大学物理B复习要点
大学物理B1复习资料(含答案)
质 点 运 动 学选择题[ ]1、某质点作直线运动的运动学方程为x =6+3t -5t 3 (SI),则质点作A 、匀加速直线运动,加速度沿x 轴正方向.B 、匀加速直线运动,加速度沿x 轴负方向.C 、变加速直线运动,加速度沿x 轴正方向.D 、变加速直线运动,加速度沿x 轴负方向.[ ]2、某物体的运动规律为2v dv k t dt=-,式中的k 为大于零的常量.当0=t 时,初速v 0,则速度v 与时间t 的函数关系是A 、0221v kt v +=B 、0221v kt v +-= C 、021211v kt v +=, D 、02211v kt v +-= [ ]3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)A 、dt dvB 、R v 2C 、R v dt dv 2+D 、 242)(Rv dt dv + [ ]4、关于曲线运动叙述错误的是 A 、圆周运动的加速度都指向圆心B 、圆周运动的速率和角速度之间的关系是ωr v =C 、质点作曲线运动时,某点的速度方向就是沿该点曲线的切线方向D 、速度的方向一定与运动轨迹相切[ ]5、以r ρ表示质点的位失, ∆S 表示在∆t 的时间内所通过的路程,质点在∆t 时间内平均速度的大小为A 、t S ∆∆;B 、t r ∆∆C 、t r∆∆ρ; D 、t r∆∆ρ1-5:DCDAC (第二题答案C 已改为正确的)填空题6、已知质点的运动方程为26(34)r t i t j =++r rr (SI),则该质点的轨道方程为 2)4(32-=y x ;s t 4=;方向 与x 轴夹角为arctan(1/16) 。
7、在xy 平面内有一运动质点,其运动学方程为:j t i t r ϖϖϖ5sin 105cos 10+=(SI ),则t 时刻其速度=v ϖ j t i t ϖϖ5cos 505sin 50+- ;其切向加速度的大小t a 0 ;该质点运动的轨迹是 10022=+y x 。
大学物理实验复习资料
《大学物理实验B 》复习思考题第一章 误差、不确定度和数据处理的基本知识1、 误差的概念,误差的分类。
2、 测量不确定度的概念是什么?如何对测量不确定度进行评定?怎样对测量结果进行报道?)1()()(12--===∑=n n x x n S S x u ni i xx AC x u B 仪仪∆==σ)(2222)3()()()()(仪∆+=+=x B A C S x u x u x u (p=68.3%)3、测量结果有效数字位数是如何确定的?(1)不确定度的位数一般只取一位(而且只入不舍),若首位是1时可取两位。
相对不确定度为百分之几,一般也只取一、两位。
(2)不确定度决定了测量结果有效数字的位数,即测量结果的有效数字最后一位应与不确定度所在位对齐;若不确定度取两位,则测量结果有效数字的末位和不确定度末位取齐。
(3)有效数字尾数舍入规则:尾数“小于五则舍,大于五则入,等于五凑偶”,这种舍入法则使尾数舍与入的概率相同。
(4)同一个测量值,其精度不应随单位变换而改变。
4、作图法是如何处理数据的?(1)作图规则①作图一定要用坐标纸;②画坐标纸大小和确定坐标轴分度;③画出坐标轴;④数据点; ⑤连线; ⑥标注图名.(2)图解法求直线的斜率和截距求直线斜率和截距的具体做法是,在描出的直线两端各取一坐标点A (x 1,y 1)和B (x 2,y 2),则可从下面的式子求出直线的斜率a 和截距b 。
1212x x y y a --=, 122112x x y x y x b --= A 、B 两坐标点相隔要远一些,一般取在直线两端附近(不要取原来的测量数据点),且自变量最好取为整数。
5、逐差法是如何处理数据的?实验2 示波器的原理与应用1.从CH1通道输入1V 、1KHz 正弦波,如何操作显示该信号波形?2.当波形水平游动时,如何调节使波形稳定?3.如何测量波形的幅度与周期?4.调节什么旋纽使李萨如图稳定?5.当示波器出现下面不良波形时,请选择合适的操作方法,使波形正常。
大学物理B2复习要点
大学物理B2期末复习要点一、电势1、真空中的电势(1)理解电势的定义、零电势位的相对意义;(2)用微元点电荷的电势积分,计算简单的均匀带电线产生的电势;(3)用均匀带电面的电势公式和叠加原理计算球对称电荷的电势;2、静电场中导体的电势(1)理解静电平衡导体的等势性;(2)用静电平衡条件计算球对称导体的电荷分布;(3)计算平板电容器、球形电容器的电容量;3、静电场中的电介质,电场能量(1)计算球对称静电场中有球对称均匀电介质层时的电势和电场能;(2)计算平板电容器,充满电介质前后的电容量、电势差和电场能;(3)已知电容和电量计算电场能量。
二、电流的磁场1、用毕萨定律,求直线、圆环、圆弧的各种连接电流的磁感应强度;2、用安培环路定理,计算轴对称电流的磁感应强度;三、运动点电荷、线电流在磁场中的受力1、匀强磁场中点电荷在垂直于磁场平面内的受力和运动轨迹的计算;2、匀强磁场中,线电流受力的计算;判断平面闭合线电流在磁场中的运动趋势。
