第三章内部存储器装置计算机组成基本原理

合集下载

数字逻辑与计算机组成原理:第三章 存储器系统(1)

数字逻辑与计算机组成原理:第三章 存储器系统(1)

A3 0
字线
地0 A2 0 址

A1
0码 器
A0 0
15
读 / 写选通
… …

0,0 … 0,7
16×8矩阵
15,0 … 15,7
0

7 位线
读/写控制电路
D0
… D7
(2) 重合法(双译码方式)
0 A4
0,00

0 A3

A2

0码
31,0

A1
器 X 31
0 A0
… …
或低表示存储的是1或0。 T5和T6是两个门控管,读写操作时,两管需导通。
六管存储单元
保持
字驱动线处于低电位时,T5、T6 截止, 切断了两根位线与触发器之间的 联系。
六管存储单元
单译码方式
读出时: 字线接通 1)位线1和位线2上加高电平; 2)若存储元原存0,A点为低电
平,B点为高电平,位线2无电 流,读出0。
3)若存储元原存1,A点为高电 平,B点为低电平,位线2有电
流,读出1。
静态 RAM 基本电路的 读 操作(双译码方式)
位线A1
A T1 ~ T4 B
位线2
T5
行地址选择
T6
行选
T5、T6 开
列选
T7、T8 开
T7
T8
读选择有效
列地址选择 写放大器
写放大器
VA
T6
读放
读放
DOUT
T8 DOUT
DIN
1.主存与CPU的连接
是由总线支持的; 总线包括数据总线、地址总线和控制总线; CPU通过使用MAR(存储器地址寄存器)和MDR(存储

计算机组成原理第三章 第2讲 SRAM存储器

计算机组成原理第三章 第2讲 SRAM存储器
SRAM存储器
3.2 SRAM存储器
主存(内部存储器)是半导体存储器。根
据信息存储的机理不同可以分为两类:
相对而言 静态读写存储器(SRAM):
• 存取速度快,一般用作Cache

动态读写存储器(DRAM):
• 存储容量大,一般用作主存
3.2 SRAM存储器
一、基本的静态存储元阵列 1、存储元:
例1:图3.5(a)是SRAM的写入时序图。 其中R/W是读/写命令控制线,当R/W 线为低电平时,存储器按给定地址把 数据线上的数据写入存储器。请指出 图3.5(a)写入时序中的错误,并画出正 确的写入时序图。
3.2 SRAM存储器
3.2 SRAM存储器
写使能信号
3.2 SRAM存储器
三、存储器的读写周期 读周期

读出时间Taq 读周期时间Trc 写周期时间Twc 写时间Twd 读周期时间Trc=写时间Twd
写周期


存取周期

3.2 SRAM存储器
片选 读使能
3.2 SRAM存储器
片选 写使能
3.2 SRAM存储器
教材P69
用锁存器实现。 需要加电,无限期保持0或者1状态。
3.2 SRAM存储器
回顾译码器
可参考CAI动画
63
3.2 SRAM存储器
2、三组信号线

地址线:A0-A5,可指定26=64个存储单元 数据线:I/O0,I/O1 ,I/O2 ,I/O3
• 行线,列线 • 存储器的字长4位


控制线:读或写 存储位元、存储单元、字存储单元、最小寻址 单位、最小编址单位。

写入数据:

计算机组成原理教案(第三章)

计算机组成原理教案(第三章)

3.主存物理地址的存储空间分布
以奔腾PC机主存为例,说明主存物理地址的存储空间概念
3.3.1只读存储器
1.ROM的分类
只读存储器简称ROM,它只能读出,不能写入。它的最 大优点是具有不易失性。
根据编程方式不同,ROM通常分为三类:
只读存 储器






掩模式
数据在芯片制造过程中就 确定
可靠性和集成度高,价 不能重写 格便宜
存储 周期 存储 器带 宽
连续启动两次操作所需 间隔的最小时间
单位时间里存储器所存 取的信息量,
主存的速

数据传输速率 位/秒,字 技术指标 节/秒
3.2.1 SRAM存储器
1.基本存储元
六管SRAM存储元的电路图及读写操作图
2.SRAM存储器的组成
SRAM存储器的组成框图
存储器对外呈现三组信号线,即地址线、数据线、读/写控制线
主存地址空间分布如图所示。
3.3.2闪速存储器
1.什么是闪速存储器
闪速存储器是一种高密度、非易失性的读/写半导体存储器
2.闪速存储器的逻辑结构
28F256A的逻辑方框图
3.闪速存储器的工作原理
闪速存储器是在EPROM功能基础上增加了电路的电擦除和重新 编程能力。 28F256A引入一个指令寄存器来实现这种功能。其作用是: (1)保证TTL电平的控制信号输入; (2)在擦除和编程过程中稳定供电; (3)最大限度的与EPROM兼容。 当VPP引脚不加高电压时,它只是一个只读存储器。 当VPP引脚加上高电压时,除实现EPROM通常操作外,通过指 令寄存器,可以实现存储器内容的变更。 当VPP=VPPL时,指令寄存器的内容为读指令,使28F256A成 为只读存储器,称为写保护。

计算机组成原理 第三章

计算机组成原理 第三章

1TB=230B
• 存取时间(存储的时间。
• 存储周期:是指连续启动两次读操作所需要间隔的最 小时间。 • 存储器的带宽(数据传输速率):是单位时间里存储 器所存取的信息量。通常以位/秒或字节/秒来表示。
3.2 SRAM存储器
通常使用的半导体存储器分为随机存取存储器 (Random Access Memory,RAM)和只读存储器 (Read-Only Memory,ROM)。它们各自又有许多 不同的类型。
相连。
A15 A14
2:4 译码器
CPU
A0 A13
11 10 01 00 CE 16K×8
CE … 16K×8 WE
CE 16K×8
WE
CE 16K×8
WE
WE
WE
D0~D7 16K×8字扩展法组成64K×8 RAM
• 字位同时扩展:既增加存储单元的数量,也加长
各单元的位数
• 实际的存储器 往往 需要对字和位同时扩展,如
I/O1 ….. I/O4
WE 2114 CS A0 …. A9
CPU
A0 A9
WE 2114 CS A0 …. A9
A10 A11
wE
2:4 译 码 器
用16K×8位的芯片采用字扩展法组成64K×8位 的存储器连接图。 图中4个芯片的数据端与数据总线D0—D7相连, 地址总线低位地址A0—A13与各芯片的14位地址端相 连,而两位高位地址A14 ,A15 经译码器和4个片选端
CPU
A0
A0 A1 A2 A3 A4 A5 A6 A7 A 8 A9
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9
A9 CS
假定使用8K×1的RAM存储器芯片,那么组成 8K×8位的存储器,每一片RAM是8192×1,故其地址

