pspice仿真的几大类型
PSPICE仿真综合实验
1、仿真软件ORCAD一、PSpice简介:PSpice是较早出现的EDA(Electronic Design Automatic,电路设计自动化)软件之一,也是当今世界上著名的电路仿真标准工具之一。
目前广泛使用的PSpice5.1以后版本是Microsim公司于1996年开发的基于Windows环境的仿真程序,并且从6.0版本开始引入图形界面。
1998年著名的EDA商业软件开发商OrCAD公司与Microsim公司正式合并,自此Microsim公司的PSpice产品正式并入OrCAD公司的商业EDA系统中,成为OrCAD/PSpice。
但PSpice仍然单独销售和使用,并不断推出新的版本。
二、PSpice的优越性电路系统仿真方面,PSpice可以说独具特色,是其他软件无法比拟的,它是一个多功能的电路模拟试验平台,PSpice软件由于收敛性好,适于做系统及电路级仿真,具有快速、准确的仿真能力。
其主要优点有:1. 图形界面友好,易学易用,操作简单2. 实用性强,仿真效果好3. 功能强大,集成度高三、PSPICE可执行的主要分析功能本综合试验以ORCAD16.3为仿真平台仿真实验,该平台中PSpice可以分析的类型有以下9种,每一种分析类型的定义如下:(1)直流(DC)分析:也叫直流扫描分析是指电路中的某参数在一定范围内变化时,对电路的直流输出特性的分析和计算。
(2)交流(AC)分析:主要功能是计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入和输出阻抗等。
(3)噪音(Noise)分析:是指在每个设定的频率点上,计算电路指定输出端的等效输出噪音和制定输入端的等效输入噪声电平。
(4)直流工作点(OP)分析:是指当电感短路、电容开路时,电路中的静态工作点的计算。
在进行交流小信号分析和瞬态分析之前,系统将自动计算直流工作点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。
pspice电路仿真设计
随着电子设计自动化(EDA)的兴起,PSPICE逐渐 成为主流的电路仿真软件。
2000年代至今PSPICE断更新升级,支持更多复杂电路和高级功 能。
PSPICE的主要功能
电路图绘制与编辑
提供丰富的元件库和绘图工具 ,方便用户绘制电路图。
电路仿真与分析
支持多种仿真和分析功能,如 直流分析、交流分析、瞬态分 析等。
设置仿真精度
调整仿真精度,以获得更准确的仿真结果。
设置初始条件
为电路元件设置初始状态,以便进行仿真计 算。
电路仿真的基本步骤
建立电路模型
根据电路原理图,使用PSPICE软件建立相应 的电路模型。
定义元件参数
为电路元件设置合适的参数值,确保仿真结 果的准确性。
运行仿真
启动仿真计算,观察仿真波形和数据,分析 电路性能。
用于嵌入式系统的电路设计和仿真,如微控制器、DSP等。
科研与教育
广泛应用于科研机构和高校,作为电子工程学科的教学和实验工具。
02
PSPICE电路设计基础
电路元件的选取与参数设置
电阻
根据电路需求选择适当的电阻值和功率,设 置合适的电阻精度。
电感
根据工作频率、电流和磁芯材料等参数选择 合适的电感值和额定电流。
时序逻辑电路
02
设计一个同步计数器,通过PSPICE验证其时序行为和性能指标。
微处理器模型
03
使用PSPICE建立微处理器的电路模型,进行功能仿真和性能预
测。
混合信号仿真案例
ADC/DAC仿真
设计一个模数转换器和数模转换 器,利用PSPICE分析其性能和相 互影响。
数字通信系统
设计一个简单的数字通信系统, 包括调制解调器和信道模拟,通 过PSPICE进行系统级仿真和分析。
PSpice仿真分析类型简介
PSpice 分析类型PSpice A/D 将直流工作点分析、直流扫描分析、交流扫描分析和瞬态TRAN 分析作为4种基本分析类型,每一种电路的模拟分析只能包括上述4种基本分析类型中的一种,但可以同时包括参数分析、蒙特卡罗分析、及温度特性分析等其他类型的分析,现对4种基本分析类型简介如下。
1. 直流扫描分析(DC Sweep )直流扫描分析的适用范围:当电路中某一参数(可定义为自变量)在一定范围内变化时,对应自变量的每一个取值,计算出电路中的各直流偏压值(可定义为输出变量),并可以应用Probe 功能观察输出变量的特性曲线。
