二项分布与poission分布
第十章 二项分布和Poisson分布及其应用
Poisson分布
• Poisson分布是描述当试验中成功的概率很小 (如0.05),而试验的次数n很大的小概率事件
出现规律性的一种离散型随机分布。 • 用于描述在单位时间(空间)内稀有事件的发生数。
医学卫生领域中服从Poisson分布指标
恶性肿瘤的死亡率 ; 放射性物质在单位时间内的放射次数; 在单位容积充分摇匀的水中的细菌数; 野外单位空间中的某种昆虫数等。
0.25
0.2
0.15
0.1
0.05
0 012 345
(b)
0.18 0.16 0.14
n =30 π =0.3
0.12
0.1
0.08
0.06
0.04
0.02
0
0 2 4 6 8 10 12 14 16 18 20
(d)
•由数理统计学的中心极限定理可知,当n较大、 不接近0也不接 近1时,二项分布B( n , )近似正态分布:
正态近似法
当n较大, p 和 1 p 均不太小,如 np 和 n(1 p) 均
大于5时,利用正态近似的原理,可作样本率p与已 知总体率的比较,检验统计量为:
Z p0 0 (1 0 ) n
例10.6 一项调查结果表明某市一般人群的艾滋病知识 知晓率为65%。现对该市吸毒人群进行调查,在150名 吸毒人员中有130人回答正确。问该市吸毒人群的艾滋 病知识知晓率是否高于一般?
X ~ N(n , n (1 ))
二项分布的应用
• 总体率的区间估计 – 查表法 – 正态近似法
• 单个样本率与总体率比较 – 直接计算概率法
– 正态近似法 • 两样本率的比较
总体率的区间估计
• 查表法:当n≤50时可查表求总体率的95%或 99%可信区间(附表7)。
二项分布及Posson分布
(2)Poisson分布的性质
① Poisson分布的总体均数等于总体方差μ=σ2=λ。
② 当n很大,而π很小,且nπ=λ为常数时,二项分
布近似Poisson分布。
③ 当λ增大时,Poisson分布渐近正态分布。一般,
当λ≥20时,Poisson分布可作为正态分布处理。
④ Poisson分布具有可加性。对于服从Poisson
该函数式是二项函数[π+(1-π)]n的通项
且有:
P( X ) 1
X 0
n
2。二项分布的适用条件
若试验符合下面3个特点,则其某一试验结果
发生的次数服从二项分布,此试验称为贝努利
(Bernoulli)试验。
n次贝努利(Bernoulli)试验中研究事件
发生的次数X服从二项分布。
贝努利(Bernoulli)试验的条件: ① 每次试验只会发生两种对立的可能结果之一 ② 在相同试验条件下,每次试验出现某种结果 (如“阳性”)的概率π固定不变
样本均数与总体均数比较的检验目的 是推断样本均数所代表的总体均数λ与已 知的总体均数λ0是否相等。 可使用的检验方法有:直接计算概率 法和正态近似法
例6-13
有研究表明,一般人群精神发育
不全的发生率为3‰,今调查了有亲缘血统婚 配关系的后代25000人,发现123人精神发育不
全,问有亲缘血统婚配关系的后代其精神发育
第二节
Poisson分布
(Poisson distribution)
一、Poisson分布的概念
Poisson分布最早是由法国数学家SiméonDenis Poisson (西莫恩· 德尼· 泊松 )研究二项
分布的渐近公式是时提出来的。
二项分布与泊松分布比较
二项分布与泊松分布比较二项分布与泊松分布是概率论中常见的两种离散概率分布,它们在实际问题中有着广泛的应用。
本文将对二项分布和泊松分布进行比较,分析它们的特点、适用范围以及优缺点,帮助读者更好地理解和应用这两种分布。
一、二项分布二项分布是最基本的离散概率分布之一,描述了在一系列独立重复的伯努利试验中成功的次数。
在每次试验中,事件发生的概率为p,不发生的概率为1-p。
若进行n次试验,成功的次数为X,则X服从参数为n和p的二项分布,记为X~B(n,p)。
二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)表示组合数。
二项分布的期望和方差分别为E(X) = np,Var(X) = np(1-p)。
二项分布适用于满足以下条件的问题:1)进行n次独立重复的伯努利试验;2)每次试验只有两种可能的结果;3)每次试验中成功的概率为常数p。
二、泊松分布泊松分布描述了单位时间或单位空间内随机事件发生的次数,适用于描述低概率事件在长时间或大空间内的发生情况。
泊松分布的参数λ表示单位时间或单位空间内事件的平均发生率。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中e为自然对数的底。
泊松分布的期望和方差均为E(X) = Var(X) = λ。
泊松分布适用于满足以下条件的问题:1)事件在时间或空间上是独立分布的;2)事件在任意非重叠的时间或空间区间内的发生概率相等;3)事件的平均发生率λ是已知的。
