高中数学必修4课件全册(人教A版)
优选高中数学人教A版选择性必修全概率公式完整版课件
利用全概率公式 P(B)=P(A)P(B|A)+P( A )P(B| A )=35×25+25×15
=285.]
5.某工厂有甲、乙、丙三个车间生产同一种产品,已知各车间 的产量分别占全厂产量的 25%, 35%, 40%,而且各车间的次品率依次 为 5% ,4%, 2%.现从待出厂的产品中检查出一个次品,试判断它是由 甲车间生产的概率.
↓ 贝叶斯公式
P(Bi|A)= PBiPA|Bi ,i=1,2,…,n. n PBkPA|Bk k=1
1.掷两颗骰子, 已知两颗骰子点数之和为 7,则其中有一颗为 1 点
的概率为( )
A.25
B.15
C.12
D.13
D [设事件 A 为“两颗点数之和为 7”,事件 B 为“一颗点数为 1”.
两颗点数之和为 7 的种数为 6,其中有一颗为 1 点的种数为 2,
2.设某公路上经过的货车与客车的数量之比为 2∶1,货车中途 停车修理的概率为 0.02,客车为 0.01,今有一辆汽车中途停车修理, 则该汽车是货车的概率为( )
A.0.8 B.0.5 C.0.67 D.0.875
A [设公路上经过的车为货车是事件 A,经过的车是客车为事件 B,车需要修理为事件 C,且 P(A)=23,P(B)=31,P(C|A)=0.02,P(C|B) =0.01,
k=1
,i=1,2,…,n.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)全概率公式中,A1,A2,…An 必须是一组两两互斥的事件.
()
(2)使用全概率公式关键在于寻找另一组事件来“分割”样本空
间.
()
Байду номын сангаас
(3)贝叶斯公式是已知某结果发生条件下,探求各原因发生可能
人教A版高中数学必修4-1.5函数y=Asin(ωxφ)的图象-课件
三 、 教学目标
1.知识与能力目标:
理解三个参数A、ω、φ对函数y=Asin(ωx+φ) 图象的影响;揭示函数y=Asin(ωx+φ)的图象与 正弦曲线的变换关系,
2.过程与方法目标:
结合具体函数图象的变化,领会由简单到复杂 ,由特殊到一般的化归思想,通过A、ω、φ变化 与函数y=Asin(ωx+φ)图象变换的关系,加深对数 形结合思想的理解。
函数.
那么函数 y Asin( x )与函数y=sinx
有什么关系呢?
从解析式上来看函数y=sinx就是函数
y Asin( x )在A=1,ω=1, 0 的情况.
下面就来探索 、、A 对函数
y Asin( x )
的图象的影响.
***检测复习***
y sin x, x [0,2 ]的图象
合
函数y=sinx(>0)图象:
作 探
究
y=sinx 横坐标变为本来的1/倍 y=sinx
纵坐标不变
小试牛刀
2. 要得到函数 y=sin3x 的图象,只需将 y=sinx 图象( B )
A. 横坐标伸长到本来的3倍 ,纵坐标不变 B.横坐标缩小到本来的1/3倍 ,纵坐标不变 C.纵坐标扩大到本来的3倍,横坐标不变 D.纵坐标缩小到本来的1/3倍,横坐标不变
1 sin x 0
2
1 2
0
1 2
0
函数 y 2sin x、y 1 sin x与y sin x 的图象
2
间的变化关系.
y
自
2
主 学
1
习
O
3
2
x
2
-1
y 1 sin x
-2
高一数学必修4课件:2-3-2、3平面向量的正交分解及坐标表示和平面向量的坐标运算
如图所示,在矩形 ABCD 中,AC 与 BD 交于点 O,下列 是正交分解的是( )
→ → → → → → A.AB=OB-OA B.BD=AD-AB → → → → → → C.AD=AB+BD D.AB=AC+CB
[答案]
B
第二章
2.3 2.3.2 2.3.3
成才之路 ·数学 ·人教A版 · 必修4
(x1+x2,y1+y2) a+b=_______________
符号表示
第二章
2.3 2.3.2 2.3.3
成才之路 ·数学 ·人教A版 · 必修4
两个向量差的坐标分别等 减法 于这两个向量相应坐标的
差 _____
a-b=
(x1-x2,y1-y2) _________________
实数与向量的积的坐标等 数乘 于用这个实数乘原来向量
[解析]
→ → → → → 由于AD⊥AB,则BD=AD-AB是正交分解.
