平行四边形1
平行四边形的概念和定义
平行四边形的概念和定义
平行四边形是一种特殊的四边形,它具有特定的几何属性和定义。
下面是平行四边形的概念和定义:
1.定义:平行四边形是一个四边形,其对边两两平行。
2.性质:
•对边平行性质:平行四边形的对边两两平行,即相对的两边是平行的。
•对角线性质:平行四边形的对角线相互平分,并且相交点将对角线分成相等的两部分。
•边长性质:平行四边形的相邻边长度相等,即相邻边是相等的。
•内角性质:平行四边形的内角相邻补角,即相邻内角的和为180度。
•对边长度比例:平行四边形的对边长度比例相等,即相对的两条边的长度比相等。
3.特殊情况:
•矩形是一种特殊的平行四边形,它的四个角都是直角,对边相等。
•正方形是一种特殊的矩形和平行四边形,它的四边长度相等,四个角都是直角。
•菱形是一种特殊的平行四边形,它的四条边长度相等,对角线互相垂直,且相互平分。
平行四边形是几何学中重要的概念,它的定义和性质可以用于解决各种几何问题和证明定理。
在实际应用中,平行四边形的概念也经常被用于建筑设计、工程测量、图形绘制等领域。
平行四边形的性质第1课时平行四边形的边角特征
详细描述
在平行四边形中,由于对边相等,因此如果 两个相邻的边相等,则它们的对边也必然相 等。可以通过比较对边来证明线段相等。
证明角度相等
总结词
利用平行四边形的性质,可以证 明两个角相等。
详细描述
在平行四边形中,由于对角相等, 因此如果一个角与另一个角相等, 则它们的对角也必然相等。可以 通过比较对角来证明角度相等。
示例
在平行四边形ABCD中,已知 ∠ABC=∠CDA,则可以证明
∠BAC=∠DCB。
解决实际问题
总结词
利用平行四边形的性质,可以解决许多实际问题。
详细描述
平行四边形的性质在几何学中有着广泛的应用,如建筑设计、机械制造、测量等领域。通 过利用平行四边形的性质,可以解决许多实际问题,如计算面积、周长、角度等。
平行四边形的定义和性质
平行四边形的边角特征
理解平行四边形的定义,掌握其基本性质 ,如对边平行、对角相等、对角线互相平 分等。
掌握平行四边形中边和角的关系,如邻边 相等、对角相等、内角和为180度等。
平行四边形的判定
平行四边形的面积计算
理解并掌握判定一个四边形是否为平行四 边形的方法,如两组对边分别平行、两组 对边分别相等、对角线互相平分等。
平行四边形的性质第1课时平行四 边形的边角特征
contents
目录
• 引言 • 平行四边形的边角特征 • 平行四边形的性质应用 • 课堂互动与练习 • 总结与回顾
01 引言
课程简介
01
本课程将介绍平行四边形的边角 特征,包括对边相等、对角相等 、邻角互补等基本性质。
02
通过本课程的学习,学生将掌握 平行四边形的基本性质,为进一 步学习几何学打下基础。
华东师大版八下数学1平行四边形的性质课件
4.如图,在□ ABCD中,AC平分∠DAB,AB=3,则□
ABCD的周长为( )
A.6
B.9
C.12
D.15
【解析】选C.∵四边形ABCD是平行四边形, ∴∠DAB=
∠DCB,AB∥CD,AB=CD,AD∥BC,AD=BC.
又∵AC平分∠DAB,∴∠DAC=∠BAC.
∴∠DAC=∠DCA,∴AD=DC.又∵AB=3,
AB+BC+CD+AD=2+4+2+4=12. 答案:12
6.如图,在平面直角坐标系中,□ OBCD的顶点O,B,D
的坐标如图所示,则顶点C的坐标为( C )
A. (3,7) B. (5,3) C. (7,3) D. (8,2)
y
D(2,3)
C
O (0,0) B(5,0) x
A
D
1、如图,在 ABCD中,
A:基础知识:
B
C
若∠A=130°,则∠B=__5_0_°__ 、∠C=__1_3_0_°_ 、
∠D=__5_0_°__.
B:变式训练: 若∠A+ ∠C= 200°,则∠A=_1_0_0_°__ 、∠B=__8_0_°__.
