proteus实验例子8253计时器
8253计数器实验
本科学生实验报告5.实验设计思路、步骤及注意事项:实验设计思路:本实验利用8253芯片工作在方式3下,作为一个秒信号发生器,其输出带动一个发光二极管,在一个周期内,发光二极管点亮2秒,熄灭2秒,即OUT端输出方波信号,再把方波信号通过8255芯片;并设8255芯片的C口高四位输入,低4位输出,A口输出,之后产生八个方波信号,8255芯片的输出口PA0~PA7接LED灯;用LED灯的亮暗来表示字符‘A’到‘Z’的ASCII码;并编写ASM程序来控制8253芯片和8255芯片的工作方式;实验步骤:1.根据实验流程图的要求,按照实验原理图接好电路;2.打开电源开关,用TPC-USB集成开发软件检查硬件是否连接;3.对ASM程序进行调试,正确之后运行ASM程序,观察实验箱上LED灯的亮暗;4.记录实验现象,对实验现象进行分析总结;5.完成实验报告;注意事项:1.在打开电源开关之前应检查电路是否连接正确,以免损坏实验器件;2. 仔细观察实验现象,LED灯是否达到了用来显示字符‘A’到‘Z’的ASCII码的实验目的;二、实验内容1.对实验现象、实验结果的分析及其结论:LED灯的亮暗显示了字符‘H’的ASCII码值LED灯的亮暗显示了字符‘I’的ASCII码值LED灯的亮暗显示了字符‘Q’的ASCII码值实验结果的分析及其结论:通过本实验加深了对8253芯片和8255芯片的各种工作方式的了解;8255芯片有3种工作方式,这3种工作方式如表1所示。
方式0为基本I/O 输入/输出方式,这是8255最常用,也是最基本的工作方式。
方式1为应答I/O 方式,当8255工作于应答I/O方式时,上C口作为A口的通信线,下C口作为B口的通信线。
方式2为双向应答I/O方式,此方式仅A口使用,B口无双向I/O应答方式。
8255的3种工作方式的选择由8255工作方式选择字决定,下面介绍8255的工作方式选择字。
表1 8255的工作方式:8255芯片初始化:所谓8255芯片初始化,就是要根据工作要求确定8255工作方式选择字,并输入8255控制寄存器。
微原硬件实验三:8253计数器定时器的应用
微原硬件实验报告北京邮电大学微机原理硬件实验报告实验三:8253计数器/定时器的应用专业:信息工程学生姓名:×××学号:×××指导教师:××完成时间:2013年11月29日一、实验目的 (3)二、实验原理及内容 (3)1、实验原理 (3)①8253定时器介绍 (3)②8253初始化 (3)③8253控制字 (3)④注意事项 (4)2、实验内容 (4)①基本功能 (4)②拓展功能 (5)三、硬件连接图及程序流程图 (5)1、硬件连接图 (5)①8253定时器 (5)②数码管 (6)③译码器 (7)④扬声器 (7)⑤分频器 (8)2、程序流程图 (9)四、源程序 (10)五、实验结果 (12)六、实验总结 (13)1、都是不认真听课惹的祸 (13)2、难听的曲子 (13)七、实验收获与心得体会 (13)八、思考题 (13)一、实验目的1、进一步熟悉汇编语言;2、学习掌握8253用作定时器的编程原理。
二、实验原理及内容1、实验原理①8253定时器介绍Ⅰ、微机系统使用的8254,其3个通道均有固定的用途:0号计数器为系统时钟源,每隔55ms向系统主8259IR0提一次中断请求;1号计数器用于动态存储器的定时刷新控制;2号计数器为系统的发声源。
用户在使用微机系统的时候,可以使用0号和2号计数器,但不能改变对1号计数器的初始化。
Ⅱ、实验箱上的8253,其数据线D7—D0,地址线A1、A0和控制线RD、WR通过总线驱动卡和微机系统的三总线相连。
除此之外,三个计数器的引出段和片选端都是悬空的,这意味着实验箱上的8253的三个计数器都归用户使用,你可以单独使用其中的一个计数器,也可以串联使用其中的2个或3个计数器。
Ⅲ、8253计数器的输入信号,其频率不能超过2MHz,否则长时间使用,芯片过热,容易烧毁②8253初始化使用8253前,要进行初始化编程。
接口技术实验-8253定时计数器
接口技术实验报告
实验三:可编程定时/计数器8253
一、实验目的
1、学会8253芯片和微机接口的原理和方法。
2、掌握8253定时器/计数器的工作方式和编程原理。
二、实验设备
微机原理实验箱、计算机一套。
三、实验内容
8253计数器0,1工作于方波方式,产生方波。
四、实验原理
本实验用到三部分电路:脉冲发生电路、分频电路以及8253定时器/计数器电路。
脉冲发生电路:实验台上提供8MHZ的脉冲源,见下图,实验台上标有8MHZ的插
孔,即为脉冲的输出端。
脉冲发生电路
分频电路:该电路由一片74LS393组成,见下图。
T0-T7为分频输出插孔。
该计数器在加电时由RESET信号清零。
当脉冲输入为8.0MHZ时,T0-T7输出脉冲频率依次为4.0MHZ,2.0MHZ,1.0MHZ,500KHZ,250KHZ,125KHZ,62500HZ,31250HZ。
分频电路
8253定时器/计数器电路:该电路由1片8253组成,8253的片选、数据口、地址、读、写线均已接好,时钟输入分别为CLK0、CLK1。
定时器输出、GATE控制孔对应如下:OUT0、GATE0、OUT1、GATE1。
原理图如下:
注:GATE信号无输入时为高电平
8253定时器/计数器电路
四、实验连线
1、实验连线:
T接8.0MHZ;CLK0插孔接分频器74LS393(左下方)的T2插孔; OUT0接CLK 1;OUT1接发光二极管;
各通道门控信号GATE +5V
2、编程调试程序。
3、全速运行,观察实验结果。
8253定时器实验.
