基本不等式及其应用-高中数学知识点讲解
高中数学——基本不等式及其应用
基本不等式及其应用一.小题回顾1.函数2294y x x =+的最小值为 ,此时x = . 2.当1a >时,11a a +-的最小值为 3.若33log log 4m n +=,则m n +的最小值为 .4.已知0x >,0y > ,且2520x y +=,那么lg lg x y +的最大值为 .5.已知正数x ,y 满足21x y +=,则11x y +的最小值为 .二.知识梳理1.当0a >,0b >时,称 为a ,b 的算术平均数;称 为a ,b 的几何平均数.2.如果a ,b 是正数,那么称 为基本不等式.(当且仅当时取“=”)3.基本不等式常见变形: .三.例题精析例1.(1)已知0x <,求函数2()2f x x x =++的最大值; (2)已知205x <<,求函数()(25)f x x x =-的最大值; (3)若,(0,)x y ∈+∞,且821x y +=,求x y +的最小值.例2.(1)求函数(5)(2)()1x x f x x ++=+(1)x >-的值域; (2)求函数21()(1)1x f x x x x -=>++的值域.例3.(1)若不等式220x kx k -->对任意1x >-的实数恒成立,求实数k 的取值范围;(2)设0k >,若关于x 的不等式151kx x +-≥对任意1+x ∈∞(,)恒成立,求实数k 的最小值.四.反思小结五.巩固训练1.函数312(0)y x x x=--<的最小值为 . 2.当312x <<时,函数(3)(12)x x y x--=的最大值为 .3.若实数a ,b 满足12a b +=,则ab 的最小值为 .4. 要制作一个容积为4 m 3、高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 元.5.用一块矩形木板紧贴一墙角围成一个直三棱柱空间堆放谷物.已知木板的长为a ,宽为b ()a b >,墙角的两堵墙面和地面两两互相垂直,如何放置才能使这个空间最大?。
基本不等式数学知识点高一
基本不等式数学知识点高一基本不等式数学知识点基本不等式是高中数学中的重要概念,它在解决数学问题和应用数学中起着重要的作用。
本文将介绍高一学生需要掌握的基本不等式数学知识点。
一、不等式的定义和性质不等式是数学中描述数值关系的一种表示方法。
对于两个数a 和b,若存在关系式a<b(或a>b),则称a和b之间存在一个不等式。
不等式可以用不等号“<”、“>”、“≤”、“≥”来表示,分别表示小于、大于、小于等于、大于等于的关系。
基本不等式有以下性质:1.传递性:若a<b且b<c,那么a<c。
2.对称性:若a<b,则-b<-a。
3.加法性:若a<b,则a+c<b+c。
4.乘法性:若a<b且c>0(或c<0),则ac<bc(或ac>bc)。
在解决不等式问题时,我们可以利用这些性质进行转化和推导。
二、一元一次不等式的解法一元一次不等式是我们高中阶段最常见的不等式类型,它的形式为ax+b>0(或ax+b<0),其中a和b是已知实数,且a≠0。
解一元一次不等式的步骤如下:1. 将不等式转化为等价不等式,即将不等式的左边移项到右边。
2. 根据a的正负,将不等式进行分类讨论。
3. 对于不等式ax>0(或ax<0),我们可以利用乘除法性质将不等式约束条件的右边限制在一个区间中。
4. 对于不等式ax+b>0(或ax+b<0),我们需要先将常数项b移到不等式的右边,然后利用乘除法性质和区间分析的方法来求解。
三、二元一次不等式的解法二元一次不等式是含有两个变量x和y的一次方程,它的形式为ax+by+c>0(或ax+by+c<0),其中a、b和c是已知实数,且a、b不全为0。
解二元一次不等式的关键是确定变量x和y的取值范围。
我们可以使用区域法或图像法来解决这类问题。
将不等式转化为等式,确定各个变量的边界条件,并通过图像或区域的交集来确定不等式的解集。
【高中数学】高中数学知识点:基本不等式及其应用
【高中数学】高中数学知识点:基本不等式及其应用基本不等式:
(当且仅当a=B时,取“=”号);
变式:①
,
(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
②
;③
;④
;
对基本不平等的理解:
(1)基本不等式的证明是利用重要不等式推导的,即
,即
(2)基本不等式又称为均值定理、均值不等式等,其中
的算术平均值,
的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.(3)在平均不平等中:① 当a=B时,取等号,即
对于两个正数x,y,若已知xy,x+y,
如果其中一个为固定值,则可获得其余值的最大值:
如:(1)当xy=p(定值),那么当x=y时,和x+y有最小值2
,
;
(2) X+y=s(常量值),那么当X=y时,乘积XY具有最大值
,
;
(3)已知x
二
+y
二
=p,则x+y有最大值为
,。
解决基本不等式问题时:
注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。
使用基本不等式比较实数的大小:
(1)注意均值不等式的前提条件.
(2)通过加减项,得到了中值定理的形式
(3)注意“1”的代换.
(4)灵活改变基本不等式的形式,注意其变形形式的应用。
重要的不平等
的形式可以是
或
,还可以是
我们不仅要掌握其原始形式,还要掌握其几种变形形式,以及应用公式的逆运算
(5)合理配组,反复应用均值不等式。
基本不等式的几个变形公式:。
高中数学基本不等式及其应用知识归纳+经典例题+变式+习题巩固(带解析)
基本不等式及其应用一、知识梳理1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22. 3.21a +1b ≤ab ≤a +b2≤a 2+b 22(a >0,b >0). 4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错. 5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.二、基础演练1.若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9 B.18 C.36 D.81答案 A解析 因为x +y =18,所以xy ≤x +y 2=9,当且仅当x =y =9时,等号成立.2.(2021·滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A.1+2B.1+3C.3D.4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C.3.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2·2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.三、典型例题与变式训练考点一 利用基本不等式求最值 角度1 配凑法求最值【例1】 (1)(2021·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)已知函数f (x )=-x 2x +1(x <-1),则( )A.f (x )有最小值4B.f (x )有最小值-4C.f (x )有最大值4D.f (x )有最大值-4答案 (1)92(2)1 (3)A解析 (1)y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝⎛⎭⎫0,32,∴函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. (2)因为x <54,所以5-4x >0,则f (x )=4x -5+14x -5+3=-⎝⎛⎭⎫5-4x +15-4x +3≤-2(5-4x )·15-4x+3=-2+3=1,当且仅当5-4x =15-4x ,即x =1时,取等号.故f (x )=4x -2+14x -5的最大值为1.(3)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎫x -1+1x +1=-⎝⎛⎭⎫x +1+1x +1-2=-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0,所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4.角度2 常数代换法求最值【例2】(2021·武汉模拟)已知正数m ,n 满足m +2n =8,则2m +1n 的最小值为________,等号成立时m ,n 满足的等量关系是________. 答案 1 m =2n解析 因为m +2n =8,所以2m +1n =⎝⎛⎭⎫2m +1n ×m +2n 8=18⎝⎛⎭⎫4+4n m +m n ≥18⎝⎛⎭⎫4+24n m ×m n =18(4+4)=1,当且仅当4n m =mn ,即m =4,n =2时等号成立.角度3 消元法求最值【例3】(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝⎛⎭⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45. 感悟升华 利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点: ①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.【训练1】 已知实数x ,y >0,且x 2-xy =2,则x +6x +1x -y 的最小值为( )A.6B.62C.3D.32答案 A 解析 由x ,y >0,x 2-xy =2得x -y =2x ,则1x -y =x 2,所以x +6x +1x -y =x +6x +x2=3⎝⎛⎭⎫x 2+2x ≥3×2x 2×2x=6, 当且仅当x 2=2x ,即x =2,y =1时等号成立,所以x +6x +1x -y 的最小值为6.考点二 基本不等式的综合应用【例4】 (1) (多选题)(2021·烟台模拟)下列说法正确的是( ) A.若x ,y >0,x +y =2,则2x +2y 的最大值为4 B.若x <12,则函数y =2x +12x -1的最大值为-1C.若x ,y >0,x +y +xy =3,则xy 的最小值为1D.函数y =1sin 2x +4cos 2x的最小值为9(2)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)BD (2)B解析 (1)对于A ,取x =32,y =12,可得2x +2y =32>4,A 错误;对于B ,y =2x +12x -1=-⎝⎛⎭⎫1-2x +11-2x +1≤-2+1=-1,当且仅当x =0时等号成立,B 正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误;对于D ,y =1sin 2x +4cos 2x =⎝⎛⎭⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos 2x =23,sin 2x =13时等号成立,D 正确.故选BD.(2)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +ay 的最小值大于或等于9,∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.感悟升华 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.【训练2】 (1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin Bsin C 的最小值为( )A.32B.334C.32D.53(2) 已知x >0,y >0,x +3y +xy =9,求x +3y 的最小值.答案 (1)C解析 (1)由△ABC 的面积为2,所以S △ABC =12bc sin A =12bc sin π6=2,得bc =8,在△ABC 中,由正弦定理得2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2·8b8b +2b +b 8b =168+2b 2+b 28=84+b 2+b 2+48-12≥284+b2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.四、练习巩固 一、选择题1.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.42C.2D.22答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x+2y=4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.故选A.2.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A.3B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝⎛⎭⎫1x +1+1y (x +1+y )=2⎝ ⎛⎭⎪⎫1+1+y x +1+x +1y ≥2⎝ ⎛⎭⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,∴x +y ≥7,故x +y 的最小值为7.3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是( )A.6B.233C.4D.23答案 B解析 x 2+y 2+xy =1⇒(x +y )2-xy =1, ∵xy ≤⎝⎛⎭⎫x +y 22,当且仅当x =y 时取等号, ∴(x +y )2-⎝⎛⎭⎫x +y 22≤1,即34(x +y )2≤1,∴-233≤x +y ≤233, ∴x +y 的最大值是233.