数值分析 第一章 学习小结
数值分析知识点总结
数值分析知识点总结数值分析知识点总结:本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。
第1章数值分析与科学计算引论:绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。
其中,相对误差限是绝对误差的上界。
有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。
一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。
第2章插值法:插值多项式的余项表达式可以用来估计截断误差。
三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需要根据实际情况而定。
确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。
第3章函数逼近与快速傅里叶变换:带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。
切比雪夫多项式也有其独特的性质。
用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。
最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。
第4章数值积分与数值微分:XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。
勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。
中点方法是一种数值积分方法,其公式如下:插值型的求导公式有两点公式和三点公式。
第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。
相关例题可以在教材第4章作业题和课件中找到。
第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。
对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。
简化牛顿法和牛顿下山法都是非线性方程组的求解方法。
数值分析学习总结感想
数值分析学习感想研究生的第一个学期就这样结束了,接触了不少本科没有上过的课程,其实都抱着尽量去学好,可是说实话多数值分析这门课,起初教室人多,每次多少都坐在后面,也听不到老师您讲什么,当后来发现自己这样下去可能什么也不懂,就自己晚上去图书馆看看书。
慢慢我开始了解这么学科。
后来上课我渐渐做到中间的地方,甚至做到前面第3排,可是只有一次机会。
也许态度变了吧。
慢慢认真听老师你的课。
这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。
他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。
像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。
数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。
像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的,这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的都是不同的算法。
数值分析实验报告心得(3篇)
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析学习心得体会
数值分析学习心得体会篇一:数值分析学习总结感想数值分析学习感想一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。
这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。
他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。
像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。
数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。
像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的,这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的都是不同的算法。
而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题,从而知道如何去解决。
在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下,我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。
