃)后制备。

金属浆料一般由金属粉末、有机树脂和玻璃等组分。

经高温烧结,树脂粘合剂被燃烧掉,剩下的几乎都是纯金属,由于玻璃质粘合作用在陶瓷基板表面。

烧结后的金属层厚度为10~20μm,最小线宽为0.3mm。

陶瓷基板研究现状及新进展

陶瓷基板研究现状及新进展

其次,在新型制备技术方面,研究人员开发了一些新的制备方法,如静电纺丝 法、3D打印技术等,提高了陶瓷基板的制备效率和精度。例如,通过静电纺丝 法成功制备出了纳米级碳化硅陶瓷纤维,其具有优异的导热性和力学性能,有 望在高温封装领域得到广泛应用。
最后,在应用推广方面,陶瓷基板已经在高速铁路、汽车、航空航天、半导体 照明等领域得到了广泛应用,并不断拓展其应用领域。例如,近期研究发现, 陶瓷基板在太阳能光伏领域也展现出了良好的应用前景,有望成为未来太阳能 电池封装的重要材料之一。
针对这些关键问题,可以采取以下解决途径和方法:首先,加强基础研究,深 入了解陶瓷基板材料的性能和特点,发现新的物理和化学效应,为材料设计和 优化提供理论依据。其次,加强技术研发,不断改进和优化制备工艺,提高制 备效率和产品质量。最后,加强应用研究和市场推广,积极探索陶瓷基板的新 的应用领域和市场机会,提高其应用范围和市场份额。
然而,目前陶瓷基板研究还存在一些问题。首先,在材料性能方面,虽然现有 的陶瓷基板材料已经具有很多优点,但仍需要进行针对性地优化和改进,以满 足不同领域对封取得了一定的成果,但仍存在一些不足之处,如生产效率低、制造成本高 等。
最后,在应用推广方面,尽管陶瓷基板在某些领域已经得到了广泛应用,但仍 需要进一步拓展其应用领域,提高其应用范围和市场份额。
陶瓷基板研究现状及新进展
目录
01 一、陶瓷基板研究现 状
03
三、关键问题及解决 途径
02
二、陶瓷基板研究新 进展
陶瓷基板是一种以陶瓷为基体,经过精密加工和烧结而成的电子封装材料。由 于其具有高导热性、高绝缘性、耐高温、耐腐蚀等优点,被广泛应用于高可靠 性、高集成度的电子设备中。本次演示将综述陶瓷基板的研究现状和最新进展, 以期为相关领域的研究人员提供参考。

陶瓷基板裂片原因分析

陶瓷基板裂片原因分析

陶瓷基板裂片不良分析(三)技术质量部2013.12.10LED陶瓷基板的热震试验的现状目前陶瓷基板热震试验条件:把瓷片放在烤箱(加热到200度左右,保温半小时以上,然后拿出来马上放到水里(水温与烤箱温度差在170度以上,就是说水温是20度时,烤箱温度为190度),或者将瓷片直接放置在200度(温差在170度以上)加热台上,这个过程反复做3次以上,如果片没出现裂纹,说明抗热震合格。

但作为用于LED封装的陶瓷基板,由于需要在陶瓷基板上进行切割和划线(一般为激光加工),而在激光切割和划线过程中可能导致微裂纹的产生,从而影响热震性能,因此对LED陶瓷基板的热震性检测,目前的热震试验方法存在较大的缺陷,导致检测结过与客户的使用结果相差甚远,导致在进行封装过程中裂片不良的原因分析时没有有效的实验验证手段。

针对上述情况,需要对LED陶瓷基板的使用条件进行具体分析,寻找出导致客户使用中出现裂纹的原因,并寻找出有效的试验验证手段。

一、LED陶瓷基板使用现状分析目前封装时使用的焊线机一般对基板都有预热,同时焊线时进行加热,如右图:在瓷片预热区将瓷片从室温预热到一定的温度,然后再到焊线区进行焊线操作,在此过程中,瓷片需要经过两次升温,以达到满足焊线工艺要求的温度。

瓷片预热区焊线加热块二、试验方案1、为模拟焊线时的实际使用情况,采用有切孔及划线加工的基板进行试验,基板切割及划线图形不变。

2、对切割好的瓷片使用加热平台进行整体加热(由室温加热至200度),确认陶瓷基板热震性能。

3、模拟焊线机状态,对陶瓷先进行预热,然后再加热到焊线温度(150度)区进行设定,确定不同陶瓷基板预热表面温度及焊线区温度组合,以确定不同的陶瓷升温曲线对陶瓷热震的影响。