例对图1-1所示电路作直流扫描分析R 1图1-1 直流扫描分析实例(1)绘图应用OrCAD/Capture 软件绘制好的电路图如图1-2所示。
图1-2 直流扫描分析实例(2)确定分析类型及设置分析参数a) Simulation Setting (分析类型及参数设置对话框)的进入 ·执行菜单命令PSpice/New Simulation Profile ,或点击工具按钮,屏幕上弹出New Simulation (新的仿真项目设置对话框)。
如图1-3所示。
图1-3New Simulation对话框·在Name文本框中键入该仿真项目的名字,即可进入Simulation Settings(分析类型及参数设置对话框),如图1-4所示。
图1-4Simulation Settingsb)仿真分析类型分析参数的设置图1-2所示直流分压电路的仿真类型及参数设置如下(见图1-4):·Analysis type下拉菜单选中“DC Sweep”;·Options下拉菜单选中“Primary Sweep”;·Sweep variable项选中“V oltage source”,并在Name栏键入“V1”;·Sweep type项选中“Linear”,并在Start栏键入“0”、End栏键入“10”及Increment栏键入“1另外,如果要修改电路的分析类型或分析参数,可执行菜单命令PSpice/Edit Simulation Profile,或点击工具按钮,在弹出的对话框中作相应修改。
PSPICE电路仿真分析
PSPICE电路仿真分析1.概述PSPICE是当今世界上著名的电路仿真标准工具软件之一,美国MICROSIM公司推出的基于WINDOWS平台的PSPICE 6.2 FOR WINDOWS 可以对电路进行以下一些工作:1.1.原理图编制,电路性能仿真在制作实际电路之前,利用PSPICE 6.2 可对电路电性能进行仿真。
如计算直流工作点(BICAS POINT)、直流扫描(DC SWEEP)与交流扫描(AC SWEEP),显示检测点电压、电流波形等。
1.2.估计元件、器件变化(PARAMETRIC)对电路造成的影响。
1.3.分析一些较难测量的电路特性。
如噪声(NOISE)、频谱(FOURIER)、器件灵敏度 (SENSITIVITY)、温度(TEMPERATURE)分析等。
1.4.优化设计。
2. PSPICE6.2软件系统的组成2.1.SCHEMATICS是一个电路模拟器:它可以直接绘制电路原理图,使用方便。
无需编写自然描述语言程序,就可以自动生成电路描述文件;并可对电路进行直流分析、交流分析、瞬态分析、傅立叶分析、环境温度分析、灵敏度分析等多种分析,而且可以对元件进行修改编辑。
2.2.PSPICE 是一个数据处理器:它可以对SCHEMAICS 中所绘制的电路进行模拟分析,运算出结果并自动生成输出文件和数据文件。
2.3.PROBE 是一个后处理器:相当于一个示波器,它可以将PSPICE 运算的结果在幕或打印设备上显示出来。
2.4.STIMED 是产生信号源:它在设定各种激励信号时非常方便直观,而且可以查对。
2.5.PARTS 是对器件建模的工具。
3.PSPICE 6.2 FOR WINDOWS 软件的使用下面以模拟电子电路的二极管整流电路为例,介绍该软的使用方法。
3.1.编制原理图在WINDOWS界面下的PSPICE程序组选择SCHEMATICS,即可进入原理图编辑。
1)放置元器件及连线:用鼠标单击绘制(DRAW)中的取新元件(GET NEW PART)项,再单击对话框中元件库(LIBRARIES)的浏览(BROWSE),从ANALOG.SLB中取出电阻R,系统自动命名为R1;从SOURCE.SLB中取出正弦电压源VSIN ,系统自动命名为 V1;从EVAL.SLB是取出二极管DIN4002,系统自动命名为D1;从 PORT.SLB中取出地线EGND,系统自动设定为0点。
电路通用分析程序PSPICE简介
电路通用分析程序PSPICE简介PSPICE是由SPICE(Simulation Program with Intergrated Circuit Emphasis)发展而来的用于微机系列的通用电路分析程序。
一、PSPICE功能简介1、直流分析:包括电路的静态工作点分析;直流小信号传递函数值分析;直流扫描分析;直流小信号灵敏度分析。
