电容寿命估算

合集下载

电容计算公式

电容计算公式

电容定义式C=Q/UQ=I*T电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2)电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。

1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时)若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟)电容放电时间的计算在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。

C(F):超电容的标称容量;R(Ohms):超电容的标称内阻;ESR(Ohms) 1KZ下等效串联电阻;Vwork(V):正常工作电压Vmin(V):截止工作电压;t(s):在电路中要求持续工作时间;Vdrop(V):在放电或大电流脉冲结束时,总的电压降;1(A):负载电流;超电容容量的近似计算公式,保持所需能量=超级电容减少的能量。

保持期间所需能量=1/2l(Vwork+ Vmi n)t ;超电容减少能量=1/2C(Vwork -Vmin ),因而,可得其容量(忽略由IR引起的压降)C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2)举例如下:如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作?由以上公式可知:工作起始电压Vwork = 5V工作截止电压Vmin= 4.2V工作时间t=10s工作电源I = 0.1A那么所需的电容容量为:C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2)=(5+4.2)*0.1*10/(5 2 -4.2 )= 1.25F根据计算结果,可以选择 5.5V 1.5F电容就可以满足需要了。

电容器的实际使用寿命

电容器的实际使用寿命

对电力电容器的实际使用寿命与使用条件的关系作了分析,找出了影响电容器实际使用寿命的因素,并提出了相应的解决办法。

关键词:电力电容器;使用寿命;使用条件1 前言电力电容器的实际使用寿命一直是广大用户和制造厂共同关心的。

电力电容器的制造厂家是按照所生产的电容器能在国家标准和相关技术条件规定的使用条件下90%的产品能可靠地运行20~30年的要求进行设计、生产的。

但实际情况是,同样的电容器由于实际的使用条件不同,其实际的使用寿命相差悬殊,为此有必要对此作一些分析。

2 电容器在电网中实际的连续工作电压与使用寿命的关系众所周知在电容器介质上的额定工作场强与其它电器相比是比较高的。

所以在我国GB/T11024.1-2001中明确规定,电容器的额定工作电压是电容器容许在电网中连续工作的最高电压。

如果电容器在标准规定的额定电压及以下运行,电容器产品90%能可靠地在网上运行20年,如果在高于其额定电压的电压下连续运行,电容器的实际使用寿命就将大大缩短,可靠性也将因电老化而下降。

电力电容器的实际使用寿命与实际工作电压的关系通常可以用式(1)表示:tN=tp(Up/UN)a (1)式中:tN--电容器的额定寿命(设tN=20年)。

tP一电容器的实际使用寿命。

Up一电容器在电网中的实际连续工作电压。

UN一电容器的额定电压。

a--系数,对于全膜电容器a=9通过式(1),我们可以分别求出在不同的实际工作电压Up,下电容器的实际使用寿命tp,见表1和图1。

从表1和图1中可以看出,如果电容器在高于其额定电压的电压下长期连续地运行,由于电老化的作用其实际使用寿命的就会大大缩短。

虽然,电容器是可以在高于其额定电压的电压,例如:1.03UN,1.05UN,1.1UN下作非连续的几个小时的运行,但决不能在高于其额定电压的电压下作连续长期的运行,不然将大大缩短电容器的实际使用寿命和可靠性,是得不偿失的。

