激光、电子束、离子束三束区别
电子束与激光比较
电子束焊接与激光焊接的比较一、前言在汽车制造中,无论是发动机、变速箱等零部件生产,还是车身制造与装配,焊接工艺都是重要的加工手段。
除电弧焊、电阻焊等传统焊接技术被普遍采用外,现代汽车生产过程中,以电子束和激光焊为代表的新一代焊接技术的应用也越来越广泛,并凭借精密和高效,成为汽车生产企业提升产品质量、降低生产成本、增加产品竞争力的有力工具。
电子束技术起源于20世纪50年代,10年后激光器诞生,激光加工技术的研究与应用随即展开。
电子束与激光加工的应用领域大体相同,这是因为他们同属于高能密度束流加工技术,其能量密度在同一段数量级,远高于其他热源。
同时,他们与材料的作用原理也极其相近。
二、电子束与激光加工的原理电子束加工(electron beam machining,EBM)是在真空条件下,利用电子枪中产生的电子经加速、聚焦后能量密度为106~109W/cm2的极细束流,高速(光速的60%~70%)冲击到工件表面,并在极短的时间内,将电子的动能大部分转换为热能,形成“小孔”效应,使工件被冲击部位的材料达到几千摄氏度,致使材料局部熔化或蒸发,达到焊接目的。
激光器利用原子受激辐射的原理,使物质受激而产生波长均一,方向一致和强度非常高的光束。
通过光学系统将激光束聚焦成尺寸与光波波长相近的极小光斑,其功率密度可达105~1011W/cm2,温度可达一万摄氏度,将材料在瞬间熔化和蒸发。
激光焊接分为热导焊和深熔焊,在深熔焊中,巨大的能量同样可以形成“小孔”效应,并随着工件的移动,“小孔”身后的材料迅速冷却凝固成为焊缝。
与传统焊接技术比较,激光焊接与电子束焊接都具有更多优异的特性。
λ能量密度高(大于105W/cm2);焊接速度高(一般可以达到5~10米/分钟);λλ热影响区窄(仅为焊缝宽度的10%~20%);热流输入少、工件变形小;λλ易实现自动控制、可在线检测焊缝质量;λ非接触加工、无后续加工。
三、电子束与激光焊的性能比较至今,电子束焊经过不断发展已经成为一种成熟的加工技术,无论是汽车制造,还是航空航天,都起着举足轻重的作用。
电子 离子 激光束加工的区别
电子束加工、离子束加工和激光束加工的区别:
⏹一、原理不同:①电子束加工:在真空中从灼热的灯丝阴极发射出的电子,在高电
压(30~200千伏)作用下被加速到很高的速度,通过电磁透镜会聚成一束高功率密度的电子束。
当冲击到工件时,电子束的动能立即转变成为热能,产生出极高的温度,。
②离子束加工:当离子(正离子)束打击到材料表面上,会产生所谓撞击效应、溅
射效应和注入效应,从而达到不同的加工目的。
③激光加工:经过透镜聚焦后,在焦点上达到很高的能量密度,光能转化为热能,靠光热效应来加工的
⏹二、应用不同:①电子束加工:1)高速打孔2)加工型孔及特殊表面4)焊接5)
热处理6)电子束光刻②离子束加工:1)刻蚀加工2)镀膜加工3)离子注入加工
③激光加工:1)激光切割2)激光打孔3)激光打标4)激光焊接5)激光热处理
6)激光雕刻
⏹三、装置不同:与电子束和离子束加工装置比起来,激光束加工装置比较简单。
⏹。
激光、电子束、离子束三束区别
电子束、离子束、激光束是表面工程领域内的三大载体,号称三束改性。
都具有高能量密度特性。
顾名思义电子束加工是以激发电子作为载体,离子束则以离子。
离子束加工是一种元素注入过程,具有辐照损伤、喷丸作用、表面压缩、形成表面非晶态,形成弥散化合物质点等效应,而电子束与激光束的主要作用在高能量,没有辐照、表面压缩等特性。
电子束、离子束、激光束是表面工程领域内的三大载体,号称三束改性。
都具有高能量密度特性。
顾名思义电子束加工是以激发电子作为载体,离子束则以离子。
离子束加工是一种元素注入过程,具有辐照损伤、喷丸作用、表面压缩、形成表面非晶态,形成弥散化合物质点等效应,而电子束与激光束的主要作用在高能量,没有辐照、表面压缩等特性电子束聚焦点最细最深,激光束次之,离子束最粗。
电子束聚焦直径(打孔)最小可以小于1um。
电子束由电子组成,而离子束一般由金属粒子组成,本质的原理是一样的。
都有溅射作用,对样品损伤也没一定的规律。
但对于石英材料来讲,损伤很明显。
电子束不会造成成分污染,但离子束会,相当于离子注入。