精选文档实验报告实验名称可编程准时器/计数器(8253 )姓名学号班级教师日期一、实验内容与要求1.1 实验内容计数器方式 2 实验:将 8253 芯片的计数器0 的工作方式设置为方式2,读 /写格式设置为01,写入时只写入计数器初值低8 位,高 8 地点 0,采纳二进制格式计数。
计数器初值为N (N>=0FH ),用手动开关逐一输入单脉冲,编程使计数值在屏幕上显示,并同时用TPC-USB平台上的 LED 灯察看 OUT0 电平变化(当输入第N 倍数个脉冲后OUT0 变低电平, LED 灯由亮变灭,其余脉冲OUT0 都是高电平, LED 灯都处于亮状态)。
计数器方式 3 实验:将计数器 0、计数器 1 的工作方式分别设置为方式3,计数初值设为1000,并同时用 TPC-USB 平台上的 LED 灯察看 OUT1 电平变化(频次1Hz)。
1.2 实验要求(1)拥有必定的汇编编程的基础,能编写一些基本语句来实现实验。
实验前依据实验流程图,写出对应代码;(2)要认识8253准时/计数器芯片内部构造和外面引脚,认识芯片的硬件连结方法、时序关系、各样模式的编程及应用,能娴熟地对其进行编程;(3)熟习实验平台 TPC-USB 认识各个接口的名称与功能,进行实验时能迅速并正确地连结好实验电路;(4)计数器方式 2 实验:连结 PC 与 TPC-USB 平台,用微机实验软件运转程序,用手动开关逐一输入单脉冲,在屏幕上能一次显示计数值,当输入第N 倍数个脉冲后OUT0 变低电平, TPC-USB 平台上的 LED 灯由亮变灭,其余脉冲OUT0 都是高电平, LED 灯都处于亮状态;(5)计数器方式3实验:连结PC与TPC-USB平台,用微机实验软件运转程序,TPC-USB平台上的 LED 灯能周期性地亮灭,频次为 1Hz。
二、实验原理与硬件连线2.1 实验原理TPC-USB 平台上有一块8253 准时 /计数器芯片, PC 能够经过 8253 芯片进行计数和准时。
实验一可编程定时器计数器(8253)
实验一可编程定时器/计数器(8253)一、实验目的1、掌握8253的基本原理和编程方法二、实验内容1、按图虚线连接电路,将计数器0设置为工作方式0,计数器初值为N(N≤0FH),用手动逐个输入单脉冲,编程使计数值在屏幕上显示,并同时用逻辑笔观察OUT0电平变化(当输入N+1个脉冲后OUT0遍高电平)。
2、按图连接电路,将计数器0、计数器1分别设置为方式3,计数初值设为1000,用逻辑笔观察OUT1输出电平的变化(频率1Hz)。
三、编程分析1、8253地址分析:控制寄存器地址:0C403H计数器0地址:04C400H计数器1地址:04C401HCLK0连接时钟:1MHz。
2、程序参考流程图四、汇编语言程序实验内容(1)CODE SEGMENTASSUME CS:CODESTART:MOV DX,0C403H ; 初始化,计数器0,方式0 MOV AL,00010000BOUT DX,ALMOV DX,0C400HMOV AL,08H ;送初值8OUT DX,ALMOV CL,1READ: INC CL ;自加1CMP CL,1JZ STARTMOV DX,0C400H ;读计数器0口IN AL,DXMOV DL,ALMOV CL,ALCMP AL,9JG BIGADD DL,30H ;0到9,显示ASCII数字MOV AH,02HINT 21HMOV DL,0DHINT 21HJMP JUDGEBIG: ADD DL,37H ;大于9,显示ASCII字母MOV AH,02HINT 21HMOV DL,0DHINT 21HJMP JUDGEJUDGE:MOV DL,0FFH ;有键按下回DOS MOV AH,06HINT 21HJZ READ ;转移条件?MOV AH,4CHINT 21HCODE ENDSEND START实验内容(2)CODE SEGMENTASSUME CS:CODESTART:MOV AL,00110110B ;计数器0,先读写低字节,再读写高字节,方波发生器MOV DX,0C403H ;控制地址0C403HOUT DX,ALMOV AX,1000D ;计数初值1000MOV DX,0C400H ;载入计数器0地址0C400HOUT DX,AL ;将计数初值低位传送至计数器0MOV AL,AH ;将计数值高位送入ALOUT DX,AL ;传送计数初值高位至计数器0MOV AL,01110110B ;计数器1,先读写低字节,再读写高字节,方波发生器MOV DX,0C403H ;写入控制字OUT DX,ALMOV DX,0C401H ;载入计数器1的地址MOV AX,1000 ;写入计数值OUT DX,ALMOV AL,AHOUT DX,ALMOV AH,4CH ;返回DOSINT 21HCODE ENDSEND START五、实验现象实验内容(1):用手动逐个输入单脉冲,在屏幕上从计数器初值5开始显示,此时逻辑笔显示为低电平,绿灯亮;单脉冲每输入一个,计数器值将会减1,同时在屏幕上显示,当计数器值减到0时,逻辑笔显示为高电平,红灯亮。
8253计数器实验报告
8253计数器实验报告8253计数器实验报告引言:实验报告是对实验过程和结果的详细记录和分析,通过实验报告,可以总结出实验的目的、方法、数据和结论,为进一步研究和实践提供参考。
本文将对8253计数器实验进行报告,介绍实验目的、实验步骤、实验结果和结论。
实验目的:本次实验的目的是熟悉8253计数器的工作原理和使用方法,掌握8253计数器的基本功能和应用场景。
实验步骤:1. 准备实验材料:8253计数器、示波器、电源等。
2. 搭建实验电路:根据实验要求,将8253计数器与示波器和电源相连,确保电路连接正确。
3. 设置实验参数:根据实验要求,设置8253计数器的工作模式、计数范围等参数。
4. 运行实验程序:编写实验程序,通过编程控制8253计数器的工作状态,观察实验结果。
5. 记录实验数据:使用示波器等仪器,记录实验过程中的数据和波形图。
6. 分析实验结果:根据实验数据和波形图,分析8253计数器的工作状态和性能。
实验结果:通过实验,我们观察到了8253计数器的不同工作模式下的输出结果。
在定时器模式下,我们设置了不同的计数范围和计数频率,观察到了计数器的计数过程和计数结果。
在计数器模式下,我们设置了不同的计数方向和计数初始值,观察到了计数器的增减过程和最终的计数结果。
结论:通过本次实验,我们对8253计数器的工作原理和使用方法有了更深入的了解。
我们掌握了8253计数器的基本功能和应用场景,能够根据实际需求设置计数器的工作模式和参数。
实验结果表明,8253计数器具有较高的计数精度和稳定性,在计时、计数等领域有广泛的应用前景。