对此,希望能引起广大电容器用户的注意,千万不要使电容器在高于其额定电压的电压下连续运行。

电容温度估算

电容温度估算

电容温度估算
电容温度估算是一个复杂的过程,涉及到多个因素,如电容的类型、工作电压、电流、环境温度等。

以下是一些估算电容温度的步骤和注意事项:
1. 了解电容的类型和规格:不同类型的电容有不同的额定电压和电流,不同的规格也对应不同的允许温度范围。

因此,首先要确定电容的类型和规格,以确保所选电容能够满足应用需求。

2. 计算热功率:热功率是指电容在工作过程中产生的热量,它取决于工作电压、电流和环境温度。

热功率的计算公式为P = (VI)t,其中P 是热功率,V 是工作电压,I 是工作电流,t 是时间。

3. 确定环境温度:环境温度对电容温度有很大影响。

如果环境温度过高,电容温度也会随之升高,导致寿命缩短或性能下降。

因此,在估算电容温度时,需要考虑环境温度的影响。

4. 考虑散热方式:电容的散热方式也会影响其温度。

如果电容具有良好的散热性能,其温度会相对较低。

因此,在估算电容温度时,需要考虑散热方式的影响。

5. 查阅数据表:根据以上信息,可以查阅相关数据表或图表,找到对应的电容规格和允许温度范围。

数据表通常会提供不同条件下的电容温度估算值,以供参考。

需要注意的是,电容温度估算是一个近似值,实际应用中可能存在误差。

因此,在实际应用中,建议对电容进行温度测试,以确保其
能够在安全范围内工作。

同时,也要注意选择质量可靠的电容品牌和型号,以保证其性能和可靠性。

电解电容寿命计算方法

电解电容寿命计算方法

电解电容寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。

Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles 后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下纹波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大纹波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗 : XC=1/(2πfC) 【Ω】感抗 : XL=2πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】纹波电流: IR=√(βA△T/ESR) 【mArms】功率 : P=I2ESR 【W】谐振频率 : fo=1/(2π√LC) 【Hz】。

铝电解电容寿命计算方法

铝电解电容寿命计算方法

2013年11月日本贵弥功株式会社香港嘉美工有限公司UC343011铝电解电容器寿命计算说明资料【目次】1.关于铝电解电容器的经时恶化2.铝电解电容器寿命计算公式3.纹波电流发热取得办法4.周围温度取得办法5.纹波电流计算办法6.寿命计算例7.参考资料(关于补正系数)关于铝电解电容器的经时恶化2阳极箔阴极箔R AL KL A封口橡胶电解液在铝电解电容器的电气特性上起着至关重要的作用。

温度特性的概念静电容量变化率(%)温度E S R (Ω)温度特性图表流动容易高低电解液的状态UPUP流动不容易箔厚100μm箔断面图蚀刻部扩大照片电解纸扩大图像DownDown离子电解纸纤维4寿命(特性恶化)的概念静电容量变化率(%)初期电解液沸腾电解液减少时间加快电解液减少E S R (Ω)电解电容器的断面图耐久性图表UP素子封口橡胶Down6铝电解电容器寿命计算公式9L;复合条件的推定寿命纹波电流发热温度取得办法182225.4 1.35 1.4 1003.1周围温度取得办法24纹波电流计算办法(带Active-PFC电路)26取得示波器读出的电流RMS作为后续公式中的In计算使用,此处的In为混合频率信号,计算纹波电流发热部分时需要将混合频率结果为电源实测数据由该公式可计算出在高频部分的电流值I High,继而可以得到在低频时的电流值I Low =I high x K T(NCC调查结果如上表, K T=0.2~0.3,实际状况下K T会随着拓扑方式的不同而改变) *我们将继续研究PFC电路的纹波电流。

寿命计算例31参考资料关于补正系数34。

发电机对地电容量估算方法

发电机对地电容量估算方法

发电机对地电容量估算方法在电力系统工程中,对发电机的对地电容量的准确估算具有重要意义。

它不仅关系到系统的稳定性和安全性,还影响到电力设备的设计与运行。

本文将详细介绍发电机对地电容量的估算方法,以供参考。

一、发电机对地电容量的概念发电机对地电容量是指发电机定子绕组与地之间的电容值。

当发电机运行时,由于电压的作用,会在发电机对地之间产生一定的电容电流,影响发电机的性能和电力系统的稳定性。

因此,准确估算发电机对地电容量具有重要意义。

二、估算方法1.理论计算法理论计算法是根据发电机的结构参数和材料特性,通过公式计算得出对地电容量的方法。

具体步骤如下:(1)确定发电机的结构参数,如定子绕组半径、长度、绝缘材料等;(2)根据绝缘材料的介电常数,计算定子绕组与地之间的等效介电常数;(3)根据发电机的额定电压和频率,计算对地电容值;(4)将计算结果与实际测试值进行对比,修正计算公式,提高估算精度。

2.实测法实测法是通过实际测量发电机对地电容电流,再根据公式计算出对地电容量的方法。

具体步骤如下:(1)在发电机运行过程中,测量对地电容电流;(2)根据测得的电容电流和发电机的额定电压、频率,计算对地电容量;(3)为了提高估算精度,可以采用多种测量方法(如冲击法、谐振法等)进行对比分析。