2.如图,在□ ABCD中, ∠B=110°,延长AD至点F,
延长CD至点E,连结EF,则∠E+∠F的值为( ) A.110° B.30° C.50° D.70°
求证: ∠A= ∠C, ∠B= ∠D。 B
C
证明:∵四边形ABCD是平行四边形(已知),
∴AB∥CD,AD∥BC(性质1),
∴∠A+∠D=180°, ∠A+∠B=180°(两直线平行,同
旁内角互补),
平行四边形的定义,性质及判定方法
一、平行四边形知识结构及要点小结平行四边形定义:有两组对边分别平行的四边开形是平行四边形。
性质:1、平行四边形的两组对边分别平行。
2、平行四边形的两组对边分别相等3、平行四边形的两组对角分别相等4、平行四边形的两条对角线互相平分。
判定方法:1、两组对边分别平行的四边形是平行四边形。
2、两组对边分别相等的四边形是平行四边形。
3、一组对边平行且相等的四边形是平行四边形。
4、两条对角线互相平分的四边形是平行四边形。
5、两组对角分别相等的四边形是平行四边形。
三角形中位线定义:连接三角形两边中点的线段叫三角形的中位线。
定理;三角形的中位线平行于三角形的第三边,且等于第三边的一半。
二、解题方法及技巧小结:证明线段相等或角相等的问题用过去所学的全等知识也可完成,但相对比而言,应用平行四边形的性质求证较为简单。
另外平行四边形对角线是很重要的基本图形,应用它的性质解题可开辟新的途径。
特殊的平行四边形知识结构及要点小结矩形:定义:有一个角是直角的平行四边形叫做矩形。
性质:1、具有平行四边形的所有性质。
2、矩形有四个角都是直角。
3、矩形有对角线相等。
4、矩形是轴对称图形,有两条对称轴。
判定方法:1、定义2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形:定义:有一组邻边相等的平行四边形叫菱形。
性质;1、具有平行四边形所有性质。
2、菱形有四条边都相等。
3、菱形的两条对角线互相垂直,并且每一条对角线平分一组对角4、菱形是轴对称图形。
判定方法:1、定义2、对角线互相垂直的平行四边形3、四边相等的四边形正方形:定义;一组邻边相等的矩形性质:具有平行四边形、矩形、菱形的所有性质判定:1、定义2、有一个内角是直角的菱形3、对角线相等的菱形4、对角线互相垂直的矩形解题方法及技巧小结菱形、矩形、正方形都是特殊的平行四边形。
它们的性质既有区别又有联系,它们的判定方法虽然不同,但有许多相似之处,因此要用类比的思想,将学到的知识总结出相关规律。
第一课时平行四边形的性质1-八年级数学下册课件(人教版)
课堂练习
8.如图,在▱ABCD 中,∠B=120°,DE⊥AB 于点 E,DF⊥BC 于点 F,则∠ADE=______3_0_°______,∠EDF=_____6__0_°______, ∠FDC=______3_0_°______.
课堂练习
9.如图,已知 BD 是△ABC 的角平分线,点 E,F 分别在边 AB,BC 上,ED∥CF,EF∥AC.求证:BE=CF.
边形的周长为( B )
A.16
B.26
C.22
D.11
4.如图,在▱ABCD 中,AB⊥AC,若 AB=3,AC=4,则 AD 的长
为( A )
A.5
B.8
C.10
D.11
课堂练习
5.在▱ABCD 中,若∠A+∠C=100°,则∠B=_____1_3_0_°______. 6.在▱ABCD 中,AB=5,则 CD=_______5_______. 7.▱ABCD 的周长为 28 cm,且 AB∶BC=2∶5,那么 AB= ______4________ cm,AD=______1_0_______ cm.
又∵∠1=∠2,∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB.
归纳小结
平行四边形的性质:
1.平行四边形对边相等。 2.平行四边形对角相等。
巩固练习
1.如图,在四边形 ABFE 中,点 C,D 分别在边 AE,BF 上,若 AB∥CD∥EF,AE∥BF,则图中的平行四边形共有____3______ 个.
证明:∵ED∥CF,EF∥AC, ∴四边形 EFCD 是平行四边形. ∴ED=CF. ∵BD 是∠ABC 的平分线, ∴∠EBD=∠DBC. ∵ED∥BC,∴∠EDB=∠DBC. ∴∠EBD=∠EDB.∴BE=ED.∴BE=CF.
