初等数论练习题答案
初等数论试卷和答案
初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果ba, ab,则().A a =bB a=-bC a _bD a=b2、如果3n,5n,则15 ()n.A整除B不整除C等于D不一定3、在整数中正素数的个数(). A有1个B有限多C无限多D不一定4、如果a=b(m°dm),c是任意整数,则A ac 三bc(modm)B^b C ac bc(modm) D a=b5、如果(),则不定方程ax by =c有解•A(a, b)c B c(a,b) C ac D (a,b)a6、整数5874192能被()整除.A 3B 3 与9C 9D 3 或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是()•2、同余式a xF=0(modm)有解的充分必要条件是().3、如果a,b是两个正整数,则不大于a而为b的倍数的正整数的个数为().4、如果P是素数,a是任意一个整数,则a被P整除或者().5、a,b的公倍数是它们最小公倍数的().6、如果a,b是两个正整数,则存在()整数q,r,使a=bqj,ozr b.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程9x 21y =144.3、解同余式12x 15=°(mod45).4294、求563,其中563是素数.(8 分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1证明对于任意整数 2 3n n n—+— +—n ,数3 2 6是整数.2、 证明相邻两个整数的立方之差不能被 5整除.3、 证明形如4n -1的整数不能写成两个平方数的和 试卷1答案 一、 单项选择题(每题3分,共18分) 1、D. 2、A 3、C4、A5、A6、B 二、 填空题(每题3分,共18分) 1、 素数写成两个平方数和的方法是(唯一的) 2、 同余式axF^Ogodm )有解的充分必要条件是((a ,m )b ).3、 如果a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为4、 如果P 是素数,a 是任意一个整数,则a 被P 整除或者(与P 互素 ). 5、 a,b 的公倍数是它们最小公倍数的(倍数). 6、 如果a,b 是两个正整数,则存在(唯一)整数q ,r ,使a =bq • r , o =(申).三、计算题(每题8分,共32分) 1、求[136,221,391]=? ( 8 分) 解[136,221,391] =[[136,221],391] 136221 … ,391 =[ 17] =[1768,391] (4 1768 391=104 391 =40664.(4分)2、求解不定方程9x 2y =144.(8 分)解:因为(9, 21)=3, 3144,所以有解; --------------------- (2分)化简得3x,7y=48 ;------------ (1 分)考虑3x・7yT,有x = _2, ,------------ (2 分)所以原方程的特解为x二~6, y =48, ----------------- (1分)因此,所求的解是x=T6 Pt, y =48-3t,t・Z 。
初等数论试卷和答案
初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则().A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15()n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数().A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果(),则不定方程c by ax =+有解. A c b a ),(B ),(b a c C c a D a b a ),(6、整数5874192能被()整除.A3B3与9C9D3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是().2、同余式)(mod 0m b ax ≡+有解的充分必要条件是().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为().4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者().5、b a ,的公倍数是它们最小公倍数的().6、如果b a ,是两个正整数,则存在()整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数.(8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、b a ,的公倍数是它们最小公倍数的(倍数).6、如果b a ,是两个正整数,则存在(唯一)整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解[136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391]------------(4分) =173911768⨯=104⨯391=40664.------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解;----------------------------(2分) 化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x ,-------------------(2分)所以原方程的特解为48,96=-=y x ,-------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论期末试题及答案