3.经验公式法经验公式法是根据大量实测数据和统计分析,总结出适用于特定类型发电机的对地电容量估算公式。

这种方法简单易行,但精度相对较低,适用于初步估算。

三、注意事项1.估算发电机对地电容量时,要充分考虑发电机的实际运行条件,如温度、湿度等;2.选择合适的估算方法,结合理论计算和实测数据,提高估算精度;3.对于不同类型的发电机,其估算方法可能有所不同,需根据实际情况进行调整;4.定期对发电机对地电容量进行检测和评估,确保电力系统的安全稳定运行。

总结:本文详细介绍了发电机对地电容量的估算方法,包括理论计算法、实测法和经验公式法。

在实际应用中,应根据发电机的具体类型和运行条件,选择合适的方法进行估算,以确保电力系统的安全稳定运行。

电容计算公式

电容计算公式

电容定义式C=Q/UQ=I*T电容放电时间计算:C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2) 电压(V) = 电流(I) x 电阻(R)电荷量(Q) = 电流(I) x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V容量 F= 库伦(C) / 电压(V)将容量、电压转为等效电量电量=电压(V) x 电荷量(C)实例估算:电压5.5V 1F(1法拉电容)的电量为5.5C(库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V,所以有效电量为1.7C。

1.7C=1.7A*S(安秒)=1700mAS(毫安时)=0.472mAh(安时)若电流消耗以10mA计算,1700mAS/10mA=170S=2.83min(维持时间分钟)电容放电时间的计算在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。

C(F):超电容的标称容量;R(Ohms):超电容的标称内阻;ESR(Ohms):1KZ下等效串联电阻;Vwork(V):正常工作电压Vmin(V):截止工作电压;t(s):在电路中要求持续工作时间;Vdrop(V):在放电或大电流脉冲结束时,总的电压降;I(A):负载电流;超电容容量的近似计算公式,保持所需能量=超级电容减少的能量。

保持期间所需能量=1/2I(Vwork+ Vmin)t;超电容减少能量=1/2C(Vwork2 -Vmin2),因而,可得其容量(忽略由IR引起的压降)C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2)举例如下:如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作?由以上公式可知:工作起始电压Vwork=5V工作截止电压Vmin=4.2V工作时间t=10s工作电源I=0.1A那么所需的电容容量为:C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2)=(5+4.2)*0.1*10/(52 -4.22)=1.25F根据计算结果,可以选择5.5V 1.5F电容就可以满足需要了。

架空线、电缆线电容电流估算法

架空线、电缆线电容电流估算法

架空线、电缆线电容电流估算法
1、架空线的电容电流计算
I=(2.7~3.3)·U·L·10-3安
式中U —电网的额定电压(KV) L —线路长度(KM)
系数2.7适用于无避雷线的线路(木杆线路)
3.3适用于有避雷线的线路(木杆线路)金属杆塔时
变电所的电力设备所引起的电容电流增值,可按下表估计
2、电缆要比同样长度架空线的电容电流大25倍(三芯电缆)~50倍(单芯电缆),在近似计
算中可采用Ic=0.1UL安, U,L定义同上。

也可采用下表的平均值计算
电缆线路电容电流平均值(安/公里)
交联聚乙烯绝缘聚氯乙烯护套电力电缆选用互感器直径一览表。

220kv电缆电容电流估算

220kv电缆电容电流估算

220kv电缆电容电流估算
估算220kV电缆的电容电流需要知道以下几个因素:
1. 电缆长度
2. 电缆截面积
3. 电缆介质损耗角正切值(通常取0.001)
4. 电缆的额定电压值
5. 供电电压值
根据以上几个因素,我们可以使用以下公式计算出电缆的电容电流:
电容电流Ic = (√3 x Uc x C x tgδ x L x 10^-3) / √2
其中,Ic为电容电流,单位为安培(A);
Uc为电缆额定电压,单位为千伏(kV);
C为电缆电容值,单位为微法(μF);
tgδ为电缆介质损耗角正切值;
L为电缆长度,单位为千米(km)。

需要注意的是,电缆电容电流会随着供电电压的增加而增大。

因此,在使用上述公式计算时,需要确保供电电压值与电缆额定电压值相同。

电容寿命计算公式

电容寿命计算公式

RIFA、Nichicon 、Rubycon的电解电容计算公式电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。