实验条件如下:预热区焊线区室温60度 150度 23~25度85度 150度 23~25度100度 150度 23~25度三、试验结果1、加热台试验结果:将切割好的瓷片从室温直接放置在200度的加热台上时,瓷片未发生热震不良(详见视频),分片时未发生不良现象。

陶瓷基板与传统FR4基板的区别

陶瓷基板与传统FR4基板的区别

陶瓷线路板与传统FR4线路板的区别讨论这个问题前,我们先来了解下什么是陶瓷线路板,什么是FR4线路板。

陶瓷线路板:是一种基于陶瓷材料制造的线路板,也可以称为陶瓷PCB (Printed Circuit Board)。

与常见的玻璃纤维增强塑料(FR-4)基板不同,陶瓷线路板使用陶瓷基板,可以提供更高的温度稳定性、更好的机械强度、更好的介电性能和更长的寿命。

陶瓷线路板主要应用于高温、高频和高功率电路,例如LED灯、功率放大器、半导体激光器、射频收发器、传感器和微波器件等领域。

线路板:是一种电子元器件基础材料,也称为电路板、PCB板(Printed Circuit Board)或印刷电路板。

它是一种通过将金属电路图案印刷在非导电基材上,然后通过化学腐蚀、电解铜、钻孔等工艺制作出导电通路和组装电子元器件的载体。

陶瓷线路板应用领域从材料划分:氧化铝陶瓷(Al2O3):具有优异的绝缘性、高温稳定性、硬度和机械强度,适用于高功率电子设备。

氮化铝陶瓷(AlN):具有高热导率和良好的热稳定性,适用于高功率电子设备和LED照明等领域。

氧化锆陶瓷(ZrO2):具有高强度、高硬度和抗磨损性能,适用于高压电气设备。

从工艺划分:HTCC(高温共烧陶瓷):适用于高温、高功率应用,如电力电子、航空航天、卫星通信、光通信、医疗设备、汽车电子、石油化工等行业。

产品示例包括高功率LED、功率放大器、电感器、传感器、储能电容器等。

LTCC(低温共烧陶瓷):适用于射频、微波、天线、传感器、滤波器、功分器等微波器件的制造。

此外,还可用于医疗、汽车、航空航天、通信、电子等领域。

产品示例包括微波模块、天线模块、压力传感器、气体传感器、加速度传感器、微波滤波器、功分器等。

DBC(直铜陶瓷):适用于高功率功率半导体器件(如IGBT、MOSFET、GaN、SiC等)的散热,具有优异的热传导性能和机械强度。

产品示例包括功率模块、电力电子、电动汽车控制器等。

LED芯片使用陶瓷基板相对铝基板好在哪里?

LED芯片使用陶瓷基板相对铝基板好在哪里?

LED芯片使用陶瓷基板相对铝基板好在哪里?
之前很多蓝宝石晶片大多用铝基板固定,但随着产品功率1W/3W/5W/10W/15W/20W/30W高功率密度集成开发,铝基板的导热性能和绝缘性能还有耐温性能都难以满足产品设计要求,因为LED芯片很多客户用陶瓷基板代替铝基板。

那么LED芯片使用陶瓷基板相对铝基板好在哪里?
陶瓷基板的导热性强于铝基板
1,陶瓷基板的导热在35W-50W,是一般铝基板导热的十倍。

优良的导热性,使芯片的封装非常紧凑,从而使功率密度大大提高,改善系统和装置的可靠性
2,载流量大,100A电流连续通过1mm宽0.3mm厚铜体,温升约17℃;
100A电流连续通过2mm宽0.3mm厚铜体,温升仅5℃左右;
3,热阻低,10×10mm陶瓷基板的热阻0.63mm厚度陶瓷基片的热阻为
0.31K/W,0.38mm厚度陶瓷基片的热阻为0.19K/W,0.25mm厚度陶
瓷基片的热阻为0.14K/W。

4,绝缘耐压高,保障人身安全和设备的防护能力。

5.可以实现新的封装和组装方法,使产品高度集成,体积缩小。

LED上用的铝基板其导热系数是1.0-2.5不等,而陶瓷基板的导热可以去到30~50,LED行业使用陶瓷基板可以大大的提升导热能力,良好的绝缘性能和电气性能,可以让LED照明更加的稳定,不容易因为温度过高影响使用寿命。