总结:实验报告是对实验过程和结果的详细记录和分析,通过实验报告,可以总结出实验的目的、方法、数据和结论,为进一步研究和实践提供参考。
本次实验报告对8253计数器的实验进行了详细介绍,包括实验目的、实验步骤、实验结果和结论。
通过本次实验,我们对8253计数器有了更深入的了解,掌握了其基本功能和应用场景。
微机原理实验4 可编程定时器计数器8253
实验三可编程定时器/计数器8253要求:按图15连接电路,并将OUT0接指示灯(高电红灯亮、低电平绿灯亮)。
将计数器0、计数器1分别设置为方式3,已知CLK0输入为1MHz的方波,计算两计数器的计数初值,使OUT1输出1s为周期的方波,接着退出程序返回DOS流程图:初始化计数器1初始化计数器0按任意键返回dos程序:stack segment stack 'stack'dw 32 dup (0)stack endsdata segmenttip db 'quit the program.$'data endscode segmentstart proc farassume ss:stack, cs:code,ds:datapush dssub ax,axpush axmov ax,datamov ds,axmov dx,283hmov al,77hout dx,almov dx,281hmov al,00hout dx,almov al,10hout dx,almov dx,283hmov al,37hout dx,almov dx,280hmov al,00hout dx,almov al,10hout dx,almov dx,offset tipmov ah,9int 21hmov ah,8int 21hmov ah,4chint 21hretstart endpcode endsend start分析总结:这次的程序真心是没什么好说的了,初始化完后就没有然后了(话说这也能叫程序的······),本来按我的想法得有一个输入计数值的结构和一秒自动检测误差的结构的,关于输入结构前面的实验已经出现过了应该不是很难办,而延时结构就比较麻烦了,直接的调用int 15h,ah 86h功能不知为啥老是出问题,也不晓得是不是我格式错了,而通过指令循环凑出1s延迟计算起来有些麻烦,稳定性可能还有些问题,这个可能还得去查多点资料了,不过只要延迟精确了误差也就几条指令罢了,之后显示的话也就稍微麻烦点而已了。
8253可编程计数器定时器实验
集美大学计算机工程学院实验报告课程名称微机系统与接口技术实验名称实验三8253可编程计数器/定时器实验实验类型设计型姓名学号日期地点室成绩教师1. 实验目的及内容1.1实验目的1)了解8253的内部结构、工作原理;了解8253与8088的接口逻辑; 2)熟悉8253的控制寄存器和初始化编程方法,熟悉8253的6种工作模式。
1.2实验内容1)设计8253与8086CPU 的硬件连接图,分配8253的基地址为0F000H 。
2)设计8253与外界输入时钟频率2MHZ 和电源的硬件连接,使8253产生周期为1秒的方波。
用此方波控制LED 灯,使其发出闪烁信号。
2. 实验环境星研电子软件,STAR 系列实验仪一套、PC 机一台、导线若干3. 实验方法8259A 的中断引脚IRi 与单脉冲连接,实现拨动单脉冲开关触发8259A 中断,8086计数中断次数并显示于G5区的断码管LED 上,此实验使用8259A 的IR2中断,正脉冲触发中断,脉冲频率为2MHz.4. 实验步骤4.1电路设计D0D1D2D4D5D6D7WR RD D3D08OUT010D17GATE011D26CLK09D35D44D53D62OUT113D71GATE114CLK115CS 21RD 22WR 23OUT217A019GATE216A120CLK2188253U35A0A1GATE0CLK0OUT1GATE1OUT2GATE2CLK2CSVCC 2M(B2)Ctrl(D1)VCCCS5(0B000H)A0A1A8253_1 EQU 0F002HA8253_2 EQU 0F001HA8253_3 EQU 0F003H.DATA.STACK.CODESTART: MOV AX,@DATAMOV DS,AXMOV ES,AXmov dx,A8253_3mov al,00110101bout dx,almov dx,A8253_0mov al,00Hout dx,almov al,20Hout dx,almov dx,A8253_3mov al,01110111bout dx,almov dx,A8253_1mov al,00Hout dx,almov al,10Hout dx,alEND START4.4运行调试程序1)按要求设计的电路正确连接线路,检查完毕后打开电源。
8253计数器定时器接口实验
微机原理实验报告实验五 8253计数器/定时器接口实验1.实验目的1)学会通过PC总线、驱动器、译码器等在PC机外部扩充为新的芯片;2)了解8253计数器/定时器的工作原理;3)掌握8253初始化的程序设计;4)掌握8253方式0的计数方式的使用方法和方式3方波产生的方法。
2.实验内容将实验装置上的1片8253定时器/计数器接入系统,具体做两个内容的实验。
1)实验一:将8253的计数器0设置为工作于方式0,设定一个计数初值,用手动逐个输入单脉冲,观察OUT0的电平变化。
硬件连接:断开电源,按图2-1将8253接入系统。
具体包括:(1)将8253的CS接I/O地址输出端280H-287H;(2)将8253的计数器0的CLK0与单脉冲信号相连,以用来对单脉冲进行计数;(3)将8253的GATE0用专用导线接向+5V,以允许计数器0工作;(4)将8253的OUT0接到LED发光二极管,以显示8253计数器0的输出OUT0的状态。
图2-1 8253实验一的连线图2)实验二:将8253的计数器0、1均设置为工作于方式3(方波),按图2-2重新接线。
要求是当CLK0接1MHz时,OUT1输出1Hz的方波,OUT的输出由LED 显示出来。
将计数器0与计数器1串联使用,计数器0的输出脉冲OUT0作为计数器1的时钟输入CLK1。
图2-2 8253实验二的连线图3.程序及框图1)程序框图图4-1给出了8253实验一的流程图。
图4-1 程序流程图图4-2给出了8253实验二的流程图。