6.平行四边形的判定课件(1)
A
D ∵ OA=OC,OB=OD(已知)
O
∴四边形ABCD是平行四边形
B
C
(对角线互相平分的四边形是平
行四边形)
高效上好每节课·快乐上好每天学
小林提议:我们可以度量它的角,如果它的两组对角分别 相等,那么它就是一个平行四边形。
已知:四边形ABCD, ∠A=∠C,∠B=∠D
求证:四边形ABCD是平行四边形
A
D
B
∠A+ ∠B +∠C+ ∠D =360 ° ∠A+ ∠D=180 ° AB∥CD
∠A+ ∠B=180 ° AD∥BC
C
ABCD
高效上好每节课·快乐上好每天学
已知:四边形ABCD, ∠A=∠C,∠B=∠D
求证:四边形ABCD是平行四边形
A
D
证明:
∵∠A=∠C,∠B=∠D(已知) B
高效上好每节课·快乐上好每天学
新知探究
学习了平行四边形后,小明回家用细木棒钉制了一 个平行四边形。第二天,小明拿着自己动手做的平行四 边形向同学们展示。
小辉却问:你凭什么确定这四边形就是平行四边形 呢?
大家都困惑了……
高效上好每节课·快乐上好每天学
小丽说:“我可以不用任何作图工具,只要两条细绳 就能判断它是不是平行四边形。”
高效上好每节课·快乐上好每天学
例2. 已知:E、F是平行四边形ABCD对角线AC上
大 的两点,并且CE=AF.
显
求证:四边形BFDE是平行四边形
身
手
证明:作对角线BD,交AC于点O.
∵四边形ABCD是平行四边形
平行四边形性质一教学设计
《平行四边形的性质(1)》教学设计雄县双堂乡中学胡玥一、教学目标(一)知识与技能1.认识平行四边形的概念.2.探究并掌握平行四边形的边、角性质.3利用平行四边形的性质来解决简单的实际问题.(二)过程与方法1、动手操作实践的过程中,探索发现平行四边形的性质。
2、知道解决平行四边形问题的基本思想是化为三角形问题来解决,渗透转化思想。
3、通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力。
(三)情感、态度与价值观在探索活动过程中发展学生的探究意识和合作交流的习惯。
二、教学重点、难点重点:平行四边形的概念和性质的探索。
难点:平行四边形性质的运用。
三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式。
四、教与学互动设计(一)图片导课通过观察图片,引导学生从实物中抽象出几何模型,使学生体会“几何源于生活又服务于生活”,鼓励学生从生活中发现数学,积极举例,激发学生学习热情。
(二)自主学习自学教材41页上半部分。
平行四边形含义:如图,平行四边形ABCD,记作(三)合作互学1.猜想:平行四边形除了“两组对边分别平行”外,它的边、角之间还有那些关系?(1)平行四边形的对边;(2)平行四边形的对角 .2.你能证明你发现的上述的结论吗?已知:求证:(1)AB=DC AD=BC(2)∠A=∠C∠B=∠D分析:证明线段相等或角相等时,通常证明三角形的全等,而图中没有三角形怎么办?如何添加辅助线将四边形的问题转化为三角形的问题来解决。
证明:知识梳理平行四边形的对边且平行四边形的对角,邻角.(四)例题探究AB C D【例】在 ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证AE=CF。
(五)巩固练习(1)在 ABCD中,∠D=120°,则∠A= , ∠B= , ∠C= 。
(2)在 ABCD中,已知AB=5,BC=3,该图形周长是(3)平行四边形的一个角比它的邻角大28°,则四个角的度数分别为。
《平行四边形的性质》PPT课件(第1课时)
(来自教材)
知3-练
证明:在▱ABCD中,因为AB∥CD,所以∠FBE=∠DCE. 因为E为BC的中点,所以BE=CE. FBE=DCE, 在△FBE和△DCE中,BE=CE , BEF=CED, 所以△FBE≌△DCE.所以BF=CD. 又因为AB=CD,所以BF=AB,即点B为AF的中 点.