初等数论期末试题及答案1. 选择题1.1 以下哪个数是质数?A. 10B. 17C. 26D. 35答案:B. 171.2 下列哪个数不是完全平方数?A. 16B. 25C. 36D. 49答案:C. 361.3 对于任意正整数n,下列哪个数一定是n的倍数?A. n^2B. n^3C. n+1D. n-1答案:A. n^22. 填空题2.1 求下列数的最大公约数:a) 24和36b) 45和75答案:a) 12b) 152.2 求下列数的最小公倍数:a) 6和9b) 12和18答案:a) 18b) 363. 计算题3.1 求1到100之间所有奇数的和。
解答:观察可知,1到100之间的奇数是等差数列,公差为2。
根据等差数列的求和公式,我们可以得到:(100 - 1) / 2 + 1 = 50 个奇数所以,奇数的和为:50 * (1 + 99) / 2 = 25003.2 求1到100之间所有能被3整除的数的和。
解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。
根据等差数列的求和公式,我们可以得到:(99 - 3) / 3 + 1 = 33 个数所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 16834. 证明题4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。
证明:设n是一个平方数,即n = m^2,其中m是一个正整数。
我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。
对于一个平方数n来说,它的因数可以分成两类:1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。
所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。
而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。
初等数论习题集参考答案
习题参考答案第一章习题一1. (ⅰ) 由a∣b知b = aq,于是b = (-a)(-q),-b = a(-q)及-b = (-a)q,即-a∣b,a∣-b及-a∣-b。
反之,由-a∣b,a∣-b及-a∣-b也可得a∣b;(ⅱ) 由a∣b,b∣c知b = aq1,c = bq2,于是c = a(q1q2),即a∣c;(ⅲ) 由b∣a i知a i= bq i,于是a1x1+a2x2+ +a k x k = b(q1x1+q2x2+ +q k x k),即b∣a1x1+a2x2+ +a k x k;(ⅳ) 由b∣a知a = bq,于是ac = bcq,即bc∣ac;(ⅴ) 由b∣a知a = bq,于是|a| = |b||q|,再由a ≠ 0得|q| ≥ 1,从而|a| ≥ |b|,后半结论由前半结论可得。
2. 由恒等式mq+np = (mn+pq) - (m-p)(n-q)及条件m-p∣mn+pq可知m-p∣mq+np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a+ 1, , a+ 9, a+ 19的数字和为s, s+ 1, , s+ 9, s+ 10,其中必有一个能被11整除。
4. 设不然,n1 = n2n3,n2≥p,n3≥p,于是n = pn2n3≥p3,即p≤3n,矛盾。
5. 存在无穷多个正整数k,使得2k+ 1是合数,对于这样的k,(k+ 1)2不能表示为a2+p的形式,事实上,若(k+ 1)2 = a2+p,则(k+ 1 -a)( k+ 1 +a) = p,得k+ 1 -a = 1,k+ 1 +a = p,即p = 2k+ 1,此与p 为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1+r1,b = 3q2+r2,r1, r2 = 0, 1或2,由3∣a2+b2 = 3Q+r12+r22知r1 = r2 = 0,即3∣a且3∣b。
《初等数论》各章习题参考解答
《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。
2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。
故 max 47n =,min 3M k =,(),61k =。
故 当M 最小值是3的倍数,但不是2的倍数。
3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。
由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。
若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。
所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。
综上所述,所求正整数对()()(),4,111,1x n =、。
4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。
自考初等数论试题及答案