关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubycon 电容寿命得计算公式。

1、nichicon 的电解电容寿命计算公式nichicon 的电解电容寿命计算公式分为两种: a 、大封装电解电容(large can type );b 、小封装(miniature type )的电容,以下针对两种电容分别列出其计算公式。

A 、large can type电容结算公式如下:其中:Ln: 估算之寿命(在环境温度Tn 和总纹波In )Lo: 在最大允许工作温度To 和最大允许工作纹波Im 条件下的额定寿命To: 最大允许工作温度Tn: 环境温度to: 在最大允许工作温度To 和最大允许工作纹波电流Im 条件下内部温升量Im :在最大允许工作温度To 条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波)In :实际应用的纹波电流有效值Δtn: 在环境温度Tn 和纹波电流In 条件下致使的内部温升K: 因纹波损耗引起温升的加速系数(Tn 从实际应用环境获得,In 根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。

其它参数可从规格书中得到)以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。

其内部温升Δtn 估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。

此公式关键点是归一到标准频率的等效电流有效值In 的求解。

B 、miniature type对小封装的电容有两种情况,对应不同情况有两种计算公式(a)使用规格书的L 值L: 在最大允许工作温度To 和额定DC 电压条件下的额定寿命Bn: 因实际应用纹波损耗引起温升的加速系数;α:寿命常数。

电容电流估算方法

电容电流估算方法

电容电流估算方法-CAL-FENGHAI.-(YICAI)-Company One11.1.1 电容电流估算方法1.1.1.1 6~10kV 电网单相接地电流的计算在中性点不接地的6~10kV 电网中,电网每相对地存在着分布电容和分布绝缘电阻,在计算接地电流时,可以把它们用集中参数来表示,如图8所示。

当电网某相发生单相经电阻接地时(电阻为零便为直接接地),在接地点有一接地电流流过,下面分析一下接地电流的计算。

图8 6~10kV 供电系统AU 、B U 、C U ——电网各相电源电压;A U ' 、B U ' 、C U ' ——电网各相对地电压;C ——电网每相对地电容;R ——电网每相对地绝缘电阻;E R ——接地电阻 当电网某相(如图8中的A 相)经电阻E R 接地时,按照对称分量法的原理,可以将故障点处的三相电流、电压分解成正序电流(1A I 、1B I 、1C I )、电压(1A U 、1B U 、1C U );负序电流(2A I 、2B I 、2C I )、电压(2A U 、2B U 、2C U )和零序电流0I 、零序电压0U 。

可以求出流过电阻ER 的电流E I 和各序电流之间]的关系为:EA A I I I I 31021=== (31) 由(31)式得出复合序网如图9所示。

C U图 9 单相接地故障的复合序网图9中1Z 、2Z 、0Z 分别表示电网的正序阻抗、负序阻抗、零序阻抗,由于1Z 、2Z 是电网线路和变压器的漏抗与电网对地阻抗的并联,很小,均可忽略,0Z 是电网线路阻抗与电网对地阻抗的串联,有:1Z =2Z ≈0,0Z ≈Z =C j Rω+11。

根据对称分量的原理,故障点处的对地电压:⎪⎩⎪⎨⎧++='++='++='021021021U U U U U U U U U U U U C C C B B B A A A (32) 可以得出:⎪⎪⎩⎪⎪⎨⎧======0222111C B A C CB B A A U U U U U U U U U(33) 所以在故障点存在有正序电压和零序电压,负序电压接近于零。

电容寿命计算公式

电容寿命计算公式

电容寿命计算公式RIFA、Nichicon、Rubycon的电解电容计算公式电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。

关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubyco n电容寿命得计算公式。

1、nichico n 的电解电容寿命计算公式nichicon 的电解电容寿命计算公式分为两种:a 、大圭寸装电解电容(large can type ); b 、小圭寸装(miniature type ) 的电容,以下针对两种电容分别列出其计算公式。

A、large can type电容结算公式如下其中:Ln:估算之寿命(在环境温度Tn和总纹波In )Lo:在最大允许工作温度To和最大允许工作纹波Im条件下的额定寿命To:最大允许工作温度Tn:环境温度to:在最大允许工作温度To和最大允许工作纹波电流Im条件下内部温升Im :在最大允许工作温度To条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波)In : 实际应用的纹波电流有效值△ tn:在环境温度Tn和纹波电流In条件下致使的内部温升K:因纹波损耗引起温升的加速系数(Tn从实际应用环境获得,In根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。