2、交流小信号分析:包括频率响应分析和噪声分析。
PSPICE进行交流分析前,先计算电路的静态工作点,决定电路中所有非线性器件的交流小信号模型参数,然后在用户所指定的频率范围内对电路进行仿真分析。
3、瞬态分析:即时域分析,包括电路对不同信号的瞬态响应,时域波形经过快速傅立叶变换(FFT)后,可以得到频谱图。
通过瞬态分析,也可以得到数字电路的时序波形。
4、蒙特卡洛(Monte Carlo)分析和最坏情况(Worst Case)分析:蒙特卡罗分析是分析电路元器件参数在它们各自的容差(容许误差)范围内,以某种分布规律随机变化时电流特性的变化情况,这些特性包括直流、交流或瞬态特性。
二、PSPICE中的电路描述在运行于Windows环境下的PSPICE中,均采用图形方式描述被仿真的电路。
即在PSPICE 提供的绘图编辑器中画出电路图,并将其存为扩展名为sch的图形文件(计算机自动生成扩展名)。
电路中用到的元器件、电源和信号源可以从PSPICE提供的库中直接调用。
一个完整的电路,不仅包括电路的结构,而且还包括各元器件、信号源及电源的有关参数。
电路的结构可以通过元器件符号以及它们之间的连线来描述;而参数则是在元件属性(Attributes)中描述的。
描述一个元器件通常包括元器件符号名称、元器件在电路中的标号、元器件参数值等几部分内容。
由于元器件的参数较多,他们不直接在属性中给出,而使用专门的模型(Model)来描述,属性中只给出它的模型名称。
仿真时,PSPICE从模型库中调出该元器件的参数值进行仿真。
PSpice直流仿真(二)
PSpice 直流仿真实践(2)使用PSpice 软件最终目的就是对各种电路进行仿真分析。
本章列举了各种模拟电路PSpice 仿真实践的例子,读者通过这些例子,可以进一步体会PSpice 的应用特点和强大的电路分析能力。
PSpice 可以对以下类型的电路进行仿真分析:直流电路、交流电路、电路的暂态、模拟电子电路、模拟电路、数模混合电路。
为了检测某个支路的电流,可以在电路中插入一个零值电压源,在Pspice 中这样的电压源可以当作电流表。
因为零值电压源相当于短路线,对电路的工作不回产生任何影响。
(利用零值电压源做电流表)为了检测某开路电压,可以在电路中插入一个零值电流源。
在Pspice 中这样的电流源可以当作电压表。
因为零值电流源相当开路,对电路的工作不会产生任何影响。
(利用零值电流源做电压表)+V —+Vo-参数赋值语句和函数定义语句在电路分析中,常常用一个数学公式来表示电路变量之间的关系,如图所示的两个电阻分压电路中,分压比就可以用以下的公式来表示: 21221R R R V V )(k +==分压比在某些仿真分析中,不一定需要确定分压电路两个电阻的阻值,而只需要电路的分压比即可。
但电阻元件描述语句要求必须给出类似上电阻值,所以在这种情况下,应用参数赋值语句和函数定义语句是十分方便的。
利用函数定义语句可以将一些参数用数学表达式表示,而利用参数定义语句就可以用数学表达式代替元件描述中的参数值,而且还可以利用直流扫描语句对它进行扫描。
参数赋值语句格式如下:语句中的name 是定义的参数名,value 和expression 分别是参数值和表达式,表达式expression 必须仅含常数或前面已定义过的参数,其他参数不能出现在表达式中;语句定义好后,就可用其参数名代替电路说明过的大多数参数(包括所有的模型参数)。
但语句中的参数名(name)不能与程序中已定义过任何其他参数名同名,也不能用带“·”的命令名定义参数名。
Pspice仿真类型及不同电源参数
VSFFM属性设置框中各项参数的含义及单位见表1-3。
表1-3 VSFFM的属性参数
参数
含义
单位
VOFF
直流偏移电压
伏特
VAMPL
振幅
伏特
FC
载波频率
赫兹
FM
调制频率
赫兹
MOD
调制因子
无
按图1-15设置参数的VSFFM波形如图1-16所示。
图1-9 VSFFM波形
e)指数信号(VEXP、IEXP)
设置完毕,点击确定按钮。
图1-10 Simulation Settings
3.进行电路仿真
(1)执行菜单命令PSpice/Run,或点击工具按钮,调用PSpice A/D软件对该电路图进行仿真模拟。
(2)依次点击工具按钮、、,则电路图上相应位置依次显示节点电压、支路电流及各元器件上的功率损耗。如图1-29所示。
