第九章 摩擦焊连接方法与基本原理
摩擦焊
应用
应用
摩擦焊接以其优质、高效、节能、无污染的技术特色,在航空、航天、核能、兵器、汽车、电力、海洋开发、 机械制造等新技术和传统产业部门得到了愈来愈广泛的应用。下面以摩擦焊接在航空航天工业与汽车工业中的应 用举例说明。
擦而粘结、焊合的现象是很普遍的。在金属的切削加工和机器的高速转动过程中, 常常发现两个金属零件表面,由于摩擦生热而焊接在一起的情况。例如:在车削加工时,车刀上产生积屑瘤;在 钻削加工时,钻头和工件常常粘结在一起;滑动轴承由于烧轴而卡住等等。当然,这些情况一直是人们努力避免 的事故。做为一种焊接现象来分析,它们的过程并不是完善的,焊接质量也并不理想。但是,我们通过对这些粘 结、焊合现象的分析,有助于了解摩擦焊的实质。
工艺发展
工艺发展
摩擦焊工艺方法已由传统的几种形式发展到二十多种,极大地扩展了摩擦焊接的应用领域。被焊零件的形状 由典型的圆截面扩展到非圆截面(线性摩擦焊)和板材(搅拌摩擦焊),所焊材料由传统的金属材料拓宽到粉末 合金、复合材料、功能材料、难熔材料,以及陶瓷—金属等新型材料及异种材料领域。
谢谢观看
随着现代高性能军用航空发动机的不断更新,其主要性能指标推重比亦不断提高。同时对发动机的结构设计、 材料及制造工艺均提出了更高的要求。从70年代起,以美国GE公司为代表,在军用航空发动机转子部件(盘+盘、 盘+轴)制造中,率先成功地采用了惯性摩擦焊接技术。美国Textron Lycoming公司生产的新型大功率T55涡轮 喷气发动机的前盘与前轴、后轴的连接都是采用盘+轴一体的摩擦焊接结构。P&W公司将摩擦焊接列为80年代发动 机制造中的五项重大焊接技术之一;德国MTU公司正在开展高压压气机转子等大型部件的摩擦焊接技术研究;法 国海豚发动机也将摩擦焊接推广应用于减速器锥形齿轮的焊接,等等。国外一些先进的航空发动机制造公司已将 摩擦焊接作为焊接高推重比航空发动机转子部件的主导的、典型的和标准的工艺方法。普遍认为摩擦焊是可靠、 再现性好和可信赖的焊接技术。
摩擦焊接工艺(3篇)
第1篇一、引言摩擦焊接是一种利用摩擦热加热金属并施加压力以实现焊接连接的工艺。
它具有操作简单、焊接质量稳定、焊接速度快、成本低等优点,广泛应用于汽车、航空、航天、造船、铁路等行业。
本文将对摩擦焊接工艺的原理、设备、工艺参数及焊接质量等方面进行详细介绍。
二、摩擦焊接原理摩擦焊接的原理是利用摩擦产生的热量将金属表面加热至塑性状态,然后在一定压力下使两金属表面相互接触并发生塑性变形,从而实现焊接连接。
摩擦焊接过程中,金属表面的接触面积逐渐增大,摩擦产生的热量也不断增加,直至焊接接头形成。
1. 摩擦生热摩擦焊接过程中,通过摩擦产生的热量使金属表面温度升高,热量传递至金属内部,使金属达到塑性状态。
摩擦热的大小与摩擦系数、摩擦速度、摩擦时间等因素有关。
2. 塑性变形摩擦焊接过程中,摩擦产生的热量使金属表面达到塑性状态,金属表面发生塑性变形。
在压力作用下,金属表面相互接触,形成一定的接触面积,为焊接接头提供结合力。
3. 焊接接头形成随着摩擦焊接过程的进行,金属表面接触面积逐渐增大,塑性变形程度加深,焊接接头逐渐形成。
焊接接头质量取决于摩擦焊接过程中的工艺参数和金属材料的性能。
三、摩擦焊接设备摩擦焊接设备主要包括摩擦焊接机、夹具、焊接电源等。
1. 摩擦焊接机摩擦焊接机是摩擦焊接过程中的核心设备,其主要功能是产生摩擦力、实现摩擦焊接过程。
摩擦焊接机可分为机械式、液压式、电磁式等类型。
2. 夹具夹具用于固定焊接件,保证焊接过程中的定位精度。
夹具的设计应满足以下要求:具有较高的定位精度、良好的耐磨性、易于操作和调整。
3. 焊接电源焊接电源为摩擦焊接提供能量,常见的焊接电源有直流电源、交流电源等。
焊接电源的电压、电流等参数应根据焊接工艺和金属材料选择。
四、摩擦焊接工艺参数摩擦焊接工艺参数主要包括摩擦时间、摩擦压力、焊接速度、预热温度等。
1. 摩擦时间摩擦时间是指摩擦焊接过程中摩擦头与工件接触的时间。
摩擦时间过长,会导致焊接接头质量下降;摩擦时间过短,则无法产生足够的摩擦热。
摩擦焊
摩擦焊1摩擦焊接概述:摩擦焊接是在轴向压力与扭矩作用下,利用焊接接触端面之间的相对运动及塑性流动所产生的摩擦热及塑性变形热使接触面及其近区达到粘塑性状态并产生适当的宏观塑性变形,然后迅速顶锻而完成焊接的一种压焊方法。
摩擦焊的分类2摩擦焊原理简介:摩擦焊是利用金属焊接表面摩擦生热的一种热压焊接法。
摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。
此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。
当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。
摩擦焊接是一种优质、高效、节能的固态连接技术,被广泛应用于航空、航天、石油、汽车等领域中。
在摩擦焊接过程中,主轴转速、焊接压力、焊接时间以及焊接变形量是影响焊接质量的重要工艺参数。
对这些参数实现精确的检测和控制,是获得优质焊接接头的保障。
因此,研制一套控制精度高、响应速度快、具有丰富的数据处理能力且易于升一级和扩充的开放式控制系统具有重要意义。