(来自教材)
知3-讲
导引:根据BM平分∠ABC和AB∥CD可以判定△BCM 是等腰三角形,从而得到BC=MC=2,再结合 ▱ABCD的周长是14得到CD的长,进而得到DM的 长.具体过程如下: ∵在▱ABCD中,AB∥CD,BM是∠ABC的平分 线,∴∠CBM=∠ABM=∠CMB.∴BC=MC=2. 又∵▱ABCD的周长是14,∴AB=CD=5.∴DM= 3.
2. 数学表达式:如图, ∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
(来自《点拨》)
知3-讲
例3 [中考·玉林]如图,在▱ABCD中,BM是∠ABC
的平分线,交CD于点M,且MC=2,▱ABCD的
周长是14,则DM等于( C )
A.1
B.2
C.3
D.4
(来自《点拨》)
(来自《点拨》)
总结
知3-讲
当题目中平行线和角平分线同时出现时,极有可 能出现等腰三角形,如本题中由AB∥CD和BM平分 ∠ABC就得到△BCM是等腰三角形;在平行四边形 的边的计算中,“平行四边形相邻两边之和等于平行 四边形的周长的一半”会经常用到.
(来自《点拨》)
知3-练
1 在▱ ABCD 中,已知AB=3,AD=2,求▱ ABCD的
第二十二章 四边形
平行四边形的性质
第1课时
6.2平行四边形的判定(1) 课件 2023—2024学年北师大版八年级数学下册
附加
如图,A、B、C、D四点在同一直线上,AB=CD,线段AE与线段DF平 行,AE=DF. 求证:四边形EBFC是平行四边形.
如图,已知E,F,G,H分别是平行四边形ABC D的边AB, BC,CD,DA上的点,且AE=CG,BF=DH.
求证:四边形EFGH是平行四边形.
谢谢!
平行四边形的判定(1)
学习目标
• 1、通过类比、猜想、验证,掌握平行四边形的判定定理 • 2、综合应用平行四边形的性质及判定
课堂导入
平行线的性质:
(1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。
平行线的判定:
同位角相等,两直线平行。 内错角相等,两直线平行。 同旁内角互补,两直线平行。
∵AB= DC,AD= BC ∴四边形ABCD是平行四边形
A
D
∵AD∥BC且AD=BC ∴四边形ABCD是平行四边形
B
C
随堂练习
1、下列条件中,不能确定四边形ABCD是平行四边形的是( )
A. AB=CD,AB∥CD
A
B.AB∥CD ,AD∥BC
D
C. AB=CD, AD=BC
D.AB=CD,AD∥BC
对角线互相平分的四边形是平 行四边形.
自主学习
1、两组对边分别平行的四边形是平行四边形.
平行四边形的定义
A B
D C
数学语言:
四边形ABCD 中, AB//CD , AD //BC 四边形ABCD 为平行四边形
例1
如图, ABCD中,∠ABC的平分线BE交AD于E,∠ADC的平分线DF交 BC于点F, 求证:四边形BFDE是平行四边形.
什么是平行四边形?
什么是平行四边形?
平行四边形是什么?
平行四边形是一个四边形,它的对边是平行的。
它具有以下几个重要特征:
1. 对边平行:平行四边形的两对对边是平行的,即相对的两边永远不会相交。
2. 对角线相互平分:平行四边形的对角线互相平分,即对角线的交点是对角线的中点。
3. 对边相等:平行四边形的对边长度相等。
平行四边形有以下几个常见的性质:
1. 同一边上的相邻角是补角:即平行四边形中的两个相邻角的和为180度。
2. 对角线等分内角:平行四边形的对角线会等分内部的角,即对角线所切割的角相等。
3. 临补角互补:平行四边形的相对临补角是互补的,即两个相对临补角的和为180度。
为了更好地理解平行四边形,我们可以结合示意图和具体的例子进行说明。
下面是一个示例:
A --------- B
/ \
/ \
D --------- C
在这个示例中,AB和CD是平行四边形的对边,AC和BD是平行四边形的对角线。
根据平行四边形的性质,我们可以得出以下结论:
1. AB和CD是平行的,且相等长度。
2. AC和BD是平行的,且互相平分。
3. 角D和角B是补角,角A和角C是补角。
总之,平行四边形是一个具有特定几何特征的四边形,其中对
边平行,对角线相互平分,对边长度相等。
它具有一些常见的性质,如同一边上的相邻角是补角,对角线等分内角等。
通过示意图和具
体的例子,可以更好地理解平行四边形的概念和性质。
苏科版八年级数学3.4.1平行四边形
$5$
04
$10$
05
$20$
06