数值分析学习总结感想
数值分析学习总结感想在数值分析学习的过程中,我深刻体会到了这门学科的重要性和广泛应用的范围。
通过学习数值分析,我不仅加深了对数学理论的理解,还掌握了一些重要的数值计算方法和算法。
在此过程中,我收获了很多,也产生了许多感想。
首先,数值分析教给我了科学问题解决的方法。
在数值计算中,我们通常无法通过简单的代数运算来求解问题,而是需要借助计算机和数值算法来逼近解。
这种方法可以应用于很多实际问题,例如求解线性方程组、积分、微分方程等。
通过数值分析课程的学习,我掌握了很多常见的数值计算方法,例如高斯消元法、插值方法、数值积分等。
这些方法在实际问题中的应用非常广泛,能够帮助我们解决许多实际问题,提高计算效率和精度。
其次,数值分析也教会了我如何分析和估计误差。
在数值计算中,误差是无法避免的,而且可能会在计算过程中不断累积。
因此,我们需要了解误差的来源,能够进行误差估计和控制。
通过学习数值分析,我学会了如何使用泰勒展开式、理解截断误差和舍入误差等概念,同时也学会了如何使用残差计算和误差估计方法。
这对于判断数值结果的可靠性和计算效果的好坏非常重要,能够帮助我们找到优化方法和改进方案。
另外,数值分析还教会了我如何进行数值模拟和数据处理。
在实际工程和科学研究中,常常需要通过数值模拟来研究分析问题。
通过数值分析的学习,我学会了如何建立数学模型、选择合适的数值方法和算法来模拟求解问题,并能够对模拟结果进行合理的处理和分析。
这对于科学研究和工程设计都非常有价值,能够提高研究效率和解决复杂问题的能力。
最后,数值分析还培养了我一种严谨的科学态度和问题解决的能力。
在数值计算中,一个细微的误差可能会导致完全不同的结果,因此需要我们对问题进行仔细的分析,并保持谨慎的态度。
通过编程实现数值算法,我学会了如何调试代码和检查问题,发现解决bug的方法。
这培养了我的逻辑思维和问题解决能力,也增强了我对科学研究和工程实践的兴趣和热情。
综上所述,通过数值分析的学习,我不仅掌握了一些重要的数值计算方法和算法,还学会了科学问题解决的方法和误差估计的技巧。
数值分析总结
第一章绪论1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.避免误差的相关问题病态问题与条件数算法的数值稳定性数值运算中的若干原则第二章非线性方程求根1.不动点迭代格式不动点迭代格式的构造、计算全局收敛性判断局部收敛性与收敛阶判断(两个方法)2.Newton迭代格式、计算及几何意义局部收敛性及收敛阶(单、重根)非局部收敛性判断(两个方法)3.Steffensen迭代格式及计算(具有)二阶的局部收敛性4.Newton迭代的变形求重根的迭代法(三种方法)避免导数计算的弦割法(两种方法)Newton下山法*5.二分法计算预先估计对分次数第三章解线性方程组的直接法1.矩阵三角分解法及其方程组求解 直接三角分解法及其分解的条件平方根法(Cholesky 分解)追赶法列主元三角分解法* 2.Gauss 消去法Gauss 主元素消去法(列主元素消去法、全主元素消去法) Gauss 顺序消去法3.方程组的性态与误差分析 向量和矩阵的范数(基础知识) 方程组解的相对误差估计 矩阵的条件数 病态方程组的求解*第四章解线性代数方程组的迭代法1.迭代法的基本理论简单迭代法格式的构造、收敛性判断以及方程组的求解Gauss—Seidel迭代法格式的构造、收敛性判断以及方程组的求解2.三种迭代法的构造、收敛性判断以及方程组的求解Jacobi迭代法基于Jacobi迭代法的Gauss—Seidel迭代法逐次超松弛迭代法①掌握简单迭代收敛性判断的方法。
设B为迭代矩阵,如果||B||<1,则用||B||判断迭代的收敛性比用ρ(B)<1更为方便,但此结论仅为充分条件。
如果||B||≥1,判断迭代的收敛性需考察ρ(B)<1是否成立。
如果需证明迭代发散,则需证明ρ(B)≥1。
②简单迭代法的收敛快慢,依赖于迭代矩阵谱半径的大小。
当ρ(B)<1,迭代次数k≥(mln10)/(-lnρ(B)),则迭代矩阵谱半径越小,收敛越快。
数值分析总结
数值分析总结数值分析是一门应用数学的学科,它的目标是使用数值方法来解决数学问题,尤其是那些难以使用解析方法求解的问题。
通过使用计算机来计算近似解,数值分析提供了一种实用而有效的解决方案。
在本文中,我将对我在学习数值分析过程中的一些主要收获进行总结。
一、数值方法的重要性数值方法不仅在科学计算中起着重要作用,而且在工程和实际应用领域也有广泛的应用。
无论是模拟天气预报、设计飞机的机翼,还是分析金融市场的波动,数值分析都可以提供快速、准确的结果。
因此,掌握数值方法成为了现代科学与工程领域必备的技能之一。
二、数值计算的误差与稳定性在数值计算中,我们经常会面对误差的问题。
舍入误差、截断误差和舍入误差都是我们需要关注的。
舍入误差是由于计算机在进行浮点数计算时的有限精度而引入的,而截断误差则是由于将无限精度的数学问题转化为有限精度计算引起的。
为了减小误差,我们可以使用舍入规则,并尽可能减小截断误差。
稳定性是另一个需要考虑的重要因素。
在一些计算中,输入数据的微小变化可能会导致输出结果的巨大变化。
这种情况下,我们说该算法是不稳定的。