2)程序代码实验一程序代码:CTRL EQU 283HTIME0 EQU 280HTIME1 EQU 281HDATA SEGMENTMESS DB 'ENTER ANY KEY RETURN TO DOS!',0DH,0AH,'$' DATA ENDSCODE SEGMENTASSUME CS:CODE,DS:DATASTART:MOV AX,DATAMOV DX,AXMOV DX,OFFSET MESSMOV AH,09HINT 21HMOV DX,CTRLMOV AL,30HOUT DX,ALMOV DX,TIME0MOV AX,03HOUT DX,ALXCHG AH,ALOUT DX,ALCOUNT:MOV AH,06HMOV DL,0FFHINT 21HJZ COUNTMOV AX,4C00HINT 21HCODE ENDSEND START实验二程序代码:CTRL EQU 283HTIME0 EQU 280HTIME1 EQU 281HDATA SEGMENTMESS DB 'ENTER ANY KEY RETURN TO DOS!',0DH,0AH,'$' DATA ENDSCODE SEGMENTASSUME CS:CODE,DS:DATASTART:MOV AX,DATAMOV DX,AXMOV DX,OFFSET MESSMOV AH,09HINT 21HMOV DX,CTRLMOV AL,36HOUT DX,ALMOV AL,76H OUT DX,ALMOV DX,TIME0 MOV AX,1000OUT DX,ALXCHG AH,ALOUT DX,ALMOV DX,TIME1 MOV AX,1000OUT DX,ALXCHG AH,ALOUT DX,ALCOUNT:MOV AH,06H MOV DL,0FFHINT 21HJZ COUNTMOV AX,4C00HINT 21HCODE ENDSEND START4.实验数据、现象及结果分析5. 实验思考题1)实验一中的定时器0的输出OUT0的电平是如何变化的,为什么?解:假设对定时器0赋初值为3,则控制字发送后,OUT0变为低电平,当手动输入3个单脉冲后,OUT0变为高电平。
实验八定时器计数器8253实验
8253是Intel公司生产的一款可 编程定时器计数器。
它具有3个独立的16位计数器, 每个计数器都可以独立编程和控
制。
8253的计数器可以用于产生时 间间隔、脉冲信号、PWM(脉
宽调制)等。
8253的工作原理
825ቤተ መጻሕፍቲ ባይዱ的每个计数器都有一个预置 值,当计数达到预置值时,计数 器会自动回置并触发一个中断或
实验八:定时器计数器8253实验
contents
目录
• 实验简介 • 8253定时器计数器概述 • 实验步骤与操作 • 实验结果与分析 • 实验总结与思考
01 实验简介
实验目的
掌握8253定时器计 数器的工作原理。
了解定时器在计算机 系统中的应用。
学习如何编程控制 8253定时器计数器。
实验设备
01
微机实验箱
02
8253定时器计数器芯片
03
示波器
04
信号发生器
02 8253定时器计数器概述
定时器计数器的基本概念
定时器计数器是一种用于产生 时间间隔或计数的电子设备。
它通常由石英晶体振荡器驱动, 以提供稳定的计时基准。
定时器计数器广泛应用于计算 机、通信、自动化等领域。
8253的特性和功能
配置8253定时器计数器
设置工作模式
根据实验要求,选择适当的定时/计数 模式,如计数模式、定时模式或门控 模式等。
设置定时/计数初值
启动定时/计数
通过微处理器发送控制信号,启动 8253定时器计数器的定时/计数操作。
根据实验要求,设置适当的定时/计数 初值,以满足实验条件。
启动和观察实验结果
启动实验
加强实践环节
为了更好地理解和掌握相关知识,建议增加更多的实践环节,例 如组织小组讨论、分享经验等。
微机实验 可编程定时器计数器8253
微机原理实验报告实验题目:可编程定时器/计数器8253一、实验目的1、学习8253可编程定时器/计数器定时方法2、学习8253多级串联实现大时间常数定时方法二、实验内容编一个1秒定时子程序,并提示有键盘读入要计时的时间,并把数值显示在屏幕上三、实验器材微机原理实验箱1个电脑(带TPC-USB软件)1台插线若干四、实现过程1、流程图2、程序源代码;*****************************************IOY0 EQU 280H;*****************************************MY8253_COUNT0 EQU IOY0+00HMY8253_COUNT1 EQU IOY0+01HMY8253_COUNT2 EQU IOY0+02HMY8253_MODE EQU IOY0+03H;*****************************************MY8255IOY0 EQU 2A0H;*****************************************MY8255_A EQU MY8255IOY0+00HMY8255_B EQU MY8255IOY0+01HMY8255_C EQU MY8255IOY0+02HMY8255_MODE EQU MY8255IOY0+03HSTACK1 SEGMENT STACKDW 256 DUP(?)STACK1 ENDSDATA SEGMENTCOUNTER2 DB 0MESG1 DB 'Please input your number:',0DH,0AH,'$' ;提示语一,请输入数字MESG2 DB 'It is counting:',0DH,0AH,'$';提示语二,正在计数MESG3 DB 'Wrong input,please input again:',0DH,0AH,'$';提示语三,输入错误,请重新输入DATA ENDSCODE SEGMENTASSUME CS:CODE,DS:DATASTART:MOV AX,DATAMOV DS,AXMOV DX,OFFSET MESG1 ;输出提示语MOV AH,9INT 21HDEAL: MOV AH,1 ;读入一个数字INT 21HCMP AL,'0'JL EXITCMP AL,'9'JG EXITMOV BL,ALSUB BL,30H ;把输入的ASCII码转化成数字ADD COUNTER2,BL ;COUNTER2+=INPUTMOV CH,00HMOV CL,COUNTER2MOV DL,0DH ;回车换行MOV AH,02INT 21HMOV DL,0AHMOV AH,02INT 21HONE_SECOND:MOV AL,CL ;输出当前计数值CXADD AL,30HMOV DL,ALMOV AH,02INT 21HMOV DL,0DH ;回车换行MOV AH,02INT 21HMOV DL,0AHMOV AH,02INT 21HMOV DX,MY8253_MODE ;计数器0,方式3,十进制计数MOV AL,37HOUT DX,ALMOV DX,MY8253_COUNT0 ;装入初值MOV AL,00H ;1000分频OUT DX,ALMOV AL,10HOUT DX,ALMOV DX,MY8253_MODE ;计数器1,方式0,十进制计数MOV AL,71HOUT DX,ALMOV DX,MY8253_COUNT1 ;装入初值MOV AL,00H ;1000分频MOV AL,10HOUT DX,ALMOV DX,MY8255_MODEMOV AL,89HOUT DX,ALMOV DX,MY8255_CL1: IN AL,DX ;判断PC7口是否为高,即计数一秒是否已到TEST AL,80HJZ L1DEC CXJNZ ONE_SECONDQUIT:MOV AX,4C00HINT 21HEXIT: MOV DX,OFFSET MESG3 ;输入范围错误,提示重新输入MOV AH,9INT 21HJMP DEALCODE ENDSEND START3、实验结果图五、实验改进1、说明本实验中课本上只给出了0~9秒的计数,而实际运用的时候我们经常会需要用到任意值的定时,因此我们做了改进,计时可以输入任意数,若要输出到屏幕则能计数0~992、流程图注:改进的地方是分十位和个位进行存储和输出显示六、小结1、通过本次试验,我进一步了解了8253的定时和计数功能,以及如何通过串联定时器的方式实现大时间常数的定时。
8253定时_计数器实验
实验8 8253定时/计数器实验一、实验目的1.了解8253与8086的硬件连接方法。
2.掌握8253的各种方式的编程及其原理。
3.学会Emu8086和Proteus的联合用调。
二、实验要求安装有Emu8086仿真软件和PROTEUS仿真软件的电脑一台。
三、预习内容1、8253定时计数器的内部结构和主要性能。
2、8253芯片的各个引脚及其含义如下图3.1所示。
图3.1 8253A定时计数器D7~D0:双向,8位三态数据线,用以传送数据(计数器的计数值)和控制字CLK0~CLK2:计数器0、1、2的时钟输入,CE对此脉冲计数OUT0~OUT2:计数器0、1、2的输出。
GA TE0~GATE2:计数器0、1、2的门控输入/CS:输入,片选信号。
/RD:输入,读信号。
/WR:输出、写信号。
A0,A1:输入,两位地址选择。
8253的内部寄存器地址如下表表3.1所示:/CS A1 A0 选中0 0 0 计数器00 0 1 计数器10 1 0 计数器20 1 1 控制寄存器表3.1 8253定时计数器的寄存器3、定时、计数器8253的命令字的初始化。
4、8253的六种工作方式具体参考课本(278页至282页)。
5、汇编软件Emu8086和Proteus软件的联合使用方法步骤。
在Proteus软件绘制系统原理图,然后需要对Proteus进行程序导入设置才能进行方真调试。
具体步骤如下:(1)点击Proteus软件菜单中的source的下拉选项中的Dfine Code Generation Tools...如下图3.2所示。
图3.2(2)a在弹出的对话框中单击new按钮如下图3.3所示。
图3.3(3)弹出如下对话框,找到本机中emu8086安装后生成的emu8086文件夹,打开,选择可执行程序emu8086.exe,点击“打开”按钮,如下图3.4所示。
图3.4(4)回到设置对话框后,将源文件和目标文件分别设为ASM和EXE,单击“OK”,如下图3.5所示图3.5(5)单击菜单选项source的下拉选项Add/Remove Source Files...如下图3.6所示。
8253定时器计数器实验
理工学院实验报告(1)、连接实验电路连线:8253 CS ------ 端口地址 300CS PACK IMS ----- 393 1A393 1QD ------ 8253 CLK18253 OUT1 ---- 8253 CLK28253 OUT2 ---- 发光二极管 L15 8253 GATE1 -- (A10)+5V8253 GATE2 -- (A10)+5V结果如下图所示:(2)、实验程序如下所示:CS8253 EQU 0303HCOUNT0 EQU 0300HCOUNT1 EQU 0301HCOUNT2 EQU 0302HCODE SEGMENTASSUME CS:CODESTART PROC NEARMOV DX,CS8253MOV AL,01110110BOUT DX,ALMOV DX,COUNT1MOV AX,307OUT DX,ALMOV AL,AHOUT DX,ALMOV DX,CS8253MOV AL,10110110BOUT DX,ALMOV DX,COUNT2MOV AX,1000OUT DX,ALMOV AL,AHOUT DX,ALJMP $START ENDPCODE ENDS(3)、经编译、无语法错误后装载到实验系统,全速运行程序,观察发光二极管L15,应有周期为1s的点亮、熄灭。
结果如下图所示:一秒后又熄灭,如此往复。
(4)、做完实验后,应按暂停命令中止程序的运行。
二、8253计数器实验验证8253的工作方式3,CLK1每输入5个单脉冲信号,改变一次OUT1状态。
实验电路:DATA BUS D7~D0D08OUT010D17GATE011D26CLK09D35D44D53D62OUT113D71GATE114CLK115CS21RD22WR23OUT217A019GATE216A120CLK2188253/CS300CSIORIOWA0A1VCC1.8432MHzOUT0GATE1CLK1OUT1OUT2CLK2GATE2+5VSP单次正脉冲L15发光二极管显示图4-6-2 8253计数器实验电路图实验步骤:1)按图4-6-2连接实验电路,参考程序:8253-2.ASM;2)编写实验程序,经编译、无语法错误后装载到实验系统;3)全速运行程序,每按5次单脉冲按钮,改变1次发光二极管L15的状态;4)实验完毕后,应使用暂停命令中止程序的运行。
实验三 8253计数器
实验三 8253计数器/定时器的实验一、实验目的掌握8253定时器的编程原理及应用练习使用Proteus仿真软件二、实验内容利用Proteus仿真实现8253控制LED的闪烁,要求LED点亮0.5秒,熄灭0.5秒。