摩擦焊流程示意图摩擦焊具有下列优点:(1)焊接质量好而稳定。
由于摩擦焊是一种热压焊接法,摩擦不仅能消除焊接表面的氧化膜, 同时在较大的顶锻压力作用下, 还能挤碎和挤出由于高速摩擦而产生的塑性变形层中氧化了的部分和其它杂质, 并使焊缝金属得到锻造组织。
(2)摩擦焊不仅能焊接黑色金属、有色金属、同种异种金属, 而且还能焊接非金属材料, 如塑料、陶瓷等。
(3)对具有紧凑的回转断面的工件的焊接,都可用摩擦焊代替闪光焊、电阻焊及电弧焊。
并可简化和减少锻件和铸件, 充分利用轧制的棒材和管材。
(4)焊件尺寸精度高。
采用摩擦焊工艺生产的柴油发动机预燃烧室, 全长最大误差为士0.1毫米。
摩擦焊接工艺
摩擦焊接(Friction Welding)是一种固态焊接工艺,通过在两个工件之间施加力和高速旋转的运动来产生热量,使工件表面发生塑性变形并实现焊接。
以下是摩擦焊接的基本步骤:
1.准备工件:将需要焊接的两个工件准备好,确保表面光洁且无污染物。
2.定位工件:将工件正确定位并夹紧以保持稳定。
3.施加压力:对于径向摩擦焊接,施加轴向压力使两个工件相互贴合。
对于横向摩擦焊接,
施加横向力使两个工件相互接触。
4.开始摩擦:启动旋转机构以使其中一个工件发生高速旋转。
同时,施加足够的压力使工
件之间发生摩擦。
5.加热阶段:由于摩擦产生的热量,工件表面温度升高,达到可塑性变形的温度。
6.摩擦停止:当工件表面温度达到要求后,停止摩擦并保持旋转。
7.施加焊接压力:在停止摩擦后,保持施加足够的压力使工件之间产生高度塑性变形。
8.冷却阶段:继续施加焊接压力的同时,等待工件冷却。
这样可以保持焊点处的固态结合。
9.焊接完成:冷却后,停止施加压力并将工件松开,即可完成摩擦焊接。
摩擦焊接具有许多优点,如快速、高效、无需填充材料和较低的热影响区等。
它被广泛应用于航空航天、汽车制造、管道连接和金属加工等领域。
摩擦焊资料
(2)效率高。对焊件准备通常要求不高,焊接设备自动化程度高,可在流水线上生产,每件 焊接时间以秒计,一般只需零点几秒至几十秒,是其它焊接方法如熔焊、钎焊不能相比的;
(3)节能、节材、低耗。所需功率仅及传统焊接工艺的 1/5~1/15,不需焊条、焊剂、钎料、 保护气体,不需填加金属,也不需消耗电极;
(4)焊接性好。特别适合异种材料的焊接,与其它焊接方法相比,摩擦焊有得天独厚的优势, 如钢和紫铜、钢和铝、钢和黄铜等等;
不锈钢和铁焊接产品
PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿ
20 钢和 45 钢焊接
不锈钢和铁
摩擦焊接主要型号有:
a、连续驱动摩擦焊机:C25、C50、C100、 C200、C250、C320、C500、C630、C800、
C1200
b、惯性摩擦焊机:CG63
c、可根据用户产品的具体要求进行个性化设计最大顶锻力 (KN)从 0.5T-130T(1、
增加位 移控制。2、增加计算机监测系统。3、增加计算机闭环控制系统)
附:主要产品及参数
最大顶锻力 主轴转速
焊机型号
KN
r/min
摩擦焊
特种焊接方法与工艺大作业——摩擦焊焊接技术姓名:***学号: 20班级: 10焊接天津滨海职业学院2011年12月摩擦焊焊接技术一、摩擦焊的定义摩擦焊(Friction Welding,FW)是利用焊件接触的端面相对运动中相互摩擦所产生的热,使端面达到热塑性状态,然后迅速顶锻,完成焊接的一种固相焊接方法。
二、摩擦焊的基本原理摩擦焊焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及附近温度升高并达到热塑性状态,随着顶锻力的作用,界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头。
焊接过程不加填充金属,不需焊剂,也不用保护气体,全部焊接过程只需几秒钟。
两焊件结合面之间在较高的压力下高速旋转相互摩擦产生了两个重要的效果:一是破坏了结合面的氧化膜或其他污物,使纯净金属暴露出来;另一个是摩擦生热,使结合面很快形成热塑性层。
在随后的摩擦扭矩和轴向压力作用下这些破碎的氧化物和部分塑性层被挤出结合面外形成飞边,剩余的塑性变形金属就构成了焊缝金属,最后的顶锻使焊缝金属获得进一步锻造,形成了质量良好的焊接接头。
三、摩擦焊的特点(1)焊接施工时间短,生产效率高。
(2)焊接热循环引起的焊接变形小,焊后尺寸精度高,不用焊后校形和消除应力。
(3)机械化、自动化程度高,焊接质量稳定。
当给定焊接条件后,操作简单,不需要特殊的焊接技术人员。
(4)适合各类异种材料的焊接,对常规熔化下不能焊接的铝-钢、铝-铜、钛-铜、金属间化合物-钢等都可以进行焊接。
(5)可以实现同直径、不同直径的棒材和管材的焊接。
(6)焊接时不产生烟雾、弧光以及有害气体等,不污染环境。
同时,与闪光焊相比,电能节约5-10倍。
四、摩擦焊的应用目前我国摩擦焊技术的应用比较广泛,可焊接直径3.0~120mm的工件以及8000mm²的大截面管件,同时还开发了相位焊和径向摩擦焊技术,以及搅拌摩擦焊技术。
不仅可焊接钢、铝、铜,而且还成功焊接了高温强度级相差很大的异种钢和异种金属,以及形成低熔点共晶和脆性化合物的异种金属。
摩擦焊原理
摩擦焊接的原理
物体和物体摩擦生热这是众所周知的道理。