为了确保计算的稳定性,我们需要选择合适的算法和数据结构,并且要进行合理的数值分析。
三、插值和拟合插值和拟合是数值分析的重要应用之一。
在实际问题中,我们往往只能够获得有限个数据点,但是我们需要获得一条曲线或函数来描述这些数据。
插值方法可以通过连接这些数据点来获得平滑的曲线,而拟合方法则通过选择一个合适的函数来逼近数据点。
在实际应用中,我们需要根据具体问题选择合适的插值和拟合方法,并进行适当的调整和优化。
四、求解非线性方程求解非线性方程是数值分析中的一个重要问题。
在实际应用中,很多问题都可以归纳为求解非线性方程。
例如,求解光学系统中的折射问题、解微分方程等。
数值分析提供了多种求解非线性方程的方法,如牛顿法、二分法、割线法等。
这些方法有着各自的特点和适用范围,我们需要根据问题的性质选择合适的方法。
数值分析学习总结感想
数值分析学习总结感想第一篇:数值分析学习总结感想数值分析学习感想一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。
这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。
他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。
像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。
数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。
像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的,这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的都是不同的算法。
而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题,从而知道如何去解决。
在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下,我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。
数值分析知识点总结
数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。
一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r re ε=的一个上界。
有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。
即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。
其中m 位该数字在科学计数法时的次方数。
例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。
2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。
对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。
(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。
数值分析(计算方法)总结
第一章绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差是的绝对误差,是的误差,为的绝对误差限(或误差限)为的相对误差,当较小时,令相对误差绝对值得上限称为相对误差限记为:即:绝对误差有量纲,而相对误差无量纲若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。
例:设x==3。
1415926…那么,则有效数字为1位,即个位上的3,或说精确到个位.科学计数法:记有n位有效数字,精确到。
由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字令1.x+y近似值为和的误差(限)等于误差(限)的和2.x-y近似值为3.xy近似值为4.1.避免两相近数相减2.避免用绝对值很小的数作除数3.避免大数吃小数4.尽量减少计算工作量第二章非线性方程求根1。
逐步搜索法设f (a) <0, f (b)〉 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)〉0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根),然后从x k—1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k—x k-1|< 为止,此时取x*≈(x k+x k-1)/2作为近似根.2。
二分法设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0,f(b)〉0。
将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。