故选B.4.(2021·沈阳一模)若log 2x +log 4y =1,则x 2+y 的最小值为( ) A.2 B.23C.4D.22答案 C解析 因为log 2x +log 4y =log 4x 2+log 4y =log 4(x 2y )=1,所以x 2y =4(x >0,y >0),则x 2+y ≥2x 2y =4,当且仅当x 2=y =2时等号成立,即x 2+y 的最小值为4.故选C.5.(2020·重庆联考)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2 B.22C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n +2n m≥2m n ·2n m =22,当且仅当m n =2nm即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.6.(2020·山东名校联考)正实数a ,b 满足a +3b -6=0,则1a +1+43b +2的最小值为( )A.13B.1C.2D.59答案 B解析 由题意可得a +3b =6,所以1a +1+43b +2=19[(a +1)+(3b +2)]⎝⎛⎭⎫1a +1+43b +2=19⎣⎢⎡⎦⎥⎤5+3b +2a +1+4(a +1)3b +2≥1,当且仅当⎩⎪⎨⎪⎧2(a +1)=3b +2,a +3b =6,即a =2,b =43时等号成立.故1a +1+43b +2的最小值为1,选B.二、填空题7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案 8解析 由题设可得1a +2b =1,∵a >0,b >0,∴2a +b =(2a +b )⎝⎛⎭⎫1a +2b =4+b a +4ab≥4+2b a ·4ab=8⎝⎛⎭⎫当且仅当b a =4ab ,即b =2a =4时,等号成立.故2a +b 的最小值为8. 8.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法)由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0, 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6. 法二 (代入消元法)由x +3y +xy =9,得x =9-3y 1+y,所以x +3y =9-3y 1+y +3y =9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y-6≥23(1+y )·121+y-6=12-6=6,当且仅当3(1+y )=121+y ,即y =1,x =3时取等号,所以x +3y 的最小值为6.9.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________.答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b=4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b 的最小值为4.10.函数y =x 2+2x -1(x >1)的最小值为________.答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.11.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号. 12.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________. 答案 ⎣⎡⎭⎫-83,+∞ 解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝⎛⎭⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x ≥42,当且仅当x =22时等号成立,又g (2)=6,g (3)=173,∵g (2)>g (3),∴g (x )min =173.∴-⎝⎛⎭⎫x +8x +3≤-83, ∴a ≥-83,故a 的取值范围是⎣⎡⎭⎫-83,+∞.。
高一基本不等式及其应用知识点+例题+练习 含答案
1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的几何平均数不大于它们的算术平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x 的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为________. 答案 81解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81.2.若实数x ,y 满足x >y >0,且log 2x +log 2y =1,则x 2+y 2x -y 的最小值为________.答案 4解析 由log 2x +log 2y =1得xy =2,又x >y >0,所以x -y >0,x 2+y 2x -y =(x -y )2+2xy x -y =x -y +4x -y ≥2(x -y )·4x -y =4,当且仅当x -y =2,即x =1+3,y =3-1时取等号,所以x 2+y 2x -y的最小值为4.3.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案 3解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 4.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,∴y =x (10-x )≤[x +(10-x )2]2=25,当且仅当x =10-x ,即x =5时,y max =25.5.(教材改编)已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 答案116解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎨⎧x =12y =18时,(xy )max =116.题型一 利用基本不等式求最值命题点1 配凑法求最值例1 (1)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________.(3)函数y =x -1x +3+x -1的最大值为________.答案 (1)1 (2)23+2 (3)15解析 (1)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(2)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当(x -1)=3(x -1),即x =3+1时,等号成立.(3)令t =x -1≥0,则x =t 2+1,所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.命题点2 常数代换或消元法求最值例2 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. (2)(高考改编题)设a +b =2,b >0,则12|a |+|a |b 取最小值时,a 的值为________.答案 (1)5 (2)-2解析 (1)方法一 由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5. (当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5. 方法二 由x +3y =5xy 得x =3y5y -1, ∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13(y -15)+95+45-4y5y -1+4y=135+95·15y -15+4(y -15)≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)∵a +b =2,∴12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b =a4|a |+1, 当且仅当b 4|a |=|a |b 时等号成立.又a +b =2,b >0, ∴当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 思维升华 条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y(m >0)的最小值为3,则m =________.(2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 (1)4 (2)6解析 (1)由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y ) =13(1+m +y x +mx y ) ≥13(1+m +2m ), (当且仅当y x =mxy 时取等号)∴13(1+m +2m )=3, 解得m =4.(2)由已知得x =9-3y1+y .方法一 (消元法) ∵x >0,y >0,∴y <3, ∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y =121+y +(3y +3)-6≥2121+y·(3y +3)-6=6, 当且仅当121+y =3y +3,即y =1,x =3时,(x +3y )min =6. 方法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·(x +3y 2)2,当且仅当x =3y 时等号成立. 设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6.题型二 基本不等式与学科知识的综合命题点1 用基本不等式求解与其他知识结合的最值问题例3 (1)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是________.(2)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是________.答案 (1)9 (2)4解析 (1)圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +bc +5.因为b ,c >0, 所以4c b +b c≥24c b ·bc=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9.(2)由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4,当且仅当a =b =1时,等号成立. 命题点2 求参数的值或取值范围例4 已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为________.答案 12解析 由3a +1b ≥ma +3b得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +ab +6≥29+6=12, ∴m ≤12,∴m 的最大值为12.思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(1)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________________________________________________________________________. 答案 (1)32 (2)[-83,+∞)解析 (1)由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0, 解得q =2或q =-1(舍去). 因为a m a n =4a 1,所以q m +n -2=16, 所以2m +n -2=24,所以m +n =6. 所以1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n ) ≥16(5+2n m ·4m n )=32. 当且仅当n m =4mn 时,等号成立,故1m +4n 的最小值等于32. (2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).题型三 不等式的实际应用例5 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×(2+x 2360)+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100].(或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810,等号成立.故当x =1810千米/时时,这次行车的总费用最低,最低费用的值为2610元. 思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解 (1)当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250.当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x-1 450)-250 =1 200-(x +10 000x).