以上是小编讲述的关于“LED芯片使用陶瓷基板相对铝基板要好”的问题阐述。

金瑞欣是专业的陶瓷基板生产厂家,主营氧化铝陶瓷基板和氮化铝陶瓷基板,十多年PCB打样和批量制作行业经验,值得信赖,更多详情可以咨询金瑞欣特
种电路。

陶瓷基板dbc工艺

陶瓷基板dbc工艺

陶瓷基板dbc工艺陶瓷基板DBC工艺是一种常用于高功率LED封装的技术。

DBC是指Direct Bonded Copper,即直接键合铜。

该工艺的基本原理是将铜箔直接键合在陶瓷基板上,形成一个具有良好导热性能的电路板。

下面将从工艺流程、优点和应用等方面进行详细介绍。

一、工艺流程1. 基板制备:首先需要选用高纯度的陶瓷材料,如氧化铝陶瓷、氮化铝陶瓷等。

然后将陶瓷基板进行切割、打磨、清洗等处理,以保证其表面光滑、无裂纹、无杂质。

2. 铜箔制备:选用高纯度的电解铜,通过化学蚀刻、机械抛光等工艺制备出符合要求的铜箔。

3. 键合:将铜箔放置在陶瓷基板上,经过高温高压的处理,使铜箔与陶瓷基板紧密结合,形成一个完整的电路板。

4. 电路制作:在铜箔上进行电路制作,如刻蚀、镀金等工艺,以满足不同的电路需求。

5. 封装:将LED芯片粘贴在电路板上,通过焊接等工艺将LED芯片与电路板连接起来,形成一个完整的LED封装产品。

二、优点1. 导热性能好:由于铜箔与陶瓷基板直接键合,形成了一个导热性能极佳的电路板,能够有效地将LED芯片产生的热量散发出去,提高LED的发光效率和寿命。

2. 电气性能稳定:由于铜箔与陶瓷基板紧密结合,形成了一个稳定的电路板,能够有效地避免电路板因温度变化等原因而产生的变形、开裂等问题,保证LED封装产品的电气性能稳定。

3. 耐高温性能好:由于陶瓷材料具有良好的耐高温性能,能够在高温环境下保持稳定的性能,因此DBC工艺制作的LED封装产品能够在高温环境下长时间稳定工作。

三、应用DBC工艺制作的LED封装产品广泛应用于高功率LED照明、汽车照明、航空航天、医疗器械等领域。

由于其导热性能好、电气性能稳定、耐高温性能好等优点,能够满足不同领域对LED封装产品的高要求。

总之,DBC工艺是一种非常重要的LED封装技术,具有导热性能好、电气性能稳定、耐高温性能好等优点,能够满足不同领域对LED封装产品的高要求。

LED陶瓷基板和金属封装基板有什么区别呢?

LED陶瓷基板和金属封装基板有什么区别呢?

LED陶瓷基板和金属封装基板有什么区别呢?LED封装基板目前在LED行业的需求不断增加,最常见的就是金属封装基板和倒装陶瓷基板,今天就重点分析一下陶瓷封装基板和金属金属的区别了。

市面上的金属基板是以铝基镜面居多,倒装陶瓷基板则是姨氧化铝最多,我们来看看这两者的功能区别:金属基板金属基板是指金属基印刷电路板,即是将原有的印刷电路板附贴在另外一种热传导效果更好的金属上,可改善电路板层面的散热。

但是在电路系统运作时不能超过140℃,这个主要是来自介电层的特性限制,此外在制造过程中也不得超过250℃∼300℃,这在过锡炉时前必须事先了解。

金属基板散热性能一般,但是比起FR4好,现有金属基板已可达到3W/m.K,而FR4仅0.3W/m.K倒装陶瓷基板鉴于绝缘、耐压、散热与耐热等综合考量,陶瓷基板成为以芯片次黏着技术的重要材料之一。

其技术可分为薄膜工艺、低温共烧工艺等方式制成。

陶瓷基板但热性能好,是普通FR4的100倍,金属基板散热的十倍,氧化铝陶瓷基板导热是30-50W/m.K,如果是氮化铝基板导热可以去掉170W/m.K。

高散热系数薄膜陶瓷散热基板,是运用溅镀、电/化学沉积,以及黄光微影工艺而成,具备金属线路精准、材料系统稳定等特性,适用于高功率、小尺寸、高亮度的LED的发展趋势,更是解决了共晶/覆晶封装工艺对陶瓷基板金属线路解析度与精确度的严苛要求。