四、电磁感应、磁场能量1、法拉第电磁感应定律的意义;2、匀强磁场或无限长直电流磁场中,直导线运动的电动势计算、高低电势判断;3、匀强磁场中,闭合平面导线回路转动时感应电动势的计算;4、计算电流变化的长直螺线管内外的感生电场;5、自感和互感系数的概念,长直螺线管自感系数的计算和应用;五、光的干涉1、光程和光程差的概念和计算;2、在各种情况下双缝干涉的相关计算;;3、半波损失的概念和条件,等厚膜的增透与增反的相关计算4、在各种情况下劈尖干涉的相关计算5、与迈克尔孙干涉条纹移动有关的计算六、光的衍射1、半波带的概念和半波带数的计算;2、与单色光的单缝衍射条纹相关的计算3、光栅衍射主极大的计算;光栅衍射的缺级条件和计算。
大学物理B2复习知识点
大学物理B2复习知识点小题知识点1.简谐运动过程中小球走过不同路程所需的运动时间。
(P38习题9-4、P39习题9-17)2.简谐运动的动能、势能和机械能的变化规律。
(P15例题、P38习题9-5)3.两个同方向同频率简谐振动合成后,合振动的振幅、初相位的判断方法。
(P38习题9-6、P41习题9-31)4.由波动方程判断机械波的振幅、频率、周期、初相位、波速等物理量。
(P89习题10-1、10-2)5.由波形图判断其上各点的振动方向。
(88页问题10-7)6.两列波干涉的基本条件。
(61页文字)7.驻波的特点(P67页文字、88页问题10-14)8.分析薄膜干涉的光程差,尤其是半波损失引起的附加光程差。
(P177习题11-2、P112例2)9.劈尖干涉的条纹特征,劈尖几何尺寸发生变化时条纹的变化情况。
(P177习题11-3、P115例1)10.薄膜干涉中增透膜和增反膜厚度的计算。
(P112例2、P179习题11-16)11.夫琅禾费单缝衍射中波带法的分析方法。
(P126-128文字,P178习题11-5)12.布儒斯特定律的内容,当光线以布儒斯特角入射时,入射角、反射角、折射角之间的关系。
(P147-148文字、P182习题11-37)13.理想气体物态方程、压强、温度及平均平动动能之间的关系。
(P220习题12-1、P221习题12-10、P221习题12-11)14.刚性单原子分子和刚性双原子分子理想气体的自由度分别是多少、能量均分定理和理想气体的内能如何计算。
(P220习题12-2、P221习题12-13)15.温度的意义。
(P195第一段文字)16.循环过程中的热力学第一定律,内能、功和热量之间的关系。
(P271习题13-4、P272习题13-15)17.卡诺热机的效率以及功和热量的计算。
(P271习题13-5、P275习题13-27)18.等体过程做功的特点以及热量的计算。
(P271习题13-3、P272习题13-12)19.热力学第二定律的内容,可逆过程和不可逆过程的概念。
大学物理B复习公式提纲
《大学物理》B 复习公式必会第一章 质点运动学一、基本要求:1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。
会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。
2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。
二、内容提要: 1、 位置矢量:k z j y i x r ++=位置矢量大小:222z y x ++=位置矢量方向:=αc o s=βc o s=γc o s2、 运动方程:位置随时间变化的函数关系t z t y t x t )()()()(++=3、 位移∆:k z j y i x r ∆+∆+∆=∆无限小位移:k dz j dy i dx r d ++=4、 速度:平均速度:k tz j t y i t x ∆∆+∆∆+∆∆=瞬时速度:kdt dz j dt dy i dt dx v ++=5、 加速度:瞬时加速度:kdtz d j dt y d i dt x d k dt dv j dt dv i dt dv a z yx 222222++=++=6、 圆周运动: 角位置θ 角位移θ∆角速度dtd θω=角加速度22dt d dt d θωα==在自然坐标系中:tn t n e dt dv e r v a a a +=+=27、 匀加速直线运动与匀角加速圆周运动公式比较:ax v v at t v x atv v 221202200+=+=+= αθωωαωθαωω221202200+=+=+=t t t三、 解题思路与方法:质点运动学的第一类问题:已知运动方程通过求导得质点的速度和加速度,包括它沿各坐标轴的分量;质点运动学的第二类问题:首先根据已知加速度作为时间和坐标的函数关系和必要的初始条件,通过积分的方法求速度和运动方程,积分时应注意上下限的确定。