白中英计算机组成原理第三章答案

白中英计算机组成原理第三章答案


主存16MB
Cache块号需要14位
主存地址为24位 主存标记位有24-14-2 = 8位
顺序存储器和交叉存储器连续读出m=8个字的数据信息量为: q = 8×64 = 512位 顺序存储器所需要的时间为 t1 = m×T =8×100ns =800ns =8×10-7s 故顺序存储器的带宽为 W1= q/t1 = 512/(8×10-7) = 64×107[bit/s] 交叉存储器所需要的时间为 t2 = T+ (m-1)×τ= 100ns + (8-1)×50ns = 450ns =4.5×10-7s 故交叉存储器的带宽为 W1= q/t2 = 512/(4.5×10-7) = 113.8×107[bit/s]
9、CPU执行一段程序时,cache完成存取的次数为2420 次,主存完成存取的次数为80次, 已知cache存储周期为40ns,主存存储周期为240ns, 求cache/主存系统的效率和平均访问时间。
命中率 h = Nc/(Nc+Nm) = 2420/(2420+80) = 0.968
主存与Cache的速度倍率
第3章 内部存储器
1、设有一个具有20位地址和32位字长 的存储器,问:
①该存储器能存储多少字节的信息?
32 2 * 4M字节 = 220×32 bit 8 ②如果存储器有512K×8位SRAM芯片组成,需要多少片?
20
存储容量 = 存储单元个数×每单元字节数
需要做存储芯片的字位扩展;
位扩展:4片512K×8位芯片构成512K×32位的存储组; 字扩展:2组512K×32位存储组构成1M×32位的存储器;
15、假设主存容量16M×32位,Cache容量 64K×32位,主存与Cache之间以每块4×32位大 小传送数据,请确定直接映射方式的有关参数,并 画出主存地址格式。

白中英计算机组成原理第3章_内部存储器

白中英计算机组成原理第3章_内部存储器

存储器带宽
每秒从存储器进出信息的最大数量; 单位为位/秒或者字节/秒。
2014年12月14日星期日 12
求存储器带宽的例子
设某存储系统的存取周期为500ns,每个存取周期可 访问16位,则该存储器的带宽是多少? 存储带宽= 每周期的信息量 / 周期时长 = 16位/(500 ╳10-9)秒 = 3.2 ╳ 107 位/秒 = 32 ╳ 106 位/秒 = 32M位/秒
第三章 内部存储器
目录
3.1 存储器概述
3.2 SRAM存储器 3.3 DRAM存储器 3.4 只读存储器和闪速存储器 3.5 并行存储器 3.6 CACHE存储器
(理解)
(理解) (掌握) (理解) (理解) (掌握)
2014年12月14日星期日
2
学习要求
理解存储系统的基本概念 熟悉主存的主要技术指标 掌握主存储器与CPU的连接方法
半导体存储器:用半导体器件(MOS管)组成的存储器; 软盘
磁表面存储器:用磁性材料(磁化作用)做成的存储器; 光盘存储器:用光介质(光学性质)构成的存储器; 光盘 按存取方式分 随机存储器:存取时间和存储单元的物理位臵无关; 顺序存储器:存取时间和存储单元的物理位臵有关;
半导体 存储器 磁带 硬盘 磁带
数据总线 MDR
•••
驱动器
•••
译码器
控制电路
•••
MAR
地址总线
2014年12月14日星期日


23
32K×8位的SRAM逻辑结构图
X方向: 8根地址线 输出选中 256行
动画演示: 3-3.swf
三维存储 阵列结构
输入输出时 分别打开不 同的缓冲器
读写、 选通 控制

计算机组成原理:第三章 主存储器和存储系统1

计算机组成原理:第三章 主存储器和存储系统1
低位地址分配给芯片,高位地址形成片选逻辑。
芯片
芯片地址
片选信号
片选逻辑
1K
A9…A0
CS0
A11 A10
1KA9…A0Fra bibliotekCS1
A11 A10
1K
A9…A0
CS2
A11 A10
1K
A9…A0
CS3
A11A10
(6)连接方式:扩展位数,扩展单元数,连接控制线
A11
A10
A9
A8
片选
译码
CS0
CS1
CS2
RAM; 8K×8位RAM; 2K×8位ROM; 4K×8位ROM; 8K×8位ROM及74LS138译码器和
各种门电路,画出CPU与存储器的连接图,要求最小4K为系统程序区,相邻8K为用户程序
区。
(1)写出对应的二进制地址码
(2)确定芯片的数量及类型
(3)分配地址线
(4)确定片选信号
2. P86 — 4.6
A14
A15
MREQ
A0


A13
A12
A11
A10
A9
G1
G2A
G2B
C
B
A
&
Y4

PD/Progr
2K ×8位
ROM



D7
D4
D3
D0
Y5
WE
CPU与存储芯片的连接图

1K ×4位
RAM


1K ×4位
RAM
例2: 设CPU有16根地址线,8根数据线,并用MREQ作访存控制信号(低电平有效),用WE

计算机组成原理第三章存贮系统2

计算机组成原理第三章存贮系统2

三、组相联映射方式
存贮系统
前两者的组合
Cache分组,组间采用直接映射方式,组内采用 全相联的映射方式
Cache分组U,组内容量V 映射方法(一对多)
q= j mod u 主存第j块内容拷贝到Cache的q组中的某行
地址变换
设主存地址x,看是不是在cache中,先y= x mod u, 则在y组中一次查找
计算机组成原理
一、全相联的映射方式
存贮系统
3、特点:
优点:冲突概率小,Cache的利用高。 缺点:比较器难实现,需要一个访问速度很快代
价高的相联存储器
4、应用场合:
适用于小容量的Cache
计算机组成原理
二、直接映射方式
存贮系统
1、映射方法(一对多)如:
i= j mod m
主存第j块内容拷贝到Cache的i行
由表达式看出,为提高访问效率,命中率h越接近1 越好,r值以5—10
命中率h与程序的行为、cache的容量、组织方式、 块的大小有关。
计算机组成原理
存贮系统
例 CPU执行一段程序时,cache完成存取
的次数为1900次,主存完成存取的次数为
100次,已知cache存取周期为50ns,主存
存取周期为250ns,求cache/主存系统的
存贮系统
1、将地址分为两部分(块号和字),在内存块 写入Cache时,同时写入块号标记;
2、CPU给出访问地址后,也将地址分为两部分 (块号和字),比较电路块号与Cache 表中 的标记进行比较,相同表示命中,访问相应单 元;如果没有命中访问内存,CPU 直接访问 内存,并将被访问内存的相对应块写入Cache。
相应行; 把行标记与