三、实验步骤1、画硬件连接图(1)启动Proteus,点击开始、程序、Proteus 7 professional、ISIS 7 professional(2)放置元件,点击,再点击,出现依次输入8086 74LS373 4LS138 NAND 8253A LED-RED PULLUP(3)按下图连接电路(4)放置标号,点击,依次放置总线标号,网络标号(如上图)(5)放置电源和终端,点击(6)修改元件属性,双击LED,出现如下对话框,将Model Type 改为Digital2M2、加载软件(1)启动emu8086 4.07,生成.com文件或. Exe文件(2)在emu8086 4.07,输入程序参考程序如下;PORT_0 equ 0e8hPORT_1 equ 0eahPORT_2 equ 0echPORT_CTR equ 0eehmov al, 00110101Bmov dx, PORT_CTRout dx, almov dx, PORT_0mov ax,00hout dx,almov dx, a8253mov ax,10hout dx,almov al, 01110110Bmov dx, PORT_CTRout dx, almov dx, PORT_1mov ax,0e8hout dx,almov ax,03hout dx,al(3)编译程序,点击,生成.com文件或. Exe文件(4)加载程序,双击仿真图中的8086CPU,出现如下对话框,点击加载软件,同时将各参数修改如下图3.仿真,点击,系统开始仿真。
四实验报告要求整理好运行正确的源程序,画出程序流程图,并列出源程序清单,写出实验的心得体会。
8253定时器、计数器仿真实验报告
实验名称8253定时器/计数器仿真实验学生姓名学生学号专业班级指导老师2014-12-31实验五8253定时器/计数器仿真实验一、实验目的1.针对特定的芯片,学会用Proteus ISIS设计仿真电路图;2.掌握8253工作原理,对8253进行仿真;3.了解电路一般仿真方法。
二、实验内容1.配置Proteus仿真环境;2.根据电路图,用合适的代码对其进行仿真。
三、实验步骤1.安装Proteus和masm32编译器;2.在Proteus里配置masm32编译器。
配置过程如下:图 1 添加/移除代码生成工具(1)a)把masm32.bat 复制到c:\masm32\bin 里面(c:\masm32 为你自己安装masm32的路径);b)启动Proteus ISIS 后,选择菜单源代码——>设定代码生成工具。
打开如图1所示;c)点击“新建”,然后选择c:\masm32\bin\masm32.bat文件,就出现图2;图 2 添加/移除代码生成工具(2)d)图中红圈位置分别填上ASM 和EXE。
然后点确定。
使用masm32 编译器就配置好了。
3.在画好电路图后,选择菜单源代码——>添加/删除源文件。
出现图3;图 3 添加/移除源代码(3)4.代码生成工具选择masm32,然后点新建,创建自己的源代码。
比如8253.asm,点确定;5.接下来点击源代码——>1.8253.asm,编辑自己的代码。
完成后保存;6.点击源代码——>全部编译。
出现图4表示编译成功,表示程序可以执行。
图 4 代码成功编译7.点击Proteus中的调试菜单的相应功能,完成仿真。
四、实验结果1.仿真电路图如图5所示;图 5 8253仿真电路图2.8253定时器/计数器仿真波形图如图6所示;图 6 定时器输出3.实验代码如下所示:CODE SEGMENT ;H8253.ASMASSUME CS:CODESTART: JMP TCONTTCONTRO EQU 0A006HTCON0 EQU 0A000HTCON1 EQU 0A002HTCON2 EQU 0A004HTCONT: MOV DX,TCONTROMOV AL,16H ;计数器0,只写计算值低8位,方式3,二进制计数OUT DX,ALMOV DX,TCON0MOV AX,1000 ;时钟为1MHZ ,计数时间=1us*20 =20 us 输出频率50KHZOUT DX,AXJMP $CODE ENDSEND START五、实验总结本次实验,没有用到实验箱,避免了找一台好机器的烦恼。
proteus实验例子8253计时器
proteus实验例子8253计时器篇一:实验八可编程定时计数器8253的Proteus仿真实验实验八可编程定时/计数器8253的Proteus仿真实验一、实验要求利用 8086 外接8253 可编程定时/计数器,可以实现方波的产生。
二、实验目的1、学习8086 与8253 的连接方法。
2、学习8253 的控制方法。
3、掌握8253 定时器/计数器的工作方式和编程原理三、实验电路及连线1、Proteus 实验电路2、硬件验证实验硬件连接表四、实验说明1、8253 芯片介绍8253 是一种可编程定时/计数器,有三个十六位计数器,其计数频率范围为0-2MHz,用+5V 单电源供电。
2、8253的功能用途:(1)延时中断(2)可编程频率发生器(3)事件计数器(4)二进制倍频器(5)实时时钟(6)数字单稳(7)复杂的电机控制器3、8253 的六种工作方式:(1)方式0:计数结束中断(2)方式l:可编程频率发生(3)方式2:频率发生器(4)方式3:方波频率发生器(5)方式4:软件触发的选通信号(6)方式5:硬件触发的选通信号五、实验程序流程图六、实验步骤1、Proteus 仿真a.在 Proteus 中打开设计文档“8253_STM.DSN”;b.建立实验程序并编译,仿真;c.如不能正常工作,打开调试窗口进行调试。
参考程序:CODE SEGMENT;H8253.ASMASSUME CS:CODESTART:JMP TCONTTCONTROEQU0A06HTCON0 EQU0A00HTCON1 EQU0A02HTCON2 EQU0A04HTCONT:MOV DX,TCONTROMOV AL,16H ;计数器0,只写计算值低8 位,方式3,二进制计数 OUT DX,ALMOV DX,TCON0MOV AX,20 ;时钟为1MHZ,计数时间=1us*20=20us,输出频率50KHZ OUT DX,ALJMP $CODE ENDSEND START2、实验板验证a.通过USB 线连接实验箱b.按连接表连接电路c.运行PROTEUS 仿真,检查验证结果篇二:基于Proteus的单片机计时器设计基于Proteus的单片机计时器设计和丽花:《电子世界》20XX年第15期【摘要】计时器广泛应用于日常生活和自动化工业控制中。
实验6:8253定时器∕计数器应用
8253定时器/计数器应用一、实验目的1.掌握8253定时/计数器的工作原理、工作方式及应用编程。
2.掌握8253的典型应用电路的接法。
二、实验设备PC 机一台,TD-PITE 实验教学系统一台。
三、实验原理实验系统中安装的为8254(8253的改进型)共有三个独立的定时/计数器,其中0号和1号定时/计数器开放供实验使用,2号定时/计数器为串行通信单元提供收发时钟信号。
定时/计数器0的GATE 信号连接好了上拉电阻,若不对GA TE 信号进行控制,可以在实验中不连接此信号。