当LED芯片以陶瓷作为载板时,此LED模组的散热瓶颈则转至系统电路板,其将热能由LED芯片传至散热鰭片及大气中,随着LED芯片功能的逐渐提升,材料亦逐渐由FR4转变至金属芯印刷电路基板(MCPCB),但随着高功率LED的需求进展,MCPCB材质的散热系数(2~4W/mk)无法用于更高功率的产品,为此,陶瓷电路板的需求便逐渐普及,为确保LED 产品在高功率运作下的材料稳定性与光衰稳定性,以陶瓷作为散热及金属布线基板的趋势已日渐明朗。

陶瓷材料目前成本高于MCPCB,因此,如何利用陶瓷高散热系数特性下,节省材料使用面积以降低生产成本,成为陶瓷LED发展的重要指标之一。

陶瓷基板的用途

陶瓷基板的用途

陶瓷基板的用途
陶瓷基板是一种广泛应用于电子、光电、磁性材料等领域的基础材料。

它具有高温稳定性、耐腐蚀性、高绝缘性、低介电常数、高机械强度等优良性能,因此被广泛应用于各种领域。

陶瓷基板在电子领域中的应用非常广泛。

它可以作为半导体器件的基底,如集成电路、光电器件、传感器等。

陶瓷基板的高温稳定性和低介电常数使得它在高频电路中具有很好的性能,可以用于制作微波电路、天线等。

此外,陶瓷基板还可以用于制作电容器、电阻器等元器件。

陶瓷基板在光电领域中也有广泛的应用。

它可以作为光电器件的基底,如LED、激光器等。

陶瓷基板的高绝缘性和低介电常数使得它在光电器件中具有很好的性能,可以提高器件的稳定性和可靠性。

陶瓷基板还可以用于磁性材料的制备。

它可以作为磁性材料的基底,如磁盘、磁头等。

陶瓷基板的高机械强度和耐腐蚀性使得它在磁性材料中具有很好的性能,可以提高磁性材料的稳定性和可靠性。

陶瓷基板是一种非常重要的基础材料,具有广泛的应用前景。

随着科技的不断发展,陶瓷基板的应用领域也将不断扩大和深化。

世界陶瓷基板生产厂家排名以及国内陶瓷基板厂家

世界陶瓷基板生产厂家排名以及国内陶瓷基板厂家

世界陶瓷基板生产厂家排名以及国内陶瓷基板厂家陶瓷基板是指铜箔在高温下直接键合到氧化铝(Al2O3)或氮化铝(AlN)陶瓷基片表来面(单面或双面)上的特殊工艺板。

所制成的超薄复合基板具有优良电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并可像自PCB板一样能刻蚀出各种图形,具有很大的载流能力。

随着生产能力和技术的提升,产业成本的不断下降,更多的领域开始采用陶瓷基板替代其他pcb板。

今天小编就来分享一下“世界陶瓷基板生产厂家排名以及国内陶瓷基板厂家”。

一,世界陶瓷基板生产厂家排名陶瓷封装基板作为LED重要构件随着LED芯片技术的发展也在发生变化由于技术成熟,且具成本优势,目前为一般LED产品所采用。

而陶瓷基板线路对位精确度高,为业界公认导热与散热性能极佳材料,是目前高功率LED散热最适方案,被包括Cree、欧司朗等国际大厂和国内瑞丰、国星等领先企业导入产品。

陶瓷基板在国内外皆有小规模生产,还没有实现大规模生产。

世界陶瓷基板生产厂家排名:日本株式会社MARUWA(丸和)日本丸和1973年创立以来,长年致力于电子陶瓷材料及相关电子元件的开发和制造。

凭借着多年来在材料技术和制造技术方面积累的经验,开发生产出的产品在许多领域内具有竞争水平。

目前日本在北京也有分公司--丸和电子(北京)有限公司,产品主要分为:电子陶瓷产品,高频元件,EMC元件,机械元件四大类。

丸和的电子陶瓷材料生产量在世界上占到近50%的份额,主要应用在陶瓷基板,微波介质,陶瓷电容等。

另丸和专注开发生产压敏电阻,功率电感,中高压陶瓷电容,三端子穿心电容,VCO(空压震荡器)产品。

因丸和从原材料生产开始,所以可以很好的控制产品质量,产品具有高可靠性,高一至性等特点。

九豪精密陶瓷股份有限公司九豪精密陶瓷股份有限公司成立于西元1991年,爲国内唯一晶片式氧化铝精密陶瓷基板之专业製造厂商。

拥有精密陶瓷平板制程核心技术。

Rogers(罗杰斯)公司成立于1832年,是美国历史最悠久的上市公司之一。

陶瓷基板 标准

陶瓷基板 标准

陶瓷基板标准
陶瓷基板是一种常用的电子元器件材料,它具有高强度、高温稳定性、化学稳定性、较好的导电性和绝缘性等特点,被广泛应用于集成电路、光电子、高频电子、微波等领域。