3.加工特点:电子束:(1).束径小、能量密度高;(2).非接触加工,加工过程中工具与加工工件之间不存在明显的机械切削力,不产生宏观应力和变形;(3).被加工对象范围广;(4).电子束能量高,加工速度快、效率高;(5).电子束加工需要一套专用设备和真空系统,价格昂贵。
离子束:(1).加工精度和表面质量高;(2).加工材料广泛;(3).加工方法丰富;(4).性能好,易于实现自动化;(5).应用范围广泛,可根据加工要求选择。
激光束:(1).加工精度高;(2).加工材料范围广;(3).加工性能好;(4).加工速度快、效率高;(5).价格昂贵加工方法:电子束;(1).电子束扫描曝光;(2).电子束投影曝光;(3).电子束表面改性。
离子束:(1).离子束溅射去除加工;(2).离子束溅射镀膜加工;(3).离子束注入加工;(4).离子束曝光加工。
先进制造技术——三束加工—激光束、电子束、离子束
2.特点及应用
离子束加工有如下特点:
(1) 离子束加工是目前特种加工中最精密、最微细的加工。离子刻蚀可达纳 米级精度,离子镀膜可控制在亚微米级精度,离子注入的深度和浓度亦可精 确地控制。
(2) 离子束加工在高真空中进行,污染少,特别适宜于对易氧化的金属、合 金和半导体材料进行加工。 (3) 离子束加工是靠离子轰击材料表面的原子来实现的,是一种微观作用, 所以加工应力和变形极小,适宜于对各种材料和低刚件零件进行加工。
4.束流控制方便,易实现加工过程自动化。
二、激光束加工
激光:源自在经过激励后由高能级院子跃迁到低能级而发射 的光子所产生的物理现象。
激光产生的原理:原子经过激励而发生跃迁现象。 激光加工:激光加工就是利用光的能量经过透镜聚焦后在焦点 上达到很高的能量密度产生的光热效应来加工各种材料。
加工原理
1)高速打孔 目前电子束打孔的最小直径可达Ø0.003mm左右。例如喷气发动机 套上的冷却孔,机翼的吸附屏的孔。在人造革、塑料上用电子束打大量微孔, 可使其具有如真皮革那样的透气性。电子束打孔还能加工小深孔,如在叶片 上打深度5mm、直径Ø0.4mm的孔,孔的深径比大于10:1。
2)加工型孔及特殊表面
激光加工的应用
激光加工是激光系统最常用的应用。根据激光束与材料相互作用的机理,大 体可将激光加工分为激光热加工和光化学反应加工两类。激光热加工是指利 用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激 光切割、表面改性、激光打标、激光钻孔和微加工等;光化学反应加工是指 激光束照射到物体,借助高密度高能光子引发或控制光化学反应的加工过程。 包括光化学沉积、立体光刻、激光刻蚀等。
0.03~ 0.07 mm
电子束与离子束的区别
电子束与离子束的原理及其异同模具三班一、1.电子束与离子束的加工原理比较电子束加工是在真空条件下,利用聚焦后能量密度极高的电子束,以极高的速度冲击到工件表面极小面积上,在极短的时间(几分之一微秒)内,其能量的大部分转变为热能,使被冲击部分的工件材料达到几千摄氏度以上的高温,从而引起材料的局部熔化和气化,被真空系统抽走。
控制电子束能量密度的大小和能量注入时间,就可以达到不同的加工目的。
如只使材料局部加热就可进行电子束热处理;使材料局部熔化就可以进行电子束焊接;提高电子束能量密度,使材料熔化和气化,就可以进行打孔、切割等加工;利用较低能量密度的电子束轰击高分子光敏材料时产生化学变化的原理,即可以进行电子束光刻加工。
离子束加工的原理和电子束加工基本类似,也是在真空条件下,将离子源产生的离子束经过加速聚焦,使之撞击到工件表面。
不同的是离子带正电荷,其质量比电子大数千、数万倍,如氩离子的质量是电子的7.2万倍,所以一旦离子加速到较高速度时,离子束比电子束具有更大的撞击动能,它是靠微观的机械撞击能量,而不是靠动能转化为热能来加工的。
离子束加工的物理基础是离子束射到材料表面时所发生的撞击效应、溅射效应和注入效应。
具有一定动能的离子斜射到工件材料表面时,可以将表面的原子撞击出来,这就是离子的撞击效应和溅射效应二、聚焦离子束聚焦式离子束技术是利用静电透镜将离子束聚焦成非常小尺寸的显微切割技术。
由于镓元素具有低熔点、低蒸汽压以及良好的抗氧化力,因而液态金属离子源中的金属材料多为镓。