第二章
2.3 2.3.2 2.3.3
成才之路 ·数学 ·人教A版 · 必修4
2.平面向量的坐标表示 (1)基底:在平面直角坐标系中,分别取与x轴、y轴方向
单位 基底 相同 _______的两个_____向量i,j作为______. 有且只有一 (2)坐标:对于平面内的一个向量a,____________对实数 (x,y) x,y,使得a=xi+yj,我们把有序实数对_______叫做向量a的
成才之路 ·数学 ·人教A版 · 必修4
[例2]
设向量a、b的坐标分别是(-1,2),(3,-5),求a
+b,a-b,3a,2a+3b的坐标. [分析] 解. 直接利用向量在坐标形式下的各种运算法则求
第二章
2.3 2.3.2 2.3.3
新教材人教A版选择性必修第二册高中数学第四章数列 精品教学课件
(3)值得一提的是:数列通项公式an求出后,还需要验证 数列首项a1是否也满足通项公式,即“通项求出莫疏忽,验 证首项满足否”,这一步学生容易忘记,切记!
an
[例 4] 已知数列{an}2中,a1=1,an+1=a2n+an2(n∈N*),则数列 {an}的通项公式 an 为___n_+__1__.
[解析]
因为an+1=
2an an+2
,a1=1,所以an≠0,所以
1 an+1
=a1n+12,即an1+1-a1n=12.又a1=1,则a11=1,所以a1n是以1为
通项公式和递推公式的异同点不同点相同点公式可根据某项的序号n的值直接代入求出a都可确定一个数列也都可求出数列的任意一项递推公式可根据第一项或前几项的值通过一次或多次赋值逐项求出数列的项直至求出所需的a也可通过变形转化直接求出a小题查验基础一判断题对的打错的打1相同的一组数按不同顺序排列时都表示同一个数列
数列通项公式的注意点 (1)并不是所有的数列都有通项公式; (2)同一个数列的通项公式在形式上未必唯一; (3)对于一个数列,如果只知道它的前几项,而没有指出它 的变化规律,是不能确定这个数列的.
(2)递推公式:如果已知数列{an}的第1项(或前几项),且从第 二项(或某一项)开始的任一项an与它的前一项an-1(或前几项) 间的关系可以用一个公式来表示,那么这个公式就叫做这个
数列的递推公式.
通项公式和递推公式的异同点
不同点
相同点
通项 公式
递推 公式
可根据某项的序号n的值,直接代入
新教材2023年高中数学第四章数列章末整合提升课件新人教A版选择性必修第二册
当 x≠1 时,(1-x)Sn=11--xxn-nxn =1-xn-1n-xnx+nxn+1=1-(1+1n-)xxn+nxn+1, ∴Sn=1-(1(+1n-)x)xn+2 nxn+1;
∴bn=32+(n-1)×12=1+n2, Sn=2b2nb-n 1=21+ +nn, 当 n=1 时,a1=S1=32,
当 n≥2 时,an=Sn-Sn-1=21++nn-1+n n=-n(n1+1),显然对于 n =1 不成立,
∴an=2-3,n(n=n1+1 1),n≥2.
[规律方法] 已知某条件式,证明关于an(或Sn)的某个表达式成等差 (或等比)数列,问题本身就给出了条件式的变形方向,可依据等差(等比) 数列定义,结合an=Sn-Sn-1(n≥2)对条件式变形构造新数列求解.
典例1 已知数列{an}中,a1=1,且an+1-an=3n-n,求数列 {an}的通项公式.
[解析] 由an+1-an=3n-n, 得an-an-1=3n-1-(n-1), an-1-an-2=3n-2-(n-2), ……
a3-a2=32-2,a2-a1=3-1.
当 n≥2 时,以上 n-1 个等式两端分别相加,得(an-an-1)+(an-1- an-2)+…+(a2-a1)
典例7 求数列 214,418,6116,…,2n+2n1+1,…的前 n 项和 Sn. [分析] 此数列的通项公式为 an=2n+2n1+1,而数列{2n}是一个等差 数列,数列2n1+1是一个等比数列,故采用分组求和法.
[解析] Sn=214+418+6116+…+2n+2n1+1
高中数学新人教A版必修第一册 第四章 4.4.2 第1课时 对数函数的图象和性质 课件(44张)
【加固训练】
如图,若 C1,C2 分别为函数 y=logax 和 y=logbx 的图象,则( )
A.0<a<b<1
B.0<b<a<1
C.a>b>1
D.b>a>1
【解析】选 B.根据 C1,C2 分别为函数 y=logax 和 y=logbx 的图象,可得 0<b<1,0<a<1, 且 b<a.