利用从久远的原始时代就为人所知的摩擦生热这一原理,将金属和金属接合的应用技术之一便是摩擦压接法。
摩擦压接法是将2种母材对合使之相对旋转运动,施加推力使接触面因摩擦而产生热量。
利用该热量使对合面以及附近软化,若达到一定的压接温度,则停止相对运动,再进一步增大压接推力,利用原子间引力的作用进行2种母材的接合的方法。
原子间引力
将因摩擦生热而软化的变形阻力降低的2种母材的原子间距离缩近。
若将接触时的材料表面原子团在拉伸力 '引力' 的作用位置 (B) 缩近,直至该引力与反方向发出的互相作用力 '斥力' 处于平衡状态的位置 (I),则完成接合。
因此,需要在该金属的熔点以下才能形成平衡状态。
即使在不同种类的金属间,若能形成引力和斥力的平衡状态也可完成接合。
摩擦压接的优点
(1)提高质量。
无气泡等焊接缺陷。
再现性高,有稳定的接头。
热变形较少,有较高的尺寸精度。
(2) 能够降低成本。
无需坡口、互锁等焊接前的加工。
可进行异种金属、有色金属的组合。
消耗功率与其他焊接方法相比为其1/5~1/20。
(3) 提高生产性。
操作简单、无需熟练掌握。
通过自动送料机的并用可实现无人化运作。
(4) 改善环境。
CO2排放量减半,防止地球变暖。
无火花、气体,是有益于人体、环保的机械。
摩擦焊
摩擦焊焊接设备
4、夹头 夹头分为旋转和固定两种。为了使夹持牢靠, 不出现打滑旋转、后退、振动等,夹头与工件的 接触部分硬度要高,耐磨性要好。 5、控制系统 控制系统包括焊接操作程序控制和焊接参数 控制等。 程序控制即控制摩擦焊机按预先规定的动作次 序完成送料、夹紧焊件、主轴旋转、摩擦加热、 顶锻焊接、切除飞边和退出焊件等操作。
•
摩擦焊的应用
轴承组——平衡油缸液力平衡旋转活塞,多片式粉末冶金 涂层离合器,滚动导轨和可编程序控制器(PLC)控制等 多项先进技术,使焊机制造水平有了较大的提高。 随着实际生产的需要。国内对于其它型式的摩擦焊机也 进行了研制,如长春焊接设备厂研制了小吨位的惯性焊机, 相位摩擦焊机,哈尔滨焊接研究所研制了具有形变热处理 功能带机上淬火装置及自动去飞边装置的混合式摩擦焊机, 变频调速相位摩擦焊机。哈尔滨量具刃具厂研制了20T双 头摩擦焊机,中国兵器工业第五九研究所研制了小吨位径 向摩擦焊机[5],北京赛福斯特技术有限公司研制了系列搅 拌摩擦焊机等等,这些焊机有的技术指标和制造水平已达 到或接近国外同类焊机的水平。
摩擦焊焊接工艺
4)端面垂直度一般小于直径的1%,过大会造成 不同轴度的径向力。 3、焊接参数 连续驱动摩擦焊的焊接参数主要包括主轴转速、 摩擦压力、摩擦时间、顶锻压力、顶段时间、变 形量等。 (1)转速和摩擦压力 当工件的直径一定时,转速就代表摩擦速度。 一般将达到焊接温度时的转速称为临界摩擦速度, 为了使变形层加热到金属材料的焊接温度,转速 必须大于临界摩擦速度。
摩擦焊焊接工艺
9) 待焊表面应避免渗氮、渗碳等。 10)设计接头形式的同时,还应注意工件的长度、直径 公差、焊接端面的垂直度、平面度和粗糙度。 2、接头表面准备 焊接前还需对焊件作如下处理 1) 焊件的摩擦端面应平整,中心部位不能有凹面或中 心孔,以防止焊缝中含空气和氧化物。 2) 当结合面上具有较厚的氧化层、镀铬层、渗碳层或 渗氮层时,常不易加热或被挤出,焊前应进行清除。 3)摩擦焊对焊件结合面的粗糙度、清洁度要求并不严 格,如果能加大焊接缩短量,则气割,冲剪、砂轮磨 削、锯断的表面均可直接施焊。
磨擦焊基本原理
磨擦焊基本原理磨擦焊是一种新型的焊接技术,它是通过摩擦产生的热量将两个工件连接在一起,而不需要使用焊接剂。
它具有许多优点,如无需使用焊接材料,成本低,焊接质量高,焊接速度快等。
下面我们来详细了解一下磨擦焊的基本原理。
一、摩擦热的产生原理在磨擦焊过程中,两个工件之间由于受到来自旋转摩擦的摩擦力,形成了高强度的接触面,两个工件互相摩擦不断摩擦,摩擦力也随之增大,从而储存了大量的摩擦能量。
随着摩擦的加剧,摩擦热也不断增加,最终将工件接头面加热到高温状态。
这时,工件表面原有的氧化铝分解下来,氧逸出,金属表面裸露,金属直接接触,温度又因金属接触面积变小升高,金属表面在高温下变形,由于受到压力作用,工件逐渐发生变形和塑性变形,直至部分熔化,使得局部冷却时会出现较强的降温速度,而引起了固态金属结构的演变。
二、磨擦焊的过程由于磨擦焊是一种通过摩擦加热的焊接方法,因此其整个过程可以分为三个阶段。
(1)压榨阶段在磨擦焊之初,要将工件之间的摩擦力送到一定程度,从而确保工件之间的表面贴合在一起。
这一阶段是整个焊接过程中最重要的一个阶段,也是最为困难的一个阶段。
由于在工件贴合的初始阶段,工件之间受到的压力非常小,需要将摩擦力逐渐增加,最终使其达到足够的大小,这样才能够确保两个工件之间的表面尽可能地贴合。
在这一阶段中,需要调整摩擦力,并同时调整旋转速度,以便随时掌握好焊接质量。
(2)加热阶段经过压榨阶段之后,接下来的一个阶段就是加热阶段了。
也就是说,在工件之间的摩擦力达到一定程度之后,工件开始逐渐升温,并在短时间内达到一定的温度。
在这个温度范围内,工件的材质和物理状态会随之发生相应的变化,最终达到熔化金属和塑性变形的目的。
常用的加热方式有两种,一种是间歇式加热,即定期加热,一种是连续式加热,即一直加热到所需温度。