解答题:在平行四边形中,已知一组邻边的长分别为$3$和 $4$,一个内角为$60^circ$,求它的面积。
综合练习题
$120^circ$
$60^circ$
选择题:在平行四边形中,若一个 内角为$120^circ$,则它的邻角 为____。
$60^circ$或$120^circ$
苏科版八年级数学3.4.1平行 四边形
目
CONTENCT
录
• 平行四边形的定义与性质 • 平行四边形的面积与周长 • 平行四边形的应用 • 练习与巩固
ห้องสมุดไป่ตู้
01
平行四边形的定义与性质
平行四边形的定义
两组相对边平行
平行四边形是一个平面图形,其两组相对边平行。
定义中的关键词
在平行四边形的定义中,关键词包括“两组相对边 平行”和“平面图形”。
100%
面积计算方法
先确定平行四边形的底和高,然 后使用面积公式进行计算。
80%
注意事项
在计算面积时,要确保底和高的长 度是有效的,即底不能为0,高不 能为负数。
平行四边形的周长计算
周长公式
平行四边形的周长等于两倍的 (底加高),即 $P = 2(text{base} + text{height})$ 。
平行四边形与四边形的区别
平行四边形是四边形的一种特殊形式,它强调了两 组相对边平行的特性。
平行四边形的性质
02
01
03
对边平行
平行四边形的对边平行,这是其最基本的性质之一。
对角相等
平行四边形的对角相等,这也是其重要的性质之一。
平行四边形第一讲
19.1.1 平行四边形及其性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(10分钟)1.由__ _条线段首尾顺次连接组成的多边形叫四边形;四边形有 _条边,_ __个角,四边形的内角和等于_____度;2.如图AB与BC叫_ __边, AB与CD叫__ _边;∠A与∠B叫_ __角,∠D与∠B叫_ __角;1.多边形中不相邻顶点的连线叫对角线,如图四边形ABCD中对角线有__ _条,它们是______自学课本P83~P84,1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD记作__________。
2.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。
你能归纳ABCD的边、角各有什么关系吗?并证明你的结论。
二、合作解疑(25分钟)如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?个平行四边形的一个外角是38°,这个平行四边形的各个内角的度数分别是:(3) ABCD有一个内角等于40°,则另外三个内角分别为:(4)平行四边形的周长为50cm,两邻边之比为2:3,则两邻边分别为: 1. ABCD中,∠A︰∠B︰∠C︰∠D的值可以是()A.1︰2︰3︰4B.3︰4︰4︰3C.3︰3︰4︰4D.3︰4︰3︰42. ABCD 的周长为40cm,△ABC的周长为27cm,AC的长为()A.13cmB.3 cmC.7 cmD.11.5cm综合应用拓展1. 如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.三、限时检测(10分钟)1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
第一单元《平行四边形》知识点
第一单元《平行四边形》知识点
本文档旨在介绍第一单元《平行四边形》的知识点。
1. 平行四边形的定义
平行四边形是指具有两组对边平行的四边形。
四个角均为直角的平行四边形称为矩形。
2. 平行四边形的性质
- 平行四边形的对边相等。
- 平行四边形的对角线相交于一点,并且该点到四个顶点的距离相等。
- 平行四边形的邻边互补,即相邻两边之和等于180度。
- 平行四边形的对角线等分对角线角。
3. 平行四边形的分类
根据边长和角度的不同,平行四边形可以分为以下几类:
- 矩形:具有四个内角均为直角的平行四边形。
- 正方形:具有四条边长相等且四个内角均为直角的平行四边形。
- 长方形:具有两组对边相等且四个内角均为直角的平行四边形。
- 平行四边形:为一般性的平行四边形,具有两组对边平行但
不一定角度相等或边长相等。
4. 平行四边形的应用
平行四边形的概念在几何学和实际生活中有广泛的应用。
例如,在建筑设计中,平行四边形常被用作地板砖、窗户和门的形状。
在
数学中,平行四边形的性质也与向量、矩阵和平面几何等领域密切
相关。
以上是第一单元《平行四边形》的知识点概述。
对于每个具体
的内容,我们将在课堂上进行深入讲解和练。