综合类型 简单的值域问题(数学运算) 根据单调性求值域 【典例】函数 f(x)=2x+log2x(x∈[1,2])的值域为________.
(1)对于对数函数 y=logax,为什么一定过点(1,0) ? 提示:当 x=1 时,loga1=0 恒成立,即对数函数的图象一定过点(1,0) .
(2)在下表中,?处 y 的范围是什么?
提示:
2.反函数
指数函数 y=ax(a>0,且a≠1) 与对数函数 y=logax(a>0,且a≠1) 互为反函数,它
1.对数函数的图象和性质
0<a<1
a>1
2024-2025学年高二数学选择性必修第一册(人教A版)教学课件第一章-1.2空间向量基本定理
-3λ+μ=1,
∴λ+μ=2, 2λ-μ=-1
此方程组无解, ∴O→A,O→B,O→C不共面,
∴{O→A,O→B,O→C}可以作为空间的一个基底.
高中数学 选择性必修第一册 RJ·A
反思感悟 基底的判断思路 (1)判断一组向量能否作为空间的一个基底,实质是判断这三个向量是否共面,若不共面, 就可以作为一个基底. (2)判断基底时,常常依托正方体、长方体、平行六面体、四面体等几何体,用它们从同 一顶点出发的三条棱对应的向量为基底,并在此基础上构造其他向量进行相关的判断.
高中数学 选择性必修第一册 RJ·A
三、证明平行、共面问题
例3 如图,已知正方体ABCD-A′B′C′D′,E,F分别为AA′和CC′的中点. 求证:BF∥ED′. 证明 B→F=B→C+C→F=B→C+12—C—C′→=A→D+12—DD—′→,
—ED—′→=—E—A′→+—A′——D′→=21—A—A′→+A→D=12—D—D′→+A→D, ∴B→F=—ED—′→,∴B→F∥—ED—′→,∵直线BF与ED′没有公共点,∴BF∥ED′.
高中数学 选择性必修第一册 RJ·A
思考 怎样利用向量的数量积解决几何中的求夹角、证明垂直问题? 几何中的求夹角、证明垂直都可以转化为向量的夹角问题,解题中要注意角的范围.
a·b
(1)θ为a,b的夹角,则cos θ= |a||b| . (2)若a,b是非零向量,则a⊥b⇔ a·b=0 .
思考 怎样利用向量的数量积解决几何中的求距离(长度)问题? 几何中求距离(长度)都可以转化为向量的模,用数量积可以求得.
又M→N=12A→C= 25, —BC→1 = 2,
所以
cos〈M→N,—BC→1 〉=
→ —→ M→N·—BC→1 =
新教材高中数学第四章数列4.2等差数列4.2.2.2等差数列习题课课件新人教A版选择性必修第二册
①式的两边同除以SnSn-1得:
1 Sn1
1 Sn
2即:1 Sn
1 Sn1
2,
所以数列 { 1是} 首项为2,公差为2的等差数列,
Sn
所以 S1n=2+2(n-1)=2n,即:Sn=21n ,则
an
2SnSn1
1 (n 2n(n 1)
【类题·通】 应用等差数列解决实际问题的一般思路
【习练·破】 植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相 距10 m,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑 出发前来领取树苗往返所走的路程总和最小,此最小值为________ m.
【解析】假设20位同学是1号到20号依次排列,使每位同学从各自树坑出发前
【习练·破】 已知等差数列{an}的前n项和为Sn,n∈N*,满足a1+a2=10,S5=40. (1)求数列{an}的通项公式; (2)设bn=|13-an|,求数列{bn}的前n项和Tn.
【素养·探】 在裂项求和与并项求和有关的问题中,经常利用核心素养中的数学运算,通过 对数列通项结构特征的分析和适当变形,选择恰当的方法求和. 将本例1的条件改为“an=(-1)n(3n-2)”,试求a1+a2+…+a10.
【解析】a1+a2+…+a10=-1+4-7+10+…+(-1)10·(3×10-2) =(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.
高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)
tan 3
例5.求下列三角函数值
sin1480 10
'
9 s 4
11 tan( ) 6
小结:
1.任意角的三角函数是由角的终边与单 位圆交点的坐标来定义的. 2.三角函数值的符号是利用三角函数的 定义来推导的.要正确记忆三个三角函数 在各个象限内的符号; 3.诱导公式一的作用可以把大角的三角 函数化为小角的三角函数.