在离子柱顶端外加电场于液态金属离子源,可使液态金属或合金形成细小尖端,再加上负电场牵引尖端的金属或合金,从而导出离子束,然后通过静电透镜聚焦,经过一连串可变化孔径可决定离子束的大小,而后用E ×B质量分析器筛选出所需要的离子种类,最后通过八极偏转装置及物镜将离子束聚焦在样品上并扫描,离子束轰击样品,产生的二次电子和离子被收集并成像或利用物理碰撞来实现切割或研磨。
特种加工技术---第六章:电子束和离子束加工
h
17
2 离子束加工在高真空环境下进行,所以污染少,特别适用于对易 氧化的金属、合金材料和高纯度半导体进行加工。
3 离子束加工是靠离子轰击材料表面的原子来实现的,是一种微观 作用,宏观压力很小,所以加工应力、热变形极小,加工质量高, 适合于加工各种材料和低刚度薄壁零件。
4 与电子束加工类似,离子束加工设备费用贵、成本高,应用范围 受到一定的限制。
h
4
三 电子束加工装置 一般说来,一套典型的电子束加工装置主要包括以下几个 主要组成部分
➢ 电子枪 ➢ 真空系统 ➢ 控制系统 ➢ 电源
h
5
1 电子枪 作用:发射电子束 组成:发射阴极,控制栅极、加速阳极
h
6
2 真空系统 真空系统的主要作用是保证电子束加工时维持1.33×10-21.33×10-4Pa的真空度,因为只有在真空中,电子才能高 速运动。此外,加工时产生的金属蒸汽会影响电子的发射 和运动,因此也需要不断地把加工中产生的金属蒸汽不断 抽走。
第六章 电子束和离子束加工
电子束加工-----Electron Beam Machining
离子束加工-----Ion Beam Machining
电子束加工主要用于打孔、焊接、切割、刻蚀、热处理和光刻 加工等方面。 离子束加工主要用于离子刻蚀、离子镀膜加工以及离子注入 加工等方面。
h
1
第一节 电子束加工
3 控制系统和电源
电子束加工设备控制系统主要包括:束流聚焦控制、束流位置 控制和束流强度控制。
束流的位置控制是为了改变电子束的方向,常用电磁偏转来控制
电子束焦点的位置。
电子束加工设备对电源电压的稳压性要求较高,因为电压波动
会影响电子束聚焦的稳定性。 h
高能束加工图文详解
(4) 加工精度高,质量好。
(5)
加工效率高,经济效益好。
(6)
能源消耗少,无加工污染,在节能、环保等方面有较大 优势。
四、激光加工设备
1. 激光器
4. 机械系统
拓展提高
1.数控化和综合化
把激光与数控技术,光 学技术或高精度、自动化的 工件装卸、定位系统结合, 研制和生产各种加工中心, 已成为激光加工设备发展的 一个重要趋势。
拓展提高
2.典型的离子束加工机床
ME-3A 型多功能磁增强反应离子束刻蚀机
拓展提高
ME-3A 型多功能磁增强反应离子束刻蚀机的主要参数
(2)污染少。
二、离子束加工
考 夫 曼 型 离 子 源 示 意 图
3.离子束加工装置
1—真空抽气孔; 2—灯丝; 3—注入孔; 4—电磁线圈; 5—离子束流; 6—工件; 7—阴极; 8— 9—阳极; 10—电离室
拓展提高
1.典型的电子束加工机床
EB300 型电子束加工机床
拓展提高
EB300 型电子束加工机床的主要参数
4
2
束斑极小。
5
1
无污染。
6
加工的局限性。
7
一、电子束加工
电 子 束 加 工 装 置 的 基 本 结 构
3.电子束加工装置
一、电子束加工
电子枪
真空系统 真空系统
1)
2)
控制系统
3)
电源装置
4)
二、离子束加工
1.离子束加工原理
二、离子束加工
(3)加工应力小、变形小。
2.离子束加工特点
(1)易于精确控制,加 工精度高。
二、激光的产生及特性
光的受激辐射
电子行业电子束和离子束加工
电子行业电子束和离子束加工简介在电子行业中,电子束和离子束加工是两种常用的微细加工技术。
它们利用高能电子束和离子束对材料进行加工,具有高精度、高效率和非接触等特点,在电子器件制造、表面改性和纳米加工等领域有广泛应用。
电子束加工基本原理电子束加工利用高速运动的电子束对材料表面进行加工。
通过控制电子束的能量和聚焦方式,可以实现在纳米到微米级别的精确加工。
其基本原理如下:•加速电子:采用电子枪将电子加速到较高能量,通常在几十千伏至几百千伏之间。