自考初等数论试题及答案一、选择题(每题2分,共10分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 一个数的最小素因子是3,那么这个数的最小公倍数是:A. 3B. 6C. 9D. 12答案:C3. 计算 \((2^3) \div 2^2\) 的结果是:A. 2B. 4C. 8D. 16答案:A4. 一个数的质因数分解是 \(2^2 \times 3^3\),那么这个数的约数个数是:A. 5B. 6C. 7D. 8答案:D5. 如果 \(p\) 是一个素数,那么 \(p^2 - 1\) 可以分解为:A. \((p-1)(p+1)\)B. \(p(p-1)\)C. \((p+1)(p-1)\)D. \(p^2 - 1\)答案:C二、填空题(每题3分,共15分)1. 如果一个数 \(n\) 能被3整除,那么 \(n\) 的各位数字之和也能被____整除。
答案:32. 一个数 \(a\) 与 \(b\) 的最大公约数(GCD)是 \(d\),那么\(a \times b\) 的最大公约数是______。
答案:d3. 一个数 \(n\) 能被9整除,那么 \(n\) 的各位数字之和也能被______整除。
答案:94. 一个数 \(n\) 能被11整除,那么 \(n\) 的奇数位数字之和与偶数位数字之和的差是______的倍数。
答案:115. 一个数 \(n\) 能被7整除,那么 \(2n + 4\) 能被______整除。
答案:7三、解答题(每题10分,共20分)1. 求 \(2^{16} - 1\) 的所有素因子。
答案:\(2^{16} - 1 = (2^8 + 1)(2^8 - 1) = (2^4 + 1)(2^4 -1)(2^8 + 1) = (2^2 + 1)(2^2 - 1)(2^4 + 1)(2^4 - 1)(2^8 + 1) = 3 \times 15 \times 17 \times 15 \times 255\),所以素因子为3, 5, 17, 255。
(完整版)初等数论练习题答案
初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。
《初等数论》习题集及答案
《初等数论》习题集及答案《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论练习题答案
初等数论练习题答案信阳职业技术学院2010 年12 月初等数论练习题、填空题1、 d (2420)=12; (2420)= 8802、 设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、 模9的绝对最小完全剩余系是 {-4 , -3, -2, -1,0,1,2,3,4}.4、 同余方程 9x+12=0(mod 37)的解是 x 三 11(mod 37)。
5、 不定方程 18x-23y=100 的通解是 x=900+23t , y=700+18t t Z 。
6、 分母是正整数m 的既约真分数的个数为_ (n)_07、 18100被172除的余数是256。
若p 是素数,则同余方程x p 1 1(mod p)的解数为p-1、计算题解同余方程:3x 2 11x 20 0 (mod 105)。
故原同余方程有4解。
故同余方程x 2三42(mod 107)有解。
3、求(127156+34) 28除以111的最小非负余数判断同余方程x 2=42(mod 107)是否有解? 2、 解:(竺)( 107 —)1, 107 / 42、)1 107 2 3 7 ) 107 —) 107 2 3—)(——) 107107 L2?!0!! 107 (1) 2 2 (107) 3 —)107(2)3 7 1 107 127 2 107、/ 2、 1) 2 2( ) (―) 1 7 7 65 而 =-1 09、 1、 解:因 105 = 3 57,同余方程3x 2 11x 20 0 (mod 3) 的解为x 1 (mod 3),0 (mod 5) 的解为x 0 , 3 (mod 5),0 (mod 7) 的解为x 2 , 6 (mod 7),作同余方程组:x b 1 (mod 3), b 2 (mod 5) ,x b s (mod 7),其中 b 1 = 1 , b 2 = 0 , 3, b a = 2 , 6,由孙子定理得原同余方程的解为x 13 , 55, 58 , 100 (mod 105)。
初等数论测试(带答案)
,其中
563
是素数.
(8 分)
四、证明题(第 1 小题 10 分,第 2 小题 11 分,第 3 小题 11 分,共 32 分)
n n2 n3 17、证明对于任意整数 n ,数 3 2 6 是整数.
18、证明相邻两个整数的立方之差不能被 5 整除. 19、证明形如 4n 1 的整数不能写成两个平方数的和.
A ac bc(mod m) B a b C ac T bc(mod m) D a b
5、如果( ),则不定方程 ax by c 有解.
A (a, b) c B c (a, b) C a c D (a, b) a
6、整数 5874192 能被( )整除. A 3 B 3与9 C 9 D 3或9
证明 设 n 是正数,并且 n 1(mod 4) ,
----------(3 分)
如果
n x2 y2 , 则因为对于模 4, x, y 只与 0,1,2,-1 等同余, 所以 x2 , y 2 只能与 0,1 同余,
所以
x2 y 2 0,1,2(mod 4) ,
而这与 n 1(mod 4) 的假设不符,
C 7 不整除(12,15) D 7 不整除[12,15]
12、同余式
( ).
A 有解 B 无解 C 无法确定 D 有无限个解
二、填空题 1、有理数 ,
,能写成循环小数的条件是( ).
2、同余式
有解,而且解的个数为( ).
3、不大于 545 而为 13 的倍数的正整数的个数为( ).