3.比例法一般地,设 [a k,b k]为有根区间,过(a k,f(a k))、 (b k, f(b k))作直线,与x轴交于一点x k,则:1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛.2。
数值分析学习心得体会
数值分析学习心得体会前言在学习数值分析课程的过程中,我深深地感受到了数值分析方法的魅力。
在这门课程中,我不仅学习了许多数值计算的方法,还深入了解了计算机科学的相关知识,同时,也收获了很多关于科学与工程计算的经验和技巧。
在我的学习过程中,我积累了许多心得和体会,现在,我想与大家分享一些自己的感受和思考。
重视实践,加强编程能力数值分析是一门理论与实践相结合的学科。
虽然我们可以通过理论知识来深入了解数值分析的方法和原理,但是,实践才是我们真正学习的方式。
在实践过程中,我们通过代码实现数值计算方法,进而对其进行深度理解。
因此,在学习数值分析过程中,我们不能只停留在理论层面,而应该加强实践环节,提高自己的计算机编程能力。
通过编写代码,我们可以更好地掌握数值计算方法,从而更加深入地理解数值分析的本质。
借鉴他人经验,及时沟通交流数值分析并不是一个孤立的学科,在实际应用中,它与其他科学和技术领域相互交织。
在学习数值分析的过程中,我们应该借鉴他人的经验,及时与同学和老师沟通交流。
借鉴他人的经验不仅可以帮助我们更快地掌握新的知识,还能够提高自己的思考和创造能力。
与同学和老师的交流则可以帮助我们更好地理解课程内容,同时,还可以促进团队合作和学术交流。
注重实际问题,深入开展应用研究数值分析不仅仅是一门学科,它更是一种解决实际问题的技术和方法。
因此,在学习数值分析的过程中,我们应该注重实际问题,根据实际需求深入开展应用研究。
通过深入研究实际问题,我们可以更好地发现问题的本质和规律,从而提出更优秀的数值计算方法和算法。
同时,我们还可以通过实际问题的研究,进一步提高自己的解决问题的能力和综合素质。
结语综上所述,学习数值分析需要我们不断积累经验,不断加强自己的理论基础和实践能力。
在学习过程中,我们应该注重理论与实践相结合,借鉴他人经验,加强交流与合作,注重实际问题,深入开展应用研究。
只有这样,我们才能真正掌握数值分析的精髓,提高自己的技术能力和综合素质。
数值分析第一章小结
第1章绪论--------学习小结姓名班级学号一、本章学习体会通过对本章的学习,我发现原来好多科学技术都离不开数学。
首先,对于我们工科专业软件的计算过程中,我了解到数值分析已经被公认为与理论分析,实验分析并列的科学研究三大基本手段之一。
它有一个逻辑性很强的求解过程:提出实际问题,建立数学模型,提出数值问题,设计可靠、高效的算法,程序设计、上级实践计算结果,计算结果可视化。
这种严密的逻辑完全可以应用在我们的生活中,正如我们去解决好多问题都可以通过提出问题,假设方法,验证正确性,解决问题。
当然对于本章的一些相关概念还理解的不是十分明白,希望在今后的学习中真正能从学过了变成会学了。
二、本章知识梳理1.1数值分析的研究对象研究对象:利用计算机求解各种数学问题的数值方法及有关理论. 数值问题:输入与输出均为数据的问题.数值方法: 求解数值问题时,在计算机上可执行的系列计算公式. 数值算法: 有步骤地完成求解数值问题的过程。
规定了怎样从输入数据计算出数值问题解的一个有限的基本运算序列。
1.2误差知识与算法知识1.2.1误差的来源与分类1.2.2绝对误差,相对误差与有效数字(1)绝对误差:精确值与近似值的差.(2)相对误差:绝对误差在原数中所占比例.(3)有效数字:有效数字=可靠数字+存疑数字.1.2.3函数求值的误差估计误差估计的一般运算一元函数:x ≈a,f(x)≈f(a)e(a)=x-ae(f(a))=f(x)-f(a)≈f ’(a)(x-a)二元函数:(,)(,)((,))()()f a b f a b e f a b e a e b x y∂∂≈⋅+⋅∂∂ (,)(,)((,))||()||()f a b f a b f a b a b x y ∂∂ε≈⋅ε+⋅ε∂∂ 1.2.4算法及其计算复杂性1.算法:有步骤地完成解数值问题的过程。
规定了怎样从输入数据计算出数值问题解的一个有限的基本运算序列。
2.好算法的标准:(1)有可靠的理论基础,包括正确性、收敛性、数值稳定性以及可作误差分析。
数值分析学习心得体会
数值分析学习心得体会篇一:数值分析学习总结感想数值分析学习感想一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。
这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。
他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。
像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。
数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。
像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的,这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的都是不同的算法。