(3)焊接阶段在加热阶段之后,接下来就是焊接阶段,此阶段的焊点核心热区的温度渐渐达到熔点,但未完全熔化,液态区域也很小。
摩擦焊相关知识点总结
摩擦焊相关知识点总结一、摩擦焊的原理摩擦焊的原理是利用摩擦热效应和机械压力使焊件表面发生塑性变形,从而实现焊接。
摩擦焊的工作原理可以概括为以下几个步骤:1. 接触阶段:两个焊件通过机械压力贴合在一起,形成接触面。
同时,旋转摩擦焊工具,使摩擦热由焊接接触面产生,达到加热的效果。
2. 加热阶段:摩擦焊工具将焊接接触面加热至塑性变形温度,使接触面材料软化并产生塑性变形。
3. 搅拌阶段:通过机械压力和旋转摩擦焊工具使焊接接触面产生搅拌效应,使焊件之间的金属颗粒混合在一起,实现焊接。
4. 冷却阶段:停止摩擦热效应,等待焊接接触面冷却固化,形成坚固的焊接接头。
摩擦焊的原理可以表述为摩擦热效应、塑性变形和搅拌效应的综合作用。
通过控制摩擦焊的工艺参数,可以达到理想的焊接效果和焊缝质量。
二、摩擦焊的工艺参数摩擦焊的工艺参数是影响焊接质量和性能的重要因素,包括摩擦焊工具的转速、轴向压力、径向力、加热时间和冷却时间等。
下面分别对这些工艺参数进行详细介绍:1. 转速:摩擦焊工具的转速是影响摩擦热效应的重要参数。
较高的转速可以产生更多的摩擦热,加热焊接接触面更快,但也可能导致过高的焊接温度和金属流动速度,导致焊接质量下降。
因此,在实际操作中需要根据焊接材料的性质和厚度选择合适的转速。
2. 轴向压力:轴向压力是通过摩擦焊工具施加在焊接接触面上的压力,是实现摩擦焊的关键参数。
适当的轴向压力可以保证焊接接触面的紧密贴合,增加金属材料的接触面积,有利于摩擦热的传递和焊接质量的提高。
3. 径向力:对于摩擦搅拌焊接,径向力是对工件施加垂直于焊缝方向的压力。
通过施加适当的径向力可以保证焊接接触面的搅拌效果,防止焊接接触面出现空隙和气孔,提高焊接质量。
4. 加热时间:加热时间是摩擦焊加热阶段的持续时间,通过控制加热时间可以控制焊接接触面的温度和软化程度,影响焊接质量和强度。
5. 冷却时间:冷却时间是摩擦焊冷却阶段的持续时间,通过控制冷却时间可以保证焊接接触面充分冷却和固化,形成坚固的焊接接头。
摩擦焊介绍全解
焊接接头质量的影响因素
(2)摩擦时间与摩擦变形量 摩擦时间短,焊接表面加热不完全,
不能形成完整的塑性变形层,街头上的温 度和温度分布不能满足焊接质量要求。摩 擦时间过长,接头温度分布宽,高温区金 属容易过热,摩擦变形量大,飞边大,消 耗的热量多。
焊接接头质量的影响因素
(3)停车时间 由于停车时间对摩擦扭矩、变形层厚度和焊
摩擦焊接过程
(2)不稳定摩擦阶段 从热功率显著增大的b点起,
超过功率极值c点,到功率稳定 的d点。不稳定摩擦阶段是摩擦 加热过程中的一个主要阶段。在 这个阶段中,接头的变形量开始 增大,并以飞边的形式出现。
摩擦焊接过程
(3)稳定摩擦阶段 从摩擦加热功率稳定值d点起 到接头形成最佳温度分布的e 点为止。e点与工件开始停止 旋转的e,,顶锻压力开始上 升的f点以及顶锻变形的开始 点,它们在时间上是重合的。 在这个阶段中,各焊接工艺参 数的变化趋于稳定,只有摩擦 变形量不断增大,飞边增大, 接头的热影响区增宽。
摩擦焊的分类
(6)线性摩擦焊 待焊的两个工件一个固定,另一个以一定的速度作
往复运动,或两个工件作相对往复运动,在压力的作用下
两工件的界面摩擦产生热量,从而实现焊接。
摩擦焊的分类
(7)轨道摩擦焊 轨道摩擦焊是一种新发展起来的焊接方法,主要用于焊
接非圆断面工件。 直线轨道摩擦焊工件沿直线轨道,以一定的振幅和频
主轴电机连续驱动,以恒定的转速旋转,直至达到规定的 摩擦时间或摩擦变形量,工件才立即停止旋转和顶锻焊接
摩擦焊的分类
(2)惯性摩擦焊 工件的旋转端被夹持在飞轮里,焊接过程开始时首
先将飞轮和工件的旋转端加速到一定的速转,然后飞轮与 主电机脱开,同时,工件的移动端向前移动,工件接触后 开始摩擦加热。在摩擦焊加热过程中,飞轮受摩擦扭矩的 制动作用,转速逐渐下降,当转速为零时,焊接过程结束。
摩擦焊知识简介
摩擦焊摩擦焊是利用焊件相对摩擦运动产生的热量来实现材料可靠连接的一种压力焊方法。
其焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及其附近温度升高并达到热塑性状态,随着顶锻力的作用界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头。
连续驱动摩擦焊基本原理1.焊接过程连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。
此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。
当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。
2.摩擦焊接产热摩擦焊接过程中,两工件摩擦表面的金属质点,在摩擦压力和摩擦扭矩的作用下,沿工件径向与切向力的合成方向作相对高速摩擦运动,在界面形成了塑性变形层。
该变形层是把摩擦的机械功转变成热能的发热层,它的温度高、能量集中,具有很高的加热效率。
3.摩擦焊焊接参数主要参数有转速、摩擦压力、摩擦时间、摩擦变形量、停车时间、顶锻时间、顶锻压力、顶锻变形量。