•焦点控制:利用一系列电场和磁场聚焦系统,将电子束聚焦到较小的直径,达到高分辨率的效果。
•扫描加工:通过控制电子束的位置和扫描速度,实现对材料表面的精确加工。
应用领域电子束加工在电子行业中有广泛的应用,包括但不限于以下领域:1.纳米微型器件加工:电子束加工可用于制造微型电子器件,如纳米线、纳米晶体管和MEMS器件等。
2.光刻:电子束激光刻蚀技术是集成电路制造中常用的工艺之一。
3.表面改性:通过控制电子束的能量和扫描方式,可以实现对材料表面的纹理、硬度和导电性等物理性质的改变。
4.纳米加工:电子束可以直接对纳米颗粒进行加工,制备纳米材料和纳米结构。
离子束加工基本原理离子束加工利用高能离子束对材料进行加工。
与电子束加工相比,离子束加工具有更高的穿透能力和更大的功率密度,可以实现更深入和更精确的加工效果。
其基本原理如下:•加速离子:采用离子源将离子加速到高能量,通常在几百电子伏至几千电子伏之间。
•焦点控制:通过控制电场和磁场分别作用的方式,实现对离子束的聚焦控制。
•碰撞损伤:高速离子束与材料表面相碰撞,产生碰撞损伤和表面变化。
应用领域离子束加工在电子行业中也有广泛的应用,主要应用于以下领域:1.纳米加工:离子束加工可用于纳米线、纳米颗粒和纳米薄膜的制备。
2.材料改性:通过离子束的碰撞和改变材料表面的结构,可以实现材料的硬化、改变导电性和抗腐蚀等性能。
3.表面涂层:离子束沉积技术可以实现对材料表面的镀膜、涂层和纳米颗粒的制备。
沈阳3D打印详解金属3D打印激光束、电子束和等离子束各自特点
沈阳3D打印详解金属3D打印激光束、电子束和等离子束各自特点激光束激光是一种强度高、方向性好、单色性好的相干光。
由于激光的发散角小和单色性好,理论上可以聚焦到尺寸与光的波长相近的(微米甚至亚微米)小斑点上,加上它本身强度高,故可以使其焦点处的功率密度达到107~1011W/cm2,温度可达10000℃以上。
在这样的高温下,任何材料都将瞬时急剧熔化和汽化,并爆炸性地高速喷射出来,同时产生方向性很强的冲击。
因此,激光3D打印是工件在光热效应下产生高温熔融和受冲击波抛出的综合过程。
激光加工的特点主要有以下几个方面:(1)几乎对所有的金属和非金属材料都可以进行激光加工。
(2)激光能聚焦成极小的光斑,可进行微细和精密加工,如微细窄缝和微型孔的加工。
(3)可用反射镜将激光束送往远离激光器的隔离室或其它地点进行加工。
(4)加工时不需用刀具,属于非接触加工,无机械加工变形。
(5)无需加工工具和特殊环境,便于自动控制连续加工,加工效率高,加工变形和热变形小。
(6)价格昂贵。
电子束电子束加工的原理是利用高速电子的冲击动能来加工工件的,在真空条件下,将具有很高速度和能量的电子束聚焦到被加工材料上,电子的动能绝大部分转变为热能,使材料局部瞬时熔融、汽化蒸发而去除。
电子束加工的特点如下:(1)电子束能够极其微细地聚焦(可达l~0.1 μm),故可进行微细加工。
(2)加工材料的范围广。
由于电子束能量密度高,可使任何材料瞬时熔化、汽化且机械力的作用极小,不易产生变形和应力,故能加工各种力学性能的导体、半导体和非导体材料。
(3)可通过磁场或电场对电子束的强度、位置、聚焦等进行控制,所以整个加工过程便于实现自动化。
(4) 电子束的能量密度高,加工效率很高。
(5)加工在真空中进行,污染少,加工表面不易被氧化。
(6)电子束加工需要整套的专用设备和真空系统,价格较贵,故在生产中受到一定程度的限制。
(7)电子束加工需要一套专用设备和真空系统,价格昂贵。
3 高能束流加工技术
激光切割样品-案图
电子束热加工原理图
真空电子束焊接
利用定向高速运动的电子束流
撞击工件使动能转化为热能而
使工件熔化,形成焊缝。
电子束光刻系统(E-Beam Lithiograpghy)
采用高亮度和高稳定性的TFE电子枪(thermal field emisssion) 出色的电子束偏转控制技术
采用场尺寸调制技术,电子束定位分辨率可达0.0012nm
采用轴对称图形书写技术,图形偏角分辨率可达0.01mrad
广泛应用于半导体制造领域
的原理还可以加工出弯曲孔和斜孔。
电子束打孔在多种精度要求过高的工
下图是加工成形的毛细管:。
第四节高能束加工
❖ 5)能源消耗少,无加工污染,在节能、环保等方面有较 大优势。