三、二项分布与泊松分布的比较1. 适用范围:二项分布适用于描述有限次独立重复试验中成功次数的分布,适用于成功概率固定的情况;而泊松分布适用于描述单位时间或单位空间内事件发生次数的分布,适用于事件发生率很低的情况。
2. 参数设定:二项分布需要设定试验次数n和成功概率p两个参数;泊松分布只需要设定平均发生率λ一个参数。
3. 连续性:二项分布是离散分布,描述的是离散的事件发生次数;泊松分布是连续分布,描述的是连续的事件发生情况。
二项分布与Poisson分布
px 7 1 px 8 1 p(x 8) x 9
1 C180 0.868 0.142 0.58 0.155
因此,10例患者中至少9例有效的概率为0.581,至多7例有效的概率 为0.155。
n
P( X K ) P(K ) P(K 1) P(K 2) P(n) P( X )
K
(3)至多有k例阳性的概率:
k
P( X K ) P(0) P(1) P(2) P(k) P( X )
X= 0, 1, 2, … k…n
0式
生存数 (X)
3
死亡数 (n-X)
0
2
1
1
2
0
3
甲乙 丙
生生 生 生生 死 生死 生 死生 生 生死 死 死生 死 死死 生 死死 死
每种组 每种排列的概率 合的概
px nx1 nx, x 率
0.2×0.2×0.2=0.008 0.2×0.2×0.8=0.032 0.2×0.8×0.2=0.032 0.8×0.2×0.2=0.032 0.2×0.8×0.8=0.128 0.8×0.2×0.8=0.128 0.8×0.8×0.2=0.128 0.8×0.8×0.8=0.512
他观察单位的结果。 6
三. 概率的计算:
从一个阳性率为π的总体中,随机抽取含量为n的样本,则 样本中阳性数X或阳性率p服从二项分布B ( n、π)。
(1)恰有k例阳性的概率:
P(X k) (nk ) k 1 nk
(
n k
)
n! k!(n
k )!
(2)至少有k例阳性的概率:
二项式分布和泊松分布
二项式分布和泊松分布二项式分布和泊松分布是概率论中常见的两种离散概率分布。
它们在不同的应用场景中具有重要的意义。
本文将分别介绍二项式分布和泊松分布的概念、特点以及应用,并通过实例来说明它们的实际意义。
一、二项式分布二项式分布描述了在n次独立重复实验中成功次数的概率分布。
其中,每次实验只有两个可能的结果:成功或失败。
成功的概率记为p,失败的概率记为q=1-p。
用X表示在n次实验中成功的次数,则X服从二项式分布B(n,p)。
二项式分布的特点是:每次实验之间相互独立,实验结果只有两种可能,成功和失败的概率不变。
二项式分布的应用场景很广泛。
例如,在工程质量控制中,可以使用二项式分布来计算在一批产品中不合格品的数量;在医学研究中,可以使用二项式分布来计算某种疾病在人群中的患病率。
例如,某公司生产的产品合格率为90%,现在从该公司的产品中随机抽取10个进行质量检测,问有几个产品合格的概率是多少?这个问题可以使用二项式分布来解决。
假设成功事件为产品合格,失败事件为产品不合格,成功概率为p=0.9,失败概率为q=0.1。
那么在10次实验中,成功的次数X服从二项式分布B(10,0.9)。
我们可以使用概率计算公式来计算出有几个产品合格的概率。
二、泊松分布泊松分布是描述在一段固定时间或空间内,事件发生次数的概率分布。
它适用于描述独立事件在单位时间或单位空间内发生的次数。
泊松分布的参数λ表示单位时间或单位空间内平均发生的事件次数。
泊松分布的特点是:事件之间独立,事件在单位时间或单位空间内平均发生率不变。
泊松分布在实际应用中有很多场景。
例如,在电话交换机的研究中,可以使用泊松分布来描述单位时间内通话请求的数量;在网络流量分析中,可以使用泊松分布来描述单位时间内收到的数据包数量。
例如,某个餐厅在一小时内平均接待10个客人,问在下一个小时内接待超过15个客人的概率是多少?这个问题可以使用泊松分布来解决。
假设事件为接待客人,单位时间内平均接待的客人数为λ=10。
二项分布与泊松分布
正态分布,; 当n足够大,但π很小时,如n≥100而π<0.1或π>0.9时
,二项分布近似于泊松分布。
样本率均数 样本率标准差
p
x
n
n
n
pnx
n(1)
n
(1)
n
样本率p的标准差
pnx
n(1)
n
(1)
二项分布(binomial distribution)
贝努利试验列中成功次数k的概率为: P(X=k)=Cnk πk (1-π)n-k (0<π<1) ,
k=0 , 1 , …,n, 而 Cnk πk (1-π)n-k 二 项 式 恰 好 是 牛 顿 展 开 式 ((π+(1-π)) n的项,故又称为二项分布。
二项分布与泊松分布
n重贝努利试验
在同一条件下独立重复n次试验,每次试验只 有两个可能的对立结果,A与非A , 如成功与 失败 , 其概率P(A)=π , (0< π<1) , 则称这 一系列独立重复试验为n重贝努利试验(贝努 利试验序列)。
n重贝努利试验的三个条件