而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题,从而知道如何去解决。
在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下,我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。
数值分析学习心得体会
数值分析学习心得体会数值分析是计算数学的一个重要分支,它通过提供解决数值问题的有效数学技术,帮助我们模拟和预测实际问题。
在学习数值分析过程中,我深入了解了各种数值技术,借助计算机编程实现了模拟和求解实际问题,获得了许多宝贵的经验和心得体会。
首先,我学会了如何对数值问题进行建模。
在实际问题中,我们常常遇到无法用解析表达式直接求解的问题,这时候就需要将问题转化成数值问题。
通过观察问题特征,分析问题的数学模型,并将其转化为数值计算的问题。
例如,在求解微分方程时,我会将微分方程转化为离散形式,采用数值方法进行求解。
其次,我掌握了各种数值计算的基本方法。
数值分析中涉及到的方法很多,例如插值法、数值积分、数值微分、非线性方程求解、矩阵求解等等。
对于每种方法,我都学会了其基本原理和具体实现步骤,并能够根据问题的特点选择合适的方法进行求解。
例如,在插值问题中,我可以根据离散点的特征选择合适的插值方法,如拉格朗日插值、牛顿插值等。
此外,我熟悉了主要的数值计算工具和编程语言。
在数值计算过程中,我经常会使用一些数值计算软件和编程语言来实现算法。
例如,我掌握了使用MATLAB进行矩阵运算和求解数值问题的基本操作,也学会了使用Python编程语言来实现数值计算算法。
这些工具和语言提供了丰富的数值计算库和函数,能够帮助我有效地实现数值算法。
另外,我了解到数值计算过程中面临的误差问题。
由于计算机在存储和计算数值时存在精度限制,求解数值问题时会引入误差。
这些误差可以分为截断误差和舍入误差。
通过学习和实践,我学会了如何估计误差和控制误差。
例如,在数值积分过程中,我可以采用复化积分方法来减小误差,或者使用高阶数值方法来提高精度。
最后,数值分析的学习给我提供了一种思考问题和解决问题的方法。
通过学习数值分析,我不仅学会了具体的数值计算方法,更重要的是学会了分析问题和解决问题的思维方式。
我可以从数学角度出发,通过建立数学模型和选择合适的数值方法,将实际问题转化为数值问题,并借助计算机进行求解和模拟。
数值分析绪论-学习小结
第1章绪论--------学习小结一、本章学习体会本章是对《数值分析》这本书的简单阐述和对入门基础的介绍,其中最大的收获就要是范数和算法了。
1.范数是进入研究生以来,学的一个新的数学概念,用于定义向量或者矩阵的大小即向量或者矩阵的模,又由于其正定性,可让我们联想到计算方阵大小的行列式的绝对值即)(A。
范数的其难点:①范数是一个比较抽象的概念,我们无法通过想象确定它是某一个确定的范畴;②范数存在的现实意义,由于我们所学所指的有限,我们无从知道范数的现实意义,无法加深对其的理解;③范数用于定义向量、矩阵的大小,有时是不固定的。
在解决问题时,如何找到恰当的范数是至关重要的。
2.数值计算的算法问题用数值计算方法求解数值问题是通过具体的算法实现的。
所谓算法就是规定了怎样从输入数据计算出数值问题的解得一个有限的基本运算序列。
①“良态”问题和“病态”问题:在适定的情况下,若对于原始数据很小的变化δX,对应的参数误差δy也很小,则称该数学问题是良态问题;若δy很大,则称为病态问题。
病态问题中解对于数据的变化率都很大,因此数据微小变化必将导致参数模型精确解的很大变化。
数学问题的性态完全取决于该数学问题本身的属性,在采用数值方法求解之前就存在,与数值方法无关。
②稳定算法和不稳定算法:如果用数值方法计算时,误差在计算过程中不扩散的算法称为稳定算法。
否则称为不稳定算法。
在遇到问题是,要尽量选择稳定算法进行计算。
③数值计算应注意的问题:避免相近二数相减;避免小分母;避免大数吃小数;选用稳定的算法。
二、 本章知识梳理三、 本章思考题1.对于范数的引入:方阵行列式的绝对值是一个范数。
范数 有绪论研究对象误差算法范数研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现误差算法 来源分类模型误差 观测误差 截断误差 舍入误差 绝对误差相对误差设计算法五原则1.避免相近两数相减2.防止大数吃小数3.减少计算次数,差积累4.避免绝对值小的数做除数5.设法控制误差的传播向量范数矩阵范数点儿类似于方阵行列式的绝对值,是否范数的引入来源于此,如果不是,它是如何引入的呢?2.矩阵的奇异与否与其范数有何关系?3.遇到数值问题时,具体的算法该如何选择?在没有精确值的情况、两个算法都得到收敛的、稳定的结果时,该如何判断哪一个值更准确、更接近于精确值? 四、 本章测验题已知:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123654321,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=456x 试求:),2,1(x p ∞=p 以及F A A A ∞,1。