应用 1.利用同角三角函数的基 本关系求某个角的三角函数 值 例1.已知sinα=-3/5,且 α在第三象限,求cosα和 tanα的值.
例2.已知 cos m (m 0, m 1), 求的其他三角函数值
4 sin 2 cos 例3.已知 tanα=3,求值(1) 5 cos 3 sin
y
a的终边 P(x,y)
1
P(x,y)
a
O
M
A(1,.0)
x
(1)y叫做 的正弦,记作sin ,即 sin y (2)x叫做 的余弦,记作cos,即 cos x y y (3) 叫做 的正切,记作tan ,即 tan x x
阅读课本P12:三角函数的定义
例题:
5 1 求 的正弦、余弦和正切值. 3
作业:
课本P20习题1.2A组
1,2,6,7,9
1.2.1任意角的三角函数(2)
复习回顾
1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的 同一三角函数的值相等; 5、三角函数的定义域.
角是一个图形概念,也是一个数量概 念(弧度数). 作为角的函数——三角函数是一个 数量概念(比值),但它是否也是一个 图形概念呢?
人教版A版高中数学必修二全册课件【完整版】
人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。
计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。
2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。
计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。
3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。
斜截式:y = kx + b,其中k为直线斜率,b为直线截距。
一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。
4. 两条直线的位置关系平行:两条直线的斜率相等。
垂直:两条直线的斜率互为负倒数。
相交:两条直线的斜率不相等。
二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。
2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。
3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
4. 圆与直线的位置关系相离:直线与圆没有交点。
相切:直线与圆有且仅有一个交点。
相交:直线与圆有两个交点。
三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。
2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。
3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。
新教材高中数学4-2-1等差数列的概念第一课时等差数列的概念及通项公式课件新人教A版选择性必修第二册
[对点练清]
1.若5,x,y,z,21成等差数列,则x+y+z的值为
()
A.26 B.29 C.39 D.52
解析:因为5,x,y,z,21成等差数列,所以y是x,z的等差中项,也是5,21 的等差中项,所以x+z=2y,5+21=2y,所以y=13,x+z=26,所以x+y +z=39.
(2)由x1=3,得2p+q=3.① 又x4=24p+4q,x5=25p+5q, 且x1+x5=2x4, 得3+25p+5q=25p+8q,即q=1.② 将②代入①,得p=1.故p=1,q=1.
[方法技巧] 三数 a,b,c 成等差数列的条件是 b=a+2 c(或 2b=a+c),可用来进行等差 数列的判定或有关等差中项的计算问题.如要证{an}为等差数列,可证 2an+1=
当 n=1 时,S1=b1=32,满足上式,所以 Sn=nn+ +21. 所以 an=Sn-Sn-1=nn+ +21-n+n 1=n+1 1-n1(n≥2). 当 n=1 时,a1=S1=b1=32≠-12,
32,n=1, 所以 an=n+1 1-n1,n≥2,
答案:ACD
3. 已知2m与n的等差中项为5,m与2n的等差中项为4,则m与n的等差中项为 ________. 解析:依题意可得2m+n=10,m+2n=8,两式相加得3m+3n=18,所以m +n=6,故m与n的等差中项为3. 答案:3
知识点二 等差数列的通项公式 (一)教材梳理填空
已知等差数列{an}的首项为a1,公差为d.
A.4-2n
B.2n-4
C.6-2n
D.2n-6
解析:∵a1=4,d=-2,∴an=4+(n-1)×(-2)=6-2n. 答案:C
高中数学第四章数列4.3等比数列4.3.1.2等比数列的性质及应用课件新人教A版选择性必修第二册
(4)当________q_<_0____________时,等比数列{an}为摆动数列.
状元随笔
由等比数列的通项公式可知,公比影响数列各项的符号:一般 地,q>0 时,等比数列各项的符号相同;q<0 时,等比数列各项的 符号正负交替.
+2)(k+3), 即 k2-5k-6=0,解得 k=6 或 k=-1(舍去),因此 k=6.
解析:(1)由 a2=b2,a8=b3, 得aa11+ +d7= d=b1bq1, q2, 即11+ +d7= d=q, q2, 解得qd==65,, 或qd==10,, (舍去).
(2)由(1)知 an=1+(n-1)·5=5n-4, bn=b1qn-1=6n-1. 假设存在常数 a,b,使得对任意 n∈N*,都有 an=logabn+b 成立,则 5n-4=loga6n-1+b,
a7. (2)已知{an}为等比数列,a2·a8=36,a3+a7=15,求公比 q.