(1)每次试验只有两个可能的对立结果, A与非A (2)每次试验的条件不变,即每次试验中, 结果A发生的概率P(A)=π (3)各次试验独立,即任一次试验结果与 其它次试验结果无关。
医学中Poisson分布
单位时间(空间、面积)内某稀有事件 发生次数的分布。
如研究细菌、某些血细胞、粉尘等在单 位面积或容积内计数结果的分布,放射 性物质在单位时间内放射出质点数的分 布,在单位空间中某些野生动物或昆虫 数的分布,在一定人群中某种低患病率 的非传染性疾病患病数或死亡数分布。
二项分布、poisson分布和正态分布的关系
二项分布、poisson分布和正态分布的关系二项分布、Poisson分布和正态分布是概率论中常见的三种分布,它们之间有着密切的关系。
首先,二项分布和Poisson分布都属于离散型分布,而正态分布则是连续型分布。
二项分布指的是在n次独立重复试验中成功的次数的概率分布,而Poisson分布则是描述在一段时间内某事件发生的次数的概率分布。
当n很大时,二项分布逐渐逼近Poisson分布。
其次,当n很大而p很小时,二项分布可以近似看作正态分布。
这是由于当n很大时,二项分布的均值和方差均趋近于无穷大,而正态分布的均值和方差也是无穷大的,因此两者可以近似看作相同的分布。
这种近似在统计学中被广泛使用,例如在假设检验和置信区间中的应用。
最后,Poisson分布和正态分布之间也有一定的关系。
当Poisson 分布的参数λ很大时,它也可以近似看作正态分布。
这是由于当λ很大时,Poisson分布的均值和方差趋近于相等,而正态分布的均值和方差也是相等的,因此两者可以近似看作相同的分布。
综上所述,二项分布、Poisson分布和正态分布之间有着密切的关系,在实际应用中它们经常会相互转化和近似。
这些分布的理解和掌握对于进行概率统计分析具有重要的意义。
- 1 -。
二项分布poisson分布的检验
二项分布与poisson分布的z检验
检验假设为:
H0 : 0 H1 : 0
当H0成立时,检验统计量为:
Z Z n 0 1 0 X n 0 p 0 n ~ N 0,1
0 1 0
~ N 0,1
二项分布与poisson分布的z检验
例6-12 某车间改革生产工艺前,测得三次粉尘浓度, 每升空气中 分别有38、29、36颗粉尘;改革工艺后, 测取两次,分别为25、18颗粉尘。问工艺改革前后 粉尘数有无差别?
38 29 36 X1 34.33, n1 3 3 25 18 X2 21.50, n2 2 2
H0 : 0 0.8 H1 : 0.8(单侧), 0.05
0.75 0.8 Z 0.968 0.8 0.2 60
二项分布与poisson分布的z检验
按ν=∞查t 临界值表: (单侧)Z0.10, ∞ =1.2816
׀Z < ׀Z0.10,得P>0.10
艺改革前后粉尘浓度不同,改革工艺后粉尘浓度较
低。
当n不太大时,需作连续性校正:
Z
X n 0 0.5 n 0 1 0
~ N 0,1
0.5 p 0 n ~ N 0,1 Z 0 1 0 n
二项分布与poisson分布的z检验
例6-8 某医院称治疗声带白斑的有效率为80%,今统计 前来求医的此类患者60例,其中45例治疗有效。试问该 医院宣称的疗效是否客观?
二项分布与poisson分布的z检验
H0 : 1 2 H1 : 1 2 , 0.05
Z
X1 X 2 X1 X 2 n1 n2
SPSS-二项分布与poisson分布
例:设一般人群食管癌患病率为30/10万, 某研究者随机抽查当地500人,问至少6 人患食管癌的概率为多少? =500×30/10万=0.15,X=6 至少6人患食管癌的概率为: P(X≥6)= 1- P(X≤5)
= 1- CDF.POISSON(5,0.15 )
笃 学
CDF.BINOM(X,n,p)- CDF.BINOM(X - 1 ,n,p)。
笃 学 精 业 修 德 厚 生
1. SPSS数据录入: 随便录入一个数据 2. 采用函数计算发生阳性数为不同值时的概率大小: Transform →Compute ,弹出对话框,设置一个新变量为 概率px,然后在数学表达式空白栏中输入 CDF.BINOM(X,10,0.8)- CDF.BINOM(X -1 , 10,0.二、Poisson分布
在二项分布中,若某事件的发生率非常小,且 样本例数非常大时,则二项分布逼近Poisson分 布。常用于研究单位时间、面积、容积内某事 件的发生数。
Poisson分布累计分布函数为:CDF.POISSON (X,)。 为单位时间、面积、容积内某事 件的平均发生数,X为试验观察的发生数。
二项分布与Poisson分布
笃 学
精 业
修 德
厚 生
一、二项分布
(一)二项分布资料 满足三个条件:
各观察单位只能具有相互对立的一种结果;
已知发生某一结果的概率大小;
每个观察对象的观察结果互相独立。
笃 学
精 业
修 德
厚 生