数值分析第一章学习小结
第1章绪论--------学习小结一、本章学习体会数学是从实际生活当中抽象出来的理论,人们之所以要将实际抽象成理论,目的就在于想用抽象出来的理论去更好的指导实践,通过本章的学习,我了解到数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,计算数学的主体部分。
我最大的收获是学习到了1、绝对误差与有效数字的关系2、矩阵的1范数,∞范数,F范数的计算。
数值分析是一门重视算法和原理的学科,数值分析学习要有很好的思维习惯,重要的是数学思想的建立,让你体会科学的方法与对事物的认识方法。
我还学到了要运用数值分析解决问题的过程:实际问题→数学模型→数值计算方法→程序设计→上机计算求出结果。
数值分析这门学科有如下特点:1.面向计算机2.有可靠的理论分析3.要有好的计算复杂性4.要有数值实验5.要对算法进行误差分析我认为,要想学好这门课,要做到以下几点:1.上课认真听讲2.课后要认真完成作业3.注重matlab上机实验4.要多动手编写一些自己的程序二、本章知识梳理1.1数值分析研究的对象数值分析:即计算数学,是数学的一个分支。
数值分析的研究对象:利用计算机求解各种数学问题的数值方法及有关理论。
数值分析的内容:函数的数值逼近(代数插值与最佳逼近)、数值积分与数值微分、非线性方程组的解法、数值线性代数(线性方程组解法与矩阵特征值计算)、常微分方程及偏微分方程的数值解法。
1.2误差知识与算法知识1、误差的来源与分类模型误差观测误差截断误差舍入误差2、绝对误差、相对误差与有效数字有效数字位数越多,绝对误差越小.3、初始值运算的传播误差4、算法的计算复杂性好算法的标准:(1)有可靠的理论基础,包括正确性、收敛性、数值稳定性以及可作误差分析。
(2)有良好的计算复杂性。
时间复杂性:达到给定精度所需计算量。
空间复杂性:所占的内存空间。
5、数值运算中的一些原则1、要有数值稳定性(即能控制舍入误差的传播)2、合理安排量级相差悬殊数间的运算次序,防止“大数”吃掉“小数”3、避免两个相近的数相减4、避免接近于0的数作除数,防止溢出。
数值分析学习心得体会
数值分析学习感想一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。
这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。
他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。
像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。
数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。
像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的,这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的都是不同的算法。
而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题,从而知道如何去解决。
在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下,我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析
第1章绪论
--------学习小结
一、本章学习体会
通过本章的学习,让我初窥数学的又一个新领域。
数值分析这门课,与我之前所学联系紧密,区别却也很大。
在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。
误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。
而对于二元函数的误差计算亦有其独自的方法。
无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。
而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。
如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。
对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。
因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。
故对这部分内容的困惑也相对较多。
本章的困惑主要有两方面。
一方面是如何能够寻找一个可靠而高效的算法。
虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。
另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。
希望通过以后的学习能够渐渐解开自己的疑惑。
二、本章知识梳理
2.1 数值分析的研究对象