第二章 牛顿定律一、 基本要求:1、 理解牛顿定律的基本内容;2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。
大学物理B复习要点
大学物理B(2)知识点与练习题第八章电磁场与麦克斯韦电磁场方程组基本要求:掌握:1.电磁感应定律的应用2.动生电动势的计算3.感生电场的产生与特点4.自感系数、自感电动势,互感系数、互感电动势的计算5.位移电流的产生与大小,全电流定律典型例题:教材:P例8-2,例8-3,指导书:P148例8-9306练习题:计算题:教材:P349 8-1、8-2、8-3、8-4、8-5,P351 8-14。
指导书:P159 8、9选择题:指导书:P154 1、2,P155 4、5、7、8,P156 12;填空题:指导书:P157 5、7、9,P158 10、11。
第九章热力学基础基本要求:掌握:1.理想气体的状态方程2.热力学第一定律在等体、等压、等温、绝热等过程中的应用3.热机效率的计算方法,卡诺循环的效率4.热力学第二定律典型例题:教材:P例9-5,P31例9-6,指导书:P170例9-5,P170例9-625练习题:计算题:教材:P43 9-4,9-7,P44 9-14,P45 9-17、9-19指导书:P175 1、2,P176 4、7。
选择题:指导书:P173 1、2、3,P174 4、5、6、8、10;填空题:指导书:P174 1、2、P174 4、5、6、8第十章气体动理论基本要求:掌握: 1. 麦克斯韦速率分布律、三种统计速率2. 统计规律、理想气体的压强和温度3. 理想气体的内能、能量按自由度均分定理典型例题:教材:P例10-2,指导书:P182问题2、问题3、问题750练习题:计算题:指导书:P194 7选择题:指导书:P192 2、3、5,P193 6、8、9,填空题:指导书:P193 2,P194 4、6、8、10。
第十一章振动学基础基本要求:掌握:1. 简谐运动的基本特征和表达式、振动的相位、旋转矢量法2. 简谐运动的能量3. 一维简谐运动的合成典型例题:教材:P例11-1,P103例11-3,P106例11-4,指导书:P203例11-299练习题:计算题:教材:P128 11-2、11-3、11-4、11-5;P130 11-16;指导书:P2113、6;P2152、3。
大学物理B期末复习总结要点.ppt
(-)逆转时向针n
d sin
斜入射可以获得更高级次的条纹(分辨率高)
6
3. X射线在晶体上的衍射
晶面 d•
•
••
••
••
••
• •
•• •• •• ••
1 2 •• ••
•• ••
••
布喇格公式——
2d sinΦ k (极大)
k 1,2,
4.分辨本领
最小分 辨角
透镜 R 1 D
S1 *
D
0
X – 射线
0
0
0 c(1 cos ) 与散射物质无关
— 康普顿散射波长 c— 康普顿波长
轻元素 I I0 ,重元素 I I0 。 16
四. 物质波、波函数ψ
物质波相速u =(c2/v) v(书P26例1.6)
物质波(德布罗意波)波长 h h
p mv
Ψ 是概率波, 2 表示在空间出现的概率密度
n 型半导体
空带
四价的本征半导掺 入少量五价的杂质, 形成电子导电。
施主能级
满带
ED
Eg
34
P型半导体
空带
四价的本征半导掺
入少量三价的杂质, 受主能级
Eg
形成空穴导电。 5. p-n 结
满 带 EA
p-n 结处能带出现弯曲现象
• 具有单向导电性
• 可实现粒子数反转
• p-n 结组合有放大作用 — 复习总结完 —35
可以存在的纵模频率:
k
c
k
k
c 2nL
相邻纵模的频率间隔:
k
c 2nL
30
八. 费米子和玻色子 费米子和玻色子全同性的粒子。
1.费米子 —自旋 s 是半整数的粒子 波函数是反对称的,服从泡利不相容原理。 2.玻色子—自旋s是0或整数的粒子 波函数对称,不受泡利不相容原理的制约。
大学物理B(80学时)
《大学物理(80学时)》教学大纲一、课程基本信息课程名称:大学物理课程类别:大理必修课程学分/学时:5/80适用对象:土木、应化,化工等专业开课单位/教研室:材化学院/光源与照明教研室二、课程设置目的与教学目标1、物理学是研究物质的基本结构,相互作用和物质最基本、最普遍的运动形式及其相互转化规律的科学。
它是自然科学的许多领域和工程技术的基础。
以物理学的基础知识为内容的《大学物理》课程,它所包括的经典物理、近代物理及它们在科学技术上应用的初步知识等都是一个工程技术人员和中小学教育工作者所必备的。
因此,《大学物理》课程是我校各专业学生的一门重要必修基础课。
《大学物理》课程的学习,一方面在于为学生较系统地打好必要的物理基础,另一方面,使学生初步学习科学的思想方法和研究问题的方法。
这些都起着开阔思路、激发探求和创新精神、增强适应能力、提高人才素质的重要作用。
由于本课程是在低年级开设的,因而它在使学生树立正确的学习态度,掌握科学的学习方法,培养独立获取知识的能力,以尽快适应大学阶段的学习规律等方面也起着重要的作用。