解析:(1)法一:aa11qq21= 0=32,7 相除得 q8=9.
所以 q4=3,所以 a7=a3·q4=9. 法二:因为 a27=a3a11=81,所以 a7=±9, 又 a7=a3q4=3q4>0,所以 a7=9.
方法归纳
有关等比数列的计算问题,基本方法是运用方程思想列出基本 量 a1 和 q 的方程组,先解出 a1 和 q,然后利用通项公式求解.但有 时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现 性质,要充分发挥项“下标”的指导作用.
跟踪训练 1 (1)已知数列{an}为等比数列,a3=3,a11=27,求
新教材高中数学4-2-1等差数列的概念第二课时等差数列的性质及其应用课件新人教A版选择性必修第二册
[对点练清] 已知单调递增的等差数列{an}的前三项之和为21,前三项之积为231,求数列{an} 的通项公式. 解:法一:根据题意,设等差数列{an}的前三项分别为 a1,a1+d,a1+2d, 则aa11+a1+a1+ dda1++2ad1+=22d3= 1,21, 即3aa11a+1+3dd=a211+,2d=231. 解得ad1==43, 或ad1==-114,. 因为数列{an}为单调递增数列,
(2)∵在等差数列{an}中,若m+n=p+q,则am+an=ap+aq,∴a1+a17=a5 +a13.
由条件等式,得a9=117. ∴a3+a15=2a9=2×117=234. [答案] (1)C (2)234
[方法技巧]
本例(1)应用了等差数列的性质:若{an},{bn}是等差数列,则{an+bn}也是等 差数列.
[对点练清]
1.已知{an}为等差数列,a4+a7+a10=30,则a3-2a5的值为 A.10 B.-10 C.15 D.-15
()
解析:法一:设等差数列{an}的公差为d,则30=(a1+3d)+(a1+6d)+(a1+9d) =3a1+18d,即a1+6d=10.故a3-2a5=(a1+2d)-2(a1+4d)=-a1-6d=- 10.
证明:(1)因为{an}是等差数列,设其公差为d, 则an=a1+(n-1)d, 从而,当n≥4时,an-k+an+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n- 1)d=2an,k=1,2,3, 所以an-3+an-2+an-1+an+1+an+2+an+3=6an, 因此等差数列{an}是“P(3)数列”. (2)数列{an}既是“P(2)数列”,又是“P(3)数列”,因此, 当n≥3时,an-2+an-1+an+1+an+2=4an,① 当n≥4时,an-3+an-2+an-1+an+1+an+2+an+3=6an.②
高中数学人教A版《集合的概念》教学课件-ppt1
1高.1中集数合学的人概教念A-版【《新集教合材的】概人念教》A版 公( 开 课20件19) 1 高中数 学必修 第一册 课件_2
不等式x-7<3的解是x<10,有无数个集,我们可以用解集
中元素的共同特征,把解集表示:
{x R x 10}
{x x 10}
整数集Z可以分为奇数集和偶数集,利用奇数的特征
组成集合的元素可以是物、数、图、 人等,它具备怎样的性质呢?
高中数学人教A版《集合的概念》公开 课件1
问题探究
探究2: 集合中元素的性质 1. 所有的“好看的风景”能否构成一个集合?
不能. 其中的元素不确定
集合中的元 素是确定的
高中数学人教A版《集合的概念》公开 课件1
高中数学人教A版《集合的概念》公开 课件1
集合中的元素是 没有顺序的
通过以上的学习你能给出集合中元素的特性吗? 确定性、互异性、无序性
高中数学人教A版《集合的概念》公开 课件1
高中数学人教A版《集合的概念》公开 课件1
判断下列元素的全体是否组成集合,并说明理由 (1)与定点A、B等距离的点 (2)高中学生中的游泳能手
高中数学人教A版《集合的概念》公开 课件1
1高.1中集数合学的人概教念A-版【《新集教合材的】概人念教》A版 公( 开 课20件19) 1 高中数 学必修 第一册 课件_2
1、若1{a, a2},则a ________. 2.若{x | x2 ax 1 0} {1},求a. 3.若{x | x2 ax 1 0}中只有一个元素,求a.
1高.1中集数合学的人概教念A-版【《新集教合材的】概人念教》A版 公( 开 课20件19) 1 高中数 学必修 第一册 课件_2
集合的表示方法三: 所有的集合都可以用列表法来表示吗?