计算机组成原理期末试题及答案

计算机组成原理期末试题及答案

第一章电脑系统概论电脑的硬件是由有形的电子器件等构成的,它包括运算器、存储器、控制器、适配器、输入输出设备。

早起将运算器和控制器合在一起称为CPU〔中央处理器〕。

目前的CPU包含了存储器,因此称为中央处理器。

存储程序并按地址顺序执行,这是冯·诺依曼型电脑的工作原理,也是CPU自开工作的关键。

电脑系统是一个有硬件、软件组成的多级层次结构,它通常由微程序级、一般程序级、操作系统级、汇编语言级、高级语言级组成,每一级上都能进行程序设计,且得到下面各级的支持。

习题:4冯·诺依曼型电脑的主要设计思想是什么?它包括那些主要组成部分?主要设计思想是:存储程序通用电子电脑方案,主要组成部分有:运算器、逻辑控制装置、存储器、输入和输出设备5什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?存储器所有存储单元的总数称为存储器的存储容量。

每个存储单元都有编号,称为单元地址。

如果某字代表要处理的数据,称为数据字。

如果某字为一条指令,称为指令字7指令和数据均存放在内存中,电脑如何区分它们是指令还是数据?每一个基本操作称为一条指令,而解算某一问题的一串指令序列,称为程序第二章运算方法和运算器按对阶操作。

直接使用西文标准键盘输入汉字,进行处理,并显示打印汉字,是一项重大成就。

为此要解决汉字的输入编码、汉字内码、子模码等三种不同用途的编码。

1第三章 内部存储器即CPU 能直接访问内存〔cache 、主存〕,双端口存储器和多模块交叉存储器属于并行存储器结构。

cache 是一种高速缓冲存储器,是为了解决CPU 和主存之间速度不匹配而采用的一项重要的硬件技术,并且发展为多级cache 体系,指令cache 与数据cache 分设体系。

要求cache 的命中率接近于1适度地兼顾了二者的优点又尽量防止其缺点,从灵活性、命中率、硬件投资来说较为理想,因而得到了普遍采用。

习题: 1设有一个具有20位地址和32位字长的存储器,问:〔1〕该存储器能存储多少个字节的信息? 〔2〕如果存储器由512K ×8位SRAM 芯片组成,需要多少片;〔3〕需要多少位地址做芯片选择?(1)字节M 4832*220= (2)片84*28*51232*1024==K K (3)1位地址作芯片选择 2 已知某64位机主存采用半导体存储器,其地址码为26位,假设使用4M ×8位DRAM 芯片组成该机所允许的最大主存空间,并选用内存条结构形式,问:〔1〕 假设每个内存条16M ×64位,共需几个内存条?〔2〕每个内存条共有多少DRAM 芯片? 〔3〕主存共需多少DRAM 芯片?CPU 如何选择各内存条?(1). 共需模块板数为m :m=÷2^24=4(块)(2). 每个模块板内有DRAM 芯片数为32 (片)(3) 主存共需DRAM 芯片为:4*32=128 (片)每个模块板有32片DRAM 芯片,容量为16M ×64位,需24根地址线(A23~A0) 完成模块板内存储单元寻址。

计算机的基本组成部分及其工作原理

计算机的基本组成部分及其工作原理
辅助教学软件(CAI)等
3.1.2 应用软件
❖ 系统软件与应用软件: 系统软件是以利用计算机本身的逻辑功 能,合理地组织用户使用计算机的硬件 和软件资源,以充分利用计算机的资源, 最大限度地发挥计算机效率,便于用户 使用、管理为目的。
而应用软件是用户利用计算机和它所提 供的系统软件,为解决自身的、特定的 实际问题而编制的程序和文档。
③.扇区(sector):将各个磁道分成的若干个扇形的区域。 扇区是软盘的基本存储单位,一个扇区称为一个记录,计算 机在读、写数据时总是以一个或几个完整的扇区为单位。
扇区的编号从1开始。每个磁道上的扇区数可为8、9、 15或18。每个扇区存储512个字节。
3.1.2 系统软件
❖ (3)计算机高级语言 编译方式是用编译程序把用户高级语言源程序 整个地翻译成机器指令表示的程序,然后再执 行这个目标程序,最后得到计算机结果。 解释方式是用解释程序把用户高级语言源程序 逐句地进行翻译,译出一句即执行一句,边解 释边执行。 高级语言的出现是计算机发展中“最惊人的成 就”,高级语言不再依赖于机器,具有通用性。
3.1.2 系统软件
❖ 2)支撑软件 是支持其他软件的编制和维护的软件,是为 了对计算机系统进行测试、诊断和排除故障, 进行文件的编辑、传送、装配、显示、调试, 以及进行计算机病毒检测、防治等的程序。
3.1.2 系统软件
❖ 3)编译系统 要使计算机能够按照人的意图去工作, 就必须使计算机能接受人向它发出的各 种命令和信息,这就需要有用来进行人 和计算机交换信息的“语言”。 计算机语言有: 机器语言 汇编语言 高级程序设计语言。
3.1.2 系统软件
❖ (3)计算机高级语言 一种接近于自然语言,又可以使用数学表达式,还 相对独立于机器的工作方式。 高级语言并不能被机器所识别,必须要有一个能将 高级语言程序“翻译”成计算机所能识别的机器语 言目标程序的翻译程序。 被编译的程序叫源程序或源代码,经过翻译程序 “翻译”出来的结果程序称为目标程序。翻译程序 通常有编译和解释两种典型的实现途径。