设有10只小白鼠接受某种毒物,观察其生存或死亡, 已知死亡率为80%,每只小白鼠的死亡不受其它小 白鼠死亡的影响。则可能出现死亡0、1、2、…10只 的概率分布分别为: P(X=0)=C100 ·0· (1- )10 P(X=1)= C101 ·1· (1- )9 …… P(X=10)= C1010 ·10· (1- )0 相加为1
概率论几种重要的分布
概率论几种重要的分布
概率论中有许多重要的分布,包括以下几种:
1. 正态分布(Normal Distribution):也称为高斯分布,是最常见的分布之一。
它具有钟形曲线,对称,以及均值和方差完全定义。
在许多实际应用中,自然界中许多现象都遵循正态分布。
2. 二项分布(Binomial Distribution):描述了在固定次数的独立重复试验中成功次数的概率分布。
每个试验有两个可能的结果,成功和失败,并且每次试验的成功概率保持不变。
3. 泊松分布(Poisson Distribution):用于描述稀有事件在固定时间或空间上的发生次数的概率分布。
它假设事件发生的概率相等,且事件之间是相互独立的。
4. 均匀分布(Uniform Distribution):也称为矩形分布,是一种概率分布,其中所有可能的结果的概率是相等的。
在定义了一个范围之后,均匀分布将这个范围内的概率均匀地分布。
5. 指数分布(Exponential Distribution):用于描述独立事件发生间隔的概率分布。
它假设事件是以恒定速率独立地发生的,即它具有无记忆性。
6. t分布(Student t-Distribution):用于小样本情况下的统计推断,当样本量较小时,t分布的尾部更加重,与正态分布相比,更容易出现极端值。
以上只是一些重要的分布,概率论还有很多其他的分布,根据实际应用的不同,可以选择合适的分布模型。
概率论中的二项分布与泊松分布
概率论中的二项分布与泊松分布概率论是数学中的一个重要分支,研究随机事件发生的概率以及它们之间的关系。
在概率论中,二项分布和泊松分布是两个常见且重要的概率分布。
本文将分别介绍二项分布和泊松分布的定义、特点以及应用。
一、二项分布二项分布是指在一系列独立的、相同概率的伯努利试验中,成功事件发生的次数服从二项分布的概率分布。
其中,伯努利试验是指只有两个可能结果的试验,如抛硬币的结果只有正面和反面两种情况。
二项分布的概率质量函数可以表示为:P(X=k)=C(n,k)p^k(1-p)^(n-k),其中,n代表试验次数,k代表成功事件发生的次数,p代表每次试验成功的概率,C(n,k)代表组合数。
二项分布的特点有以下几点:1. 二项分布的随机变量只能取非负整数值,即k只能取0,1,2,...,n。
2. 二项分布的期望值为E(X)=np,方差为Var(X)=np(1-p)。
3. 当试验次数n趋向于无穷大时,二项分布逼近于泊松分布。
二项分布在实际应用中有广泛的应用,比如在质量控制中,可以使用二项分布来计算在一定数量的产品中出现不合格品的概率;在投资决策中,可以使用二项分布来计算在一系列投资项目中成功项目的数量等。
二、泊松分布泊松分布是指在一段时间或区域内,事件发生的次数服从泊松分布的概率分布。
泊松分布适用于事件发生的概率很小,但试验次数很大的情况。
泊松分布的概率质量函数可以表示为:P(X=k)=(e^(-λ)*λ^k)/k!,其中,λ代表单位时间或单位区域内事件的平均发生率。
泊松分布的特点有以下几点:1. 泊松分布的随机变量只能取非负整数值,即k只能取0,1,2,...。
2. 泊松分布的期望值和方差均为λ。
3. 当试验次数n趋向于无穷大,每次试验成功的概率p趋向于0,但np保持不变时,二项分布逼近于泊松分布。
泊松分布在实际应用中也有广泛的应用,比如在电话交换机的排队系统中,可以使用泊松分布来描述单位时间内到达电话的数量;在可靠性工程中,可以使用泊松分布来描述设备的故障率等。
二项分布与泊松分布
二项分布的应用
2 正态近似法:应用条件:np及n(1−p)均≥5
p±uαsp
例:在某地随机抽取329人,做HBsAg检验,得阳性 率为8.81%,求阳性率95%置信区间。 已知:p=8.81%,n=329,故:
s p p ( 1 p ) /n 0 .0( 1 8 0 .0 8) 8 /3 1 8 2 0 .0 1 9 1 1 .5 % 5 6 6
第一节 二项分布和总体率的估计
一、二项分布 (一)二项分布的概念
在生命科学研究中,经常会遇到一些事物, 其结果可分为两个彼此对立的类型,如一个病 人的死亡与存活、动物的雌与雄、微生物培养 的阳性与阴性等,这些都可以根据某种性状的 出现与否而分为非此即彼的对立事件。这种非 此即彼事件构成的总体,就称为二项总体 (binomial population)。
二、二项分布的应用
(一 )、总体率的估计
1 查表法:附表6百分率的置信区间表直接
列出了X≤n/2的部分。其余部分可以查nx的阴性部分的QL~QU再相减得 PLand pU PL=1-QL 1-QU 例:某地调查50名儿童蛔虫感染情况,发现有10人大便
中有蛔虫卵,问儿童蛔虫感染率的95%置信区间是多少?