以下是常见的陶瓷基板标准:
1. 尺寸标准:陶瓷基板的尺寸一般按照国际通用的单位mm表示,常见的尺寸有10mm×10mm、20mm×20mm、25mm×25mm、30mm×30mm等,也可以根据客户要求定制尺寸。

2. 厚度标准:陶瓷基板的厚度一般根据应用需要选择,常见的厚度有0.25mm、0.5mm、0.635mm、1.0mm等,也可以根据客户要求定制厚度。

3. 表面状态:陶瓷基板的表面一般要求平整光滑,无裂纹、毛刺、凹凸等缺陷,同时也要求表面能良好地黏附其他材料。

4. 导电性:陶瓷基板的导电性一般要求较好,具有较低的电阻率和较高的导电性能,可根据应用需要选择不同的材质和导电层厚度。

5. 耐温性:陶瓷基板的耐温性要求较高,能够在高温环境下保持结构稳定性和性能稳定性,通常要求耐温达到1000℃以上。

6. 化学稳定性:陶瓷基板需要具有较好的化学稳定性,能够抵抗酸碱等化学性
质的侵蚀,保证产品的使用寿命和性能稳定性。

陶瓷基板工艺分类

陶瓷基板工艺分类

陶瓷基板工艺分类【陶瓷基板工艺分类】一、陶瓷基板的历史其实啊,陶瓷基板的历史可以追溯到很久很久以前。

在过去,陶瓷材料就因为其出色的耐高温、绝缘性能和化学稳定性,被用于一些特殊的领域。

早期的陶瓷基板主要应用在军事和航天等高精尖领域。

那时候,由于制作工艺复杂,成本高昂,陶瓷基板就像是稀有的珍宝,只有在极其关键和重要的设备中才能见到它的身影。

随着科技的不断进步,特别是电子行业的飞速发展,对于基板材料的性能要求越来越高。

陶瓷基板的优势逐渐被更多人所认识和重视,制作工艺也不断改进和优化,成本逐渐降低,这才使得它开始慢慢走进我们的日常生活。

比如说,现在我们常见的一些高端电子产品,像智能手机、平板电脑,里面可能就用到了陶瓷基板,这都得归功于技术的不断进步和发展。

二、陶瓷基板的制作过程1. 原料准备说白了就是先把要用的材料准备好。

陶瓷基板的主要原料通常包括氧化铝、氮化铝等陶瓷粉末。

这些粉末就像是做蛋糕的面粉一样,是基础材料。

而且啊,这些粉末的纯度和粒度都有严格的要求,不然做出来的基板质量可就没法保证啦。

2. 混合与成型把准备好的陶瓷粉末和一些添加剂混合在一起,这就像调面糊一样,得搅拌均匀。

然后通过各种成型技术,比如干压成型、流延成型等,把“面糊”变成我们想要的基板形状。

比如说干压成型,就像是用模具压饼干,把粉末压成一块一块的基板;流延成型呢,则像是摊煎饼,把浆料均匀地铺成一层薄薄的膜,然后再进行后续处理。

3. 烧结这一步可是关键,就好比把生坯放进烤箱里烤,让它们变得坚固和致密。

在高温的环境下,陶瓷颗粒相互融合,形成一个坚固的整体。

这个过程对温度、时间和气氛的控制都非常严格,稍有差错,基板的性能就会大打折扣。

4. 表面处理经过烧结的基板还不算完,还得进行表面处理,就像给蛋糕抹奶油一样,让基板的表面更加光滑、平整,以满足后续的电路制作和组装要求。

三、陶瓷基板的特点1. 良好的热性能陶瓷基板具有出色的导热性能,这意味着它能够快速地将电子元件产生的热量散发出去,就像给电子元件装了一台强力的“空调”,保证它们在正常的温度下工作,延长使用寿命。