3.激光加工的应用
(1)激光打孔
❖ 激光打孔主要用于特殊材料或特殊工件上的孔加工, 如仪表中的宝石轴承、陶瓷、玻璃、金刚石拉丝模 等非金属材料和硬质合金、不锈钢等金属材料的细 微孔的加工。
❖ 常用的高能密度束流加工方法主要是: ❖ 激光加工、电子束加工、离子束加工等。
高能密度束流加工的共同特点:
❖ 1.加工速度快,热流输入少,对工件热影响极少, 工件变形小。
❖ 2.束流能够聚焦且有极高的能量密度,激光加工、 电子束加工可使任何坚硬、难熔的材料在瞬间熔融 汽化,而离子束加工是以极大能量撞击零件表面, 使材料变形、分离破坏。
2.离子束加工特点
❖ 1)加工精度高。因离子束流密度和能量可得 到精确控制。
❖ 2)在较高真空度下进行加工,环境污染少。 特别适合加工高纯度的半导体材料及易氧化 的金属材料。
❖ 3)加工应力小,变形极微小,加工表面质量 高,适合于各种材料和低刚度零件的加工。
3.离子束加工的应用范围
❖ 离子束加工方式包括离子蚀刻、离子镀膜及 离子溅射沉积和离子注入等。
❖ 3.工具与工件不接触,无工具变形及损耗问题。 ❖ 4.束流控制方便,易实现加工过程自动化,
一、激光加工
1.激光加工原理
❖ 激光加工(laser beam machining,LBM)是
在光热效应下产生的高温熔融和冲击波的综合作用 过程。
❖ 通过光学系统将激光束聚焦成尺寸与光波波长相近 的极小光斑,其功率密度可达107~1011w/cm2,温度 可达一万摄氏度,将材料在瞬间(10-3s)熔化和蒸 发,工件表面不断吸收激光能量,凹坑处的金属蒸 汽迅速膨胀,压力猛然增大,熔融物被产生的强烈 冲击波喷溅出去。
先进制造技术——三束加工—激光束、电子束、离子束共29页文档
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我
先进制造技术——三束加工—激光束、电子束、离子束PPT29页
先进制造技术——三束加工—激光束、 电子束、离子束
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34西的诀窍,就是一下子不要学很多。——洛克
先进制造技术——三束加工
加工精度低:三束加工技术由于其加工原理的限制加工精度相对较低。 加工效率低:三束加工技术由于其加工原理的限制加工效率相对较低。 加工成本高:三束加工技术由于其加工原理的限制加工成本相对较高。 加工范围有限:三束加工技术由于其加工原理的限制加工范围相对有限。
电子束光刻:用于 制造集成电路和半 导体器件
电子束蒸发:用于 制备薄膜材料和纳 米结构
电子束焊接:用于 微电子封装和连接
电子束刻蚀:用于 微电子器件的精细 加工和表面处理
离子束加工技术简介 离子束加工在表面处理中的应用 离子束加工在薄膜制备中的应用 离子束加工技术的优缺点 离子束加工技术的发展趋势
激光束加工在材料 加工中的应用:切 割、焊接、打孔等
汽车制造等领域
航空航天: 用于制造 飞机、火 箭等航空 航天设备
汽车制造: 用于制造 汽车零部 件、车身 等
医疗设备: 用于制造 医疗设备、 植入物等
电子设备: 用于制造 电子元器 件、电路 板等
机械制造: 用于制造 机械零部 件、模具 等
建筑行业: 用于制造 建筑材料、 结构件等
原理:利用高能电 子束轰击材料表面 使其熔化或蒸发
特点:加工精度高 速度快适用于复杂 形状的加工
应用:广泛应用于 半导体、微电子、 航空航天等领域
发展趋势:随着技 术的不断进步电子 束加工的应用范围 将不断扩大
原理:利用高能量的离子束轰击材料表面形成微孔或刻蚀 应用:半导体、微电子、光学等领域 特点:精度高、速度快、可控性好 优势:可加工各种材料包括金属、陶瓷、塑料等
离子束加工技术:提高加工精度和效率 降低成本
复合加工技术:结合多种加工技术提高 加工精度和效率降低成本
智能化加工技术:实现加工过程的自动 化和智能化提高加工效率和精度
三束表面改性总结
• 这些束流用于材料表面加热时,由于加热速度极快,所以 整个基体的温度在加热过程中可以不受影响。
• 这些技术特征在应用上表现为,这三种束流可以对材料的 表面实现包括无化学成分变化的相变硬化、微晶化、非晶 化,以及有化学成分变化的熔覆、合金化等表改性处理, 而且材料在这种快速加热冷却之下可产生其他表面工程技 术达不到或难以达到的材料表面的组织与性能。