1份混合样本中含有k份阳性的概率为当k0时p0是说混合样品中没有1阳性样品的原始概率反映的是混合样品阴性的概率当收集的样本数量很大时全部检验费时费力可以用群检验的方法进行解决若每个标本的阳性概率为则其阴性概率为q1便是某个群m个标本均为阴性的概率一个群为阴性的群的概率而1q就为一个群阳性的概率
二项分布与泊松分布
第一节 二项分布和总体率的估计
二项分布(binomial distribution) 就是对这种只具有两种互斥结果的离散型 随机变量的规律性进行描述的一种概率分 布。由于这一种分布规律是由瑞士学者贝 努里(Bernoulli)首先发现的,又称贝努里 分布。
泊松分布和二项分布的区别
泊松分布和二项分布的区别
泊松分布和二项分布都是概率分布,但它们在若干方面有着显著的区别。
一、关于概率分布模型
1、泊松分布是一种单变量的连续概率分布,又称泊松过程,是指某个时间段内某种事件发生的次数在条件不变的情况下它们的分布。
相关参数包括平均发生次数λ和发生次数的方差λ。
2、二项分布是一种二元随机变量的离散概率分布,它是多个独立试验的总次数符合二项分布的概率分布。
其参数包括每次试验的概率p,试验次数n,和通常代表成功的次数x。
二、在应用上的区别
1、泊松分布用于描述某一段时间内的事件发生次数的分布状况,在预测事件发生的次数时往往会用到泊松分布模型。
2、二项分布和二元随机变量有关,可用于分析取两个相互排斥(成功或失败)的结果的实验,如抽签,或者某种事件在某一段时间内的发生次数。
总之,泊松分布和二项分布都是概率分布,但它们之间有着明显的差异,在应用上也有所不同,使用时要慎重选择。
- 1 -。
二项分布和泊松分布的关系
二项分布和泊松分布的关系1. 引言说起二项分布和泊松分布,很多人可能觉得这俩名字听起来就像是数学课本里的古董,难以捉摸。
不过,别担心,今天咱们就来轻松聊聊这两位“数学小伙伴”的关系,保证让你听得懂、记得住!首先,想象一下,你正在玩一个抛硬币的游戏。
每次抛出硬币,正面朝上的概率是 0.5,这样的实验重复多次,你就形成了一个二项分布。
这个分布就像你抛硬币的记录,记录着多少次得到了正面。
这儿的关键点是,每次抛硬币的结果都是独立的,对吧?就像你请朋友吃饭,他点什么跟你点什么没关系。
2. 二项分布的特点2.1 定义和应用二项分布其实就是在重复 n 次独立试验中,成功的次数(比如抛到正面)遵循的分布。
简而言之,如果你抛硬币 10 次,想知道其中有多少次是正面朝上,那你就可以用二项分布来计算了。
它有个公式,看起来复杂,但其实就像咱们家里的食谱,只要照着做就行。
2.2 理解简单对于二项分布,我们需要关注的两个要素就是试验的次数 n 和每次试验成功的概率 p。
举个简单的例子:你每次抛硬币的成功概率是 0.5,如果你抛 10 次,想知道正面出现 5 次的概率,就可以用这个分布来计算。
而且,你会发现,它的结果有点像中彩票,起起伏伏,刺激又好玩。
3. 泊松分布的特点3.1 定义与背景接下来我们聊聊泊松分布。
想象一下,你在某个固定时间段里观察到事件的发生,比如说在一个小时内,顾客进店的次数。
这里的顾客进店就可以用泊松分布来描述。
它的特点是,事件发生的次数在一定时间或空间内是随机的,但总体上又是有规律可循的。
就像你在超市,平时的客流量都有个大致的平均值。
3.2 数学之美泊松分布的关键在于它的参数λ,这个λ 就是某个时间段内事件的平均发生次数。
比如说,一个小时内平均有 3 个顾客进店,那λ 就是 3。
这个分布最适合用来描述稀疏事件的发生,比如说电话中心在一小时内接到的电话数量,或者公园里随机出现的松鼠数量,呵呵,是不是感觉生活中处处有数学的影子?4. 二项分布与泊松分布的关系4.1 渐近关系那么,这俩分布到底有什么关系呢?简单来说,当 n 很大,p 很小的情况下,二项分布就会逐渐接近泊松分布。
二项分布与泊松分布参数的区间估计
二项分布与泊松分布参数的区间估计二项分布和泊松分布是概率论中常用的两种离散型概率分布。
本文将探讨二项分布和泊松分布的参数的区间估计方法,并比较两者的异同。
一、二项分布的参数区间估计二项分布是指在n次独立重复的伯努利试验中,事件A发生的次数的概率分布。
其概率质量函数为:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中,C(n,k)表示组合数,k表示事件A发生的次数,p表示事件A单次发生的概率。
二项分布参数p的区间估计主要有两种方法:正态近似法和Wald区间法。
下面将分别进行介绍:(1)正态近似法当n足够大且p不接近0或1时,二项分布可以使用正态分布来近似。
根据中心极限定理,二项分布的均值和方差分别为μ=np,σ^2=np(1-p)。