4、设 是一正整数,Euler 函数
429 67
27 67
(1)
27 1. 67 1 22
67 27
67 27
《初等数论》习题解答
《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论作业答案
初等数论1:[单选题]已知361a是一个4位数(其中a是个位数),它能被5整除,也能被3整除,则a的值是()。
A:0B:2C:5D:9参考答案:C2:[单选题]下面的()是模4的一个简化剩余系。
A:4,17B:1,15C:3,23D:13,6参考答案:B3:[单选题]小于20的正素数的个数是()。
A:11B:10C:9D:8参考答案:D 4:[单选题]下面的数是3的倍数的数是()。
A:19B:119C:1119D:11119参考答案:C5:[单选题]-4除-39的余数是()。
A:3B:2C:1D:0参考答案:C6:[单选题]一个正整数n的各位上的数字是0或1,并且n能被2和3整除,则最小的n 是()。
A:1110B:1101C:1011D:1001参考答案:A7:[单选题][[4.5]+[3.7]]等于()。
A:3B:4C:7D:8参考答案:C8:[单选题]{{1.8}+{2.9}}等于()。
A:0.4B:0.5C:0.6D:0.7参考答案:D 9:[单选题]100与44的最小公倍数是()。
A:4400B:2200C:1100D:440参考答案:C10:[单选题]使3的n次方对模7同余于1的最小的正整数n等于()。
A:6B:2C:3D:13参考答案:A11:[单选题]设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。
A:0B:1C:2D:3参考答案:A12:[单选题]下面的()是不定方程3x + 7y = 20的一个整数解。
A:x=0,y=3B:x=2,y=1C:x=4,y=2D:x=2,y=2参考答案:D13:[单选题]下面的()是模4的一个完全剩余系。
A:9,17,-5,-1B:25,27,13,-1C:0,1,6,7D:1,-1,2,-2参考答案:C14:[单选题]下面的()是模12的一个简化剩余系。
A:0,1,5,11B:25,27,13,-1C:1,5,7,11D:1,-1,2,-2参考答案:C15:[单选题]若a,b均为偶数,则a + b为()。
02013初等数论练习题及答案
02013初等数论练习题及答案初等数论练习题一一、填空题1、?(2420)=27;?(2420)=_880_2、设a,n是大于1的整数,若an-1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t,y=700+18t t?Z。
.6、分母是正整数m的既约真分数的个数为_?(m)_。
7、18100被172除的余数是_256 。
8、??65?? = -1 。
?103?9、若p是素数,则同余方程x p ? 1 ?1(mod p)的解数为 p-1 。
二、计算题1、解同余方程:3x2?11x?20 ? 0 (mod 105)。
解:因105 = 3?5?7,同余方程3x2?11x?20 ? 0 (mod 3)的解为x ? 1 (mod 3),同余方程3x2?11x?38 ? 0 (mod 5)的解为x ? 0,3 (mod 5),同余方程3x2?11x?20 ? 0 (mod 7)的解为x ? 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ? b1 (mod 3),x ? b2 (mod 5),x ? b3 (mod 7),其中b1 = 1,b2 = 0,3,b3 = 2,6,孙子定理得原同余方程的解为x ? 13,55,58,100 (mod 105)。
2、判断同余方程x2≡42(mod 107)是否有解?237)1071071071071073?1107?17?1107?1 ??23107271072221,1,?221107107331077742??11072?3?7解:(42)??28除以111的最小非负余数。
解:易知1271≡50。
502 ≡58, 503 ≡58×50≡14,509≡143≡80知5028 ≡3×50≡803×50≡803×50≡68×50≡70 从而5056 ≡16。
初等数论练习题标准答案
初等数论练习题一一、填空题1、d(2420)=12; ϕ(2420)=_880_2、设a,n 是大于1的整数,若an -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(m od 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y =100的通解是x =900+23t,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m)_。
7、18100被172除的余数是_256。
8、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p - 1 ≡1(mo d p)的解数为 p -1 。