其中,摩擦变形量和顶锻变形量(总和为缩短量)是其他参数的综合反应。
1) 转速与摩擦压力。
转速和摩擦压力直接影响摩擦扭矩、摩擦加热功率、接头温度场、塑性层厚度以及摩擦变形速度等。
转速和摩擦压力的选择范围很宽,它们不同的组合可得到不同的规范,常用的组合有强规范和弱规范。
强规范时,转速较低,摩擦压力较大,摩擦时间短;弱规范时,转速较高,摩擦压力小,摩擦时间长。
2) 摩擦时间。
摩擦时间影响接头的加热温度、温度场和质量。
如果时间短,则界面加热不充分,接头温度和温度场不能满足焊接要求;如果时间长,则消耗能量多,热影响区大,高温区金属易过热,变形大,飞边也大,消耗的材料多。
摩擦焊资料
welcome to [英文版]
Page 1 of 33
首 页 关于我们
新闻中心
您现在的位置是:中国焊接网
焊接工艺
切割工艺
应用实例
供求信息
招聘信息
论坛
联系我们
双击自动滚屏
摩擦焊 发布者:chinaweld 发布时间:2006-2-7 阅读:1616次
摩擦焊
2008-5-26
摩擦焊
Page 5 of 33
6. 线性摩擦焊 线性摩擦焊原理如图8所示。待焊的两个工件一个固定,另一个以一定的速度作往复运动,或两个工件作相对往复运动,在压力F的作用 下两工件的界面摩擦产生热量,从而实现焊接。该方法的主要优点是不管工件是否对称,均可进行焊接。近年来,线性摩擦焊的研究较多, 主要用于飞机发动机涡轮盘与叶片的焊接,还用于大型塑料管道的现场焊接安装。
(3)稳定摩擦阶段(t3) 稳定摩擦阶段是摩擦加热过程的主要阶段,其范围从摩擦加热功率稳定值的d点起,到接头形成最佳温度分 布的e点为止,这里的e点也是焊机主轴开始停车的时间点(可称为e′点),也是顶锻压力开始上升的点(图10的ƒ点)以及顶锻变形量的开 始点。在稳定摩擦阶段中,工件摩擦表面的温度继续升高,并达到1300℃左右。这时金属的粘结现象减少,分子作用现象增强。稳定摩擦阶 段的金属强度极低,塑性很大,摩擦系数很小,摩擦加热功率也基本上稳定在一个很低的数值。此外,其它连接参数的变化也趋于稳定,只 有摩擦变形量不断增大,变形层金属在摩擦扭矩的轴向压力作用下,从摩擦表面挤出形成飞边,同时,界面附近的高温金属不断补充,始终 处于动平衡状态,只是接头的飞边不断增大,接头的热影响区变宽。
7. 搅拌摩擦焊 搅拌摩擦焊(FSW)是英国焊接研究所(简称TWI)于1991年发明的一种用于低熔点合金板材焊接的固态连接技术。它是由摩擦焊派生发 展起来的。由于这种工艺能进行板材的对接,并具有固相焊接接头独特的优点,因而在焊接高强度铝合金板材方面获得成功。 搅拌摩擦焊的工作原理如图9所示,将一个耐高温硬质材料制成的一定形状的搅拌针旋转深入到两被焊材料连接的边缘处,搅拌头调整 旋转,在两焊件连接边缘产生大量的摩擦热,从而在连接处产生金属塑性软化区,该塑性软化区在搅拌头的作用下受到搅拌、挤压,并随着 搅拌头的旋转沿焊缝向后流动,形成塑性金属流,并在搅拌头离开后的冷却过程中,受到挤压而形成固相焊接接头。
摩擦点焊介绍
摩擦点焊介绍摩擦点焊,你可别小瞧了这个听起来有点拗口的技术,它就像一位低调却实力超强的工匠,默默地在工业制造等很多领域发挥着巨大的作用呢。
咱们先来聊聊这摩擦点焊到底是个啥。
你看啊,就好比是两个人在跳舞,他们紧紧地贴在一起,通过快速的旋转和摩擦,产生热量,最后就融合成了一体。
摩擦点焊也是这样的道理,两个金属部件被紧紧地夹在一起,然后在特定的设备作用下高速摩擦,这摩擦就像小火苗一样,不断地产生热量。
这热量可不得了,能让金属的接触面变得软软的,就像你把一块冰放在太阳下晒一会儿,冰就化了,金属也差不多,一软就容易融合在一起啦。
而且这个融合可不是随随便便的,就像榫卯结构一样精准又牢固,一旦焊接成功,那两块金属就像亲兄弟一样,紧紧相连,很难再分开了。
在汽车制造的领域啊,摩擦点焊可是大明星。
汽车那身上到处都是金属部件,车架、车身啥的,这些部件的连接要是不靠谱,那汽车就跟纸糊的似的,根本不敢上路啊。
比如说车门和车身的连接,这就得靠摩擦点焊。
要是用其他焊接方法,可能会有这样那样的问题,但是摩擦点焊就像是一个贴心的小助手,它能快速又精准地把车门和车身连接得稳稳当当。
这就好比你搭积木,每一块积木之间都需要一个合适的连接方式才能让整个建筑稳稳地立起来,摩擦点焊在汽车制造里就是那个最合适的连接方式。
在航空航天领域,那更是对这种技术宠爱有加。
飞机在天上飞,要承受那么大的压力,要是有个零件没焊接好,那可就是天大的危险。
摩擦点焊就像一个守护天使一样,在那些精密的航空部件之间建立起牢固的联系。
那些金属零件在摩擦点焊的作用下,就像是被施了魔法一样,紧密地结合在一起。
你想啊,在那么高的天上,飞机得有多坚强,这背后可少不了摩擦点焊的功劳。
再说说日常的一些小玩意儿的制造吧。
比如说你家里的金属小摆件,可能也是经过摩擦点焊的加工呢。
那些精致的小部件,一个个就像被精心安排好的小零件,在摩擦点焊的帮助下,组成了一个又一个漂亮又实用的小摆件。
这就像做菜一样,各种食材在厨师的巧妙搭配下变成了美味的菜肴,这些小金属部件在摩擦点焊的作用下变成了让人爱不释手的小玩意儿。
摩擦焊介绍全解
摩擦焊焊接工艺特点