因此,可以利用正态分布的性质进行参数p的区间估计。
具体步骤如下:a.计算样本比例p̂=X/n,其中X为事件A发生的次数,n为总试验次数;b.计算标准误SE=√(p̂(1-p̂)/n);c.根据正态分布的性质,可以得到置信水平为1-α的区间估计为:(p̂-Z_(α/2)SE,p̂+Z_(α/2)SE)。
其中,Z_(α/2)表示标准正态分布的上分位点。
(2) Wald区间法Wald区间法是二项分布参数p的另一种区间估计方法。
根据Wald区间法,可以得到p的区间估计为:(p̂-Z_(α/2)SE,p̂+Z_(α/2)SE)。
Wald区间法的计算方法与正态近似法相同,但Wald区间法对样本量要求较高,需要n>5/p和n>5/(1-p)。
二、泊松分布的参数区间估计泊松分布是指在一段时间或空间中,事件发生的平均次数的概率分布。
其概率质量函数为:P(X=k)=(e^-λ*λ^k)/(k!),其中,λ表示单位时间或单位空间内事件发生的平均次数。
泊松分布参数λ的区间估计通常使用极大似然估计法。
根据极大似然估计法,可以得到参数λ的估计值为样本平均值。
进一步,可以使用正态分布的性质进行参数λ的区间估计,具体步骤如下:a.计算样本平均值̂λ;b.计算标准误SE=√(̂λ/n);c.根据正态分布的性质,可以得到置信水平为1-α的区间估计为:(̂λ-Z_(α/2)SE,̂λ+Z_(α/2)SE)。
二项分布泊松分布和正态分布的关系
二项分布泊松分布和正态分布的关系二项分布、泊松分布和正态分布是概率论中常见的三种分布类型。
它们之间有着紧密的联系和相互转化的关系。
本文将从理论和实际应用的角度出发,深入探讨这三种分布之间的关系。
一、二项分布二项分布是指在n次独立重复试验中,每次试验成功的概率为p,失败的概率为1-p,试验结果只有成功和失败两种情况,且每次试验结果相互独立的情况下,成功的次数X服从二项分布。
二项分布的概率密度函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,C(n,k)表示从n个不同元素中取k个元素的组合数。
二项分布的期望和方差分别为:E(X) = npVar(X) = np(1-p)二项分布在实际应用中非常广泛,例如在质量控制中,检查n个产品中有k个次品的概率就可以用二项分布来计算。
二、泊松分布泊松分布是指在一段时间或空间内,某个事件发生的次数服从泊松分布,它的概率密度函数为:P(X=k) = (lambda^k * e^(-lambda)) / k!其中,lambda是单位时间或空间内该事件的平均发生次数。
泊松分布的期望和方差均为:E(X) = lambdaVar(X) = lambda泊松分布在实际应用中也非常广泛,例如在保险精算中,用泊松分布来估计一段时间内某种风险事件的发生次数,从而计算出保险费率。
三、正态分布正态分布是指在一组数据中,各个数据点的分布呈现出钟形曲线,符合正态分布的数据在均值附近出现的概率最大,而在两侧出现的概率逐渐减小。
正态分布的概率密度函数为:f(x) = (1/(sigma * sqrt(2*pi))) *e^(-(x-mu)^2/(2*sigma^2))其中,mu是正态分布的均值,sigma是标准差。
正态分布的期望和方差分别为:E(X) = muVar(X) = sigma^2正态分布在实际应用中也非常广泛,例如在统计学中,用正态分布来描述一组数据的分布情况,从而进行参数估计和假设检验。
二项分布和poisson分布
• 二项分布(binomial distribution):是指贝努利试验中 结果A出现次数的概率分布。
• 记为:X~B(n,)
二项分布的两个参数: – 总体率π – 样本含量n
n次贝努利试验中,阳性结果A出现的次数X具 有的概率是多少呢?
Questions?
如果在足够多的n次独立Bernoulli试验中,随机变量X
所有可能的取值为0,1,2,…,取各个取值的概率为:
X e
P(X )
, X 0,1, , n
X!
X: 单位时间(空间)某稀有事件发生数; : Poisoon分布的总体均数,=n ; P(X): 事件数为X时的概率,e为自然对数的底。
f='Arial' 'P(X)'); • axis2 length =30.0 offset=(2) order =(0 to 15 by 1) label =(h=1.2 f='Arial' 'X'); • RUN;QUIT;
二项分布的应用
• 总体率的区间估计 • u 检验
总体率的区间估计
正态近似法
例 为研究某种新补钙制剂的临床效果,观察了200名儿童, 其中100名儿童用这种新药,发现有12人患佝偻病,另 100名儿童用钙片,发现有20人患佝偻病,试问两组儿童 的佝偻病发病率有无差别?