以上各项填完之后,按确定按钮,即可完成仿真分析类型及分析参数的设置。
另外,如果要修改电路的分析类型或分析参数,可执行菜单命令PSpice/Edit Simulation Profile,或点击工具按钮,在弹出的对话框中作相应修改。
(3)电路的模拟仿真
a)PSpice A/D视窗的启动
执行菜单命令PSpice/Run,或点击工具按钮,即可启动PSpice A/D视窗执行电路的仿真模拟,并且系统可自动调用Probe模块,对模拟结果进行后处理,屏幕显示如图1-5所示。
图1-11 VEXP波形
l瞬态分析的应用
现在通过举例,来说明瞬态分析的应用方法。
例:图1-19所示电路的电压源为分段线性源,其波形如图1-20所示。试对该电路进行瞬态分析。
第一讲Pspice电路仿真的使用说明
PHale Waihona Puke pice->Run共35页
24
定义仿真分析类型(Specifying the type of circuit analysis)
共35页
25
Simulation Results
View->Output File
共35页
26
3、Simulation Results
共35页
27
共35页 13
进入OR-CAD的集成环境
1、运行 OR-CAD CAPTURE 2、选择菜单 File>New>Project … 3、在Name中添入项目名 4、选择新项目的类型, 本例选择Schematic 5、在Location 中添入存 放目录 6、选择OK 7、介绍集成环境
项目管理视窗
行为纪录视窗
放置元件(part)
3、选择元件库(library),选择元件(part) 4、放置在电路原理图上,翻转元件,可以选中后按 R 键 5、删除元件 可以选中后 按 Del 键 6、复制元件
共35页
18
放置元件(part)
复制元件可以才用两种方法: 1、选中想要复制的元件,使用Ctrl+C把 元件复制到剪切板,而后可以使用 Ctrl+V把元件从剪切板复制到当前位置。 2、选中想要复制的元件。按住 Ctrl 键, 同时用鼠标左键点住选中的元件拖曳到 需要的位置,即可复制一个元件
放置导线(wire)
小技巧:视图的放大和缩小可以用热键 I 放大; 热键 O 缩小
共35页 21
放置接点(junction)
1、选中原理图编辑窗口,使加速板出现 2、开始放置导线可以有三种方法 A、菜单 Place>Junction… B、按加速板上的 键. C、用热键 J 3、在需要节点的地方,可以点一下鼠标左 键就可以放置一个节点。
【教程】PSpice地4种基本仿真分析报告详解
【教程】PSpice的4种基本仿真分析详解PSpice A/D将直流工作点分析、直流扫描分析、交流扫描分析和瞬态TRAN分析作为4种基本分析类型,每一种电路的模拟分析只能包括上述4种基本分析类型中的一种,但可以同时包括参数分析、蒙特卡罗分析、及温度特性分析等其他类型的分析,现对4种基本分析类型简介如下。
1. 直流扫描分析(DC Sweep)直流扫描分析的适用范围:当电路中某一参数(可定义为自变量)在一定范围内变化时,对应自变量的每一个取值,计算出电路中的各直流偏压值(可定义为输出变量),并可以应用Probe功能观察输出变量的特性曲线。
例对图1所示电路作直流扫描分析图1(1)绘图应用OrCAD/Capture软件绘制好的电路图如图2所示。
图2(2)确定分析类型及设置分析参数a) Simulation Setting(分析类型及参数设置对话框)的进入•执行菜单命令PSpice/New Simulation Profile,或点击工具按钮,屏幕上弹出New Simulation(新的仿真项目设置对话框)。
如图3所示。
图3•在Name文本框中键入该仿真项目的名字,点击Create按钮,即可进入Simulation Settings (分析类型及参数设置对话框),如图4所示。
图4b)仿真分析类型分析参数的设置图2所示直流分压电路的仿真类型及参数设置如下(见图4):•Analysis type下拉菜单选中“DC Sweep”;•Options下拉菜单选中“Primary Sweep”;•Sweep variable项选中“Voltage source”,并在Name栏键入“V1”;•Sweep type项选中“Linear”,并在Start栏键入“0”、End栏键入“10”及Increment栏键入“1”。