计算机原理第三章存储器

计算机原理第三章存储器

解:(1)需要26根地址线。

(2)有24根地址线

(3)共用8片。

(4)连线图如下图所示。
〔例6〕半导体存储器容量为7K×8位,其中固化区为4k×8 位,可选用 EPROM芯片:2K×8/片。随机读/写区为3K×8, 可选SRAM芯片:2K×4/片和1K×4/片。地址总线为A15~A0,
为“0”。
★ 注意:读出 “1” 信息后,电容Cs上无电荷,不能再 维持“1”,这种现象称为“破坏性读出”,须进行“恢复”操 作。
(3) 保持,字选线为“0”,T截止,电容Cs无放电 回路,其电荷可暂存数毫秒,即维持“1”数毫秒;无电荷 则保持“0”状态。
★ 注意:保持“1”信息时,电容Cs也要漏电,导致Cs上 无电荷,须定时“刷新”。
写1:数据线I/O=1、 I / O =0,使位线D=1、 D =0;
推出T1截止,T2导通使Q=1、 Q =0,写入“1”。
(2)读出
行选线xi,列选线yj加高电平,使T5 、T6导通和V1 、V2导通。
如果原存信息Q=0,则T1导通,从位线D将通过T5、T1到地 形成放电回路,有电流经D流入T1,使I/O线上有电流流过,经放 大为“0”信号,表明原存信息为“0”。而此时因T2截止,所以D 上无电流。
〔例〕32位地址线的计算机: 232=220×210×22=4千兆=4G 但现在实际配的主存假设为512兆,
即 512兆=220×29
所以,32 位地址线寻址的是逻辑地址, 29位地址线寻址的是物理地址。
3.1.3 存储器的分类
一、根据存储介质来分
1. 半导体存储器:
静态存储器 动态存储器
2. 磁表面存储器:磁盘、磁带等。(磁性材料)

白中英计算机组成原理第三章答案

白中英计算机组成原理第三章答案
块内地址
4位
每块16B
Cache容量64KB 主存容量1MB
12位
4位
块内的字节地址需要4位
共包含4K行 Cache块号12位 主存地址20位
主存标记位20-12-4 = 4位
两个满足题目要求的主存地址: 0000 1001 0000 1110 0000 0001 1001 0000 1110 0000
D7 ~ D0 /WE
16K×8 RAM
D7 ~ D0 /WE
D7~D0 D15~D8 D23~D16 D31~D23
/WE
字扩展
/MREQ A15 A14
/G1 B A /Y0 /Y1 /Y2 /Y3
74LS139
A13~A0
A13~A0 /CS A13~A0 /CS A13~A0 /CS A13~A0 /CS
A14 A15 CS3 CS2 CS1 CS0 A13~A0
2:4 译 码 器
D 0 ~D /WE
7
位扩展
/CS
A13~A0
A13~A0 /CS A13~A0 /CS A13~A0 /CS A13~A0 /CS
16K×8 RAM
D7~D0 /WE
16K×8 RAM
D7~D0 /WE
16K×8 RAM
4位
7位
每块128字,假定主存以字进行组织 Cache由64个行组成,每组4行 Cache中共包含16组,需4位组号 主存包含4K个块 主存块号为12位
主存标记位有12-4=8位

直接映射下的主存地址格式如下: 主存标记 Cache行号
14、某机主存容量1MB,字长1B,块大小16B, Cache容量64KB,若Cache采用直接映射方 式,请给出2个不同标记的内存地址,它们映 射到同一个Cache行。

计算机组成原理-第3章_存储系统

计算机组成原理-第3章_存储系统

存储周期 RW 刷新1 RW 刷新2 …
500ns 500ns
刷新间隔2ms
用在低速系统中
各刷新周期分散安排 在存取周期中。
… RW 128 RW
例如上图所示的DRAM有128行,如果刷新周期为 2ms,则每一行必须每隔2ms÷128=62.5us进行一次。
5、存储器控制电路
DRAM刷新需要硬件电路支持,它们集成在一个芯片 上,形成DRAM控制器,是CPU和DRAM间的接口电路。
写周期:实现写操作,要求CS和WE同时有效,有效期间地址 和数据信号不能变化;为了保证CS和WE变为无效前能把数据 可靠的写入,数据必须提前一段时间在数据总线上稳定存在; 而在WE变为高电平后再经过一段时间地址信号才允许改变。
*** DRAM存储器
1、DRAM存储元的记忆原理
SRAM存储器的存储元是一个 触发器,它具有两个稳定的状态。
外存储器:简称“外存”,大容量辅助存储器;磁表面存储
器或光盘存储器;存放需联机保存但暂时不需要的程序和数 据。容量从几十MB到几百GB,甚至更大。存取速度为若干
ms。
其他功能的存储器:如微程序控制器的控存、在显示和印刷 输出设备中的字库和数据缓冲存储器。
*** 主存储器的技术指标
主要性能指标:存储容量、存取时间、存储周期和存储器带宽。
地址信息到达时,使T5、T6、T7、T8导通,存储 元的信息被送到I/O与I/O线上, I/O与I/O线接上一个 差动读出放大器,从其电流方向,可以得出所存信息 是“1”或“0”。也可I/O或I/O一端接到外部,看其 有无电流通过,得出所存信息。
扩充:存储芯片规格的表示
在很多内存产品介绍文档中,都会用M×W的方式来表示芯 片的容量。

计算机组成原理(第三版)第 3 章 存储器及存储系统

计算机组成原理(第三版)第 3 章 存储器及存储系统

16
3.2 主存储器
• 主存储器按其功能可分为RAM和 ROM。
一 二 随机存取存储器RAM 只读存储器ROM
INFO DEPT@ZUFE HANGZHOU.CHINA
17
一、随机存取存储器RAM
MM
Y0
Bm-1
Y1
……
B0
An-1…A0
M A R
M A D

Y2n-2
Y2n-1

CS
WE
R/W读写 控制电路
INFO DEPT@ZUFE HANGZHOU.CHINA
9
三、存储器的层次结构
1.分级原理: 根据程序执行的集中性和局部性原理而构建的分层结构。信 息流动分规律为从低速、大容量层次向高速、小容量层次流动 ,解决速度、价格、价格这三者之间的矛盾,层次间信息块的 调度由硬件和软件自动完成,其过程对用户透明。 2.三级存储管理系统: • Cache: • ·采用TTL工艺的SRAM,哈佛结构; • ·采用MOS工艺的SRAM,指令与数据混存,其与内存之间信息块 的调度(几十字节)全由Cache控制器硬件完成。 • 主存: • ·ROM常用FROM,E2PROM等构成; • ·RAM常用DRAM构成,RAM和ROM采用统一编码。 • 虚存: • 采用磁盘存储器,主存+OS中的存储器管理软件联合构成,其 信息块常用页、段表示,其间的信息块调度由管理软件完成。
字线
数 据 线 Cd
T
C
单管MOS动态存储器结构
INFO DEPT@ZUFE HANGZHOU.CHINA
29
(2)DRAM存储器
RAS CAS WE OE 定时和控制
4M×4位的DRAM