四、实验内容计数应用实验:使用单次脉冲模拟计数,使每当按动“KK1+”5次后,产生一次计数中断,并在显示器上显示一个字符“M”。
初始化设置:8254的计数器0、计数器1、计数器2、控制口地址分别为06C0H 、06C2H 、06C4H 、06C6H ;选择计数器0,仅用低8位计数,方式0,二进制计数;8259的地址为20H 、21H ,边沿触发,IR7对应的中断类型码为0FH ,一般全嵌套方式,非缓冲方式,非自动结束。
五、实验步骤(实验报告中要详细写出你自己的实验步骤)计数应用实验步骤:(1)按图1连接实验线路。
(2)编写实验程序,对实验程序进行编译、链接无误后,加载到实验系统。
(3)执行程序。
并按动单次脉冲输入KK1+,观察程序执行结果。
(4)改变程序中的定时/计数值,验证8253的定时/计数功能。
思考题1.执行实验步骤(3)时,程序的执行结果和按动KK1+的速度有关吗?2.如果将图1中OUT0连接到系统总线的MIR6引脚,如何修改程序,使其仍能正常 4.7K图1 8253计数应用实验VCC · · XA1 XA2 系统 XD0· 总 ·XD7 线IOW# IOR# IOY3 MIR7 A0 A1 GATE0 D0 8254 · 单元 · D7 CLK0 WR RD CS OUT0 KK1+单次 脉冲单元计数?3.如果将图1中OUT0连接到系统总线的SIR1引脚,如何修改程序,使其仍能正常计数?提示:主片8259的地址为20H、21H,从片8259的地址为A0H、A1H,从片的INT 连接到主片的IR2引脚上,构成两片8259的级联。
实验五 8253 定时器 计数器实验
实验五8253 定时器/计数器实验
一、实验目的
1、学习8253可编程定时/计数器与8088CPU的接口方法
2、熟悉8253的工作方式
3、熟悉8253在各种工作方式下的编程方法
二、实验内容
1、将计数器1设置为方式0,计数初值为25000,编程使计数值为0时在屏幕上显示字符R,并完成对程序的注释。
三、实验连线:
本实验主要用到的模块:系统模块、8253模块、中断模块等。
8253和系统相连的信号线都已经连好,计数器1的CLK1已经内接了一个250KHz 的信号,可以通过对通道1编程直接控制,将计数器1的OUT1接到8259A中断模块的IR6。
8253的端口地址为40H、41H、42H、43H。
四、实验步骤
1、将实验的线路连接好后,列出程序清单,并进行注释。
2、运行上位机软件,装载并运行程序,观察实验现象。
五、思考
1、8253共有几种工作方式,方式二和方式三有什么区别?
2、将计数器1改为方式2工作,则上面的程序要如何修改?将修改后程序上机调试并观察现象。
3、若要使实验箱的液晶屏上每隔1秒左右显示一个“R”,则连线要做何变动?程序要如何修改?重新连线后将修改完毕的程序上机调试并观察现象。
可编程计数器(定时器)8253实验
四、实验步骤1、验证性实验(使用8253产生1S的时钟)具体要求:采用计数器0和计数器1完成对2MHz输入方波信号的两级分频(将计数器0的输出作为计数器1的输入),定时常数均为1000,得到一个周期为2秒钟的方波,用此方波控制蜂鸣器发出报警信号。
实验步骤:参见《微机原理及接口技术实验指导书》P.39“演示实验”的相关内容。
.MODEL TINYCOM_ADDR EQU 0B003HT0_ADDR EQU 0B000HT1_ADDR EQU 0B001H.STACK 100.CODESTART: MOV DX,COM_ADDRMOV AL,35HOUT DX,ALMOV DX,T0_ADDRMOV AL,00HOUT DX,ALMOV AL,10HOUT DX,ALMOV DX,COM_ADDRMOV AL,77HOUT DX,ALMOV DX,T1_ADDRMOV AL,00HOUT DX,ALMOV AL,10HOUT DX,ALJMP $END START图1 8253实验原理图2、拓展性实验(LED指示灯的计次闪烁)具体要求:将8253的CLK0接到脉冲发生开关S4端,OUT0接到一发光二极管。
将8253的计数器0初始化为方式0,并设置计数初值6。
拨动脉冲发生开关并计数,观察LED的变化与拨动开关次数的关系。
实验步骤:参见《微机原理及接口技术实验指导书》P.39“编程实验”的相关内容。
.MODEL TINYCOM_ADDR EQU 0B003HT0_ADDR EQU 0B000H.STACK 100.CODESTART: MOV DX,COM_ADDRMOV AL,11HOUT DX,ALMOV DX,T0_ADDRMOV AL,06HOUT DX,ALEND START。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
proteus实验例子8253计时器篇一:实验八可编程定时计数器8253的Proteus仿真实验实验八可编程定时/计数器8253的Proteus仿真实验一、实验要求利用 8086 外接8253 可编程定时/计数器,可以实现方波的产生。
二、实验目的1、学习8086 与8253 的连接方法。
2、学习8253 的控制方法。
3、掌握8253 定时器/计数器的工作方式和编程原理三、实验电路及连线1、Proteus 实验电路2、硬件验证实验硬件连接表四、实验说明1、8253 芯片介绍8253 是一种可编程定时/计数器,有三个十六位计数器,其计数频率范围为0-2MHz,用+5V 单电源供电。
2、8253的功能用途:(1)延时中断(2)可编程频率发生器(3)事件计数器(4)二进制倍频器(5)实时时钟(6)数字单稳(7)复杂的电机控制器3、8253 的六种工作方式:(1)方式0:计数结束中断(2)方式l:可编程频率发生(3)方式2:频率发生器(4)方式3:方波频率发生器(5)方式4:软件触发的选通信号(6)方式5:硬件触发的选通信号五、实验程序流程图六、实验步骤1、Proteus 仿真a.在 Proteus 中打开设计文档“8253_STM.DSN”;b.建立实验程序并编译,仿真;c.如不能正常工作,打开调试窗口进行调试。
参考程序:CODE SEGMENT;H8253.ASMASSUME CS:CODESTART:JMP TCONTTCONTROEQU0A06HTCON0 EQU0A00HTCON1 EQU0A02HTCON2 EQU0A04HTCONT:MOV DX,TCONTROMOV AL,16H ;计数器0,只写计算值低8 位,方式3,二进制计数 OUT DX,ALMOV DX,TCON0MOV AX,20 ;时钟为1MHZ,计数时间=1us*20=20us,输出频率50KHZ OUT DX,ALJMP $CODE ENDSEND START2、实验板验证a.通过USB 线连接实验箱b.按连接表连接电路c.运行PROTEUS 仿真,检查验证结果篇二:基于Proteus的单片机计时器设计基于Proteus的单片机计时器设计和丽花:《电子世界》20XX年第15期【摘要】计时器广泛应用于日常生活和自动化工业控制中。