数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。
它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。
2.2误差知识与算法知识
2.2.1误差来源
误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。
其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。
2.2.2绝对误差、相对误差与有效数字
1.(1)绝对误差e指的是精确值与近似值的差值。
绝对误差:
绝对误差限:
(2)相对误差是指绝对误差在原数中所占的比例。
相对误差:
相对误差限:
结论:凡是经过四舍五入而得到的近似值,其绝对误差不超过该近似值末位的半个单位。
(3)有效数字的定义
有效数字的第一种定义:设a是x的近似值,如果a的误差绝对值不超过x 的第k位小数的半个单位,即则称近似值a准确到小数点后第
k位。
从小数点后的第k位数字直到最左边非零数字之间的所有数字都叫有效数字。
有效数字第二种定义:设数x的近似值其中m是整
数,是0,1,2,,9中的任意数,但,若
则具有k位有效数字。
通过学习总结出下面几个结论:
(1)若a是经过四舍五入而得到的近似值,则从它的末位数字到第一位非零数字都是有效数字。
(2)将任何数乘以10p(p=0,±1,±2,…)等于移动该数的小数点,并不影响其有效数字。
(3)有效数字相同的两个近似值的绝对误差不一定相同。
(4)准确值被认为具有无穷多位有效数字。
从有效数字的定义可以知道,由准确值经过四舍五入得到的近似值,从它的末位数字到第一位非零数字都是有效数字。
2.(1)相对误差与有效数字的关系:
若近似数具有n位有效数字,则其相对误差。
若近似数的相对误差则该
近似数至少具有n位有效数字。
结论:有效数字位数越多,相对误差越小。
(2)绝对误差与有效数字的关系:
若其中m是整数,是0到9中的一个数字,.如果a作为数x的近似值,且a具有n位有效数字,则
若其中m是整数,是0到9中的一个数字,.如果a作为数x的近似值,如果|e()则
a 具有n位有效数字。
结论:有效数字位数越多,绝对误差越小。
2.2.3误差估计的基本方法
1.(1)对于一元函数:
(2)二元函数:
)()
,()(),()),((b y
b a f a x b a f b a f εεε⋅∂∂+⋅∂∂≈
(3)n 元函数:
设
存在足够高阶的导数,a 是自变量x 的近似值,则是
的近似值。
如果且比值
不是很大,
则
2.算数运算误差:
2.2.4算法及计算复杂性
在数值计算中,要注意遵循一些原则,以保证数值稳定性。
(1)能控制舍入误差的传播。
(2)合理安排量级相差悬殊数间的运算次序,防止大数将小数吃掉。
(3)避免两个相近的数相减。
(4)避免接近零的数做除数,防止溢出。
(5)简化计算步骤,尽量减少运算次数。
2.3向量范数与矩阵范数
2.3.1 向量范数
1.向量范数满足三个条件:
(1)正定性
(2)齐次性
(3)成立三角不等式
2.对于中的任一向量则有
1-范数(列范数)
2-范数(欧氏范数)
P-范数
∞-范数
3.在空间中可以引进各种向量范数,且它们都满足下述向量定理:
设是上的任意两种向量范数,则存在与向量x无关的数m和M (0<m<M),使下列关系成立。
也就是说,向量x的某一范数可以任意小(大)时,该向量的其它任意一种范数也会任意小(大)。
2.3.2矩阵范数
1.定义在上的实值函数称为矩阵范数,如果对于中任意的矩阵A和B,阵范数满足下列条件:
(1)非负性
(2)齐次性
(3)成立三角不等式
(4)相容性
2.当一个问题中需要向量范数和矩阵范数时,向量范数和矩阵范数应该是相容的。
对于给定的向量范数和矩阵范数,如果对于任一个x∈R n,A∈R n×n,满足
,则所给的向量范数和矩阵范数是相容的。
设在中给定了一种向量范数,对任意矩阵,令
,由此定义的矩阵范数与给定的向量范数相容,将这种范数称为从属于所给定的向量范数的矩阵范数。
3.设A=,则:
矩阵A的列范数
矩阵A的谱范数
矩阵的行范数
弗罗贝尼乌斯范数
4.设矩阵的某种范数,则为非奇异矩阵,并且当这种范数
为算子范数时,还有
成立。
三、 本章思考题
问题:
向量和矩阵有多种范数,如1范数、2范数、∞范数。
而作为向量和矩阵“大小”的度量,为什么要用这么多种范数来度量,而不是专门指定一种范数? 个人理解:
1. 对于不同向量和矩阵,从运算等方面考虑,某一种或几种范数在计算上较为简单方便;
2. 对于不同领域,某一种或者几种范数,其应用价值和使用价值更高。
四、 本章测验题.
设⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=953765432
A
试求 F
p A
p A ,,1,∞=
知识点:关于1-范数、∞-范数、佛罗比尼乌斯范数的概念及其计算。
解:=1A max (2+|-5|+3,3+|-6|+5,4+|-7|+9)=20
=∞A max (2+3+4,|-5|+|-6|+|-7|,3+5+9)=18
2549537654322222
22222=+++-+-+-+++=)()()(F
A。