计算机组成原理第三章(3.1,3.2,3.3,姜,15-春,版5)

计算机组成原理第三章(3.1,3.2,3.3,姜,15-春,版5)

图3.4(a) SRAM读周期时序图
35
• 各参数意义:
tRC :对存储芯片进行连续两次读操作时所必须间隔 的(最小)时间;
tAQ :从给出有效地址,至外部数据总线上稳定地出 现所读出的数据信息所经历的时间。
tEQ:地址信号有效后,从片选有效,至数据稳定地 出现外部总线上所经历的时间。
• 构成存储器的存储介质:目前主要采用半导体器 件和磁性材料。
• 存储器中最小的存储单位就是一个双稳态半导体 电路或一个CMOS晶体管或磁性材料的存储元, 它可存储一个二进制代码。由若干个存储元组成 一个存储单元,再由诸多个存储单元组成一个存 储器。
5
• 存储器的分类:
按存储介质分:
• 半导体存储器:用半导体器件组成的存储器。
• 高速缓冲存储器 (Cache):高速小容量半导体存储器,是为解决CPU和主存之间 速度不匹配而设置的。用于存放最活跃的程序块和数据。
• 主存和Cache一起构成计算机的内存储器(内存),是CPU能直接访问的存储器。
9
总结: ① 通过计算机的多级存储管理,发挥各级存储器
的效能; ② Cache主要强调高速存取速度,以便使存储系
1. CPU对存储器的读/写操作过程:
• 通过地址总线给出地址信号; • 通过控制总线发出读操作或写操作的控制信号; • 在数据总线上进行信息交流。
因此,存储器与CPU连接时,要完成三种 总线的连接:地址线、数据线和控制线;同时, 还须使各种信号的时序与存储器的(固有)读 写周期相配合。
25
2. 主存储器的构成
字节存储单元即存放一个字节的存储单元,相应的地 址称为字节地址。一个机器字可以包含数个字节。
若计算机中可编址的最小单位是字存储单元,则称该 计算机为按字寻址的计算机。

组成原理演示文稿 第三章 存储系统part3

组成原理演示文稿 第三章 存储系统part3

40
Fully-Associative Mapping
主存
行号 L0 L1 L2 L3 B0 LHale Waihona Puke L5 B3 L6 L7 Cache
页号 B0 B1
……
标记 B255
计算机学院
2013/4/9
42
全相联映射方式的检索过程
计算机学院
2013/4/9
43
Fully-Associative Mapping
计算机学院
2013/4/9
7
Increasing Bandwidth – Interleaving
Access Pattern without Interleaving:
CPU Memory
Start Access for D1
Start Access for D2 Memory Bank 0 Memory Bank 1 Memory Bank 2
计算机组成原理
Principle of Computer Organization
第三章 存储系统
第三部分
北京邮电大学 计算机学院
计算机学院
戴志涛
2013/4/9 1
多模块交叉存储器
计算机学院
2013/4/9
2
存储器的模块化组织——顺序方式
M0 M1 8 9 10 11 12 13 14 15 M2 16 17 18 19 20 21 22 23 M3 24 25 26 27 28 29 30 31
计算机学院
2013/4/9
25
高速缓冲存储器(Cache)
指令寄存器 CPU 数据寄存器
辅助 硬件
CACHE 内存 主存

计算机组成原理第三章存储系统[四]

计算机组成原理第三章存储系统[四]

例:一个四体并行交叉存储器,每个模块的容量 是16K×32位,存取周期为200ns,在下述说 法中( )是正确的。 A. 在200ns内,该存储器能向CPU提供256位二 进制信息 B. B. 在200ns内,该存储器能向CPU提供128位 二进制信息 C. 在50ns内,每个存储模块能向CPU提供32位 二进制信息 D. 在50ns内,该存储器能向CPU提供128位二 进制信息
设每个体的存储字长和数据总线的宽度一 致, 低位交叉编址的存储器模块数为n,存取周 期为T,总线传输周期为,当采用流水线方式时, 应满足T= n. n=T/称为交叉存取度,要求模块数>=n, 以保证启动某模块后经n时间再启动该模块时, 它的上一次存取操作已经完成.
W0 W3 W2 W1
M0 M3 M2 M1
(3)多体交叉存储体分时工作原理 无论多体存储器中有几个分体,CPU与主存之间 数据通路仍是一个W位(同时读出的n个字在总 线上需要分时传送).n个W位如何在一个存储周 期Tm中读出? 分时启动多个分体,使得每个Tm周期内得到多 个单体字宽的数据. 设主存有n个分体(模块),各自的存取周期都是 Tm; 则第一个分体启动后,每隔1/n个Tm再启动下一 个分体.
存控部件:接 收系统中各部 件或设备的访 总 线 控 制 存请求,按预 数据 定的优先顺序 0 1 2 3 进行排队,响 4 5 6 7 应其访存请求; M1 M0 M2 M3 分时接收各请 求源发来的访 地址寄存器 地址寄存器 地址寄存器 地址寄存器 存地址,转送 至相应存储体 等等。 CPU …
16位
数据寄存器MDR(16位)
DB(16位)

低位交叉编址:同一存储体中的地址是不连续的,程 序连续存放在相邻体中.存储器地址寄存器的低位部 分选择不同的存储体,而高位部分则指向存储体内的 存储字.