∴L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80),1 200-(x +10 000x)(x ≥80).(2)当0<x <80时,L (x )=-13x 2+40x -250.对称轴为x =60,即当x =60时,L (x )最大=950(万元). 当x ≥80时,L (x )=1 200-(x +10 000x )≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当x =100时,年获利最大.9.忽视最值取得的条件致误典例 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy,∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2.(2)没有注意到x <0这个条件误用基本不等式得2x +3x ≥2 6. 解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y) =3+y x +2x y≥3+22(当且仅当y =2x 时取等号), ∴当x =2+1,y =2+2时,(x +y )min =3+2 2.(2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2 (-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 答案 (1)3+22 (2)1+2 6温馨提醒 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.[方法与技巧]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤(a +b 2)2≤a 2+b 22,ab ≤a +b 2≤ a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +m x(m >0)的单调性. [失误与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.A 组 专项基础训练(时间:30分钟)1.下列不等式一定成立的是________.①lg(x 2+14)>lg x (x >0); ②sin x +1sin x≥2(x ≠k π,k ∈Z ); ③x 2+1≥2|x |(x ∈R );④1x 2+1>1(x ∈R ). 答案 ③解析 当x >0时,x 2+14≥2·x ·12=x , 所以lg(x 2+14)≥lg x (x >0), 故①不正确;运用基本不等式时需保证“一正”“二定“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故②不正确;由基本不等式可知,③正确;当x =0时,有1x 2+1=1,故④不正确. 2.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +b a≥2成立”的__________条件. 答案 必要不充分解析 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab ,而a b +b a≥2⇔ab >0, 所以“a 2+b 2≥2ab ”是“a b +b a≥2成立”的必要不充分条件. 3.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是________. 答案 92解析 依题意,得1a +4b =12(1a +4b)·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92, 当且仅当⎩⎪⎨⎪⎧ a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号, 即1a +4b 的最小值是92. 4.(2014·重庆改编)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________.答案 7+4 3解析 由题意得⎩⎪⎨⎪⎧ ab >0,ab ≥0,3a +4b >0,所以⎩⎨⎧a >0,b >0. 又log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4ab ,所以3a +4b =ab ,故4a +3b=1. 所以a +b =(a +b )(4a +3b )=7+3a b +4b a≥7+23a b ·4b a =7+43, 当且仅当3a b =4b a时取等号. 5.已知正数x ,y 满足x +2y -xy =0,则x +2y 的最小值为________.答案 8解析 由x +2y -xy =0,得2x +1y=1,且x >0,y >0. ∴x +2y =(x +2y )×(2x +1y )=4y x +x y+4≥4+4=8. 6.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a 、b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗x x的最小值为________. 答案 1 3解析 1⊗k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍去).∴k =1.f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3, 当且仅当x =1x ,即x =1时等号成立. 7.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为________.答案 2解析 ∵x >0,y >0,x +2y ≥22xy ,∴4xy -(x +2y )≤4xy -22xy ,∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0,∴2xy ≥2,∴xy ≥2.8.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是________. 答案 6解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1.同理可得b >1,所以1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,所以最小值为6.9.若当x >-3时,不等式a ≤x +2x +3恒成立,则a 的取值范围是________. 答案 (-∞,22-3]解析 设f (x )=x +2x +3=(x +3)+2x +3-3, 因为x >-3,所以x +3>0,故f (x )≥2(x +3)×2x +3-3=22-3, 当且仅当x =2-3时等号成立,所以a 的取值范围是(-∞,22-3].10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________. 答案 (-∞,-8]解析 分离变量得-(4+a )=3x +43x ≥4,得a ≤-8. 11.(2015·南通二模)已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+2 5y x ·2x y =7+21020, 当且仅当5y x =2x y 时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. B 组 专项能力提升(时间:20分钟)12.设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为________. 答案 16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16.13.已知m >0,a 1>a 2>0,则使得m 2+1m≥|a i x -2|(i =1,2)恒成立的x 的取值范围是________________________________________________________________________.答案 [0,4a 1] 解析 因为m 2+1m =m +1m≥2(当且仅当m =1时等号成立), 所以要使不等式恒成立,则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,所以0≤a i x ≤4,因为a 1>a 2>0, 所以⎩⎨⎧ 0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1, 所以使不等式恒成立的x 的取值范围是[0,4a 1]. 14.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号).综上可知4≤x 2+4y 2≤12.15.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为________. 答案 4解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b ) =2+b a +a b ≥2+2b a ·a b=4, 当且仅当a =b =12时,等号成立. 16.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|. (1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式;(2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|) =⎩⎨⎧ 401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30. (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值). 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减,所以t=30时,W(t)有最小值W(30)=4432,3所以t∈[1,30]时,W(t)的最小值为441万元.。
基本不等式及其应用(优秀经典专题及答案详解)
(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。
高中数学基础之基本不等式及应用
当acb取得最大值时,3a+1b-1c2的最大值为( C )
A.3
B.94
C.1
D.0
[思路引导] (1)2x-1>0,y-1>0→构建与2x-1,y-1相关的基本不等式. (2)三元变成二元→确定acb取得最大值时a,b,c的关系→求出结果.
[解析]
(1)依题意得2x-1>0,y-1>0,则
4x2 y-1
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多 少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范 围内?
[解]
(1)依题意得,y=
920v v2+3v+1600
=
920 3+v+16v00
≤
920 83
,当且仅当v=
16v00,即v=40时,等号成立,
3-
k m+1
(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知
2021年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定
投入和再投入两部分资金).
(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;
+
y2 2x-1
=
[2x-1+1]2 y-1
+
[y-1+1]2 2x-1
≥
42x-1 y-1
+
4y-1 2x-1
≥4×2
2yx--11×2yx--11
=8,即
4x2 y-1
+
y2 2x-1
2x-1=1,
≥8,当且仅当
y-1=1, 2yx--11=2yx--11,
2024年新高考版数学专题1_2.2 基本不等式及不等式的应用
x2
x
b
,则
x
2
x
b
≥1,由b>0得b≤x-x2,
即b≤
(
x
x
2
)
max
,∵x-x2=-
x
1 2
2
+
1 4
,x∈
1 4
,
3 4
,∴x=
1 2
时,(x-x2)max=
1 4
,则b≤
1 4
.
故0<b≤ 1 .
4
答案
0<b≤
1 4
例3
已知函数f(x)=x2,g(x)=
1 2
x
-m,若对任意x∈[1,2],都有f(x)≥g(x),则实
2.几个重要不等式
1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
2)a+b≥2 ab (a>0,b>0),当且仅当a=b时取等号.
3)ab≤
a
2
b
2
(a,b∈R),当且仅当a=b时取等号.
4)a+ 1 ≥2(a>0),当且仅当a=1时取等号;a+ 1 ≤-2(a<0),当且仅当a=-1时取
4.双变量的恒成立与存在性问题 1)若∀x1∈I1、∀x2∈I2 ,f(x1)>(≥)g(x2)恒成立,则f(x)min>(≥)g(x)max. 2)若∀x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)min>(≥)g(x)min. 3)若∃x1∈I1,∀x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)max. 4)若∃x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)min. 5)已知f(x)在区间I1上的值域为A,g(x)在区间I2上的值域为B,若∀x1∈I1,∃x2 ∈I2,使得f(x1)=g(x2)成立,则A⊆B.