以上各项填完之后,按确定按钮,即可完成仿真分析类型及分析参数的设置。
另外,如果要修改电路的分析类型或分析参数,可执行菜单命令PSpice/Edit Simulation Profile,或点击工具按钮,在弹出的对话框中作相应修改。
OrCADPspice仿真分析功能介绍全解
扫描变量类型
扫描方式
直流扫描分析的参数设置对话框
类别 扫 描 变 量 类 型 扫 描 方 式
参数名 Voltage Soure Temperater Current Soure Model Parameter Global Parameter Linear Octave 电压源 温度 电流源 模型参数 全局参数
参数名
Print Step Final Time
类别
瞬态分析 瞬态分析 时间计算间隔
说明
瞬态分析终止时间
No-Print Delay
Step Ceiling Detailed Bias Pt. Skip intial transient solution Enable Fourier Center Frequency Num of harmonics Output Vars
说明
线性扫描,扫描变量按规定的步长线性增长
倍频程扫描,扫描变量按以8为底的对数规律增长
Decade
Value List
数量级扫描,扫描变量按以10为底的对数规律增长
任意扫描,按照列表中给定的离散值无规律变化
直流扫描分析的参数
直流扫描分析举例:电路以模型参数作为直流分析的自变量,所 选定的元器件所Q2N2222的模型C参数BF。
瞬态分析
瞬态分析 瞬态分析
允许的最大时间计算间隔
开始保存分析数据的时刻 是否详细输出偏置点的信息
瞬态分析
傅里叶分析 傅行基本工作点运算
启用傅里叶分析 用于指定傅里叶分析中采用的基波 频率,其倒数即为基波周期 用于指定傅里叶分析时要计算到多 少次谐波 用于确定对其进行傅里叶分析的输 出变量名
2、瞬态分析(Bias Point)
PSpice_仿真
Noise Analysis:噪声分析
Enabled:在AC Sweep的同时是否进行Noise Analysis。
Output:选定的输出节点。
I/V:选定的等效输入噪声源的位置。
Interval:输出结果的点频间隔。
注意:
对于AC Sweep,必须具有AC激励源。产生AC激励源的方法有以下两种:一、调用VAC或IAC激励源;二、在已有的激励源(如VSIN)的属性中加入属性“AC”,并输入它的幅值。
例:按上图所设参数进行设置。
从0时刻开始记录数据,到10US结束,分析计算的最大步长为0.1NS,允许计算基本工作点;输出数据时间间隔为20NS,允许进行傅立叶分析,傅立叶分析的对象为V(out2),基波频率为1MHz,采用默认计算到9次谐波。
分析结果如下:
波形显示出节点OUT2的电压输出波形与输入信号的波形。下图是以文本的形式来查看傅立叶分析的结果。
Voltage source:电压源
Current source:电流源
必须在Name里输入电压源或电流源的Reference,如“V1”、“I2”。
Global parameter:全局参数变量
Model parameter:以模型参数为自变量
Temperature:以温度为自变量
Parameter:使用Global parameter或Model parameter时参数名称
Monte Carlo:选择进行蒙托卡诺分析
Worst-Case/Sensitive:最坏情况分析
Output variable:选择分析的输出节点
Monte Carlo options:蒙托卡诺分析的参数选项
电路通用分析程序PSPICE简介
电路通用分析程序PSPICE简介PSPICE是由SPICE(Simulation Program with Intergrated Circuit Emphasis)发展而来的用于微机系列的通用电路分析程序。
一、PSPICE功能简介1、直流分析:包括电路的静态工作点分析;直流小信号传递函数值分析;直流扫描分析;直流小信号灵敏度分析。
2、交流小信号分析:包括频率响应分析和噪声分析。
PSPICE进行交流分析前,先计算电路的静态工作点,决定电路中所有非线性器件的交流小信号模型参数,然后在用户所指定的频率范围内对电路进行仿真分析。