led灯材质用途

led灯材质用途

led灯材质用途LED灯材质用途LED(Light Emitting Diode)灯是一种半导体光源,以其高效、节能和寿命长等优点,在各个领域得到广泛应用。

而LED灯的材质对其性能和用途有着重要的影响。

本文将就LED灯的材质及其用途进行探讨。

一、铝基板铝基板是LED灯的常见材质之一。

其主要特点是散热性能好,能够有效地降低LED芯片的温度,提高其亮度和寿命。

铝基板还具有良好的电绝缘性能,能够有效保护LED芯片,延长其使用寿命。

因此,铝基板广泛应用于LED灯具、汽车照明和室内装饰照明等领域。

二、陶瓷基板陶瓷基板是一种具有优良导热性能和电绝缘性能的材质,常用于高功率LED灯。

陶瓷基板能够有效地散热,提高LED芯片的亮度和寿命。

同时,陶瓷基板还能够承受较高的工作电压,具有较好的电绝缘性能,保证LED芯片的安全可靠。

因此,陶瓷基板广泛应用于户外照明、工业照明和舞台照明等领域。

三、塑料基板塑料基板是一种轻质、便宜的LED灯材质。

塑料基板常用于LED指示灯和室内装饰照明等低功率LED灯。

塑料基板具有较好的电绝缘性能,可以有效保护LED芯片。

然而,由于塑料基板的散热性能较差,其使用寿命相对较短。

因此,塑料基板在高功率LED灯中的应用较为有限。

四、玻璃基板玻璃基板是一种透明的LED灯材质,常用于LED显示屏和室内照明等领域。

玻璃基板具有优良的光透过性能,能够提高LED灯的亮度和视觉效果。

玻璃基板还具有较好的耐高温性能,能够适应较高的工作温度。

然而,玻璃基板的散热性能较差,需要搭配散热器以保证LED芯片的正常工作。

五、硅基板硅基板是一种常见的LED灯材质,其主要特点是导热性能好、电绝缘性能优良。

硅基板可以有效地散热,提高LED芯片的亮度和寿命。

同时,硅基板还具有较好的电绝缘性能,保护LED芯片的安全可靠。

硅基板广泛应用于室内照明、汽车照明和电子显示等领域。

LED灯的材质对其性能和用途有着重要的影响。

铝基板、陶瓷基板、塑料基板、玻璃基板和硅基板都是常见的LED灯材质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LED陶瓷基板的技术分析与现状——本资料由·东莞市中实创半导体照明有限公司/ 工程部·整理与撰写——摘要:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、LED封装、多芯片模块等领域。

本文简要介绍了目前LED封装陶瓷基板的技术现状与以后的发展。

关键字:LED陶瓷基板 LED产业(一)前言:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、LED封装、多芯片模块等领域。

LED散热基板的选择亦随着LED之线路设计、尺寸、发光效率…等条件的不同有设计上的差异,以目前市面上最常见的可区分为:①系统电路板,其主要是作为LED最后将热能传导到大气中、散热鳍片或外壳的散热系统,而列为系统电路板的种类包括:铝基板(MCPCB)、印刷电路板(PCB)以及软式印刷电路板(FPC);②LED芯片基板,是属于LED芯片与系统电路板两者之间热能导出的媒介,并藉由共晶或覆晶与LED芯片结合。

为确保LED的散热稳定与LED芯片的发光效率,近期许多以陶瓷材料作为高功率LED散热基板之应用,其种类主要包含有:低温共烧多层陶瓷(LTCC)、高温共烧多层陶瓷(HTCC)、直接接合铜基板 (DBC)、直接镀铜基板(DPC)四种,以下本文将针对陶瓷LED芯片基板的种类做深入的探讨。

(二)陶瓷基板的定义和性能:1.定义:陶瓷基板是以电子陶瓷为基的,对膜电路元件及外贴切元件形成一个支撑底座的片状材料。

按照陶瓷基片应用领域的不同,又分为HIC(混合集成电路)陶瓷基片、聚焦电位器陶瓷基片、激光加热定影陶瓷基片、片式电阻基片、网络电阻基片等;按加工方式的不同,陶瓷基片分为模压片、激光划线片两大类。

2.陶瓷基板的性能:(1)机械性质Ø有足够高的机械强度,除搭载元件外,也能作为支持构件使用;Ø加工性好,尺寸精度高;容易实现多层化;Ø表面光滑,无翘曲、弯曲、微裂纹等。

(2)电学性质Ø绝缘电阻及绝缘破坏电压高;Ø介电常数低;Ø介电损耗小;Ø在温度高、湿度大的条件下性能稳定,确保可靠性。

(3)热学性质Ø热导率高;Ø热膨胀系数与相关材料匹配(特别是与Si的热膨胀系数要匹配);Ø耐热性优良。

(4)其它性质Ø化学稳定性好;容易金属化,电路图形与其附着力强;Ø无吸湿性;耐油、耐化学药品;α射线放出量小;Ø所采用的物质五公害、无毒性;在使用温度范围内晶体结构不变化;Ø原材料丰富;技术成熟;制造容易;价格低。