三束表面改性总结
• 采用激光束、离子束、电子束对材料表面进行改性或合金 化的技术,技术主要包括两个方面:
• 其一,利用激光束、电于束可获得极高的加热和冷却速度, 从而可制成微晶、非晶及其它一些奇特的、热平衡相图上 不存在的高度过饱和固溶体和亚稳合金,从而赋予材料表 面以特殊的性能,大大改善了工件的使用性能和应用领域, 目前的激光束、电子束发生器已有足够的能量在短时间内 加热和熔化大面积的表面区域。
电子束与激光比较
电子束焊接与激光焊接的比较一、前言在汽车制造中,无论是发动机、变速箱等零部件生产,还是车身制造与装配,焊接工艺都是重要的加工手段。
除电弧焊、电阻焊等传统焊接技术被普遍采用外,现代汽车生产过程中,以电子束和激光焊为代表的新一代焊接技术的应用也越来越广泛,并凭借精密和高效,成为汽车生产企业提升产品质量、降低生产成本、增加产品竞争力的有力工具。
电子束技术起源于20世纪50年代,10年后激光器诞生,激光加工技术的研究与应用随即展开。
电子束与激光加工的应用领域大体相同,这是因为他们同属于高能密度束流加工技术,其能量密度在同一段数量级,远高于其他热源。
同时,他们与材料的作用原理也极其相近。
二、电子束与激光加工的原理电子束加工(electron beam machining,EBM)是在真空条件下,利用电子枪中产生的电子经加速、聚焦后能量密度为106~109W/cm2的极细束流,高速(光速的60%~70%)冲击到工件表面,并在极短的时间内,将电子的动能大部分转换为热能,形成“小孔”效应,使工件被冲击部位的材料达到几千摄氏度,致使材料局部熔化或蒸发,达到焊接目的。
激光器利用原子受激辐射的原理,使物质受激而产生波长均一,方向一致和强度非常高的光束。
通过光学系统将激光束聚焦成尺寸与光波波长相近的极小光斑,其功率密度可达105~1011W/cm2,温度可达一万摄氏度,将材料在瞬间熔化和蒸发。
激光焊接分为热导焊和深熔焊,在深熔焊中,巨大的能量同样可以形成“小孔”效应,并随着工件的移动,“小孔”身后的材料迅速冷却凝固成为焊缝。
与传统焊接技术比较,激光焊接与电子束焊接都具有更多优异的特性。
λ能量密度高(大于105W/cm2);焊接速度高(一般可以达到5~10米/分钟);λλ热影响区窄(仅为焊缝宽度的10%~20%);热流输入少、工件变形小;λλ易实现自动控制、可在线检测焊缝质量;λ非接触加工、无后续加工。
三、电子束与激光焊的性能比较至今,电子束焊经过不断发展已经成为一种成熟的加工技术,无论是汽车制造,还是航空航天,都起着举足轻重的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子束、离子束、激光束是表面工程领域内的三大载体,号称三束改性。
都具有高能量密度特性。
顾名思义电子束加工是以激发电子作为载体,离子束则以离子。
离子束加工是一种元素注入过程,具有辐照损伤、喷丸作用、表面压缩、形成表面非晶态,形成弥散化合物质点等效应,而电子束与激光束的主要作用在高能量,没有辐照、表面压缩等特性。
电子束、离子束、激光束是表面工程领域内的三大载体,号称三束改性。
都具有高能量密度特性。
顾名思义电子束加工是以激发电子作为载体,离子束则以离子。
离子束加工是一种元素注入过程,具有辐照损伤、喷丸作用、表面压缩、形成表面非晶态,形成弥散化合物质点等效应,而电子束与激光束的主要作用在高能量,没有辐照、表面压缩等特性电子束聚焦点最细最深,激光束次之,离子束最粗。
电子束聚焦直径(打孔)最小可以小于1um。
电子束由电子组成,而离子束一般由金属粒子组成,本质的原理是一样的。
都有溅射作用,对样品损伤也没一定的规律。
但对于石英材料来讲,损伤很明显。
电子束不会造成成分污染,但离子束会,相当于离子注入。
3.加工特点:电子束:(1).束径小、能量密度高;(2).非接触加工,加工过程中工具与加工工件之间不存在明显的机械切削力,不产生宏观应力和变形;(3).被加工对象范围广;(4).电子束能量高,加工速度快、效率高;(5).电子束加工需要一套专用设备和真空系统,价格昂贵。