其它参数可从规格书中得到)以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。

其内部温升△ tn估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。

此公式关键点是归一到标准频率的等效电流有效值In的求解。

B、min iature type对小封装的电容有两种情况,对应不同情况有两种计算公式(a)使用规格书的L值L:在最大允许工作温度To和额定DC电压条件下的额定寿命Bn:因实际应用纹波损耗引起温升的加速系数;a :寿命常数其它参数与“ Large Can type ”相同。

电容计算公式

电容计算公式

电容计算公式精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-电容定义式C=Q/UQ=I*T电容放电时间计算:C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2)电容计算公式.xlsx电压(V) = 电流(I) x 电阻(R)电荷量(Q) = 电流(I) x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V容量 F= 库伦(C) / 电压(V)将容量、电压转为等效电量电量=电压(V) x 电荷量(C)实例估算:电压 1F(1法拉电容)的电量为(库伦),电压下限是,电容放电的有效电压差为,所以有效电量为。

=*S(安秒)=1700mAS(毫安时)=(安时)若电流消耗以10mA计算,1700mAS/10mA=170S=(维持时间分钟)电容放电时间的计算?在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。

C(F):超电容的标称容量;R(Ohms):超电容的标称内阻;ESR(Ohms):1KZ下等效串联电阻;Vwork(V):正常工作电压Vmin(V):截止工作电压;t(s):在电路中要求持续工作时间;Vdrop(V):在放电或大电流脉冲结束时,总的电压降;I(A):负载电流;超电容容量的近似计算公式,?保持所需能量=超级电容减少的能量。

保持期间所需能量=1/2I(Vwork+ Vmin)t;超电容减少能量=1/2C(Vwork2 -Vmin2),因而,可得其容量(忽略由IR引起的压降)C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2)?举例如下:如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为,那么需要多大容量的超级电容能够保证系统正常工作??由以上公式可知:?工作起始电压Vwork=5V工作截止电压Vmin=工作时间t=10s工作电源I=?那么所需的电容容量为:C=(Vwork+ Vmin)*I*t/( Vwork2 -Vmin2)=(5+**10/(52=?根据计算结果,可以选择电容就可以满足需要了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Where :L=Assured lifetime(hours);This has been prescribed in the catalogs or product specifications.
额定寿命。

一般在规格书或目录中有描述To=Maximum rated operating temperature(°C) of the capacitor.电容最高使用温度,即额定温度T=Actual operating temperature(°C) which the capacitor is used at.电容在电路中实际使用时的温度
△T=An increase(deg) in core temperature produced by internal heating due to actual operating ri 实际纹波电流产生的温升
SMD
Radial
CapXon
Radial SS,ST,SA,SP,SM,SH
SD,SN,SB,SZ,SY,GS,GW,NP,NK,BP,SW,SR,RW,NR,LR 2^(-△T)/10
2^(△To-△T) / 5
KM (≦100V), KW (≦100V
(≦100V), KZ, GF, GH, LZ, FH, KH (≦
100V), TH (≦100V), TE
EV,LV,HV,JV,MV,NV,
Lx = Lo x 2^(To-Tx)/10 x Kripple
Series
Kripple
Type Products
△To=Inside temperature increase of capacitor by permissible ripple current at the maximum oper 电容最大允许温升
Io=Rated maximum permissible ripple current(Arms).
最大允许的纹波电流,即电容额定纹波电流
Ix=Operating ripple current(Arms) actually flowing into a capacitors.
实际电路纹波电流
ΔT= ΔTo [( Ix / (Io*Fre multiplier)]^2 = Kc * (Ts-Tx)
Tx=Ts- (ΔT/Kc)
Diameter (mm)K C
5 1.1
duct specifications. 6.3 1.1
8 1.1
10 1.15
12.5 1.2
16 1.25
18 1.3
eating due to actual operating ripple current.22 1.35
25 1.4
ple current at the maximum operating temperature30 1.5
35 1.65
40 1.75
50 1.9
63.5 2.2
76 2.5
89 2.8
100 3.1。

相关文档
最新文档