(三)陶瓷基板与金属基板的比较:LED散热基板主要分为金属基板与陶瓷基板。

金属基板以铝或铜为材料,由于技术成熟,且具低成本优势,目前为一般LED产品所采用。

而陶瓷基板线路对位精确度高,为业界公认导热与散热性能极佳材料,是目前高功率LED散热最适方案,虽然成本比金属基板来得高,但照明要求的散热性及稳定性高于笔记本电脑、电视等电子产品,因此,包括Cree、欧司朗、飞利浦及日亚等国际大厂,都使用陶瓷基板作为LED晶粒散热材质。

如今生产上通用的大功率LED散热基板结构如图1所示,其一般为铝质基板:最下层为铝金属层,其厚度约为1.3mm;铝层之上为高分子绝缘层,厚约0.1mm;最上层为铜线路以及焊接电路。

虽然铝的导热系数比较高,但是绝缘层导热系数极低,因此绝缘层成为该中结构基板的散热瓶颈,影响整个基板的散热效果;同时由于绝缘层的存在,使得其无法承受高温焊接,从而影响了封装工艺的实施,限制了封装结构的优化,因此不利于LED散热。

由于高分子绝缘材料的导热系数较低,同时耐热性能较差,如果要提高铝金属基板的整体导热性能及耐热性能,需要替换掉绝缘材料,但是绝缘材料的启用,使得同线路无法自傲铝金属基板之上布置,所以目前直接提高铝金属基板的导热系数还无法实现。

而陶瓷散热基板,其具有新的导热材料和新的内部结构,以消除铝金属基板所具有的缺陷,从而改善基板的整体散热效果。

表1 为陶瓷散热基板与金属散热基板比较项目陶瓷基板(氧化铝、氮化铝)金属基板(铝、铜及其合金)热导率W/M·K 20~41 / 150~170 0.15~4.0绝缘性好差,需表面处理出一层绝缘膜热稳定性好一般自身热辐射能力强一般价格较高不高应用领域大功率小尺寸LED应用较多小功率大尺寸LED(四)各种陶瓷材料的比较:陶瓷材料的种类:Al2O3 ;3Al2O3·2SiO2莫来石;2Al2O3·2MgO·5SiO2堇青石;MgO·SiO2块滑石;2MgO·SiO2镁橄榄石;AlN;SiC;BeO①Al2O3:到目前为止,氧化铝基板是LED领域中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。

②BeO:具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展。

③AlN:AlN有两个非常重要的性能值:一是高的热导率,二是与Si相匹配的膨胀系数。

缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。

目前大规模的AlN生产技术国内还是不成熟,相对于Al2O3比较,AlN价格相对偏高许多,这个也是制约其发展的瓶颈。

④实际生产和开发应用的陶瓷基片材料还有SiC、BN复相陶瓷、AZ氧化锆陶瓷和玻璃陶瓷等。

其中,BeO和SiC热导率很高(250W/m.K),SiC因体积电阻较小(<1013W·cm)、介电常数较大(40)、介电损耗较高(50),不利于信号的传输,且成型工艺复杂、设备昂贵,故应用范围也很小;AlN陶瓷基片是新一代高性能陶瓷基片,具有很高的热导率(理论值为319W/m.K,商品化的AlN基片热导率大于160W/m.k)、较低的介电常数(8.8)和介电损耗(<5×10-4)、以及和硅相配比的热膨胀系数(4.4×10-4/℃)等优点,但由于成本居高,一直没能大规模应用;Al2O3陶瓷基片虽然热导率不高(20W/m.K),但因其生产工艺相对简单,成本较低,价格便宜,成为目前最广泛应用的陶瓷基片。

综合以上原因,可以知道,氧化铝陶瓷由于比较优越的综合性能,在目前微电子、功率电子、LED电子、功率模块等领域还是处于主导地位而被大量运用。

表2 各种基板特性比较表下表对Al2O3和AlN的特性分析比较:表3 Al2O3的特性分析表4 AlN的特性分析(五)陶瓷基板的制造:制造高纯度的陶瓷基板是很困难的,大部分陶瓷熔点和硬度都很高,这一点限制了陶瓷机械加工的可能性,因此陶瓷基板中常常掺杂熔点较低的玻璃用于助熔或者粘接,使最终产品易于机械加工。

Al2O3、BeO、AlN基板制备过程很相似,将基体材料研磨成粉直径在几微米左右,与不同的玻璃助熔剂和粘接剂(包括粉体的MgO、CaO)混合,此外还向混合物中加入一些有机粘接剂和不同的增塑剂再球磨防止团聚使成分均匀,成型生瓷片,最后高温烧结。