3、瞬态分析:即时域分析,包括电路对不同信号的瞬态响应,时域波形经过快速傅立叶变换(FFT)后,可以得到频谱图。
通过瞬态分析,也可以得到数字电路的时序波形。
4、蒙特卡洛(Monte Carlo)分析和最坏情况(Worst Case)分析:蒙特卡罗分析是分析电路元器件参数在它们各自的容差(容许误差)范围内,以某种分布规律随机变化时电流特性的变化情况,这些特性包括直流、交流或瞬态特性。
二、PSPICE中的电路描述在运行于Windows环境下的PSPICE中,均采用图形方式描述被仿真的电路。
即在PSPICE 提供的绘图编辑器中画出电路图,并将其存为扩展名为sch的图形文件(计算机自动生成扩展名)。
电路中用到的元器件、电源和信号源可以从PSPICE提供的库中直接调用。
一个完整的电路,不仅包括电路的结构,而且还包括各元器件、信号源及电源的有关参数。
电路的结构可以通过元器件符号以及它们之间的连线来描述;而参数则是在元件属性(Attributes)中描述的。
描述一个元器件通常包括元器件符号名称、元器件在电路中的标号、元器件参数值等几部分内容。
由于元器件的参数较多,他们不直接在属性中给出,而使用专门的模型(Model)来描述,属性中只给出它的模型名称。
仿真时,PSPICE从模型库中调出该元器件的参数值进行仿真。
第3讲 电路特性仿真(Pspice)
立电流源、电压控制开关和电流控制开关、二极管、双极 立电流源、电压控制开关和电流控制开关、二极管、 晶体管共5类元器件参数的灵敏度,并将计算结果自动存 类元器件参数的灵敏度,
输出文件中。 数据文件。 入.OUT输出文件中。本项分析不涉及 输出文件中 本项分析不涉及PROBE数据文件。 数据文件 需要注意的是对一般规模的电路, 需要注意的是对一般规模的电路,灵敏度分析产生 输出文件中包含的数据量将很大。 的.OUT输出文件中包含的数据量将很大。 输出文件中包含的数据量将很大
第3讲 电路特性仿真
输出详细的基 本工作点信息
一般选项设置
计算直流传输特性
进行直流灵 敏度分析
第3讲 电路特性仿真
直流灵敏度分析: 直流灵敏度分析:虽然电路特性完全取决于电路中的元器 件取值,但是对电路中不同的元器件, 件取值,但是对电路中不同的元器件,即使其变化的幅度 (或变化比例)相同,引起电路特性的变化不会完全相同。 或变化比例)相同,引起电路特性的变化不会完全相同。 灵敏度分析的作用就是定量分析、 灵敏度分析的作用就是定量分析、比较电路特性对每个电 路元器件参数的灵敏程度。 路元器件参数的灵敏程度。Pspice中直流灵敏度分析的作 中直流灵敏度分析的作 用是分析指定的节点电压对电路中电阻、独立电压源和独 指定的节点电压对电路中电阻、
PSpice/Optimizer 模拟电路优化设计
第3讲 电路特性仿真
三、PSpice仿真分析的四种基本类型 PSpice仿真分析的四种基本类型
基本工作点分析Bias point(BPD):计算电路的直流偏 基本工作点分析 计算电路的直流偏 置状态。 置状态。 直流扫描分析DC Sweep (DC):当电路中某一参数 ):当电路中某一参数 直流扫描分析 ): 称为自变量)在一定范围内变化时, (称为自变量)在一定范围内变化时,对自变量的每一 个取值,计算电路的直流偏置特性(称为输出变量)。 个取值,计算电路的直流偏置特性(称为输出变量)。 交流/噪声分析 ):作用是计算电 交流 噪声分析AC Sweep/Noise (AC):作用是计算电 噪声分析 ): 路的交流小信号频率响应特性。 路的交流小信号频率响应特性。 瞬态分析Time Domain(Transient) (TD):在给定输入 ):在给定输入 瞬态分析 ): 激励信号作用下,计算电路输出端的瞬态响应。 激励信号作用下,计算电路输出端的瞬态响应。
电力系统仿真软件介绍
电力系统仿真软件介绍电力系统仿真软件是一种可以模拟电力系统运行和故障情况的软件。
在电力系统工程中,电力系统仿真软件拥有广泛的应用,可以用于电力系统的规划、设计、运行和故障诊断等方面。
本文将介绍几种常见的电力系统仿真软件。
PSS/EPSS/E(Power System Simulator for Engineering)是一款由美国General Electric公司开发的电力系统仿真软件。
PSS/E提供了包括潮流、短路、稳定性和动态分析等在内的多种仿真模型,易于使用且具有可扩展性。