离子束:(1).加工精度和表面质量高;(2).加工材料广泛;(3).加工方法丰富;(4).性能好,易于实现自动化;(5).应用范围广泛,可根据加工要求选择。
激光束:(1).加工精度高;(2).加工材料范围广;(3).加工性能好;(4).加工速度快、效率高;(5).价格昂贵加工方法:电子束;(1).电子束扫描曝光;(2).电子束投影曝光;(3).电子束表面改性。
离子束:(1).离子束溅射去除加工;(2).离子束溅射镀膜加工;(3).离子束注入加工;(4).离子束曝光加工。
激光束:(1).加工精度高;(2).加工材料范围广;(3).加工性能好;(4).加工速度快、效率高;(5).价格昂贵。
材料表面改性目的和意义材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。
现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。
因此,现代材料表面改性一是可以使材料表面获得更好的表面特性,有效地延长零件使用寿命;二是可以用性能较差的合金钢代替优质合金钢,以节省优质合金钢材料;三是可以研制出新颖材料。
这种多功能综合化,用于提高材料表面性能的各种现代表面改性技术统称为现代表面改性技术。
现代表面改性技术适用于金属及其合金、陶瓷、玻璃、聚合物及半导体材料等多种现代材料。
现代材料表面改性技术的发展现代材料表面改性技术是一门由多种学科发展而来的技术组合,其发展经历了很长,很复杂的过程。
传统的表面改性技术,如表面热处理、表面渗碳等已有上百年的历史了。
上世纪50年代高分子涂装技术有了非常大的发展,由古老的刷涂、空气喷涂发展为静电喷涂、流化床涂装、电泳涂装及静电涂装。
60年代以来,传统的淬火已由火焰加热发展为高频加热。
后来,激光器与电子束装置的应用,出现了激光束、电子束的淬火技术。
电镀是一门古老的表面改性技术,相当长时间,电镀只能镀覆纯金属模,目前已能镀覆多种合金,也可以在表面上镀陶瓷和金刚石粉末,以增加表面的抗磨性。
70年代以来,化学镀有了很大的发展,它已成为一个有效的镀覆手段。
近30年来,热喷涂得到了迅速的发展,国内外形成了一种热喷涂技术热,使它在多种工业部门得到了广泛应用,而且发展出多种类型的热喷涂技术。
激光束、电子束成功地应用于现代材料表面改性,出现了如激光表面涂敷、激光表面合金化、激光表面淬火、电子束表面淬火、表面镀膜等等多种现代材料表面改性技术。
激光表面改性激光束的能量密度非常高,因而当它照射在物体表面时能够产生106~108K/cm非常高的温度梯度,使表面迅速熔化。
移去热源时,冷的基体又会使熔化部分以109~1011K/s的速度冷却,使表面迅速凝固。
由于激光的这种特性,它可用于材料的激光相变、激光表面合金化与激光熔覆处理,提高材料表面的硬度、抗磨性、抗蚀性。
激光束与金属的相互作用 1.金属对激光的吸收激光束照射金属时,激光束能量会很快转变为金属晶格的动能,从而使金属表层迅速熔化,激光束部分能量被吸收,部分能量被反射。
金属对激光的吸收因金属而异,金属的表面状态对于反射率极为敏感,表面越光滑反射率越高,表面杂质和氧化物会使反射率急剧变化。
激光透入金属的深度仅为表面下10-5cm的范围,所以激光对金属的加热可看作是一种表面热源,在表面层光能变为热能,此后,热能按热传导规律向金属深处传导。
图6.10各种激光加工方法使用的功率密度及时间范围激光相变硬化1.激光相变硬化的机理激光相变硬化得到超高硬度的机理主要是:由于高的加热和冷却速率使生成的马氏体针更加细化。
例如,Cr12中一般淬火的马氏体针长度约6m,而激光淬火后马氏体针长度约2m。
2激光相变硬化的特点加热和冷却速率高:加热速率可达105~109 0C/s,对应的加热时间为10-3~10-7 s,冷却速率可达104~107 0C/s。
扫描速率越快,冷却速率也越快。
高硬度:激光淬火层的硬度比常规淬火层提高15%~20%。
变形小:激光淬火表面有很大的残余压应力(可达4000MPa),有利于提高疲劳强度。
由于加热层薄,加热激光快,即使很复杂的零件,变形也非常小。
表层显微组织:由于激光加热速率极快,相变在很大的过热度下进行,形核率很大。
因加热时间又很短,碳原子的扩散及晶粒的长大受到限制,所以得到的奥氏体晶粒小而不均匀。