例 为研究某职业人群颈椎病的发病的性别差异, 今随机抽取该职业人群男性120人和女性110人, 发现男性中有36人患有颈椎病,女性中有22人患 有颈椎病。试作统计推断。
P( X ) CnX X (1 )nX , X 0,1, , n
二项分布与泊松分布
P(X k) k e
k!
则称服X从参数为 的Poisson分布,记为X~P( )。
服从Poisson分布的三个条件
平稳性 x的取值与观察单位的位置无关,只与观察单位的大小有关
独立增量性(无后效性) 在某个观察单位上x的取值与其他各观察单位上x的取值无关
普通性 在充分小的观察单位上x的取值最多为1
练习
二项分布 课本练习3.6
Poisson分布 课本练习3.9
P( X
k)
C
k n
k (1 ) nk
则称X服从参数为n, 的二项分布,记为X~
B(n, )。
二项分布适用条件(贝努利试验序列)
每次试验的结果只能是两种互斥结果中的一种(A 或者非A);
各次试验的结果互不影响,即各次试验独立; 在相同试验条件下,各次试验中出现某一结果A具
有相同的概率 (非A的概率为1 )。
二项分布的正态近似
二项分布的图形完全取决于n和π的大小 当π=0.5时图形对称,随n增大,渐近于正 态分布图形 当π≠0.5时图形偏态,但随n增大,图形逐 渐对称,趋向于正态分布
当n足够大,p和1-p均不太小时(np与n(1-p) 均大于5),样本率p近似正态分布
二项分布
若X ~B(n, )
似于正态分布 N(n , n (1 ))
Poisson分布与正态分布 当 20 , Poisson 分布渐进正态分布。
课本55页例5.17
任意打开一数据 Transform---compute Target variable (p) Functions Cdf . Poisson (q,mean) q为样本中事件发生数,mean为理论事件发生数 选入numeric expression,填入450,500 ok
第八讲 二项分布与Poisson分布及其应用wang
二、率的假设检验
(一)样本率与总体率比较 • 比较的目的是推断该样本所代表的未知总 体率π与已知的总体率π0是否相等。 (二)两样本率比较的u检验
• 比较的目的是推断该两样本率所代表的总 体率π1与总体率π2是否相等。
(一)样本率与总体率比较
1、直接计算概率法
• 当阳性数 x 较小时,可直接计算二项分布的累计 概率,做出统计推断。
0.14 0.12 0.1 0.08 0.06 0.04 0.02 0
12 15 18 21 24 27 30 33 36 39 42 45 48 0 3 6 9
0.25 0.2 0.15 0.1 0.05 0
10 12 14 16 18 20 0 2 4 6 8
n=50 p=0.3
n=20 p=0.3
p(X k)
X 0
P(X)
k
例1:据以往经验,新生儿染色体异常率一般为 1%,某医院观察了当地 400名新生儿,只有1 例异常,问该地新生儿染色体异常率是否低于 一般?
• H0: π=0.01 H1: π<0.01 α=0.05 (单侧) P = p(x≤1) = p(x=0) + p(x=1)
n=5
p=0.5
n=10 p=0.5
0.3 0.25 0.2 0.15 0.1 0.05
n=20 p=0.5
0.4 0.3 0.2 0.1 0 0 1 2 3 4 5
0 0 1 2 3 4 5 6 7 8 9 10
n=5 p=0.3
n=10
p=0.3
(2) 数理统计证明,当n趋于无穷大时, 二项分布趋于正态分布。实际应用中,只 要n足够大, π不接近于1或0,就可以用正 态分布来处理二项分布的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 C3 0.62 (1 0.6) (32) 0.432
表1 治疗3例可能的有效例数及其概率 有效人数(x) 0 1 2 3 C nx 1 3 3 1
2013-2-2
第五章 常用概率分布 (二)
2
摸球实验
一个袋子里有5个乒乓球,其中2个黄球,3个白球。 摸球游戏,每一次摸到黄球的概率是0.4,摸到白球的概 率是0.6。
这个实验有三个特点:一是各次摸球是彼此独立的;二是
每次摸球只有二种可能的结果,或黄球或白球;三是每次 摸到黄球(或摸到白球)的概率是固定的。
p 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 1 2 3 4 5 m 6 7 8 9 10
2013-2-2
第五章 常用概率分布 (二)
19
四、二项分布的应用
利用二项分布的正态近似性条件,可简化计算
k 0.5 n P( X k ) P( X ) n (1 ) X 0
k
n
k 0.5 n P( X k ) P( X ) 1 n (1 ) X k
2013-2-2
第五章 常用概率分布 (二)
20
四、二项分布的应用
二项分布的实际应用广泛:预测、管理决策、疾病的家 族聚集性等 例:新生儿窒息在非顺产婴儿中会经常出现。据北京几
家医院的记载,1070例住院新生儿中有107例发生新生
儿窒息。抢救新生儿需要长时间使用呼吸机。如果一家 医院每天平均接受10名新生儿,那么该医院需准备多少
可利用正态分布原理解决二项分布的问题
2013-2-2
第五章 常用概率分布 (二)
13
三、二项分布的特征
二项分布的均数和标准差 若x~B(n,π) X的总体均数为:μ= nπ
X的总体方差为σ2= nπ(1- π)
X的总体标准差为
n (1 )
2013-2-2
第五章 常用概率分布 (二)
P( A) P( A) 1
记P( A)