PSS/E的最新版本支持计算大电网的稳定性和控制。
ATPATP(Alternative Transients Program)是一款由美国Electric Power Research Institute公司开发的电力系统仿真软件。
ATP主要用于模拟电力系统的暂态过程,包括瞬态稳定性、过电压和电磁暂态等。
ATP的特点是承载能力强,可以处理大规模系统模型,适用于复杂的电力系统场景。
EMTPEMTP(Electromagnetic Transients Program)是一款由瑞士电力公司和瑞士联邦理工学院合作开发的电力系统仿真软件。
EMTP主要用于模拟电力系统的电磁瞬态过程,包括雷电、开关操作、过电压和电磁干扰等。
EMTP可处理数百个设备并同时运行故障模拟。
PSASPPSASP(Power System Analysis Software Package)是一款由美国Power Technologies公司开发的电力系统仿真软件。
PSASP是一个功能齐全的全功率电力系统分析软件,提供了多种电网模型和计算方式。
PSASP可以进行短路、潮流、稳定性和动态分析等多种电力系统仿真。
PSCADPSCAD(Power System Computer Aided Design)是一款由加拿大Manitoba Hydro公司开发的电力系统仿真软件。
研究生仿真课之Pspice的使用
第一章PSpice概述1-1 SPICE的起源SPICE 程序的全名为Simulation Program with Integrated Circuit Emphasis,顾名思义它是为了执行日益庞大而复杂的集成电路( Integrated Circuit IC)的仿真工作而发展出来的。
最早它是由美国加州柏克莱大学发展出来的,并大力推广至各校园及企业中。
而后它改进规格成为SPICF2标准,现在世面上的SPICE兼容软件皆基于SPICE2标准。
在目前个人电脑上使用的商用电路仿真软件中,以PSpice A/D系列最受人欢迎。
它是1984年MicroSim公司依SPICE2标准所发展出来,可在IBM及其兼容电脑上执行的SPICE 程序。
因为PSpice A/D程序集成了模拟与数字仿真运算法,所以它不只可以仿真纯模拟电路或纯数字电路,更可以非常有效率地并完善地仿真模拟加数字的混合电路。
历年来经过多次改版,以其强大的功能及高度的集成性而成为现今个人电脑上最受欢迎的电路仿真软件。
最近,EDA ( Electronic Design Automation )界的天王厂家orCAD相中了PSpice A/D高超的电路仿真能力而加以并购,因此这项程序就正式更名为。
orCAD PSpice A/D了。
经过重新集成过后的orCAD PSpice在整个orCAD设计环境内的地位如图所示由图可以看到,目前的OrCAD设计环境将两个公司最佳的EDA程序产品紧紧地结合在一起形成超强的阵容,其功能之完整强悍当然是不必赘述了。
它的前段处理程序为OrCAD Capture CIS(component information system),负责电路图的绘制、仿真参数的设置以及产生网络表( netlist )等报告文件,然后就是OrCAD PSpice登场,负责软件验证的工作。
一旦绘制的电路图可以通过验证,就可以进入后续的Layout Plus程序进行印刷电路板(PCB>设计,或是进入Express程序进行可编程逻辑元件(PLD)的设计。
OrCADPspice仿真分析功能介绍全解
直流工作点分析(Bias Point) 瞬态分析 (Time Domain Transient) 直流扫描分析(DC Sweep) 交流扫描分析和噪声分析(AC Sweep/Noise Analysis) 参数扫描分析(Parametric Sweep) 温度分析(Temperature Sweep) 灵敏度分析(Sensitivity) 蒙特卡罗分析与最坏情况分析(Monte Carlo/Worst Case)
图1 分析类型设置
直流扫描分析 加载基本偏置点 保存基本偏置点 交流扫描分析 蒙特卡罗分析与 最坏情况分析 显示输出基本偏 置点的偏置信息 参数扫描分析 灵敏度分析 温度分析 传输特性分析
瞬态分析
1、直流工作点分析(Bias Point)