此外,学习物理知识、物理思想和物理学的研究方法,有助于培养学生建立辩证唯物主义世界观。
2、教学目标:(1)使学生获得系统的物理学基础知识。
通过本课程的教学,应使学生对物理学所研究的各种运动形式以及它们之间联系,有比较全面和系统的认识;对本课程中的基本理论、基本知识和基本技能能够正确地理解,并具有初步应用的能力。
(2)使学生了解并学习使用物理学的科学研究方法,培养学生逻辑思维能力和应用数学知识解决物理问题的能力(3)在大学物理的教学过程中,应逐步培养学生现代科学的自然观、辩证唯物主义世界观,培养学生严谨求实的科学态度和品格.提高他们的科学素质.四、教学基本要求先修课程:高等数学。
本课程教学采用课堂讲授与学生自学、理论讲授与习题讨论、理论讲授与演示实验相结合的教学方法教学。
(1)本课程以经典物理学的基础知识为主,适当选取近代物理学的知识.力求结合各专业特点组织教材和进行教学.(2)在教学过程中,要加强教学方法和手段的研究.激发学生的求知欲,提高学生学习的主动性和积极性.(3)习题与考核——习题与考核是引导学生学习、检查教学效果的重要环节,也是体现本课程要求的标志。
大学普通物理B(下)复习资料。
x − x0 y( x, t ) = Acos ω (t m ) +ϕ u
说明: 说明: 1) “±”反映波的传播方向; 反映波的传播方向; ± 反映波的传播方向 2) x0 是波源坐标; 是波源坐标; 是波源的振动初相位。 3) ϕ 是波源的振动初相位。
波函数物理意义: 波函数物理意义:
时的波形曲线, 例:如图为一平面简谐波在t=0时的波形曲线,波 如图为一平面简谐波在 时的波形曲线 线上x=1m处P点的振动曲线如图所示,求波函数。 点的振动曲线如图所示, 线上 处 点的振动曲线如图所示 求波函数。 y(m) u y(m) 0.2 0.2 P o 1 2 x(m) o 0.1 0.2 t(s) 解:由波形曲线 由P点振动曲线 点振动曲线
x 若 y = Acosωt − u
λ
∆x
x
∂y x v= = −Aωsin ωt − ∂t u ∂2 y x 2 a = 2 = −Aω cosωt − ∂t u
一般计算类型: 一般计算类型 1、比较标准波动表达式得到: A, ω, 、比较标准波动表达式得到:
C
5m
B A
x0 = 5
9m
D
x
yA振 = 3cos 4πt
(2) 以 B 为原点 )
波函数: 波函数:
x − x0 y = Acosωt − +ϕ u
x x −5 y = 3cos 4π t − = 3cos4π t − +π 20 20
Ek = Ep = 0
平衡位置处 y = 0, Ek = Ep
⇒ Emax
波的能量密度和能流密度 能量密度: 能量密度:单位体积中的波动能量
大学物理B-复习资料PPT课件
为v
( A)
,它们之间的关系必定有
| v | v, | v| v.
(B) | v | v, | v| v.
[D]
(C) | v | v, | v| v.
(D) | v | v, | v| v.
瞬时速度的大小等于瞬时速率;平均速度的大小不一定 等于平均速率,如质点沿圆周运动一周。
rA r
rB 0
z
x
AB r rB rA
注意位移与路程的区别。
A
B
A
3
速度
研究质点运动,不仅知道质点的位移,还有必要知道在多 长的时间里有这一位移,即需知道物体运动的快慢程度。为比 较两物体运动的快慢程度,需引入速度的概念。
平均速度(矢量) v r
y
t
方向与位移的方向相同
A(t) s B(t+t) 瞬时速度(简称速度)
at
dv dt
(D)只有(3)是对的。
v dr a dv
dt
dt
13
9.某质点作直线运动的运动学方程为x=3t-5t3+6(SI),则该质 点作
(A)匀加速直线运动,加速度沿x轴正方向; (B)匀加速直线运动,加速度沿x轴负方向;
[ D]
(C)变加速直线运动,加速度沿x轴正方向;
(D)变加速直线运动,加速度沿x轴负方向。
v dx 3 15t2(m s1) dt
a dv 30t(m s2 ) dt
变加速直线运动,加 速度沿x轴负方向。
14
圆周运动
vB v A
B
l
A
0R
匀速圆周运动:在任意相等的时 间内行经相等长度的圆弧;即质 点在每一时刻的速率相等。
大学物理B层次--第二章 质点动力学
例题2-8 质量为m的质点,经时间t、以不变的速 率越过一水平光滑轨道60º 的弯角,求轨道作用于质 点的平均冲力的大小。 解 平均冲力可视为恒力,由动量定理有 m: I=F.t=m2-m 1
m
m 平均冲力 F= (2- 1 ) t (1) 这里|1 | = |2 | =。
求解(2- 1 )的方法有两个:
m
a
N
m
a
ma mg
22
§2-3 质点动量定理
1.冲量 冲量 I
t2
t1
Fdt , 对恒力F, I F (t2 t1 )
牛顿表述的第二定律是:F dp d (m )