(1)焊接施工时间短,生产效率高。 (2)焊接热循环引起的焊接变形小,焊后尺寸精度高,不 用焊后校形和消除应力。 (3)机械化、自动化程度高,焊接质量稳定。当给定焊接 条件后,操作简单,不需要特殊的焊接技术人员。 (4)适合各类异种材料的焊接,对常规熔化下不能焊接的 铝-钢、铝-铜、钛-铜、金属间化合物-钢等都可以进行焊 接。 (5)可以实现同直径、不同直径的棒材和管材的焊接。 (6)焊接时不产生烟雾、弧光以及有害气体等,不污染环 境。同时,与闪光焊相比,电能节约5-10倍。
摩擦焊接过程
(6)顶锻维持阶段 从顶锻压力的最高值h点起, 到接头温度冷却至规定值一下 的i点为止。在这个阶段顶锻 时间、顶锻压力和顶锻速度相 互配合,以获得合适的摩擦变 形量和顶锻变形量。
摩擦焊接过程
总之,在整个摩擦焊接过程中,待焊 的金属表面经历了从低温到高温摩擦加热, 连续发生了塑性变形、机械挖掘、粘接和 分子连接的过程变化,形成了一个存在于 全过程的高速摩擦塑性变形层,摩擦焊接 时的产热、变形和扩散现象都集中在变形 层中。在停车阶段和顶锻焊接过程中,摩 擦表面的变形层和高温区金属被部分挤碎 排出,焊缝金属经受锻造,形成了质量良 好的焊接接头
(3)径向摩擦焊
将一个带有斜面的圆环装在一个对开破口的管子端面上,摩擦焊接 时使圆环旋转,并向两个管端施加径向摩擦力。当摩擦终了时,停止圆 环的转动,并向它施加顶锻压力。
摩擦焊的分类
(4)搅拌摩擦焊 搅拌摩擦焊的工作原理为:将一个耐高温硬 质材料制成的一定形状的搅拌针旋转深入到两被焊 材料连接的边缘处,搅拌头调整旋转,在两焊件连 接边缘产生大量的摩擦热,从而在连接处产生金属 塑性软化区,该塑性软化区在搅拌头的作用下受到 搅拌、挤压,并随着搅拌头的旋转沿焊缝向后流动, 形成塑性金属流,并在搅拌头离开后的冷却过程中, 受到挤压而形成固相焊接接头。
摩擦焊接是一种什么方法
摩擦焊接是一种什么方法摩擦焊接是一种固态焊接方法,使用机械摩擦来产生热量来连接两个或多个工件的方法。
在摩擦焊接过程中,不需要加热器、流体介质或电弧来产生热量,而是通过两个或多个工件之间的摩擦运动产生的热量来熔化工件表面局部区域,然后形成焊缝。
摩擦焊接的原理是通过施加压力让接触面发生摩擦运动,摩擦热将接触面局部区域的温度升高到熔点以上,然后停止摩擦运动,继续施加压力使熔融的材料在固态条件下形成焊缝。
摩擦焊接的主要参数包括焊接速度、摩擦时间、摩擦力和压力等。
与传统的熔化焊接方法相比,摩擦焊接具有以下优点:首先,摩擦焊接可以实现固态焊接,不需要使用填充材料或添加剂。
因此,焊缝区域的组织、力学性能和腐蚀性能接近母材,而且焊接过程中不会产生气孔、裂纹和热变形等缺陷。
其次,摩擦焊接的焊接速度相对较快,一般在几秒钟到几十秒钟之间,可以在短时间内完成焊接过程。
这种快速的焊接速度可以提高生产效率,减少生产成本。
再次,摩擦焊接可以焊接不同种类的材料,包括金属与非金属材料之间的焊接。
这种多种材料的焊接可以扩展材料的应用范围,并且可以在不同工业领域得到广泛应用。
此外,摩擦焊接还可以实现大尺寸材料的焊接。
由于焊接过程中没有熔化和冷却过程,所以可以焊接较大尺寸的工件,如航天器的燃料箱和石油的储罐等。
在实际应用中,摩擦焊接具有广泛的应用领域。
它被广泛应用于汽车制造、航空航天、铁路交通、海洋工程、电力设备、石油化工、核工业和电子电器等领域。
例如,在汽车制造业中,摩擦焊接可以用于焊接车身构件、发动机零部件和悬挂系统等;在航空航天领域,摩擦焊接可以用于焊接航空发动机叶片和航天器燃烧室等。
总而言之,摩擦焊接是一种固态焊接方法,它通过机械摩擦产生的热量来连接工件。
与传统的熔化焊接方法相比,摩擦焊接具有独特的优点,并且在各个领域得到广泛应用。
金属摩擦焊接技术详解
金属摩擦焊接技术详解
金属摩擦焊接技术是一种先进的焊接工艺,其主要特点是无需添加外部焊接材料,通过金属间的相互摩擦热和塑性变形来实现焊接。
该工艺具有以下优点:焊缝质量高,焊接接头强度好,无熔融物质,节能环保等。
本文将详细介绍金属摩擦焊接的原理、设备和工艺流程,并结合实际案例分析其应用领域和未来发展趋势。
同时,我们还将介绍一些常见的金属摩擦焊接缺陷及其防治措施,以便读者更全面地了解这一焊接技术。
- 1 -。
摩擦焊
摩擦焊焊接工艺特点
(1)焊接施工时间短,生产效率高。 (2)焊接热循环引起的焊接变形小,焊后尺寸精度高,不 用焊后校形和消除应力。 (3)机械化、自动化程度高,焊接质量稳定。当给定焊接 条件后,操作简单,不需要特殊的焊接技术人员。 (4)适合各类异种材料的焊接,对常规熔化下不能焊接的 铝-钢、铝-铜、钛-铜、金属间化合物-钢等都可以进行焊 接。 (5)可以实现同直径、不同直径的棒材和管材的焊接。 (6)焊接时不产生烟雾、弧光以及有害气体等,不污染环 境。同时,与闪光焊相比,电能节约5-10倍。
摩擦焊的分类
(6)线性摩擦焊 待焊的两个工件一个固定,另一个以一定的速度作 往复运动,或两个工件作相对往复运动,在压力的作用下 两工件的界面摩擦产生热量,从而实现焊接。
摩擦焊的分类
(7)轨道摩擦焊 轨道摩擦焊是一种新发展起来的焊接方法,主要用于焊接非圆断面 工件。
摩擦焊接过程
(1)初始摩擦阶段 (2)不稳定摩擦阶段 (3)稳定摩擦阶段 (4)停车阶段 (5)纯顶锻阶段 (6)顶锻维持阶段
摩擦焊接过程