电子电路中通常含有非线性元件(如二极管、三极管),其参数 取决于工作点。这个工作点称做基本偏置点或静态工作点,因此 直流工作点分析也叫基本偏置点分析或静态工作点分析。 直流工作点分析是在电路中把电感看成短路、电容看成开路的 情况下,计算电路的静态工作点。 PSpice在进行直流扫描分析或传输特性分析时需计算出直流工 作点,以便计算非线性元件的小信号参数。
扫描变量类型
扫描方式
直流扫描分析的参数设置对话框
类别 扫 描 变 量 类 型 扫 描 方 式
参数名 Voltage Soure Temperater Current Soure Model Parameter Global Parameter Linear Octave 电压源 温度 电流源 模型参数 全局参数
瞬态分析的参数
3、直流扫描分析(DC Sweep)
直流扫描分析是指在指定的范围内,某一个(或两个)独立源或 其他电路元件参数步进变化时,计算电路直流输出变量的相应的 变化曲线。 直流扫描分析采取使设定电路中某一参数(称为自变量)在一定 范围内变化,然后对自变量的每一个取值,计算电路的直流偏置 特性(称为输出变量)的分析过程。 直流扫描分析允许独立电源或其他点参量按照指定规律变化, 从而实现电路特性的研究。
Pspice仿真
特别注意! ● 可变电阻: VALUE=100K,SET=0.5 ● VSIN信号源:AC=30mv、VOEF=0v、
FREQ=1kHz、VAMPL=30mv。
● 三极管参数设置方法1:
选择菜单Edit/Pspice Model ; 改参数 bf 为140,保存。
四、 设置仿真分析类型(Pspice/New Simulation)
限幅区对应的VC、Vid值 (5)测量Rid、AVD、AVC 及KCMR (6)对Rid、AVD、KCMR 进行误差分析
四、实验要求
3、BJT特性曲线仿真(选做P55) (1)验证BJT输出特性曲线 (2)验证BJT输入特性曲线
实验要求见P52.
四、验收
• 采用word文档形式 • 将电路图、波形、曲线等结果复制到报
求解输出阻抗
• 修改电路:
–号令源VsV=S0,IN信(40号0m源v短) 路,取掉负载RL,外加一个信
• 其他步骤与“输入电阻的频率响应”分析相同 • Ro – V(Vo)/I(Vs)
仿真结束!
四、实验要求
1、单管共射电路设计(P88) (1)在Schematics中画出已设计好的电路电路图 (2)测量静态工作点:IB、IC、VBE、VCE (out文件) (3)观测输入、输出电压波形,并计算电压增益Av (4)观测幅频响应曲线:db(V(Vo)/V(Vs:+))
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PSpice A/D数模仿真技术主要包括以下几类仿真:
1、直流扫描分析(DC Sweep)
电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。
2、交流扫描分析(AC Sweep)
计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。
3、噪声分析(Noise)
在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。
4、直流偏置点分析(Bias Point)
当电路中电感短路,电容断路时,电路静态工作点的计算。
进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。
5、时域/瞬态分析(Transient)
在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。
6、蒙特卡洛分析(Monte-Carlo)
根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。
7、最坏情况分析(Worst)
电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。
8、参数扫描分析(Parametric Sweep)
电路中指定元件参数暗规律变化时,电路特性的分析计算。
9、温度分析(Temperature)
在指定温度条件下,分析电路特性。
10、灵敏度分析(Sensitivity)
计算电路中元件参数变化对电路性能的影响。