目前陶瓷成型主要有如下几种方法:●辊轴轧制:将浆料喷涂到一个平坦的表面,部分干燥以形成黏度像油灰状的薄片,再将薄片送入一对大的平行辊轴中轧碾得到厚度均匀的生瓷片。

●流延成型:浆料通过锋利的刀刃涂复在一个移动的带上形成薄片。

与其他工艺相比这是一种低压的工艺。

●粉末压制:粉末在硬模具腔内并施加很大的压力(约138MPa)下烧结,尽管压力不均匀可能产生过度翘曲但这一工艺生产的烧结件非常致密,容差较小。

●等静压粉末压制这种工艺使用周围为水或者为甘油的模及使用高达69MPa的压力这种压力更为均匀所制成的部件翘曲更小。

●挤压成型:浆料通过模具挤出这种工艺使用的浆料黏度较低,难以获得较小容差,但是这种工艺非常经济,并且可以得到比其他方法更薄的部件。

(六)陶瓷散热基板种类及其生产工艺概述:现阶段较普遍的陶瓷散热基板种类共有LTCC、HTCC、DBC、DPC四种,其中HTCC属于较早期发展之技术,但由于其较高的工艺温度(1300~1600℃),使其电极材料的选择受限,且制作成本相当昂贵,这些因素促使LTCC的发展,LTCC虽然将共烧温度降至约850℃,但其尺寸精确度、产品强度等技术上的问题尚待突破。

而DBC与DPC则为近几年才开发成熟,且能够量产化的专业技术,但对于许多人来说,此两项专业的工艺技术仍然很陌生,甚至可能将两者误解为同样的工艺。

DBC乃利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu 板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战,而DPC技术则是利用直接披覆技术,将Cu沉积于Al2O3基板之上,其工艺结合材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。

然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高,下文将针对四种陶瓷散热基板的生产流程做进一步的说明,进而更加瞭解四种陶瓷散热基板制造过程的差异。

1、LTCC (Low-Temperature Co-fired Ceramic):LTCC 又称为低温共烧多层陶瓷基板,此技术须先将无机的氧化铝粉与约30%~50%的玻璃材料加上有机黏结剂,使其混合均匀成为泥状的浆料,接着利用刮刀把浆料刮成片状,再经由一道干燥过程将片状浆料形成一片片薄薄的生胚,然后依各层的设计钻导通孔,作为各层讯号的传递,LTCC内部线路则运用网版印刷技术,分别于生胚上做填孔及印制线路,内外电极则可分别使用银、铜、金等金属,最后将各层做叠层动作,放置于850~900℃的烧结炉中烧结成型,即可完成。

主要工艺为:配料、制浆、流延、切割、冲孔、丝印填孔、丝印、叠压、脱脂烧结、划片(金刚石和CBN切刀,激光等设备)。

详细制造过程如下图LTCC生产流程图2:2、HTCC (High-Temperature Co-fired Ceramic)HTCC又称为高温共烧多层陶瓷,生产制造过程与LTCC极为相似,主要的差异点在于HTCC 的陶瓷粉末并无须加入玻璃材质,因此,HTCC的必须再高温1300~1600℃环境下干燥硬化成生胚,接着同样钻上导通孔,以网版印刷技术填孔与印制线路,因其共烧温度较高,使得金属导体材料的选择受限,其主要的材料为熔点较高但导电性却较差的钨、钼、锰…等金属,最后再叠层烧结成型。

详细制造过程如上图LTCC生产流程图。

3、DBC (Direct Bonded Copper):DBC直接接合铜基板,将高绝缘性的Al2O3或AlN陶瓷基板的单面或双面覆上铜金属后,经由高温1065~1085℃的环境加热,使铜金属因高温氧化、扩散与Al2O3或AlN材质产生(Eutectic) 共晶熔体,使铜金与陶瓷基板黏合,形成陶瓷复合金属基板,最后依据线路设计,以蚀刻方式备制线路,详细制造过程如下图DBC生产流程图2:直接敷铜技术是利用铜的含氧共晶液直接将铜敷接在陶瓷上,其基本原理就是敷接过程前或过程中在铜与陶瓷之间引入适量的氧元素,在1065℃~1083℃范围内,铜与氧形成Cu-O共晶液,DBC技术利用该共晶液一方面与陶瓷基板发生化学反应生成CuAlO2或CuAl2O4金相,另一方面浸润铜箔实现陶瓷基板与铜板的结合。

相关文档
最新文档