高一基本不等式知识点笔记
高一基本不等式知识点笔记在高一的数学学习中,基本不等式是一个非常重要的知识点。
掌握好基本不等式的相关概念和性质,对于解决各种数学问题和提高数学思维能力都具有重要的作用。
本文将为大家总结高一基本不等式的知识点,并提供相关例题进行讲解。
一、基本不等式的定义在数学中,不等式是通过“大于”、“小于”等符号来表示大小关系的数学语句。
基本不等式是指那些具有普遍适用性的不等式,它们是数学思维的基础。
二、基本不等式的性质1. 加法性质:如果a>b,则a+c>b+c,其中c为任意实数。
2. 减法性质:如果a>b,则a-c>b-c,其中c为任意实数。
3. 乘法性质:如果a>b,且c>0,则ac>bc;如果a>b,且c <0,则ac<bc。
4. 除法性质:如果a>b,且c>0,则a/c>b/c;如果a>b,且c<0,则a/c<b/c。
5. 倒数性质:如果a>b,且a、b为正数,则1/a<1/b。
三、基本不等式的解法1. 原则一:不等式两边同时加(或减)一个相同的数,不等式的大小关系保持不变。
2. 原则二:不等式两边同时乘以(或除以)一个相同的正数,不等式的大小关系保持不变;不等式两边同时乘以(或除以)一个相同的负数,不等式的大小关系颠倒。
3. 原则三:同一个不等式两边可以加(或减)同一个数,可以乘以一个正数,但不能除以一个有可能为零的数。
四、基本不等式的例题解析例题一:如果3x+4y>2,且x>1,求x和y的取值范围。
解析:根据题目条件,可以得到不等式3x+4y>2,以及x>1。
首先,解不等式 x>1,可以得到 x 的取值范围为 x>1。
然后,将 x 代入不等式 3x+4y>2 中,得到 3(1)+4y>2,化简为 4y>-1,再化简为 y>-1/4。
综合以上两个条件,可以得到不等式 x>1 且 y>-1/4,即 x 的取值范围为 x>1,y 的取值范围为 y>-1/4。
例题二:已知 a>0,b>0,c>0,证明 (a+b+c)/3>√(abc)。
第三节 基本不等式及其应用
第三节 基本不等式及其应用考试要求1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.[知识排查·微点淘金]知识点1 基本不等式 不等式 成立的条件 等号成立的条件两个不等式的关系 重要不等式a 2+b 2≥2ab a ,b ∈Ra =b在不等式a 2+b 2≥2ab 中,若a >0,b >0,分别以a ,b 代替a ,b 可得a +b ≥2ab ,即ab ≤a +b2基本不等式ab ≤a +b2a >0,b >0a =b设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.知识点2 利用基本不等式求最值 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). (2)如果x +y 的和是定值p ,那么当且仅当x =y 时,xy 有最大值p 24(简记:和定积最大).[微思考]1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示:不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.2.函数y =x +1x的最小值是2吗?提示:不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x+1x无最小值. 常用结论1.基本不等式的两种常用变形形式(1)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ,当且仅当a =b 时取等号).(2)a +b ≥2ab (a >0,b >0,当且仅当a =b 时取等号). 2.几个重要的结论(1)a 2+b 22 ≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). (2)b a +ab ≥2(ab >0). (3)21a +1b≤ab ≤a +b2≤ a 2+b 22(a >0,b >0). (4)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.(×)(2)(a +b )2≥4ab .(√)(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.(×)(4)函数y =sin x +4sin x,x ∈⎝⎛⎭⎫0,π2的最小值为4.(×) 2.(链接教材必修5 P 99例1(2))设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C 因为x >0,y >0,所以x +y 2≥xy ,即xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,(xy )max =81.3.(链接教材必修5 P 100A 组T 2)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是 m 2.解析:设矩形的一边为x m ,则另一边为12×(20-2x )=(10-x )m ,所以y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25. 答案:254.(忽视变量的范围)函数f (x )=2x +3x +1(x <0)的最大值为 .解析:∵x <0,∴f (x )=-⎣⎢⎡⎦⎥⎤(-2x )+3(-x )+1≤-26+1.当且仅当-2x =3-x且x <0,即x =-62时等号成立.答案:1-2 65.(忽视基本不等式等号成立的条件)当x ≥2时,x +4x +2的最小值为 .解析:设x +2=t ,则x +4x +2=t +4t -2.又由x ≥2得t ≥4,而函数y =t +4t -2在[2,+∞)上是增函数,因此当t =4时,t +4t -2即x +4x +2取得最小值,最小值为4+44-2=3.答案:3一、综合探究点——利用基本不等式求最值(多向思维)[典例剖析]思维点1 通过配凑法求最值[例1] (1)若0<x <12,则y =x 1-4x 2的最大值为( )A .1B .12C .14D .18解析:∵0<x <12,∴y =x 1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12×4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2, 即x =24时取等号, 则y =x1-4x 2的最大值为14.答案:C(2)已知函数f (x )=-x 2x +1(x <-1),则( )A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4解析:f (x )=-x 2x +1=-x 2+1-1x +1=-⎝ ⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4,当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4. 答案:A(3)已知x >54,则f (x )=4x -2+14x -5的最小值为 .解析:∵x >54,∴4x -5>0,∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5.当且仅当4x -5=14x -5,即x =32时取等号.答案:5通过配凑法利用基本不等式求最值的实质及关键点配凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.配凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.思维点2 常数代换法求最值[例2] 已知a >0,b >0,a +b =1,则1a +1b 的最小值为 .解析:因为a +b =1,所以1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+⎝⎛⎭⎫b a +a b ≥2+2b a ·a b =2+2=4.当且仅当a =b =12时,取等号.答案:4常数代换法求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 思维点3 消元法求最值[例3] [一题多解]已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为 . 解析:解法一(换元消元法):由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0.令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 解法二(代入消元法):由x +3y +xy =9,得x =9-3y1+y,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y=9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y -6≥23(1+y )·121+y-6=12-6=6.当且仅当3(1+y )=121+y ,即y =1时取等号.即x +3y 的最小值为6. 答案:6消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.[学会用活]1.(2021·泉州检测)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A .13B .12C .34D .23解析:选B 因为0<x <1,所以x (3-3x )=3x (1-x )≤3⎣⎢⎡⎦⎥⎤x +(1-x )22=34.当且仅当x =1-x ,即x =12时等号成立.2.若直线2mx -ny -2=0(m >0,n >0)过点(1,-2),则1m +2n 的最小值为( )A .2B .6C .12D .3+2 2解析:选D 因为直线2mx -ny -2=0(m >0,n >0)过点(1,-2),所以2m +2n -2=0,即m +n =1,所以1m +2n =⎝⎛⎭⎫1m +2n (m +n )=3+n m +2m n ≥3+22,当且仅当“n m =2m n ,即n =2m ”时取等号,所以1m +2n的最小值为3+22,故选D .3.