计算机组成原理_第三章

计算机组成原理_第三章

第三章 存储器及存储系统3.1 存储器概述3.1.1存储器分类半导体存储器 集成度高 体积小 价格便宜 易维护 速度快 容量大 体积大 速度慢 比半导体容量大 数据不易丢失按照 存储 介质 分类磁表面存储器激光存储器随机存储器 主要为高速缓冲存储器和主存储器 存取时间与存储元的物理位置无关 (RAM)按照 存取 方式 分类串行访问存 储器 SAS 只读存储器 (ROM)存取时间与存储元的物理位置有关 顺序存取器 磁带 直接存储器 磁盘 只能读 不能写 掩模ROM: 生产厂家写可编程ROM(PROM): 用户自己写 可擦除可编程ROM EPROM :易失性半导体读/写存储器按照 可保 存性 分类存储器非易失性 存储器包括磁性材料半导体ROM半导体EEPROM主存储器按照 作用 分类辅助存储器缓冲存储器 控制存储器3.1.23级结构存储器的分级结构Cache 高速缓冲 存储器 主 存 主机 外 存1 高速缓 冲存储器 2 主存 3 外存CPU 寄 存 器3.2主存储器3.2.1 主存储器的技术指标1 存储容量 字存储单元 字节存储单元 2 存取时间 字地址 字节地址访问 写操作/读操作从存储器接收到访问命令后到从存 储器读出/写 入所需的时间 用TA表示 取决于介质的物理特性 和访问类型 3 存取周期 完成一次完整的存取所需要的时间用TM表示 TM > TA, 控制线路的稳定需要时间 有时还需要重写3.2.2 主存储器的基本结构地 址 译 码 器地址 CPUn位2n位存储体 主存 m位 数据寄存器 m位 CPUR/W CPU 控制线路3.2.3 主存储器的基本操作地址总线k位MAR数据总线n位主存容量 2K字 字长n位MDRCPUread write MAC 控制总线主存3.3半导体存储芯片工 艺速度很快 功耗大 容量小 PMOS 功耗小 容量大 电路结构 NMOS 静态MOS除外 MOS型 CMOS 静态MOS 工作方式 动态MOS 静态存储器SRAM 双极型 静态MOS型 双极型依靠双稳态电路内部交叉反馈的机制存储信息TTL型 ECL型存储 信息 原理动态存储器DRAM 动态MOS型功耗较小,容量大,速度较快,作主存3.3.1 静态MOS存储单元与存储芯片1.六管单元 1 组成T1 T2 工作管 T2 T4 负载管 T5 T6 T7 T8 控制管 XY字线 选择存储单元 T7 WY地址译码线 X地址 译码线Vcc T3 T4 A T1 T2 T8 W B T6T5WW 位线完成读/写操作2 定义 “0” T1导通 T2截止“1” T1截止 T2导通X地址 译码线Vcc T3 T4 A T1 T7 T2 T8Y地址译码线3 工作 XY 加高电平 T5 T6 T7 T8 导通 选中该 单元T5T6 BWW写入 在W W上分别读出 根据W W上有 加高 低电平 写1/0 无电流 读1/04保持XY 加低电平 只要电源正常 保证向导通管提供电流 便能维 持一管导通 另一管截止的状态不变 称静态2.静态MOS存储器的组成1 存储体 2 地址译码器 3 驱动器 4 片选/读写控制电路存储器外部信号引线D0 A0传送存储单元内容 根数与单元数据位数相同 9地址线 选择芯片内部一个存储单元 根数由存储器容量决定7数据线CS片选线 选择存储器芯片 当CS信号无效 其他信号线不起作用 R/W(OE/WE)读写允许线 打开数据通道 决定数据的传送方向和传 送时刻例.SRAM芯片2114 1K 4位Vcc A7 A8 A9 D0 D1 D2 D3 WE1外特性18 12114 1K 410 9地址端 数据端A9 A0 入 D3 D0 入/出 片选CS = 0 选中芯片 控制端 = 1 未选中芯片 写使能WE = 0 写 = 1 读 电源 地线A6 A5 A4 A3 A0 A1 A2 CS GND2内部寻址逻辑寻址空间1K 存储矩阵分为4个位平面 每面1K 1位 每面矩阵排成64行 16列 64 16 64 16 6 行 位 行 译 X0 地 1K 1K 码址 X63 X63 Y0 Y1564 161K64 161K列译码 4位列地址两 级 译 码一级 地址译码 选择字线 位线 二级 一根字线和一组位线交叉 选 择一位单元W W W WXi读/写线路 Yi存储器内部为双向地址译码 以节省内部 引线和驱动器 如 1K容量存储器 有10根地址线 单向译码需要1024根译码输出线和驱动器双向译码 X Y方向各为32根译码输出线和 驱动器 总共需要64根译码线和64个驱动器3.3.2 动态MOS存储单元与存储芯片1.四管单元 1 组成T1 T2 记忆管 C1 C2 柵极电容 T3 T4 控制门管W T3 T1C1 C2W A B T2 T4字线 W W 位线 Z 2 定义 “0” T1导通 T2截止 C1有电荷 C2无电荷 “1” T1截止 T2导通 C1无电荷 C2有电荷 3 工作 Z 加高电平 T3 T4导通 选中该单元Z写入 在W W上分别加高 低电平 写1/0 读出 W W先预 充电至高电平 断开充电回路 再根据W W上有 无电流 读1/0 W T3 T1C1 C2T4 T2W4保持Z 加低电平 需定期向电容补充电荷 动态刷新 称动态 四管单元是非破坏性读出 读出过程即实现刷新Z2.单管单元 C 记忆单元 T 控制门管 1 组成Z 字线 W 位线 W T Z C2定义“0” C无电荷 电平V0 低 “1” C有电荷 电平V1 高3工作写入 Z加高电平 T导通 读出 W先预充电 断开充电回路 Z加高电平 T导通 根据W线电位的变化 读1/0 4 保持 Z 加低电平 单管单元是破坏性读出 读出后需重写3.存储芯片例.DRAM芯片2164 64K 1位 外特性GND CAS Do A6 16 1 A3 A4 A5 A7 9 82164 64K 1空闲/刷新 Di WE RAS A0 A2 A1 VccA7—A0 入 分时复用 提供16位地址 数据端 Di 入 Do 出 = 0 写 写使能WE 高8位地址 = 1 读 控制端 行地址选通RAS =0时A7—A0为行地址 片选 列地址选通CAS =0时A7—A0为列地址 电源 地线 低8位地址 1脚未用 或在新型号中用于片内自动刷新 地址端动态存储器的刷新1.刷新定义和原因 定期向电容补充电荷 刷新动态存储器依靠电容电荷存储信息 平时无电源 供电 时间一长电容电荷会泄放 需定期向电容 补充电荷 以保持信息不变 注意刷新与重写的区别 破坏性读出后重写 以恢复原来的信息 非破坏性读出的动态M 需补充电荷以保持原来的 信息2.