2.质点动量定理
dt
dt
两边同乘dt, 再对上式积分,则可得到
I F dt p2 p1
m1
m2
m1g
m2g
(m1 m2 ) g m2 a0 a1 , m1 m2 (m1 m2 ) g m1a0 a2 m1 m2 (2 g a0 )m1m2 T m1 m2
12
例题2-3 一人在平地上拉一个质量为m的木箱匀速 地前进,木箱与地面的摩擦系数µ =0.6,肩上绳的支持点 距地面高度h=1.5m,问绳长L为多长时最省力? 解 先找出力与某个变量()的关系,再求极值。 水平方向:Fcos-fs=ma=0 (匀速) 竖直方向:Fsin+N-mg=0 , fs= µ N 解得: mg F cos sin L F有极小值的充要条件是: h N
19
2.加速平动参考系中的惯性力 在实际问题中常常需要在非惯性系中观察和分析 物体的运动。然而在非惯性系中牛顿定律是不成立。
如果在相对于惯性系S以加速度a作直线运动的非 惯性系S中,假定每个质量为m的物体除了受到真实的 外力F作用外,还受到一个附加的、假想的力Fi=-ma的 作用,那么我们就可以在非惯性系中形式地利用牛顿 定律来解决力学问题了。 这一假想的力: Fi=-ma 惯性力 请注意:这里的a不是物体m的加速度,而是非惯性 系S相对于惯性系S的加速度。
《大学物理B》复习提纲
《大学物理B 》复习提纲矢量运算1. 矢量A A Ae =模A (或||A )表示矢量的大小,单位矢量A e 表示方向,且||1A e =直角坐标系下的分量形式:x y z A A i A j A k =++ ,且A =2. 矢量的加减:平行四边形法则或三角形法则直角坐标系下()()()x x y y z z A B A B i A B j A B k ±=±+±+±4. 矢量的数乘mA :当m>0与A 方向相同,当m<0与A方向相反5. 矢量的点乘(或点积、标积)A B ⋅ 为标量:||||cos A B A B θ⋅= (,A B θ为间的夹角)(两相互垂直矢量间的标积为0)直角坐标系下x x y y z z A B A B A B A B ⋅=++6. 矢量的叉乘(或叉积、矢积)A B ⨯ 为矢量:大小||||sin A B θ,方向由右手螺旋法则注:1 )A B ⨯ 的方向一定垂直于,A B 所确定的平面,从A 沿小于180°的角度握向B;2)两相互平行矢量间的矢积为0;3)()A B B A ⨯=-⨯直角坐标系下()()()y z z y z x x z x y y x A B A B A B i A B A B j A B A B k ⨯=-+-+-7. 直角坐标系下矢量的求导:()y x z dA dA t dA dA i j k dt dt dt dt=++(各方向分量分别进行) 8. 直角坐标系下矢量的积分:()()()()()x y z B t A t dt A dt i A dt j A dt k ==++⎰⎰⎰⎰(各方向分量分别进行)力学部分第一章 运动的描述大纲要求:1. 理解运动方程的概念。
2. 深入理解速度、加速度的矢量性和瞬时性。
3. 掌握根据运动学方程求解质点运动的位移、速度和加速度的方法。
4. 明确法向加速度和切向加速度的概念。
大学物理B2 复习重点
第八章 电磁感应
本章
核心
1、 Ei
d dt
,
d B dS
S
2、 Ei
W q
B
Ek dl
A
, Ek
v B (单位电荷的洛伦兹力)
序号 主要知识点
参考题目或要点
备注
8-1 电磁感应定律
核心 1
8.1 电 磁 感 应 定 律 的 T8-1,T8-2(两道选择题,电磁感应 磁链:螺线管的磁
第七章 恒定磁场
本章 核心
1、无限长载流直导线周围空间磁场分布: B 0I ,圆磁场线 2πr
2、洛伦兹力 F qvB ,安培力 dF IBdx (三向垂直时)
序号 7.1
7.2 7.3
7.4
主要知识点
参考题目或要点
7-2 电源 电动势 电动势的定义
E W q
B
Ek dl ,
A
非静电场,受力平衡
其中 2 1 称为相位差
序号 主要知识点
参考题目或要点
备注
9-1 简谐运动 振 幅 周期和频率
核心 1
相位
9.2 简 谐 运 动 微 分 方 T9-3,T9-4(选择题,概念) 程
和简谐运动方程
9.3 振幅
对平衡位置的最大偏离
9.4 周期、频率、角频 周期:一次振动所需时间
率的关系
要会看振动曲线图
导致的感应电动势)
章核心 1 的一部分;
磁通量和电通量在
数学上相同
7.6 磁场的高斯定理 T7-2(选择题,均匀磁场中的磁通量)
7-6 安 培 环 路 定
理
7.7 安培环路
7.8 安培环路定理
B dl 0Iin
大学物理B期末复习总结要点
牛顿运动定律的应用
实际应用
了解牛顿运动定律在现实生活中的应用,如车辆运动、 抛体运动等,能够运用牛顿运动定律解决实际问题。
牛顿运动定律的应用
注意事项
注意牛顿运动定律的适用范围和局限性,避免在非惯性参考系中使用牛顿运动定律。