若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A .223B .23C .33D .233解析:选A 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x.由⎩⎪⎨⎪⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x=223,当且仅当2x 3=13x ,即x =22,y =212时取等号. 故x +2y 的最小值为223.二、应用探究点——基本不等式的实际应用(思维拓展)[典例剖析][例4] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 (单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ·10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x ≥2 x ·4x =4(当且仅当x =4x,即x =2时取“=”),所以y min =80+20×4=160(元).答案:160 [拓展变式]1.[变条件]若本例中容器底面长不小于2.5 m ,则该容器的最低总造价是 元. 解析:由例题的解答可知:总造价S =20⎝⎛⎭⎫x +4x +80(x ≥2.5),因为S ′=20⎝⎛⎭⎫1-4x 2=20·x 2-4x2>0,所以S =20⎝⎛⎭⎫x +4x +80在[2,+∞)上单调递增, 所以当x =2.5 m 时,S min =20×⎝⎛⎭⎫2.5+42.5+80=162(元). 答案:1622.[变条件]若本例中容器底面长不大于1.5 m ,则该容器的最低总造价是 元(精确到十分位).解析:由例题的解答可知:总造价S =20⎝⎛⎭⎫x +4x +80(0<x ≤1.5), 因为S ′=20⎝⎛⎭⎫1-4x 2=20·x 2-4x2<0,所以S =20⎝⎛⎭⎫x +4x +80在(0,2]上单调递减,所以当x =1.5时,S min =20×⎝⎛⎭⎫1.5+41.5+80≈163.3(元).答案:163.3有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.[学会用活]4.如图,在半径为30 cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A ,B 在直径上,点C ,D 在圆周上.怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积. 解:如图,连接OC .设BC =x ,矩形ABCD 的面积为S . 则AB =2900-x 2,其中0<x <30. 所以S =2x900-x 2=2x 2(900-x 2)≤x 2+(900-x 2)=900.当且仅当x 2=900-x 2,即x =152时,S 取最大值900 cm 2.所以,取BC 为15 2 cm 时,矩形ABCD 的面积最大,最大值为900 cm 2.三、综合探究点——基本不等式的创新交汇问题(思维创新)[典例剖析][例5] (1)已知f (x )=13x 3+ax 2+(b -4)x (a >0,b >0)在x =1处取得极值,则2a +1b 的最小值为( )A .3+223B .3+2 2C .3D .2 2解析:由f (x )=13x 3+ax 2+(b -4)x (a >0,b >0),得f ′(x )=x 2+2ax +b -4.由题意得f ′(1)=12+2a +b -4=0, 则2a +b =3,所以2a +1b =⎝⎛⎭⎫2a +1b ·2a +b 3=13⎝⎛⎭⎫2a +1b (2a +b )=13⎝⎛⎭⎫5+2b a +2a b ≥13⎝⎛⎭⎫5+22b a ·2a b =3, 当且仅当2b a =2ab ,即a =b =1时,等号成立.故2a +1b 的最小值为3. 答案:C(2)在Rt △ABC 中,已知∠C =90°,CA =3,CB =4,P 为线段AB 上的一点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则1x +1y 的最小值为( )A .76B .712C .712+33D .76+33解析:∵CA =3,CB =4,即|CA →|=3,|CB →|=4, ∴CP →=x CA →|CA →|+y CB →|CB →|=x 3CA →+y 4CB →,∵P 为线段AB 上的一点,即P ,A ,B 三点共线, ∴x 3+y4=1(x >0,y >0), ∴1x +1y =⎝⎛⎭⎫1x +1y ·⎝⎛⎭⎫x 3+y 4=712+x 3y +y 4x ≥712+2112=712+33,当且仅当x 3y =y4x时,等号成立,∴1x +1y 的最小值为712+33,故选C . 答案:C1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后合理变形利用基本不等式求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.[学会用活]5.(2021·河南名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n的最小值为( )A .4B .9C .23D .32解析:选D 设各项均为正数的等比数列{a n }的公比为q ,q >0, 由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7, 即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝⎛⎭⎫1m +4n =16⎝⎛⎭⎫5+n m +4m n ≥16⎝⎛⎭⎫5+2 n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号.限时规范训练基础夯实练1.函数f (x )=x 2+4|x |的最小值为( )A .3B .4C .6D .8解析:选B f (x )=x 2+4|x |=|x |+4|x |≥4,当且仅当x =±2时取等号,所以f (x )=x 2+4|x |的最小值为4.故选B .2.(2021·钦州期末测试)已知a ,b ∈R ,a 2+b 2=15-ab ,则ab 的最大值是( ) A .15 B .12 C .5D .3解析:选C 因为a 2+b 2=15-ab ≥2ab ,所以3ab ≤15,即ab ≤5,当且仅当a =b =±5时等号成立.所以ab 的最大值为5.3.(2021·烟台期中测试)已知x ,y ∈R 且x -2y -4=0,则2x +14y 的最小值为( )A .4B .8C .16D .256解析:选B ∵x -2y -4=0,∴x -2y =4, ∴2x +14y ≥22x -2y =8.当且仅当x =2,y =-1时等号成立, ∴2x +14y 的最小值为8.4.(2021·山东师大附中月考)已知x >0,y >0,且1x +9y =1,则xy 的最小值为( )A .100B .81C .36D .9解析:选C 已知x >0,y >0,且1x +9y =1,所以1x +9y≥21x ·9y,即1≥29xy,故xy ≥36,当且仅当⎩⎨⎧1x =9y,1x +9y =1,即⎩⎪⎨⎪⎧x =2,y =18时等号成立,所以xy 的最小值为36.故选C .5.对于使f (x )≤M 成立的所有常数M ,我们把M 的最小值称为f (x )的上确界.若a ,b ∈(0,+∞),且a +b =1,则-12a -2b的上确界为( )A .-92B .92C .14D .-4解析:选A ∵a +b =1,∴-12a -2b =-a +b 2a -2a +2b b =-52-⎝⎛⎭⎫b 2a +2a b ,∵a >0,b >0,∴b 2a +2ab≥2,当且仅当b =2a 时取等号,∴-12a -2b ≤-52-2=-92,∴-12a -2b 的上确界为-92.故选A .6.已知a >0,b >0,且ab +2a +b =4,则a +b 的最小值是 . 解析:∵ab +2a +b =4,a >0,b >0, ∴b =4-2a a +1=6a +1-2,∴a +b =a +6a +1-2=a +1+6a +1-3≥26-3,当且仅当a =6-1时取得最小值, ∴a +b 的最小值是26-3. 答案:26-37.(2021·江西五市九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为 .解析:因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b+3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立,即b 3a +3b的最小值为5.答案:58.设x ,y 为正数,若x +y 2=1,则1x +2y 的最小值是 ,此时x = .解析:因为x +y 2=1,x >0,y >0,所以1x +2y =⎝⎛⎭⎫1x +2y ⎝⎛⎭⎫x +y 2=2+y 2x +2xy≥2+2y 2x ·2xy=4,当且仅当y 2x =2x y ,即x =12,y =1时等号成立,所以1x +2y 的最小值为4,此时x =12.答案:4 129.已知x ,y ∈(0,+∞),x 2+y 2=x +y . (1)求1x +1y的最小值;(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x +1y的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ). 又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4,因此不存在x ,y 满足(x +1)(y +1)=5. 10.设a ,b 为正实数,且1a +1b =2 2.(1)求a 2+b 2的最小值;(2)若(a -b )2≥4(ab )3,求ab 的值. 解:(1)由22=1a +1b ≥21ab 得ab ≥12,当且仅当a =b =22时取等号,故a 2+b 2≥2ab ≥1,当且仅当a =b =22时取等号,所以a 2+b 2的最小值是1. (2)由(a -b )2≥4(ab )3得a 2+b 2-2ab ≥4a 3b 3,不等式两边同除以a 2b 2,得1b 2+1a 2-2ab ≥4ab ,即⎝⎛⎭⎫1a +1b 2-4ab ≥4ab ,从而ab +1ab ≤2,又ab +1ab≥2. 所以ab +1ab=2,所以ab =1.综合提升练11.