近年来随着单片机在实时检测和自动控制系统中的应用,它的优势越发突出。
利用单片机制作的计时器,使其更加智能化。
本系统的设计采用Proteus与Keil软件结合构建实验平台,这种方法既可以很好的模拟电路的运行效果又可以大大的降低设计成本、缩短设计周期,是目前非常流行的设计方法。
【关键词】单片机;计时器;Proteus仿真一、引言利用单片机制作的计时器更加智能化,当计时停止时,可发出声光报警进行提示。
本系统采用Proteus与Keil软件结合构建实验平台。
首先在计算机上利用Proteus制作硬件电路原理图;接着使用Keil软件编制程序,完成系统的软件设计;最后将程序编译生成的代码文件载入到单片机中,执行仿真功能便可以在计算机中上看到最终的运行效果。
这种设计方法既可以很好的模拟电路的运行效果又可以大大的降低设计成本、缩短设计周期,是一种非常方便的设计方法。
二、工作原理本系统采用单片机控制实现精确计时,最小计时单位为秒,计时最大值为24小时。
电路闲置时,屏幕无显示,以最大限度节省电能。
若按下启动按钮,系统便开始计时。
计时时间会显示在8位数码管构成的显示屏上。
当按下停止按钮时,系统停止计时,并且触发由发光二极管和蜂鸣器构成的声光报警电路,提示时间已到。
此时显示屏锁定在当前时间即已用时间,以备用户查看。
按下复位按钮后,计时器停止报警并且关断显示,系统停止工作。
下次计时可以按下启动按钮重新开始。
三、硬件设计计时器工作原理图如图1所示,它以单片机AT89C51为核心,由单片机最小应用系统、数码管显示电路、按钮控制电路和声光报警电路几部分组成。
数码管显示电路用于显示计时时间,由8位共阳极数码管及驱动电路组成,采用动态扫描显示以简化硬件设计和降低生产成本;按钮控制电路包括启动和停止两个按钮,以实现计时器的启动和停止控制;声光报警电路用于实现计时停止时的报警提示,由一位发光二极管和蜂鸣器组成,如图2所示。
四、软件设计程序设计采用模块化编程方法。
软件由主程序、子程序和定时中断服务程序组成。
主程序和子程序完成按键扫描、显示、声光报警功能;定时中断服务程序用于实现计时功能,并实时更新显示数据。
程序流程图如图3所示:其主程序和主要部分子程序如下:五、仿真调试采用Proteus与Keil软件结合构建实验平台,既可以很好的模拟电路的运行效果又可以大大的降低设计成本、缩短设计周期。
具体步骤如下:1.在计算机上利用Proteus软件制作硬件电路原理图Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真及一键切换到PCB设计,真正实现了从概念到产品的完整设计。
是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持几乎所有的单片机。
编译方面,它也支持IAR、Keil和MPLAB等多种编译器。
Proteus中提供了非常丰富的元件与部件,可以轻而易举完成电路原理图的xx。
在Proteus中新建一个文件,依次添加原理图中的元件进行电路绘制。
当载入已编译好的目标代码文件:*.HEX,可以在Proteus的原理图中看到模拟的实物运行状态和过程。
2.使用Keil软件编制程序,完成系统的软件设计Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部分组合在一起。
特别是使用C语言编程,性能尤为突出。
在Keil中新建一个工程,输入程序。
程序调试时除了可以使用Keil的软件仿真功能,也可以启动Keil与Proteus 联合仿真功能。
联调后,Proteus中的电路便会随之一起启动。
Keil中的一个操作,如单步运行、全速运行、复位等,在Proteus电路中都会有所对应。
3.将程序编译生成的代码文件载入到单片机进入Proteus界面,双击单片机AT89c51,弹出“xx元件属性”对话框,在“Prog-ram File”栏中选择要加载的代码文件,然后点击确定。
如图4所示。
最后点击软件左下角的“运行”控制按钮,以执行仿真功能。
按要求进行控制便可以在电路中上看到最终的运行效果。
如图5所示。
篇三:Protues8253实验报告华北电力大学|||实验报告实验名称 8253应用实验课程名称微机原理及应用老师专业班级姓名学号一实验要求在8259的IR2端输入中断请求信号,该信号由8253的方波信号产生(频率1Hz)。
每来一个上升沿,申请中断一次,CPU响应后通过输出接口74LS273使发光二极管亮,第1次中断,LED0亮,第2次中断,LED1亮,……第8次中断,LED7亮,中断8次后结束。
【要求273的片选地址为8000h,8259的片选地址为9000h,8253的片选地址为A000H】二思路1. 硬件(1)74HC138译码电路如图所示,A15为1,E2、E3接地保证74HC138正常工作,此时Y0、Y1、Y2对应地址分别为8000H、9000H、0A000H.8259的片选地址为9000H,所以CS接Y18086有16位数据总线,其低8位作为偶存储体来传输数据,8086的A0要一直为0,所以8259的A0要接8086的A1IR2端输入中断请求信号,该信号由8253的方波信号产生(频率1Hz),所以8259的IR2端与8253的OUT1端相连。
74LS273的片选地址为8000H,且需要向其写入LED灯的状态,则Y0和WR经或非门后接入CLK。
(4)8253的片选地址为A000H,所以CS接Y2。
CLK0接入1MHz信号,GATE0与GATE1同时接电源,OUT0输入到CLK1,OUT1经分频输出1HZ的信号。
2. 软件(1)流程图(2)与8259A有关的设置① 8259A初始化据要求,初始化:ICW1=13H(00010011B);写入偶地址端口9000HICW2=08H(00001000B);写入奇地址端口9002HICW4=01H(00000001B);写入奇地址端口9002H②中断屏蔽字(OCW1)(写入奇地址端口9002H)允许IR2中断 OCW1与0FBH相与禁止IR2中断 OCW1与04H相或③中断结束字OCW2=20H(3)与8253有关的设置1MHZ要分频为1HZ至少需要两个计数器。
可考虑如下分频方式:计数器0选用工作方式3,计数器0控制字为37H (00110111B)(写入控制寄存器端口0A006H);计数器0预置值为1000H,BCD计数。
(写入计数器0端口地址0A000H)。