二、计算题1、解同余方程:3x2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (m od 3)的解为x ≡ 1 (mo d 3), 同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mo d 7)的解为x ≡ 2,6 (mod 7), 故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b3 (mo d 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
初等数论练习题答案
初等数论练习题一、填空题1、 d(2420)=12;(2420)= 8802、 设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、 模9的绝对最小完全剩余系是{-4 , -3, -2, -1,0,123,4}.4、 同余方程 9x+12= 0(mod 37)的解是 x 三 11(mod 37)。
5、 不定方程 18x-23y=100 的通解是 x=900+23t , y=700+18t t Z 。
6分母是正整数m 的既约真分数的个数为(m 。
7、18100被172除的余数是_256。
9、若p 是素数,则同余方程x p 1 1(mod p)的解数为p-1 。
二、计算题1、 解同余方程:3x 211x20 0 (mod 105)。
解:因 105 = 357 ,同余方程 3x 211x20 0 (mod 3) 的解为 x 1 (mod 3), 同余方程 3x 11x38 0 (mod 5) 的解为 x 0 , 3 (mod 5), 同余方程 3x 211x20 0 (mod 7) 的解为 x 2 , 6(mod 7),故原同余方程有4解。
作同余方程组:xb 1 (mod 3) , x b (mod 5), x b a (mod 7),其中 b 1 = 1 , b 2 = 0 , 3 , b 3 = 2 , 6 ,由孙子定理得原同余方程的解为 x 13 , 55 , 58 , 100 (mod 105)。
2、 判断同余方程x 2三42(mod 107)是否有解?故同余方程x 2三42(mod 107)有解。
3、 求(127156+34) 28除以111的最小非负余数。
解:易知 1271 三50 ( mod 111)。
8、65 103=-1。
由502三58 ( mod 111) , 50 3三58 X 50三14 (mod 111), 509三143三80 (mod 111) 知5028三(509) 3X 50三803X 50三803X 50三68X 50三70 (mod 111)从而5056三16 (mod 111)。
《初等数论》习题解答
《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论试题及答案大学
初等数论试题及答案大学一、选择题(每题5分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 100以内最大的素数是:A. 97B. 98C. 99D. 100答案:A3. 一个数的最小素因子是3,那么这个数至少是:A. 3B. 6C. 9D. 12答案:B4. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A二、填空题(每题5分,共20分)1. 一个数的因数个数是______,那么这个数一定是合数。
答案:32. 如果一个数的各位数字之和是3的倍数,那么这个数本身也是3的倍数,这个性质称为______。
答案:3的倍数规则3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数,那么φ(10)等于______。
答案:44. 哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个______之和。
答案:素数三、解答题(每题15分,共30分)1. 证明:如果p是一个素数,那么2^(p-1) - 1是p的倍数。
证明:设p是一个素数,根据费马小定理,对于任意整数a,若p不能整除a,则有a^(p-1) ≡ 1 (mod p)。
特别地,当a=2时,有2^(p-1) ≡ 1 (mod p)。
这意味着2^(p-1) - 1是p的倍数。
2. 计算:求1到100之间所有素数的和。
答案:2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 +97 = 1060四、综合题(每题10分,共20分)1. 已知a和b是两个不同的素数,证明:a + b至少有4个不同的素因子。
证明:设a和b是两个不同的素数,那么a和b至少有2个不同的素因子。