(2021·湖北十一校联考)设a >0,b >0,则“1a +1b ≤4”是“ab ≥14”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 因为a >0,b >0,所以4≥1a +1b ≥21a ·1b,当且仅当a =b 时取等号, 则2≥1ab,所以ab ≥14;若ab ≥14,取a =14,b =1,则1a +1b =4+1=5>4,即1a +1b ≤4不成立.所以“1a +1b ≤4”是“ab ≥14”的充分不必要条件,故选A .12.(2021·江西重点中学联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( )A .14B .12C .22D .1解析:选A 圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b 时等号成立,故ab 的最大值是14.13.(2021·安徽合肥二模)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形的长为a +b ,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论.如图3,设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形的对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推断正确的是( )①由图1和图2面积相等可得d =aba +b; ②由AE ≥AF 可得 a 2+b 22≥a +b2; ③由AD ≥AE 可得a 2+b 22≥21a +1b; ④由AD ≥AF 可得a 2+b 2≥2ab . A .①②③④ B .①②④ C .②③④D .①③解析:选A 由题图1和题图2面积相等得ab =(a +b )d ,可得d =aba +b,①正确;由题意知题图3的面积为12ab =12a 2+b 2·AF ,则AF =ab a 2+b2,AD =12BC =12a 2+b 2,设题图3中正方形的边长为x ,由三角形相似,得a -x x =x b -x ,解得x =aba +b ,则AE =2aba +b,可以化简判断②③④都正确,故选A . 14.已知a >b >0,则a 2+1b (a -b )的最小值为 .解析:由a >b >0,得a -b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24.∴a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a2=4, 当且仅当b =a -b 且a 2=4a 2,即a =2,b =22时取等号. ∴a 2+1b (a -b )的最小值为4.答案:415.(2021·湖南岳阳模拟改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为 ,1a +2b的最小值为 . 解析:∵a >0,b >0,且a +2b -4=0,∴a +2b =4, ∴ab =12a ·2b ≤12·⎝ ⎛⎭⎪⎫a +2b 22=2, 当且仅当a =2b ,即a =2,b =1时等号成立, ∴ab 的最大值为2.∵1a +2b =⎝⎛⎭⎫1a +2b ·a +2b 4=14⎝⎛⎭⎫5+2b a +2a b ≥14·⎝⎛⎭⎫5+22b a ·2a b =94, 当且仅当a =b =43时等号成立,∴1a +2b 的最小值为94. 答案:2 9416.(2021·吉林六校联考)已知lg(3x )+lg y =lg(x +y +1). (1)求xy 的最小值; (2)求x +y 的最小值.解:由lg(3x )+lg y =lg(x +y +1), 得⎩⎪⎨⎪⎧x >0,y >0,3xy =x +y +1.(1)因为x >0,y >0,所以3xy =x +y +1≥2xy +1. 所以3xy -2xy -1≥0,即3(xy )2-2xy -1≥0. 所以(3xy +1)(xy -1)≥0. 所以xy ≥1.所以xy ≥1.当且仅当x =y =1时,等号成立.所以xy 的最小值为1.(2)因为x >0,y >0,所以x +y +1=3xy ≤3·⎝ ⎛⎭⎪⎫x +y 22.所以3(x +y )2-4(x +y )-4≥0. 所以[3(x +y )+2][(x +y )-2]≥0.所以x +y ≥2.当且仅当x =y =1时取等号. 所以x +y 的最小值为2.创新应用练17.某工厂拟建一座平面图为矩形且面积为200 m 2的三级污水处理池(平面图如图所示).如果池四周围墙建造单价为400元/m ,中间两道隔墙建造单价为248元/m ,池底建造单价为80元/m 2,水池所有墙的厚度忽略不计.试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.解:设隔墙的长度为x m ,总造价的函数为y 元,则隔墙造价为2x ·248=496x , 池底造价为200×80=16 000, 四周围墙造价为⎝⎛⎭⎫2x +2×200x ·400=800·⎝⎛⎭⎫x +200x .因此,总造价为y =496x +800⎝⎛⎭⎫x +200x +16 000(0<x <50)=1296x +160 000x + 16 000≥21296x ·160 000x+16 000=28 800+16 000=44 800.当1296x =160 000x ,即x =1009时,等号成立.这时,污水池的长为18 m.故当污水池的长为18 m ,宽为1009 m 时,总造价最低,最低为44 800元.。
新高考 核心考点与题型 不等式 第2节 基本不等式及其应用 - 解析
第2节 基本不等式及其应用1.重要不等式及几何意义重要不等式:如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”).基本不等式:如果,a b是正数,那么2a b+≥a b =时取等号“=”) 要点诠释:222a b ab +≥和2a b+≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。
(3)222a b ab +≥可以变形为:222a b ab +≤,2a b+≥2()2a b ab +≤. 2.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =这个圆的半径为2ba +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b = 时,等号成立. 3.2211222b a b a ab ba +≤+≤≤+,即平方平均数算数平均数几何平均数调和平均数≤≤≤,(均为正、b a ),可变形如下24)()2(2222b a b a ab b a ab +≤+≤≤+,即上式的平方形式,其中调和不常用。
4.利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0>x 求xx y 32+= 的最小值。
此时若直接使用均值不等式,则xx y 32+= x 42≥右侧依然含有x ,则无法找到最值 (3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此① 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。
高一基本不等式知识点讲解
高一基本不等式知识点讲解在高中数学中,基本不等式是一个重要的知识点。
本文将对高一基本不等式的知识点进行详细的讲解。
一、不等式的定义和性质不等式是数学中用于表示大小关系的符号,包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
在解不等式问题时,需要根据不等式的性质进行推导和分析。
1.1 大于和小于大于和小于是最基本的不等式关系。
对于两个实数a和b,如果a大于b,可以表示为a > b;如果a小于b,可以表示为a < b。
这种大小关系在数轴上可以直观地表示出来,通过比较两个实数在数轴上的位置来确定大小关系。
1.2 大于等于和小于等于大于等于和小于等于是包含了等于的不等式关系。
对于两个实数a和b,如果a大于等于b,可以表示为a ≥ b;如果a小于等于b,可以表示为a ≤ b。
这种不等式关系意味着两个数相等或者一个数大于另一个数。
在数轴上,可以用实心点表示。
二、基本不等式的证明和应用基本不等式是指一些常见且易证明的不等式,它们在解决实际问题时具有重要的作用。
接下来,我们将介绍几个常见的基本不等式及其应用。
2.1 三角不等式三角不等式是指对于任意实数a、b和c,有以下不等式成立:|a + b| ≤ |a| + |b|、|a - b| ≤ |a| + |b|。
这个不等式在解决绝对值问题和距离问题时特别有用。
2.2 平均不等式平均不等式是指对于任意一组非负实数x1、x2、...、xn,有以下不等式成立:(x1 + x2 + ... + xn)/n ≥ √(x1 * x2 * ... * xn)。
平均不等式在数论、代数等领域中有广泛的应用。
2.3 柯西不等式柯西不等式是指对于任意一组实数a1、a2、...、an和b1、b2、...、bn,有以下不等式成立:(a1 * b1 + a2 * b2 + ... + an * bn)²≤ (a₁² + a₂² + ... + an²)(b₁² + b₂² + ... + bn²)。
基本不等式及其应用知识点
基本不等式及其应用知识点
1. 嘿,你知道吗,基本不等式a+b≥2√ab 就像是一把神奇的钥匙!比如说,咱要建一个矩形的花园,周长固定,那怎么让面积最大呢?这时候基本不等式就派上用场啦!这不是超厉害的嘛!
2. 哇塞,基本不等式在解决最值问题上那可是一绝啊!就好比你要去买东西,手里的钱有限,怎么买才能最划算呢?你想想看,这其中的道理是不是和基本不等式一样神奇呢!
3. 嘿呀,你看基本不等式和实际生活联系得多紧密呀!像是安排工作任务,怎么分配才能让效率最高,这不就和基本不等式有很大关系嘛,是不是很有意思呢!
4. 哎呀,基本不等式对于比较大小也很有用呢!比如有两个数,你怎么一眼就看出哪个大哪个小呢?用基本不等式一试便知呀,这多酷呀!
5. 哇,基本不等式应用可广泛啦!就像搭积木一样,能搭出各种不同的形状和结果。
比如计算成本和收益的时候,它就能帮我们做出最佳决策呢!
6. 哈哈,基本不等式还能帮我们优化资源分配哟!好比分蛋糕,怎么分才能大家都相对满意呢,基本不等式就能给我们答案呀,是不是超棒的!