最大刷新间隔 2ms 3.刷新方法各动态芯片可同时刷新 片内按行刷新 刷新一行所用的时间 刷新周期 存取周期4.刷新周期的安排方式 1 集中刷新 2ms内集中安排所有刷新周期R/W R/W50ns刷新 刷新 2ms 死区用在实时要 求不高的场 合2分散刷新用在低速系 统中各刷新周期分散安排在存取周期中 R/W 刷新 R/W 刷新100ns3异步刷新 各刷新周期分散安排在2ms内 每隔一段时间刷新一行每隔15.6微秒提一次刷新请求 刷新一行 2毫秒内刷新完所有 15.6 微秒 行例. 2ms 128行R/W R/W 刷新 R/W R/W 刷新 R/W 15.6 微秒 15.6 微秒 15.6 微秒 刷新请求 刷新请求 DMA请求 DMA请求用在大多数计算机中3.3 只读存储器1掩模式只读存储器 MROM采用MOS管的1024 8位的结构图 UDDA0 A1 A90 地 址 译 1 码 驱 动 1023 器读出放大器读出放大器cs D7D0D12可编程读存储器 PROM用户可进行一次编程 存储单元电路由熔丝 相连 当加入写脉冲 某些存储单元熔丝熔 断 信息永久写入 不可再次改写3.EPROM 可擦除PROM用户可以多次编程 编程加写脉冲后 某些存 储单元的PN结表面形成浮动栅 阻挡通路 实 现信息写入 用紫外线照射可驱散浮动栅 原 有信息全部擦除 便可再次改写4.EEPROM 可电擦除PROM 既可全片擦除也可字节擦除 可在线擦除信息 又能失电保存信息 具备RAM ROM的优点 但写 入时间较长 .NOVRAM 不挥发随机存取存储器 实时性好 可以组成固态大容量存储装置 Flash Memor 闪存 集成度和价格接近EPROM,按块进行擦除 比普 通硬盘快的多3.4 主存储器组织存储器与微型机三总线的连接 1 数据线D0 2 地址线A0 3.片选线CS 连接地址总线高位ABN+1 4 读写线OE WE(R/W) 连接读写控制线RD WR微型机n nDB0 AB0Nn连接数据总线DB0ND0 A0 CSnNN连接地址总线低位AB0ABN+1 R/ WR/ W 存储器1存储器芯片的扩充用多片存储器芯片组成微型计算机系统所要求的存储器系统 要求扩充后的存储器系统引出线符合微型计算机 机的总线结构要求 一.扩充存储器位数 例1用2K 1位存储器芯片组成 2K 8位存储器系统 例2用2K 8位存储器芯片组成2K 16位存储器系统例1用2K 1位存储器芯片组成 2K 8位存储器系统当地址片选和读写信号有效 可并行存取8位信息例2用2K 8位存储器芯片组成2K 16位存储器系统D0D8715D0 R/W CE A0107R/W CE A010D0 R/W CE A0107地址片选和读写引线并联后引出 数据线并列引出二.扩充存储器容量字扩展法例用1K 4位存储器芯片组成4K 8位存储器系统存储器与单片机的连接存储器与微型机三总线 的一般连接方法和存储器 读写时序 1.数据总线与地址总线 为两组独立总线AB0 DB0NDB0 AB0n ND0 A0 CSn NABN+1 R/ W 微型机 地址输出 数据有效采 样 数 据R/ W 存储器nR/W2.微型机复用总线结构 数据与地址分时共用一 组总线AD0nD0Di Qi G 地址 锁存器nA0nALE R/W 单片机R/W 存储器ALE锁 存地 址 数据 有效 采 样 数 据 地址 输出 存锁 址地AD0n地址 输出数据 有效 采 样数 据R/W半导体存储器逻辑设计需解决 芯片的选用 地址分配与片选逻辑 信号线的连接例1.用2114 1K 4 SRAM芯片组成容量为4K 8的存储 器 地址总线A15 A0 低 ,双向数据总线D7 D0 低 ,读/写信号线R/W 1.计算芯片数 1 先扩展位数 再扩展单元数 2片1K 4 1K 8 8片 4组1K 8 4K 82 先扩展单元数 再扩展位数4片1K 4 4K 4 4K 8 2组4K 4 2.地址分配与片选逻辑存储器寻址逻辑8片芯片内的寻址系统(二级译码) 芯片外的地址分配与片选逻辑 由哪几位地址形成芯 片选择逻辑 以便寻 找芯片为芯片分配哪几位地址 以便寻找片内的存储单元 存储空间分配4KB存储器在16位地址空间 64KB 中占据 任意连续区间芯片地址 任意值 片选 A15…A12A11A10A9……A0 0 0 0 …… 0 0 0 1 …… 1 0 1 0 …… 0 0 1 1 …… 1 1 0 0 …… 0 1 0 1 …… 1 1 1 0 …… 0 1 1 1 …… 164KB1K 1K 1K 1K 4 4 4 4 1K 1K 1K 1K 4 4 4 44KB需12位地址 寻址 A11— A0低位地址分配给芯片 高位地址形成片选逻辑 芯片 芯片地址 片选信号 片选逻辑 1K A9 A0 CS0 A11A10 A11A10 1K A9 A0 CS1 A11A10 1K A9 A0 CS2 1K A9 A0 CS3 A11A103.连接方式1 扩展位数 2 扩展单元数 4 形成片选逻辑电路D7~D4 D3~D0 4 4 4 1K 4 4 R/W 1K 4 4 4 1K 4 4 4 1K 4 43 连接控制线1K 4 A9~A0 CS0 10 CS11K 4 10 CS21K 4 10 CS31K 4 10A11A10A11A10A11A10A11A10例2.某半导体存储器 按字节编址 其中 0000H 07FFH为ROM区 选用EPROM芯片 2KB/片 0800H 13FFH为RAM区 选用RAM芯片 2KB/片和1KB/片 地址总线A1 A0 低 给出地址分配和片选逻辑1.计算容量和芯片数ROM区 2KBRAM区 3KB2.地址分配与片选逻辑 存储空间分配 先安排大容量芯片 放地址低端 再安排小容量芯片便于拟定片选逻辑64KBA15A14A13A12A11A10A9…A00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 …… 0 …… 1 …… 0 …… 1 0 … 0 1 … 12K 2K 1KROM 5KB 需13 位地 RAM 址寻 址低位地址分配给芯片 高位地址形成片选逻辑 芯片 芯片地址 片选信号 片选逻辑 2K A10 A0 CS0 A12A11 2K A10 A0 CS1 A12A11 1K A9 A0 CS2 A12A11 A10 A15A14A13为全03.4.2 高速缓冲存储器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