如果a + b是素数,那么a + b至少有3个不同的素因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数论练习题一一、填空题1、d(2420)=12; ϕ(2420)=_880_2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t Z 。
.6、分母是正整数m 的既约真分数的个数为_(m )_。
7、18100被172除的余数是_256。
8、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p 1 1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 211x20 0 (mod 105)。
解:因105 = 357,同余方程3x 211x20 0 (mod 3)的解为x 1 (mod 3),同余方程3x 211x38 0 (mod 5)的解为x 0,3 (mod 5),同余方程3x 211x20 0 (mod 7)的解为x 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x b 1 (mod 3),x b 2 (mod 5),x b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解故同余方程x 2≡42(mod 107)有解。
3、求(127156+34)28除以111的最小非负余数。
解:易知1271≡50(mod 111)。
由502 ≡58(mod 111), 503 ≡58×50≡14(mod 111),509≡143≡80(mod 111)知5028 ≡(509)3×50≡803×50≡803×50≡68×50≡70(mod 111) 从而5056 ≡16(mod 111)。
故(127156+34)28≡(16+34)28 ≡5028≡70(mod 111)三、证明题1、已知p 是质数,(a,p )=1,证明:(1)当a 为奇数时,a p-1+(p-1)a≡0 (mod p);(2)当a 为偶数时,a p-1-(p-1)a ≡0 (mod p)。
证明:由欧拉定理知a p-1≡1 (mod p)及(p-1)a ≡-1 (mod p)立得(1)和(2)成立。
2、设a 为正奇数,n 为正整数,试证n 2a ≡1(mod 2n+2)。
(1)证明 设a = 2m 1,当n = 1时,有a 2 = (2m 1)2 = 4m (m 1) 1 1 (mod 23),即原式成立。
设原式对于n = k 成立,则有 k a2 1 (mod 2k + 2) k a 2= 1 q 2k + 2, 其中q Z ,所以 12+k a = (1 q 2k + 2)2 = 1 q 2k +3 1 (mod 2k + 3),其中q 是某个整数。
这说明式(1)当n = k 1也成立。
由归纳法知原式对所有正整数n 成立。
3、设p 是一个素数,且1≤k ≤p-1。
证明:kp 1C - (-1 )k (mod p )。
证明:设A=!)()2(1C 1k k p p p kp ---=- )( 得: k!·A =(p-1)(p-2)…(p-k )≡(-1)(-2)…(-k )(mod p )又(k!,p )=1,故A = kp 1C - (-1 )k (mod p )4、设p 是不等于3和7的奇质数,证明:p 6≡1(mod 84)。
说明:因为84=4×3×7,所以,只需证明:p 6≡1(mod 4) p 6≡1(mod3) p 6≡1(mod 7) 同时成立即可。
证明:因为84=4×3×7及p 是不等于3和7的奇质数,所以(p ,4)=1,(p ,3)=1,(p ,7)=1。
由欧拉定理知:p (4)≡p 2≡1(mod 4),从而 p 6≡1(mod 4)。
同理可证:p 6≡1(mod3) p 6≡1(mod 7)。
故有p 6≡1(mod 84)。
注:设p 是不等于3和7的奇质数,证明:p 6≡1(mod 168)。
(见赵继源p86)初等数论练习题二一、填空题1、d(1000)=_16_;σ(1000)=_2340_.2、2010!的标准分解式中,质数11的次数是199__.3、费尔马(Fermat)数是指Fn=n22+1,这种数中最小的合数Fn 中的n=5。
4、同余方程13x ≡5(mod 31)的解是x ≡29(mod 31)___5、分母不大于m 的既约真分数的个数为(2)+ (3)+…+ (m )。
6、设7∣(80n -1),则最小的正整数n=_6__.7、使41x+15y=C 无非负整数解的最大正整数C=__559__.8、⎪⎭⎫ ⎝⎛10146=_1__. 9、若p 是质数,np 1,则同余方程x n 1 (mod p ) 的解数为n .二、计算题1、试求200420032002被19除所得的余数。
解:由2002≡7 (mod 19) 20022≡11(mod 19) 20023≡1 (mod 19) 又由≡22004≡(22)1002≡1 (mod 3)可得:200420032002≡20023n+1≡(20023)n ×2002≡7(mod 19)2、解同余方程3x 14 4x 10 6x 18 0 (mod 5)。