动量守恒定律和角动量守恒定律
基本理解
理解动量守恒定律和角动量守恒定律的基本内容,掌握系统动量和角动量的计算方法。
期末考试的重要性
成绩评定
期末考试成绩通常占总评的较大比重,是评定学生是否掌握课程内容的关键环节。
知识应用
通过期末考试,学生可以检验自己在实际问题中应用物理学知识的能力,为后续课程和实际工作打下基础。
02
课程内容回顾
质点和质点系
质点定义与模型
质点是一个有质量的点,没有大小和形状,其运动可以用位置和速度描述。
动量守恒定律和角动量守恒定律
适用条件
明确动量守恒定律和角动量守恒定律 的适用条件,能够判断系统是否满足 守恒条件。
动量守恒定律和角动量守恒定律
解题技巧
VS
掌握应用动量守恒定律和角动量守恒 定律解题的基本步骤和技巧,能够根 据问题建立合适的物理模型。
动量守恒定律和角动量守恒定律
实际应用
了解动量守恒定律和角动量守恒定律在现实生活中的 应用,如火箭发射、行星运动等,能够运用这些定律 解决实际问题。
刚体的定轴转动和平行轴定理
注意事项
注意刚体的定轴转动和平行轴定理在使用过程中的约束条件,避免误用和滥用。同时注意转动惯量在不同参考系下的变化。
量定理的应用
总结词
掌握动量定理和角动量定理的基本形式,理 解质点和质点系在运动过程中动量和角动量 的变化规律。
高二大学物理b知识点总结
高二大学物理b知识点总结大学物理是高中物理学习的延伸和深化,涵盖了更加广泛和深入的知识领域。
作为高二学生,我们需要全面理解和掌握大学物理B方面的知识,为将来的学习和考试打下坚实的基础。
本文将对高二大学物理B知识点进行总结,帮助大家更好地学习和掌握这些知识。
一、力学1. 牛顿运动定律牛顿第一定律:物体静止或匀速直线运动的条件;牛顿第二定律:F=ma,描述运动物体的加速度与作用力的关系;牛顿第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
2. 矢量与单位矢量的定义与性质:大小、方向、作图表示方法;单位制与单位换算:国际单位制及其常用单位。
3. 运动的描述平均速度与瞬时速度:速率与速度的概念和计算方法;速度与变速度:速度变化率的定义和计算方法;加速度与匀变速直线运动:加速度的定义、计算方法及物体在匀变速直线运动中的特点。
4. 平抛运动与斜抛运动平抛运动的描述:水平初速度、竖直初速度等概念及其计算方法;斜抛运动的描述:斜抛速度分解、运动方程等基本知识点。
5. 物体受力平衡与平衡条件物体受力平衡的条件:力的合成与分解、合力与平衡力的关系;平衡条件的描述:物体受力平衡的三种情况及其示意图。
二、热学1. 温度与热量温度的定义与测量:摄氏度与开氏度的转换;热量的概念与特性:热传递的方式及热量的传递规律。
2. 理想气体的性质理想气体的状态方程:理想气体的特点及状态方程的推导与应用;理想气体的分子运动规律:理想气体分子速度分布与分子自由程的概念。
3. 热力学第一定律热力学第一定律的描述:内能的变化与热量的传递;绝热变化与绝热指数:绝热过程中内能与温度的变化关系。
4. 热力学第二定律热力学第二定律的描述:热力学不可逆过程与熵增加原理;热机效率与热泵性能:热机效率与热泵的工作原理及性能分析。
5. 理想气体的变化等温过程与等温变化:等温变化的特点与描述;等压过程与等压变化:等压变化的特点与描述;等容过程与等容变化:等容变化的特点与描述。
《大学物理》期末考试复习题
14152学期【大学物理B1】期末考试复习资料一、考试题型:单项选择题:2分/题*10,共20分; 填空题:1分/空*10,共10分; 判断题:1分/题*14,共14分; 简答题:4分/题*4,共16分; 计算题:10分/题*4,共40分。
二、章节复习主要知识点:第一章: 质点运动学位置矢量表达式,求速度和加速度,并由此判断运动类型 加速度,求速度和位矢圆周运动的切向加速度和法向加速度例:1、质点的位置矢量为j t t i t r)4321()53(2-+++=,求其速度和加速度表达式,并写出轨迹方程,判断其运动类型。
2、一质点作直线运动,其加速度为 234-⋅+s tm a =,开始运动时,m x 50=,00=v ,求该质点在s t 10= 时的速度和位置.3、一质点沿半径为1 m 的圆周运动,运动方程为 332t +=θ,θ式中以弧度计,t 以秒计,求:(1) s t 2=时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?另:注意本章质点运动学的相关概念 第二章:运动与力 牛顿第二定律及其应用例:1、用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小: (A) 不为零,但保持不变 (B) 随F N 成正比地增大(C) 开始随F N 增大,到达某一最大值后,就保持不变 (D) 无法确定 2、一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( ) (A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定第三章:动量与角动量动量与动能的区别 动量守恒条件及应用 角动量守恒定律的条件及应用 例:1、对质点系有以下几种说法:(1) 质点系总动量的改变与内力无关;(2) 质点系总动能的改变与内力无关; (3) 质点系机械能的改变与保守内力无关. 