- 完 -。
第1课时:《平行四边形》(1)——平行四边形的性质与判定
ABC DE FG 第1课时《四边形》(1)——平行四边形的性质与判定【知识点拨】一、平行四边形的定义及性质1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
[例题1]1.(2009东营)如图,在平行四边形ABCD 中,已知AD =8cm , AB =6cm , DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A. 2cm B. 4cm C. 6cmD. 8cm 【答案】A2.(2009年桂林市、百色市)如图,平行四边形ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .24 【答案】C3.(2009年)如图,在ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG =24,则ΔCEF 的周长为( ) A.8 B.9.5 C.10 D.11.5 【答案】A (此题需用相似的知识,可不做)4.(2009年广西钦州)在平行四边形ABCD 中,∠A =120°,则∠D =_ _°. 【答案】605.(2010年贵州毕节)如图,已知:平行四边形 ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG 交CE 于F ,交AD 于G .求证:AE DG =. 【答案】证明:∵ 四边形ABCD 是平行四边形(已知),AD BC ∴∥,AB CD =(平行四边形的对边平行,对边相等) GBC BGA ∴∠=∠,BCE CED ∠=∠(两直线平行,内错角相等)又∵ BG 平分ABC ∠,CE 平分BCD ∠(已知)ABG GBC ∴∠=∠,BCE ECD ∠=∠(角平分线定义) ABG GBA ∴∠=∠,ECD CED ∠=∠.AB AG ∴=,CE DE =(在同一个三角形中,等角对等边) AG DE ∴=第1题图第2题图第3题图AB CDAG EG DE EG ∴-=-,即AE DG =.6.(2010 湖南株洲)如图,已知平行四边形ABCD ,DE 是ADC ∠的角平分线,交BC 于点E . (1)求证:CD CE =;(2)若BE CE =,80B ∠=︒,求DAE ∠的度数. 【答案】(1)如图,在ABCD 中,//AD BC 得,13∠=∠又12∠=∠,∴23∠=∠,∴CD CE = (2)由ABCD 得,AB CD = 又CD CE =,BE CE = ∴AB BE = ∴BAE BEA ∠=∠ ∵80B ∠=︒,∴50BAE ∠=︒, 得:180508050DAE ∠=︒-︒-︒=︒.二、平行四边形的判定平行四边形的判定:1.两组对边分别相等的四边形是平行四边形 b 2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。
平行四边形的性质1
A
O
B
∵四边形ABCD是 ∴ ∠A=∠C, ∠B=∠D
D
C
平行四边形是中心对称图形
如图,a / / b, AB 直线a于点A, CD 直线b 于点C , 则:
BD 的长; (1)点B与点D的距离是指线段 _______ DC 的长; (2)点D到直线b的距离是指线段 ______ AB (3)两平行线a、b间的距离是指线段 ______
A
8
B
练习
如图,已知 ABCD 中,AD=3,BD⊥AD, 且BD=4, 你能求出平行四边形的周长吗?
D
解: ∵BD ⊥AD ∴ ∠ADB=90 ° 在Rt △ADB中,AD=3,BD=4 ∴AB= =25(勾股定理) 4 32 又∵四边形ABCD为平行四边形(已知) ∴ AD=BC=3 (平行四边形对边相等) AB=DC=5 ∴ ABCD的周长=2(AD+AB) =2(3+5) =16
1 解: 在 ABCD中, ∠ABC=∠D=1 80°- ∠1= 180°- 80°= 100° ∠A=∠C= 180°- ∠D = 180°- 100°= 80°(两 直线平行,同旁内角互补) 或∠A=∠C= ∠1=80°(两直线平行,内错角相等)
例2 如图,已知
ABCD 中,AB=8, 周长等于24,求其余三条边的长. C D
l1
它与点与点的距离、 点到直线的距离的 联系与区别
F
D
B
l2
如图,l1 // l2 ,点A、C、E在l1上,线段AB、 CD 、EF都垂直于 l2 ,垂足分别为 B、D 、F,则 AB、CD、EF的长短相等吗?为什么?