❖ 辅助存储器
虚拟存储器
磁盘或光盘形式存放可读可写或只读内容
磁记录或光记录方式
以外设方式连接和访问
第三章内部存储器装置计算机组成 基本原理
3.1.3 主存储器的技术指标
❖ 存储容量 主存存储容量:以字节B(Byte)为基本单位 半导体存储器芯片:以位b (Bit)为基本单位 存储容量以210=1024规律表达KB,MB,GB和TB 厂商常以103=1000规律表达KB,MB,GB和TB
SRAM存储器的存储位元是一个触发器,它具有 两个稳定的状态。而DRAM存储器的存储位元是由 一个MOS晶体管和电容器组成的记忆电路,如图 3.6所示。
第三章内部存储器装置计算机组成Fra bibliotek基本原理第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
位扩展法
[例3] 用1M×8位的DRAM芯片设计2M×8位的 DRAM存储器
字扩展法
公式:
设计要求的存储器容量
d= 已知芯片存储容量
第三章内部存储器装置计算机组成 基本原理
思考题: 试用8K×8位的SRAM芯片组成32K×32位 的半导体存储器,问: 1、共需这样的SRAM芯片几片? 2、试画出其组成框图。
第三章 内部存储器
第三章内部存储器装置计算机组成 基本原理
3.1 存储器概述 3.2 SRAM存储器 3.3 DRAM存储器 3.4 只读存储器和闪速存储器 3.5 并行存储器 3.6 cache
第三章内部存储器装置计算机组成 基本原理
3.1存储器概述
注意几个概念: 存储位元、存储单元、存储器
第三章内部存储器装置计算机组成 基本原理
❖ 刷新方式
集中式 分散式 异步式
第三章内部存储器装置计算机组成 基本原理
存储器容量的扩充
❖ 扩充原因: 存储器芯片的容量是有限的,为了满足实
际存储器的容量要求,需要对存储器进行扩 展。 ❖ 扩展方法 位扩展法 字扩展法(字存储容量扩展) 字位同时扩展法
第三章内部存储器装置计算机组成 基本原理
[例2] 利用1M×4位的SRAM芯片,设计一个存 储容量为1M×8位的SRAM存储器。
第三章内部存储器装置计算机组成 基本原理
3.2 随机读写存储器
❖ SRAM(静态RAM:Static RAM)
以触发器为基本存储单元 不需要额外的刷新电路 速度快,但集成度低,功耗和价格较高
❖ DRAM(动态RAM:Dynamic RAM)
以单个MOS管为基本存储单元 要不断进行刷新(Refresh)操作 集成度高、价格低、功耗小,但速度较SRAM慢
第三章内部存储器装置计算机组成 基本原理
基本的静态存储元阵列
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
3.3 DRAM存储器
❖ 存储位元:
特点: ROM只能读,不能写。永久性的存储器。 分类: 掩模ROM和可编程ROM
第三章内部存储器装置计算机组成 基本原理
掩模ROM
❖ 利用掩模工艺制作。
第三章内部存储器装置计算机组成 基本原理
可编程ROM
❖ 分类 一次性编程ROM 可多次编程ROM(EPROM和E2PROM)
第三章内部存储器装置计算机组成 基本原理
主存、辅存、高速缓存、控制存储器 第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
示意图
3.1.2 存储器的分级结构
❖ 寄存器
微处理器内部的存储单元
❖ 高速缓存(Cache)
完全用硬件实现主存储器的速度提高
❖ 主存储器
存放当前运行程序和数据,采用半导体存储器构成
① 地址线的连接; ② 数据线的连接; ③ 控制线的连接。
第三章内部存储器装置计算机组成 基本原理
❖ 存储器的技术指标: 存储容量、存取时间、存储周期、存储带宽 存储周期=存取时间+延迟时间
☼小常识: 内存:开机-del-CMOS-CasLatency
Time(简写为CL,通称延迟时间),其后有 值2,2.5,3
EPROM存储元
第三章内部存储器装置计算机组成 基本原理
E2PROM存储元
第三章内部存储器装置计算机组成 基本原理
通用编程器
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
★ 按存储介质分
半导体存储器:用半导体器件组成的存储器 磁表面存储器:用磁性材料做成的存储器
★ 按存储方式分
随机存储器:任何存储单元的内容都能被随机存取, 且存取时间和存储单元的物理位置无关
顺序存储器:只能按某种顺序来存取,存取时间和存 储单元的物理位置有关
★ 按存储器的读写功能分:ROM,RAM ★ 按信息的可保存性分:非永久记忆,永久记忆 ★ 按在计算机系统中的作用分:
DRAM芯片的逻辑结构
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
第三章内部存储器装置计算机组成 基本原理
刷新方式
❖ 刷新周期
从上次对整个存储器刷新结束时刻,到本次对整 个存储器完成全部刷新一遍为止的时间间隔
一般为2ms,4ms或8ms
❖ 存取时间(访问时间) 发出读/写命令到数据传输操作完成所经历的时间
❖ 存取周期 两次存储器访问所允许的最小时间间隔 存取周期大于等于存取时间
❖ 存储器带宽(数据传输速率) 单位时间里存储器所存取的信息量
第三章内部存储器装置计算机组成 基本原理
补充:存储器与CPU连接
CPU对存储器进行读/写操作,首先由地 址总线给出地址信号,然后要对存储器发出 读操作或写操作的控制信号,最后在数据总 线上进行信息交流。所以,存储器与CPU之 间,要完成:
第三章内部存储器装置计算机组成 基本原理
存储器模块条
第三章内部存储器装置计算机组成 基本原理
动态 RAM 和静态 RAM 的比较
主存
DRAM
SRAM
存储原理
电容
触发器
集成度


芯片引脚


功耗


价格


速度


刷新


第三章内部存储器装置计算机组成
基本原理
缓存
3.4 只读存储器和闪速存储器
❖ 只读存储器
相关文档
最新文档