我的观点结论就是:基本不等式及其应用太重要啦,在生活和学习中都有着广泛而神奇的作用,大家一定要好好掌握呀!。
新高考数学复习考点知识与解题方法专题讲解5---基本不等式及其应用(解析版)
新高考数学复习考点知识与解题方法专题讲解专题2.2 基本不等式及其应用【考纲解读与核心素养】1. 掌握基本不等式ab b a ≥+2(a ,b >0)及其应用. 2.培养学生的数学抽象、数学运算、数学建模、逻辑推理等核心数学素养.【知识清单】1.重要不等式当a 、b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a=b 时,等号成立.2.基本不等式当a >0,b >0时有ab b a ≥+2,当且仅当a=b 时,等号成立. 3.基本不等式与最值已知x 、y 都是正数.(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.4.常用推论(1)22ab 2a b +≤(,R a b ∈)(2)2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ (3)20,0)112a b a b a b +≤≤>>+ 【典例剖析】高频考点一 :利用基本不等式证明不等式例1. 已知a 、b 、c 都是正数,求证:()()()8a b b c c a abc +++≥【答案】见解析【解析】∵a 、b 、c 都是正数∴0a b +≥> (当且仅当a b =时,取等号)0b c +≥> (当且仅当b c =时,取等号)0c a +≥> (当且仅当c a =时,取等号)∴()()()8a b b c c a abc +++≥=(当且仅当a b c ==时,取等号) 即()()()8a b b c c a abc +++≥.【方法技巧】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.【变式探究】1.已知a >0,b >0,a +b =1,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 【答案】见解析【解析】∵0a >,0b >,1a b +=, ∴11+=1+=2+a b b a a a+.同理,11+=2+a b b . ∴111122b a a b a b ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=5+25+4=9b a a b ⎛⎫+≥ ⎪⎝⎭, 当且仅当b a a b=,即1a=b=2时取“=”. ∴11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当12a b ==时等号成立. 2.求证:47(3)3a a a +≥>- 【答案】见解析【解析】证明:443333a a a a +=+-+--由基本不等式和3a >得4433333a a a a +=+-+≥--=237= 当且仅当433a a =--即5a =时取等号. 高频考点二:利用基本不等式求最值例2. (2019年高考天津卷文)设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】92 【解析】(1)(21)2212525x y xy y x xy xy xy xy xy++++++===+. 因为0,0,24x y x y >>+=, 所以2422x y x y +=≥⋅,即22,02xy xy ≤<≤,当且仅当22x y ==时取等号成立.又因为192255=22xy +≥+⨯, 所以(1)(21)x y xy ++的最小值为92. 例3.(浙江省金丽衢十二校2019届高三第一次联考)若实数、满足,且,则的最小值是__________,的最大值为__________.【答案】2【解析】实数、满足,且,则,则,当且仅当,即时取等号,故的最小值是2,,当且仅当,即时取等号 故的最大值为,故答案为:2,.【规律方法】利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法(2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量.(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点: ① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围. 注意:形如(0)a y x a x=+>的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.【变式探究】1.(陕西省2019年高三第三次教学质量检测)若正数,m n 满足12=+n m ,则11m n +的最小值为( ) A .223+ B .32+ C .222+ D .3 【答案】A【解析】由题意,因为12=+n m ,则111122()(2)332322n m n m m n m n m n m n m n+=+⋅+=++≥+⋅=+, 当且仅当2n m m n =,即2n m =时等号成立, 所以11m n+的最小值为223+,故选A. 2.设当________时,取到最小值.【答案】【解析】 因为,所以,当且仅当时取等号, 故当时,取得最小值是,故答案是.【总结提升】通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标;(3)拆项、添项应注意检验利用基本不等式的前提.高频考点三:基本不等式的实际应用例4. (2017·江苏高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 .【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【规律方法】1.用均值不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.2.利用基本不等式求解实际应用题注意点:(1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.【易错警示】忽视不等式等号成立的条件!【变式探究】如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积最大值为( )A.6B.2C.4D.22【答案】C【解析】设EH x =,EF y =,由条件可知EBH ∆和EFA ∆为等直角三角形,所以2EB x =,22AE y =.AB EB AE =+222x y +≥2222x y ⋅=2xy ,即2xy 4xy ≤,所以绿地面积最大值为4,故选C .高频考点四:基本不等式的综合运用例5. (2020·黑龙江省佳木斯一中高一期中(理))已知函数2()(1)1f x m x mx m =+-+-(m R ∈).(1)若不等式()0f x <的解集为∅,求m 的取值范围;(2)当2m >-时,解不等式()f x m ≥;(3)若不等式()0f x ≥的解集为D ,若[11]D -⊆,,求m 的取值范围. 【答案】(1)3m ≥;(2)1|11x x m ⎧⎫≤≤-⎨⎬+⎩⎭.;(3)3m ≥. 【解析】(1)①当10m +=即1m =-时,()2f x x =-,不合题意; ②当10m +≠即1m ≠-时,()()210{4110m m m m +>∆=-+-≤,即21{340m m >--≥,∴1{33m m m >-≤-≥,∴m ≥ (2)()f x m ≥即()2110m x mx +--≥即()()1110m x x ⎡⎤++-≥⎣⎦①当10m +=即1m =-时,解集为{|1}x x ≥②当10m +>即1m >-时,()1101x x m ⎛⎫+-≥ ⎪+⎝⎭∵1011m -<<+,∴解集为1{|1}1x x x m ≤-≥+或 ③当10m +<即21m -<<-时,()1101x x m ⎛⎫+-≤ ⎪+⎝⎭ ∵21m -<<-,所以110m -<+<,所以111m ->+ ∴解集为1{|1}1x x m ≤≤-+ (3)不等式()0f x ≥的解集为D ,[]1,1D -⊆,即对任意的[]1,1x ∈-,不等式()2110m x mx m +-+-≥恒成立,即()2211m x x x -+≥-+恒成立,因为210x x -+>恒成立,所以22212111x x m x x x x -+-≥=-+-+-+恒成立, 设2,x t -=则[]1,3t ∈,2x t =-, 所以()()2222131332213x t t x x t t t t t t-===-+-+---++-,因为3t t+≥,当且仅当t =时取等号,所以22313x x x -≤=-+,当且仅当2x =所以当2x =22max11x x x ⎛⎫-+= ⎪-+⎝⎭所以233 m例6.设函数(Ⅰ)若不等式对任意恒成立,求实数的取值范围;(Ⅱ)在(Ⅰ)的条件下,当取最大值时,设,且,求的最小值.【答案】(1);(2).【解析】(Ⅰ)因为函数的对称轴为,且开口向上,所以在上单调递减,所以,∴.(Ⅱ)根据题意,由(Ⅰ)可得,即,所以.所以.∵,则当且仅当,即,时,等号成立.所以的最小值为.【总结提升】基本不等式的综合应用求解策略(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.【变式探究】1.(2019·北京海淀模拟)已知f(x)=32x-(k+1)·3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是( )A.(-∞,-1) B.(-∞,22-1)C.(-1,22-1) D.(-22-1,22-1)【答案】B【解析】由f(x)>0得32x-(k+1)3x+2>0,解得k+1<3x+23x.而3x+23x≥22(当且仅当3x=23x,即x=log32时,等号成立),∴k+1<22,即k<22-1.2.(天津市河北区2019届高三二模)已知首项与公比相等的等比数列中,若,n*∈N,满足,则的最小值为__________.【答案】1【解析】设等比数列公比为,则首项由得:,则:,,,,m n*∈N,.则(当且仅当,即时取等号).故填.。
基本不等式中常用公式高一知识点
基本不等式中常用公式高一知识点一、基本不等式的概念和性质基本不等式是高中数学中的重要内容之一,它在解决一元一次不等式和一元二次不等式中起着关键作用。
在初步学习基本不等式时,我们需要了解以下几个基本概念和性质。
1.不等式的定义不等式是数学中表示大小关系的一种符号表达式。
形如$a<b$的不等式表示$a$小于$b$,而$a>b$表示$a$大于$b$。
2.基本不等式的性质基本不等式具有以下几个重要性质:-自反性:对于任何实数$a$,都有$a\ge q a$和$a\le qa$成立;-传递性:对于任何实数$a$、$b$和$c$,若$a\g eq b$且$b\g eq c$,则$a\ge qc$;-加法性:对于任何实数$a$、$b$和$c$,若$a\g eq b$,则$a+c\g eq b+c$;-乘法性:对于任何实数$a$、$b$和$c$,若$a\g eq b$且$c>0$,则$a c\ge qb c$;若$a\g eq b$且$c<0$,则$ac\l eq bc$。
二、基本不等式中常用的公式在解决基本不等式时,我们经常会用到一些常用的公式,下面是其中几个重要的公式。
1.平方不等式平方不等式在解决一元二次不等式时起到关键作用。
对于任何实数$a$和$b$,有以下几个基本结论:-若$x\g eq0$,则$x^2\ge q0$;-若$a\g eq b\ge q0$,则$a^2\g eq b^2$;-若$a\l eq b\le q0$,则$a^2\g eq b^2$。
2.加减常数不等式对于不等式$a<x<b$,若用$c$加减不等式两边,有以下几个常用公式:-若$a<x<b$,则$a+c<x+c<b+c$;-若$a<x<b$,则$a-c<x-c<b-c$。
3.乘除正负数不等式对于不等式$a<x<b$,若用$c$乘除不等式两边,有以下几个常用公式:-若$a<x<b$,且$c>0$,则$ac<x c<bc$;-若$a<x<b$,且$c<0$,则$ac>x c>bc$。
高考数学第7章不等式推理与证明第四节基本不等式及其应用课件理
[方法归纳] 有关函数最值的实际问题的解题技巧 (1)根据实际问题抽象出函数的解析式,再利用基本不等式求 得函数的最值;(2)设变量时一般要把求最大值或最小值的变 量定义为函数;(3)解应用题时,一定要注意变量的实际意义 及其取值范围;(4)在应用基本不等式求函数最值时,若等号 取不到,可利用函数的单调性求解.