总之,在整个摩擦焊接过程中,待焊 的金属表面经历了从低温到高温摩擦加热, 连续发生了塑性变形、机械挖掘、粘接和 分子连接的过程变化,形成了一个存在于 全过程的高速摩擦塑性变形层,摩擦焊接 时的产热、变形和扩散现象都集中在变形 层中。在停车阶段和顶锻焊接过程中,摩 擦表面的变形层和高温区金属被部分挤碎 排出,焊缝金属经受锻造,形成了质量良 好的焊接接头
摩擦焊
成员 朱剑荣 阮龙春 黄书杰 黄秋庭 赵子贵
摩擦焊
• • • • • 摩擦焊原理 摩擦焊分类 摩擦焊的过程 摩擦焊的工艺特点 摩擦焊焊接接头的影响因素
摩擦焊原理
一、摩擦焊的原理及分类 (一)摩擦焊原理 摩擦焊:是利用焊件接触端面相对运动中相互摩擦 所产生的热来实现材料可靠连接的一种压力焊方法。 其焊接过程是在压力的作用下,相对运动的待焊材 料之间产生摩擦,使界面及附近温度升高并达到热塑性 状态,随着顶锻力的作用,界面氧化膜破碎,材料发生 塑性变形与流动,通过界面元素扩散及再结晶冶金反应 而形成接头
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Contents
9.1
摩擦焊基本原理 摩擦焊分类 摩擦焊接过程分析 摩擦焊规范参数
9.2
9.3
9.4
9.5
摩擦焊接头的缺陷及检测
§ 9 .1 摩擦焊基本原理
图9一1是摩擦焊的基本形式,两个圆断面的金属 工件摩擦焊前,工件1夹持在可以旋转的夹头上, 工件2夹持
图9,1摩擦焊原理示意图 1一工件;2一工件;3一旋转夹头;4一移动夹头 (a)形成相对转动〔b) 施加压力两界面接触(C)进行焊接(d)焊接结束
由上式可见:
(l)焊件直径越大,所需的摩擦加热功率也越人。
(2)焊件直径确定时,所需摩擦加热功率将取决于主轴转速和摩 擦压力。
2.摩擦时间 在P、n 确定的前提下, 适当的摩擦时间是获得结合 面均匀加热温度和恰当变形 量的条件,这时接头区沿轴 向有一层恰当厚度的变形层 及高温区,但飞边较小,而 在随后的顶锻阶段能产生足 够大的轴向变形量,变形层 沿结合面径向有足够扩展,
秒钟时间;当n 较高、p较小,t 将较长,例如可达40s显 然对于小焊件宜尽可能采用短时间参数,大端面焊件则只
可用弱参数。此外,不同材质的焊件,t的匹配条件也不一
样,例如高合金钢摩擦焊,摩擦压力和时间都应增加。 3. 停车时间及顶断延时 一般应在制动停车0.1~1s后进行顶锻,其间转速降 低,摩擦阻力和摩擦扭矩增大,轴向缩短速度也增大。调
同种材质摩擦焊时,最初界面接触点上产生犁削一粘 合现象。由于单位压力很大,粘合区增多,继续摩擦使这 些粘合点产生剪切撕裂,金属从一个表面迁移到另一个表 面。 界面上的犁削一粘合一剪切撕裂过程进行时,摩擦力
矩增加使界面温度升高。当整个界面上形成一个连续塑性
状态薄层后,摩擦力矩降低到一最小值。界面金属成为塑 性状态并在压力作用下不断被挤出形成飞边,工件轴向长
都集中在变形层中,稳定摩擦时变形层金属在摩擦扭矩和
轴向压力的作用下,从摩擦表面挤出形成飞边,同时又被 附近高温区的金属所补充,始终处于动平衡状态。
在制动和顶锻焊接过程中,摩擦表面的变形层和高温
区金属被部分挤碎排出,焊缝金属经受锻造,形成了质量 良好的焊接接头。
9.3.2 摩擦焊热源的特点
摩擦焊的热源就是金属摩擦焊接表面上的高速摩擦
剧上升现象。 惯性摩擦焊一般是在恒定压力下完成(也有采用二级 压力方法,即达到初速n0 后先施加压力P1,当转速下降 至某个值时再增加压力至P2保持到焊接结束)。
惯性摩擦焊典型的特性曲线见图9一4。Ⅰ阶段为焊接 开始,界面接触并出现较小的扭矩峰值,Ⅱ阶段是以扭矩 平稳为特征的加热阶段,Ⅲ阶段是焊接即将结束,其特征 是出现较大的扭矩峰值。
图9一3连续驱动摩擦 焊典型特性曲线
图9一4惯性摩擦焊 典型特征曲线
ContentsLeabharlann § 9.3 摩擦焊接过程分析
这里我们主要讨论应用最广泛的结构钢 连续驱动摩擦焊的焊接过程及其热源特点。
9.3.1 焊接过程
摩擦焊接过程,是焊接表面金属在一定的空间和时间
内,金属状态和性能发生变化的过程。连续驱动摩擦焊特 性曲线如图9一3,摩擦焊接过程的一个周期,可分成摩
变形量等。这些参数取决于工件的横截面积、金属的
熔点和导热系数、热循环过程中冶金性能的变化(特 别是在异种金属焊接时)等因素。一下对各种工艺参
数进行详细说明。
1. 转速和摩擦压力
摩擦焊接过程的加热来源于摩擦能,其加热功率为
式中 , R — 焊件的工作半径(mm); n — 主轴转速(r/min); P—摩擦压力(MPa); μ—摩擦系数,其值在摩擦过程中是变化的,数值在0.2~2 之间; Kf,—常数。
9.2.3 惯性摩擦焊 惯性摩擦焊是在焊接过程开始前输人焊接所需的全 部机械能。一工件固定不转动,转动的工件装在带有可更
换的飞轮组的转动夹具上,整个转动部分被驱动到转速
n0后脱开驱动。使两工件接触并施加轴向压力P,焊接过 程开始。飞轮的能量通过工件结合面上的摩擦迅速消耗,
转速减至零,焊接结束。在转动停止前摩擦扭矩有一个急
9.4.2 惯性摩擦焊工艺参数 主要有三项参数:飞轮转动惯量、飞轮初速、轴向压力。
前两项参数决定焊接的总能量,压力的大小一般取决于被
焊材质和焊接界面的面积。 1.飞轮转动惯量 飞轮转动惯量取决于飞轮的形状、直径、质量(包括 飞轮、卡爪、轴承和传动部件)。在焊接循环的任一瞬间,
其能量可由下式确定