以下对上述说法判断正确的选项是( )(A) 只有(1)是正确的 (B) (1)、(2)是正确的(C) (1)、(3)是正确的 (D) (2)、(3)是正确的2、在水平冰面上以一定速度向东行驶的炮车,向东南〔斜向上〕方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中〔忽略冰面摩擦力及空气阻力〕 〔A 〕总动量守恒〔B 〕总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒 〔C 〕总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒 〔D 〕总动量在任何方向的分量均不守恒3、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,那么卫星的 〔A 〕动量不守恒 ,动能守恒 〔B 〕动量守恒,动能不守恒〔C 〕角动量守恒,动能不守恒 〔D 〕角动量不守恒,动能守恒 第四章:功和能 动能定理、功能原理 机械能守恒条件及应用例:1、一质点在二恒力作用下,位移为j i r83+=∆〔SI 〕;在此过程中,动能增量为24J ,其中一恒力j i F3121-=〔SI 〕,那么另一恒力所作的功为______________________。
大一物理b1知识点总结
大一物理b1知识点总结大一物理课程中的B1部分主要介绍了基础的力学知识,下面将对该部分的核心知识点进行总结。
1. 物理量和单位- 物理量是能够用数量表示的性质,包括基本物理量和导出物理量。
- 常见物理量的单位:长度(米,m)、质量(千克,kg)、时间(秒,s)等。
- 物理量之间可以进行四则运算,结果遵循单位换算。
2. 物体的力学性质- 质量(m)是物体所固有的属性,与物体内部原子的数量和种类有关。
- 重量(W)是物体所受重力的大小,可用公式 W = m * g 计算,其中 g 是地球的重力加速度。
3. 牛顿定律- 牛顿第一定律(惯性定律):物体在外力作用下保持静止或匀速直线运动,直到有外力的干扰。
- 牛顿第二定律(力学定律):F = m * a,物体的加速度与作用于它的力成正比,与物体的质量成反比。
- 牛顿第三定律(作用-反作用定律):任何两个物体之间都会相互作用力,力的大小相等,方向相反。
4. 物体的平衡- 力的合成:多个力合力的方向与合力的大小有关,可以使用力的合成方法进行计算。
- 物体的平衡:物体在受力时如果合力为零,则物体处于平衡状态,可以分为平衡力和不平衡力。
5. 运动学- 位移(S):物体从一个位置到另一个位置的路径长度和方向。
- 速度(v):物体在单位时间内位移的大小,可用公式 v =ΔS / Δt 计算,其中Δt 是时间间隔。
- 加速度(a):速度变化的快慢,可用公式a = Δv / Δt 计算。
6. 直线运动- 匀速直线运动:物体在单位时间内位移保持不变,速度恒定,加速度为零。
- 匀加速直线运动:物体在单位时间内加速度保持不变,速度随时间的变化呈线性关系。
7. 自由落体运动- 自由落体运动:物体仅受重力作用下垂直向下运动。
- 自由落体运动的重要公式:下落时间(t)、下落高度(h)、下落速度(v)之间的关系:h = (1/2) * g * t^2 和 v = g * t。
8. 斜抛运动- 斜抛运动:物体在初速度的水平方向上具有匀速直线运动,垂直方向上受重力影响而做自由落体运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
R
P
2
C P
1
R
C C R
P
V
C V
C 7
V
W
Q 1 2
Q
Q
1
1
1
T 2
T
1
3.主要定律及重点:
(1)热力学第一定律在等值过程中的应用.
(2)迈耶公式的推导.
(3)热力学第二定律的两种表述及统计意义.
(4)第一类永动机与第二类永动机. 8
具体要求:
第一节 理解内能,功,热量的概念,准静态过程含义及p-v 图意义。理解热力学第一定律,掌握理想气体热功 转换规律,能熟练求解热功转换过程内能,功,热 量.
2.主要公式:
P 1 nmv2 3
p
2 3
n k
P nkT
k
3 kT 2
k
1 2
(t
r)kT
i 2
kT
k
1 2
mv2
E M i RT
2
3
v 2 3k T m
vp
2k T m
f (v)dv 1
0
3.主要定律及重点:
(1)能量按自由度均分定律.
(2)三种速率的计算及作用.
(3)麦克斯韦速率分布函数的物理意义.