独立:指各次试验出现的结果之间是无关的 重复:每次试验的条件不变 P( A)
2013-2-2
第五章 常用概率分布 (二)
4
二项分布(binomial distribution)的定义
任意一次试验中,只有事件A发生和不发生两种结果,发 生和不发生的概率分别是: 和1- 若在相同的条件下,进行n次独立重复试验,用x 表示这 n
第五章 常用概率分布 (二)
10
三、二项分布的特征
二项分布的图形:取决于两个参数(n,π)
π=0.5时( n =6, n =10, n =15, n =20, n =50)
p 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 1 2 3 m 4 5 6
次试验中事件A发生的次数
那么x服从二项分布,记做 x ~B (n,),也叫Bernolli分 布。
2013-2-2
第五章 常用概率分布 (二)
5
二项分布(binomial distribution)
例5-1 用针灸治疗头痛,假定结果 不是有效就是无效,每一例有效的 概率为π。某医生用此方法治疗头痛
第五章 常用概率分布 (二)
15
四、二项分布的应用
X~B(n,π ),计算恰有k例“阳性”的概率:
P( X k ) C (1 )
K n k
n k
例5-3
如果某地钩虫感染率为13%,随机观察当地150人,
其中有10人感染钩虫的概率有多大?
150 ! P( X 10) 0.1310 0.87140 0.0055 10!(150 10)!
台呼吸机,才能保证90%以上的概率够用?
2013-2-2
第五章 常用概率分布 (二)
21
四、二项分布的应用
例:现用同类设备300台,各台设备工作是相互独立的, 且发生故障的概率都为0.01,在通常情况下,一台设备 的故障可由一人来处理。问至少需要配备多少工人,才
A1A2 A3 A 4 A5 A1A2 A3 A4 A5 A1A2 A3 A4 A5 A1A2 A3 A 4 A5 A1A2 A3 A 4 A5 A1A2 A3 A4 A5 A1A2 A3 A4 A5 A1A2 A3 A4 A5 A1A2 A3 A4 A5 A1A2 A3 A4 A5
患者5例,2例有效的概率是多少?
第五章 常用概率分布 (二)
11
三、二项分布的特征
二项分布的图形:取决于两个参数(n ,π)
π ≠0.5时(0.2, n =6, n =10, n =15, n =20, n =30, n =50 )
p 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 1 2 3 m 4 5 6 p 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 1 2 3 4 5 m 6 7 8 9 10
p 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 10 m 20
p 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 10 m 20 30
的人数X的概率分布为二项分布,记作B(n,π)。
二项分布的概率函数P(X) 公式为
P( X ) C (1 )
x n x
n x
x n
n! 其中C x !(n x)!
2013-2-2 第五章 常用概率分布 (二) 7
二项分布(binomial distribution)的概念
p 0.26 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 1 2 3 4 5 6 7 m 8 9 10 11 12 13 14 15
X ~ B(n, )
恒有
K 0
P( X k ) 1
第五章 常用概率分布 (二) 9
n
2013-2-2
二、二项分布的适用条件
每次实验只会出现两种对立的可能结果之一
(结果对立)
每次实验出现某种结果的概率固定不变,即每次实验条 件不变; (概率固定) 每次实验相互独立 (相互独立)
2013-2-2
具备这三点, n 次中有x 次摸到黄球(或白球)的概率分
布就是二项分布。
第五章 常用概率分布 (二) 3
2013-2-2
二项分布(binomial distribution)的定义
Bernoulli试验:只有两个互斥结果A和 A 的随机事件。 n次独立、重复的Bernoulli试验需满足下列条件 每次试验只有两个互斥的结果
x
0.60=1 0.6 0.6×0.6 0.6×0.6×0.6
(1-) n-x 0.4×0.4×0.4 0.4×0.4 0.4 0.40
出现该结果概率 P(x) 0.064 0.288 0.432 0.216
2013-2-2
第五章 常用概率分布 (二)
8
二项分布
如果随机变量X服从二项分布,记为:
2013-2-2
第五章 常用概率分布 (二)
16
四、二项分布的应用
X~B(n,π), 计算累积概率 出现“阳性”的次数至多为k次的概率
P( X k ) P( X )
X 0
k
出现“阳性”的次数至少为k次的概率
P( X k ) P( X ) 1 P( X k 1)
14
三、二项分布的特征
二项分布的均数和标准差
若x~B(n,π)
若以p表示阳性率,则p的取值可为0、1/n、2/n、 …、
k/n、…、n/n,
则样本率p的总体均数为 样本率p的总体方差为 样本率p的总体标准差为
p
2 p
(1 )
n
p
(1 )
n
2013-2-2
X k n
2013-2-2
第五章 常用概率分布 (二)
17
二项分布
根据公式(4-10)至多有2名感染钩虫的概率为