E = 54.7×10-4 I· n2 = 54.7 ×10-4 W· R2· n2 (9-3) 式中 , E—能量 (j); I —惯性矩,I = W· R W —飞轮系统的质量(kg); n - 瞬时转速(r · min-1)。
摩擦加热过程和顶锻焊接过程的过渡阶段,具有双重特点。
主轴停止旋转后,顶锻力仍要维持一段时间,直至接头温 度冷却到规定值为止。
总之,在摩擦焊接过程中,金属摩擦表面从低温到高 温变化,而表面的塑性变形、机械挖掘、粘结和分子作用 四种摩擦现象连续发生。 在整个摩擦加热过程中,摩擦表面上都存在着一个高 速摩擦塑性变形层。摩擦焊的发热、变形和扩散现象主要
从而使它的工艺柔性受到限制。 搅拌摩擦焊技术及其工程应用的开发进展很快,已在 新型运载工具的新结构设计中开始采用,如铝合金高速船 体结构、高速列车结构及火箭箭体结构等。
9.2.2 连续驱动摩擦焊 连续驱动摩擦焊是一工件固定不转动,另一工件被 驱动机构驱动到恒定转速n。在不转动的工件上施以轴向 压力P1推向转动工件。两工件相接触,焊接过程开始。 转速仍保持不变。经过一定时间,界面温度达到材料锻造 范围,转动工件脱开驱动并制动,转速从n降至零。在制 动过程中轴向压力常增大至P2使界面金属产生顶锻,并 保持到工件冷却。在顶锻过程中界面热塑材料被挤出界面 形成飞边。连续驱动摩擦焊典型特性曲线见图9一3。
焊可以使其焊接性能大为改
善。与氢弧焊接头相比,同
图9.2搅拌摩擦焊原理
一种铝合金搅拌摩擦焊头的强度高15%~20%,伸长 率高1倍,断裂韧度高30%,接头区为细晶组织,焊缝
中无气孔、裂纹等缺陷;此外,焊件焊后残余变形很小,
焊缝中的残余应力很低。 这种方法的缺点是,为了避免搅拌引起的振动力使焊
件偏离正确的装配方位,在施焊时必须把焊件刚性固定,
度也不断缩短。
异种金属的结合机理比较复杂,除了犁削一粘合一剪 切撕裂物理现象外,金属的物理与力学性能、相互间固溶
度及金属间化合物等,在结合机理中都会起作用。
焊接时由于机械混合和扩散作用,在结合面附近很窄 的区域内有可能发生一定程度的合金化。这一薄层的性能
对整个接头的性能会有重要影响。机械混合和相互镶嵌对
在能够向前移动加压的夹头上。焊接开始时,工件1首先以
高速旋转,然后工件2向工件1方向移动、接触,并施加足
够大的摩探压力,这时开始了摩擦加热过程,摩擦表面消耗 的机械能直接转换成热能。
摩擦一段时间后,接头金属的摩擦加热温度达到焊接
温度,立即停止工件1的转动,同时工件2向前快速移动, 对接头施加较大的顶锻压力,使其产生一定的顶锻变形量。 压力保持一段时间后,松开两个夹头,取出焊件,全部焊接 过程结束,通常全部焊接过程只要2~3 S的时间。 在整个焊接过程中,摩擦界面温度一般不会超过材料熔 点,所以摩擦焊属于固相焊接。
塑性变形层。它是以两工件摩擦表面为中心的金属质点, 在摩擦压力和摩擦扭矩的作用下,沿工件径向与切向力的 合成方向做相对高速摩擦运动的塑性变形层。这个变形层 是把摩擦的机械功率转变成热能的发热层。由于它的温度 最高,能量集中,又产生在金属的焊接表面,所以加热效 率很高。作为一个焊接热源,主要参数是功率和温度。
节顶锻延时则可以调整后峰值扭矩及变形层厚度。
4. 顶锻压力及顶锻变形量
顶锻是为了挤碎和挤出变形层中氧化了的金属和其它
有害杂质,并使接头区金属得到锻压、结合紧密、晶粒细 化、性能提高。顶锻变形量是锻压程度的主要标志。
顶锻力大小取决于焊件材质、温度及变形层厚度,也
跟摩擦压力有关。材质高温强度高、接头区温度低或变形 层较薄时,顶锻压力应取大一些,其范围为100~ 200MPa。一般顶锻压力宜为摩擦压力的2~3倍,顶锻 量为1~6mm,顶锻速度宜为10~40(mm/h) 。
擦加热过程和顶锻焊接过程两部分。
(1)摩擦开始时,由于工件摩擦焊接表面不平,以及存在
氧化膜、油锈、灰尘和吸附气体使得摩擦系数很大,随着
摩擦压力逐渐增大,摩擦加热功率慢慢增加,使凹凸不平的 表迅速产生塑性变形和机械挖掘现象。塑性变形破坏了摩
擦表面金属晶粒,成为一个晶细小的变形层。沿变形层附
近的母材也顺摩擦方向产生塑性变形。金属相互压人部分 挖掘,使摩擦表面出现同心圆痕迹,这样又增大了塑性变形。
金属焊接表面的摩擦不仅产生热量,面且还能破坏
和清除表面的氧化膜。变形层金属的封闭、挤出和不断被
高温区金属更新,可以防止焊口金属的继续氧化。顶锻焊 接后,部分变形层金属像填料一样留在接头中会影响焊接 质量。
Contents
§ 9.4 摩擦焊规范参数
9.4.1连续驱动摩擦焊工艺参数
连续驱动摩擦焊主要工艺参数有转速、摩擦压力、 摩擦时间、停车时间和顶锻时间以及顶锻压力和顶锻
(2)摩擦压力增大,摩擦破坏了焊接金属表面,使纯
净的金属接触,接触面积也增大,而焊接表面温度的升高, 使金属的强度有所下降,塑性和韧性却有很大提高,这些
因素都使摩擦系数增大,摩擦加热功率迅速提高,扭矩也
出现一个峰值。 焊接表面温度继续升高时,金属的塑性增高,但强 度和韧性都显著下降,摩擦加热功率也迅速降低到稳定值。 这一过程中,摩擦表面的机械挖掘现象减少,振动降低, 表面逐渐平整,开始产生金属的粘结现象。高温塑性状态 的金属颗粒互相焊合后,又被工件旋转的扭力矩剪断,并 彼此过渡。
结合也会有一定作用。这种复杂性使得异种金属的摩擦焊 接很难预料。