4
具体要求:
第一节
掌握理想气体的分子模型。 理解理想气体的压强公式及其微观本质。
理解理想气体的温度公式及温度的含义。
第二节
理解麦克斯韦速率分布函数的物理意义,掌握归一化 条件。 掌握三个特征统计速率。
5
掌握自由度的概念及单原子气体分子,刚性双原子 气体分子的自由度。 理解能量均分定理,掌握理想气体的内能公式。
(3)安培定理。 (4)带电粒子在均匀磁场中的运动。 (5)霍尔效应及应用。
17
具体要求:
第一节 掌握毕-萨定律,能运用定律求磁场强度。 掌握运动电荷的磁场。 第二节 理解磁通量的含义和磁场高斯定理。
掌握安培环路定理,能运用安培环路定理计算各载 流模型的磁场。
18
第三节 掌握安培定律的内容,运用安培定律计算安培力。 掌握洛仑兹力,理解磁聚焦和质谱仪的原理, 掌握霍耳效应及运用。
0
Idl
r0
4 r 2
B
0I
4a
(sin
2
sin
1 )
B 0I
2a
B
0I
2R
2
0 IL 4R 2
B 0I
2R
B dl 0 Ii内
L
i
dF Idl B
fm
qv
B
R mv qB
16
3.主要定律及重点: (1)毕-萨-拉定律及应用(载流直导线的磁场
及载流圆线圈的磁场)。 (2)安培环路定理在求解磁场方面的应用。
理解静电场环路定理。
掌握场强与电势的关系。
14
第三节
理解静电平衡状态的含义及条件。 掌握导体的电荷分布特点,(尖端放电现象,避 雷针原理)。 掌握典型电容器(同球心球壳,平行板及同轴 圆筒电容器)的电容计算。
15
第六章:磁场
1.主要概念:磁感应强度、磁力线、磁通量、霍尔
效应。
2.主要公式:
dB
(2)静电场的环路定理.
(3)电势的计算.
(4)导体的静电平衡条件及电荷分布特点.
(5)常用电容器的电容计算.
12
(3) 柱形电容器: (重点)
S
E dS
q i 0
2rhE Qh
0l
(R1 r R2 )
E Q
20rl
a
(R1 r R2 )
ba
u
b E dl
a
R2 Q dr
(3)简谐波的相关计算。
(4)波的相干条件:频率相同,振动方向相同, 相差恒定。
(5)波的干涉花样形成。
掌握等体摩尔热容,等压摩尔热容的定义,掌握迈 耶公式的证明。
9
第二节 理解循环的概念及p-v图意义。 掌握热机效率的计算,制冷系数的计算。 理解并熟练掌握卡诺循环。 理解热力学第二定律的两种表述及统计意义。
10
第四章:静电场
1.主要概念:点电荷、电场强度、电通量、电势、导体 静电平衡的条件及电荷分布特点、静电屏蔽、电介
T
y(t, x) Acos[2 ( t x )]
3.主要定律及重点:
(1)简谐振动的能量。
(2)同方向同频率的简谐振动的合成。 21
x x1 x2 Acos( t )
A A12 A22 2A1A2 cos(2 1)
tan A1 sin 1 A2 sin 2 A1 cos1 A2 cos2
具体要求:
第二节: 掌握液体内部的压强公式。
掌握液体表面张力系数的两种测量方法(拉脱法及液 滴法),了解影响液体表面张力系数的因素。
理解拉普拉斯公式,会作相关计算。 第三节
了解理想流体的概念,定常流动的概念。
理解连续性原理的内容及其本质。
理解伯努利方程的内容,掌握相关计算(流量,流 速;解释现象等)。
质、电容。
2.主要公式:
f
q1q2
4 0r 2
r
S
E dS
q i 0
E dl 0
Ldqຫໍສະໝຸດ EdEQQ
4
0r 2
r
E 2 0
U p
E dl
p
11
U内
Q
4 0 R
U外
Q
4 0 r
1
R
C Q u
C Q 0S
u d
Q E U C
Q
U
3.主要定律及重点:
(1)高斯定理在求解场强方面的应用.
1
第四节 了解影响液体黏滞系数的因素。 理解泊肃叶流速公式与流量公式,掌握相关计算 (流量,测定黏滞液体η的方法)。
第五节
理解斯托克斯公式,掌握沉降法测η。 了解层流,湍流的概念,掌握雷诺数的定义,流体相似 律的内容。
2
第二章:气体
1.主要概念:理想气体及微观模型,自由度,对压强、 温度的理解.
19
第八章:振动与波动
1.主要概念:简谐振动、振幅、周期、频率、相位、 初相,波速,波的干涉, 波的衍射,简谐波。
2.主要公式:
d2 dt
x
2
2
x
0
x Acos t
T
2
2
m k
2
T 2
1
T
20
1 T
u
T
yx,t Acos[(t x) ]
u
yx,t Acos[2 ( t x )]
6
第三章:热力学
1.主要概念:热力学系统、平衡过程、功 、 热 、
内能、定体摩尔热容CV、定压摩尔热容Cp 、比
热容比、循环过程、可逆过程、不可逆过程。
2.主要公式:
Q E2 E1 W
dQ dE dW
PV const.
C' V
ddQT V
C iR
V
2
C' P
ddQT P
2i
R1 20lr
Q ln R2
20l R1
h
C Q 20l
u ln(R2 R1)
R2 R1 L
U 13
第一节
具体要求:
掌握库仑定律矢量式。
掌握电场强度的计算。
理解电通量的含义与高斯定理的内容,熟练掌握运用 高斯定理计算球对称,柱对称分布和无限大带电平面 等带电模型的场强。
第二节
掌握场强积分法求电势和利用电势的叠加原理求电势 两种方法。