解:由Fermat 定理,x 5 x (mod 5),因此,原同余方程等价于2x 2 x 3 0 (mod 5) 将x 0,1,2 (mod 5)分别代入上式进行验证,可知这个同余方程解是x 1 (mod 5)。
3、已知a=5,m=21,求使a x 1 (mod m)成立的最小自然数x 。
解:因为(5,21)=1,所以有欧拉定理知5(21)≡1(mod 21)。
又由于(21)=12,所以x |12,而12的所有正因数为1,2,3,4,6,12。
于是x 应为其中使 5 x 1 (mod 12)成立的最小数,经计算知:x=6。
三、证明题1、试证13|(54m +46n +2000)。
(提示:可取模13进行计算性证明)证明:54m +46n +2000 252m +642n +2000 (-1)2m +(-1)2n +2000 2002 0(mod 13)。
2、证明Wilson 定理的逆定理:若n > 1,并且(n 1)! 1 (mod n ),则n 是素数。
证明:假设n 是合数,即n = n 1n 2,1 < n 1 < n ,由题设易知(n 1)! 1 (mod n 1),得0 1 (mod n 1),矛盾。
故n 是素数。
3、证明:设p s 表示全部由1组成的s 位十进制数,若p s 是素数,则s 也是一个素数。
证明:假设s 是合数,即s=ab ,1<a ,b<s 。
则 M p a b a s ss ⋅-=-=-==911091)10(9110111 ,其中M >1是正整数。
由p a >1也是正整数知p s 是合数,这与题设矛盾。
故s 也是一个素数。
4、证明:若2p 1是奇素数,则 (p !)2 (1)p 0 (mod 2p 1)。
证明:由威尔逊定理知 1 (2p )! = p !(p 1)(2p ) (1)p (p !)2(mod 2p 1),由此得(p !)2 (1)p 0 (mod 2p 1)。
5、设p 是大于5的质数,证明:p 4≡1(mod 240)。
(提示:可由欧拉定理证明)证明:因为240=23×3×5,所以只需证:p 4≡1(mod 8),p 4≡1(mod 3),p 4≡1(mod 5)即可。
事实上,由(8)=4,(3)=2,(5)=4以及欧拉定理立得结论。
初等数论练习题三一、单项选择题1、若n >1,(n )=n-1是n 为质数的( C )条件。
A.必要但非充分条件B.充分但非必要条件C.充要条件D.既非充分又非必要条件2、设n 是正整数,以下各组a ,b 使ab 为既约分数的一组数是( D )。
=n+1,b=2n-1 =2n-1,b=5n+2 =n+1,b=3n+1 =3n+1,b=5n+2 3、使方程6x+5y=C 无非负整数解的最大整数C 是( A )。
4、不是同余方程28x ≡21(mod 35)的解为( D )。
≡2(mod 35) B. x ≡7(mod 35) C. x ≡17(mod 35) D. x ≡29(mod 35)5、设a 是整数,(1)a ≡0(mod9) (2)a ≡2010(mod9)(3)a 的十进位表示的各位数字之和可被9整除(4)划去a 的十进位表示中所有的数字9,所得的新数被9整除以上各条件中,成为9|a 的充要条件的共有( C )。
个 个 个 个二、填空题1、σ(2010)=_4896____;ϕ(2010)=528。
2、数20100C 的标准分解式中,质因数7的指数是_3。
3、每个数都有一个最小质因数。
所有不大于10000的合数的最小质因数中,最大者是97。
4、同余方程24x ≡6(mod34)的解是x 1≡13(mod34) x 2≡30(mod34)_。
5、整数n>1,且(n-1)!+1≡0(mod n),则n 为素数。
6、3103被11除所得余数是_5_。
7、⎪⎭⎫ ⎝⎛9760=_-1_。
三、计算题1、判定 (ⅰ) 2x 3 x 2 3x 1 0 (mod 5)是否有三个解;(ⅱ) x 6 2x 5 4x 23 0 (mod 5)是否有六个解解:(ⅰ) 2x 3 x 2 3x 1 0 (mod 5)等价于x 3 3x 2 4x 3 0 (mod 5),又x 5 x = (x 3 3x 2 4x 3)(x 2 3x 5) + (6x 2 12x 15),其中r (x ) = 6x 2 12x 15的系数不都是5的倍数,故原方程没有三个解。
(ⅱ) 因为这是对模5的同余方程,故原方程不可能有六个解。
2、设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
解:设12122321212232122C C C )C ,,C ,(C ---=+++=n n n n n n n n n d ,由知d 22n 1,设2k |n 且2k+1|/n ,即2k +1||n ,则由2k +1||1122112C 2C 2C |--+=i n i n k n in 及,i = 3, 5, , 2n 1 得d = 2k + 1。