函数单调性求最值]函数 f(x)=x+1x在[2,+∞)上的最小值为 ________.
解析 若 x=1x,则 x=1∉[2,+∞),函数 f(x)在[2,+∞)上
单调递增,所以最小值为 f(2)=2+12=52.
答案
5 2
[当在分母中使用基本不等式或式子前有负号时,注意不等号
方向的改变]
(2)若 x>0,则 y=x2+xx+4有最______值为________.
1≥0恒成立,则实数a的取值范围是( )
A.(-∞,-2)
B.[-2,+∞)
C.[-2,2]
D.[0,+∞)
解析 (1)作出不等式组表示的可行域如图阴影部分所示, 由图可知,当目标函数 z=ax+by(a>0,b>0) 过点 A(1,1)时,z 取得最大值, ∴a+b=4, ∴ab≤a+2 b2=4.(当且仅当 a=b=2 时取等号), 又∵a>0,b>0, ∴ab∈(0,4],故选 B.
答案 大 -1
突破利用基本不等式求最值的方法
(1)利用基本不等式解决条件最值的关键是构造和为定值或乘 积为定值,主要有两种思路: ①对条件使用基本不等式,建立所求目标函数的不等式求解. ②条件变形,进行“1”的代换求目标函数最值. (2)有些题目虽然不具备直接用基本不等式求最值的条件,但 可以通过添项、分离常数、平方等手段使之能运用基本不等 式.常用的方法还有:拆项法、变系数法、凑因子法、分离常 数法、换元法、整体代换法等.
基本不等式知识点高考
基本不等式知识点高考在高考数学中,基本不等式是一个重要且常见的知识点。
掌握基本不等式对于解答不等式题型至关重要。
本文将介绍基本不等式的定义、性质以及与高考数学相关的应用。
一、基本不等式的定义和性质首先,我们来了解基本不等式的定义。
基本不等式是指对于任意实数 x,都有某种不等关系成立的基本不等式。
常见的基本不等式有:1. 二次函数的非负性当 a>0 时,对于二次函数 f(x) = ax^2 + bx + c,如果存在实数 x,使得f(x) ≥ 0,则称f(x) ≥ 0 为二次函数的非负性基本不等式。
2. 二次函数的正定性当 a>0 时,对于二次函数 f(x) = ax^2 + bx + c,如果存在实数 x,使得 f(x) > 0,则称 f(x) > 0 为二次函数的正定性基本不等式。
接下来,我们来讨论基本不等式的性质:1. 注意基本不等式的方向性在解不等式题目时,要始终注意基本不等式的方向性。
根据不等式的定义,只有把不等式的方向确定正确,我们才能得到正确的解。
2. 转化与分析在解不等式题目时,常常需要将不等式进行转化,然后根据不等式的性质进行分析。
例如,我们可以将含有绝对值的不等式转化成一个二次不等式,从而利用二次不等式的性质进行求解。
3. 合并和分离有时候,我们遇到的不等式可能是由多个基本不等式组合而成的。
在解决这类问题时,我们需要根据不等式的性质来进行合并或者分离,得到最终的解。
二、基本不等式的应用掌握基本不等式不仅仅对于解答不等式题型重要,还能够帮助我们更好地理解和应用数学知识。
以下是一些常见的与高考数学相关的应用:1. 解不等式方程在高考数学中,我们经常会遇到需要解不等式方程的题目。
这时,我们可以利用基本不等式的性质,将不等式方程转化成二次不等式,再通过求解二次不等式来得到最终的解。
2. 解优化问题优化问题是高考数学中常见的一个题型。
在解决这类问题时,我们可以通过利用基本不等式,将优化问题转化成一个不等式问题,然后利用不等式的性质来得到最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式及其应用
1.基本不等式及其应用
【概述】
基本不等式主要应用于求某些函数的最值及证明不等式.其可表述为:两个正实数的几何平均数小于或等于它
푎+푏们的算术平均数.公式为:
2푎+푏
≥푎푏(a≥0,b≥0),变形为ab≤()2 或者a+b≥2
푎푏.常常用于求最
2
值和值域.
【实例解析】
例 1:下列结论中,错用基本不等式做依据的是.
2푎A:a,b 均为负数,则
푏+
푏
2푎≥2.B:
푥2+2
푥2+1
≥
2.C:푠푖푛푥+
4
푠푖푛푥≥4.D:푎∈푅
+,(3―푎)(1―
3
푎)≤
0.
解:根据均值不等式解题必须满足三个基本条件:“一正,二定、三相等”可知A、B、D 均满足条件.
对于C 选项中 sin x≠±2,
不满足“相等”的条件,
再者 sin x 可以取到负值.
故选:C.
A 选项告诉我们正数的要求是整个式子为正数,而不是式子当中的某一个组成元素;
B 分子其实可以写成x2+1+1,然后除以分母就可换成基本不等式.这个例题告诉我们对于一个式子也是可以用基本不等式的,而且求最值也很
方便.
例 2:利用基本不等式求푦=
푥
푥2+2的最值?当 0<x<1 时,如何求푦=
푥+1
푥2+2的最大值.
解:当x=0 时,y=0,
当x≠0 时,푦=
푥
푥2+2=
1
푥+2
,
푥
用基本不等式
若x>0 时,0<y ≤
2,4
若x<0 时,―
2
4
≤y<0,
1/ 5
综上得,可以得出―
2
4
≤y
≤
2
,
4
∴푦=
푥
푥2+2的最值是―
2
与
4
2
.
4
这是基本不等式在函数中的应用,他的解题思路是首先判断元素是否大于 0,没有明确表示的话就需要讨论;然后把他化成基本不等式的形式,也就是化成两个元素(函数)相加,而他们的特点是相乘后为常数;最后套用基本不等式定理直接求的结果.
【基本不等式的应用】
1、求最值
例 1:求下列函数的值域.
2、利用基本不等式证明不等式
3、基本不等式与恒成立问题
2/ 5
4、均值定理在比较大小中的应用
【解题方法点拨】
技巧一:凑项
点评:本题需要调整项的符号,又要配凑项的系数,使其积为定值.
技巧二:凑系数
例 2:当 0<x<4 时,求y=x(8﹣2x)的最大值.
解析:由 0<x<4 知,8﹣2x>0,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到 2x+(8﹣2x)=8 为定值,故只需将y=x(8﹣2x)凑上一个系数即可.
y=x(8﹣2x)=1
2[2x•(8﹣2x)] ≤
12푥+8―2푥
(
)2=8
22
当 2x=8﹣2x,即x=2 时取等号,当x=2 时,y=x(8﹣x2)的最大值为 8.
3/ 5
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值.技巧三:分离
例 3:求y =푥2+7푥+10
푥+1
(푥>―1)的值域.
解:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离.
y =푥2+7푥+10
푥+1
=
(푥+1)2+5(푥+1)+4
푥+1
=(x+1)+
4
푥+1+ 5,
当x>﹣1,即x+1>0 时,y≥2 (푥+1)×
4
푥+1
+ 5=9(当且仅当x=1 时取“=”号)
技巧四:换元
对于上面例 3,可先换元,令t=x+1,化简原式在分离求最值.
技巧五:结合函数f(x)=x +푎
푥的单调性.
技巧六:整体代换
4/ 5
点评:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.
技巧七:取平方
点评:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件.
总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式.
5/ 5。