平行线间的距离处处相等
∟
∟
平行四边形边长公式
平行四边形边长公式平行四边形是一种特殊的四边形,具有两组对边平行的性质。
在平行四边形中,我们可以通过已知的边长来计算其他参数。
本文将探讨平行四边形的边长公式及其应用。
1. 平行四边形的定义平行四边形是一种具有以下特征的四边形:- 两组对边平行:平行四边形的对边两两平行,分别称为底边和顶边、侧边和侧边。
- 对边相等:平行四边形的对边长度相等。
2. 平行四边形的边长公式对于平行四边形,可以通过已知的边长来计算其他参数。
以下是平行四边形的边长公式:- 周长公式:平行四边形的周长等于所有边长的和。
周长 = 边长1 + 边长2 + 边长3 + 边长4- 对角线公式:平行四边形的对角线相等,并且它们将平行四边形分成两个相等的三角形。
对角线1 = √(边长1^2 + 边长3^2)对角线2 = √(边长2^2 + 边长4^2)- 面积公式:平行四边形的面积等于底边长度乘以高。
面积 = 底边长度 ×高3. 平行四边形的应用平行四边形的边长公式在很多实际问题中都有应用。
以下是一些应用示例:示例一:计算周长已知平行四边形的边长分别为10cm、15cm、10cm和15cm,计算其周长。
周长 = 10cm + 15cm + 10cm + 15cm = 50cm示例二:计算对角线长度已知平行四边形的边长分别为8cm、6cm、8cm和6cm,计算其对角线长度。
对角线1 = √(8cm^2 + 8cm^2) ≈ 11.31cm对角线2 = √(6cm^2 + 6cm^2) ≈ 8.49cm示例三:计算面积已知平行四边形的底边长度为12cm,高为5cm,计算其面积。
面积 = 12cm × 5cm = 60cm^2通过以上示例,我们可以看到平行四边形的边长公式在几何学和实际问题中都有重要的应用。
熟练掌握这些公式可以帮助我们计算平行四边形的各项参数,进而解决与其相关的各种问题。
总结:本文讨论了平行四边形的边长公式及其应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新授课教学案
学程预设导航策略调整反思2、总结:
学生交流总结:平行四边形的性质;
平行四边形的对边平行且相等;
平行四边形的对角相等;(邻角互补)
三、知识点巩固;
1、如图:在ABCD中,AB=5,∠A=120°,
问题:(1)你有哪些结论;
(2)请你规范书写你的说理过程;
并与同学交流;
(3)若ABCD的周长为30,你又可以有哪些结论;(面积?)
(4)上述各问题的所用的知识有哪些;
2、完成性质练习1~6题;要求先独立,再与同学交流合作;
问题:(1)在1~4题的边问题中,用到了那些知识;你是如何解决的,请你把你的解法与同学共享;
(2)在5~6题的角问题中,又用了哪些知识;你是如何解题的,与同学交流;
四、例题探讨:
例题:如图,在平行四边形ABCD中,
AE=CF,求证:AF=CE.
问题:(1)请你叙述你的证明思路;
(2)你用到了哪些知识;与同学交流你的收获;教师板书平行四边形的性质
规范书写性质的几何书写;
教师展示学生的交流成果;板书说理的过程;
参与学生的思考;提示学生平行四边形的性质应用;图形的应用;
巡视学生的完成情况,提示学生在计算时的设“X”的方程思想;
巡视学生的书写的规范的情况;
展示学生正确书证明过程;与同学一起体验;
回顾总结本节课的知识;解题方法;
课
堂
小
结
今天你学到了…
板书设计知识点:例1、例2、规范书写平行四边形定义:
性质:
小结:(1)问题:
(2)
C
A D
B
课堂测试:得分_____
1、判断题(对的在括号内填“∨”,错的填“×”)
(1)平行四边形两组对边分别平行;()
(2)平行四边形的四个内角都相等;()
(3)平行四边形的相邻两个内角的和等于180°;()
(4)如果平行四边形相邻两边长分别是2cm和3cm,那么周长是10cm;()
(5)在平行四边形ABCD中,如果∠A=35°,那么∠B=55°;()
2、填空:
(1)在ABCD中,∠A=
50,则∠B= °,∠C= °,∠D= °.
(2)如果ABCD中,∠A—∠B=24°,则∠A= °,∠B= °,∠C= °,∠D= °.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm
,CD= cm,CD= cm.
3、如图,在ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm,求EC的长
4、在ABCD中,E、F分别是AD、BC的中点.
求证:BE=DF
5、如图,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,请你找出其
中相等的线段;并加以证明;
F
E
A
C
B。