冷却速率也比使用任何淬火剂都快,因而易得到隐针或细针马氏体组织。
3激光熔化淬火如果提高激光功率,或减小光束直径、减小扫描速率,对金属扫描时,表面薄层被熔化,当光束离开时,由于冷的基体的散热作用,会产生固相相变硬化所类似的冷却作用,使表层可产生一层液体金属的激冷组织,这种硬化技术可称为激光熔化淬火。
4激光非晶化激光处理的急剧冷却速率是获得非晶态金属的一个重要手段,它也被称为激光上釉。
非晶体合金与对应的晶体相比,强度、韧性和硬度都高,导磁性可与镍铁铝超级导磁合金媲美,电阻为晶体的2~3倍,耐蚀性超过不锈钢,但耐疲劳性不及晶体。
这种工艺已成功地用于在航空发动机涡轮盘表面形成一非晶态层,使其重量减轻50%。
5激光退火激光退火用于半导体材料。
6.激光冲击硬化激光冲击硬化是以107W/mm2以上的高功率密度的脉冲激光照射金属表面,使金属表面急剧气化,形成的冲击波反作用于表面使表面硬化。
冲击波的力量可达104Pa,从而使表面产生强烈的塑性变形,增加位错的密度,提高材料的强度及疲劳寿命。
激光表面合金化与激光熔覆激光表面合金化激光表面合金化的基本目的也是为了提高表面的耐磨、防腐等性能。
激光表面合金化是指:把合金元素、陶瓷等粉末以一定方式涂覆到金属基体表面上,通过激光加热使涂覆层与基体表面共熔而混合,形成表面特种合金层。
它是通过熔化表面涂覆层A和部分基体B把涂覆层元素可控制地结合入基体B中,液态混合之后将发生快速的再凝固,从而使合金元素被结合到基体表面附近。
激光表面熔覆激光表面熔覆是指:在金属基体表面上预涂一层金属、合金或陶瓷粉末,在进行激光重熔时,控制能量输入参数,使添加层熔化并使基体表面层微熔,从而得到一外加的熔覆层。
激光表面熔覆与激光表面合金化的不同在于基体表面层微熔而添加物全熔,这样一来避免了熔化基体对添加层的稀释,可获得具有原来特性和功能的强化层。
电子束表面改性电子束表面改性原理电子束照射到材料表面时,入射电子会同材料的原子核及电子发生相互作用,由于入射电子与原子核的质量差别特别大,入射电子与原子核的碰撞基本上是弹性碰撞,因此入射电子能量传递主要是通过与基体的电子碰撞实现的,入射电子通过碰撞,入射电子的能量立即以热能形式传递给了点阵原子,入射电子的能量以极快速度沉积在材料表面层,使材料表面表面层迅速熔化,当电子束离开表面后,基体的热传导使熔化表面很快凝固。
用电子束照射时,能量沉积仅依赖于入射能量E,并与靶材原子序数(Z)有关,改变电子束的入射角,沉积能量也会随之改变。
电子束辐照与激光辐照的主要区别在于最高温度时的深度和最小熔化层厚度不同。
电子束辐照时,熔化层至少几微米厚;电子束能量沉积范围较激光辐照大;电子束辐照时的液相温度较激光辐照时低,因而温度梯度较小,而激光加热温度梯度较高,并能保持较长时间。
电子束在真空条件下可以象激光一样用于材料表面改性。
电子束表面改性电子束表面改性方法:电子束表面改性方法与激光相类似,电子束表面改性方法包括下列几种:电子束淬火:即利用钢铁材料的马氏体相变进行表面改性。
电子束表面合金化:如果提高电子束功率,材料表面会发生熔化,若在熔池中添加合金元素即可以进行电子束合金化。
电子束覆层:基材不熔化形成另一种材料的薄层。
制造非晶态层:使熔化表面层激冷而获得薄的微晶或非晶态层。
电子束改性的特点电子束改性与激光束改性有大致相同的特点,但在下几方面两者又有差异:能量利用率:金属对激光吸收率很低,而对电子束吸收率非常高,甚至可达99%,因此,电子束可获得更高密度的能量沉积。
电子束功率可比激光大一个数量级。
能量透入深度:激光的能量透入深度很小,一般为0.1m,而电子束的能量透入深度大得多,一般为10m。
因此,激光为表面热源,电子束为次表面热源。
气氛:激光在大气条件下进行,方便;电子束是在真空条件下进行,工件尺寸受限制,而可防止氧化。
对焦:激光的焦点是固定的,对焦必须移动工件;电子束对焦通过调节聚束透镜的电流即可,很方便。
束流偏转:激光必须更换反射镜;电子束可通过电流任意控制。
设备运转成本:激光要比电子束高10倍。
电子束改性的应用:电子束主要用于淬火,淬火件的类型有:V型件,如导轨的底板;空心件,如钢套、转动轴件、阀门密封面、精密齿轮表面、工模具等。