专题二 分类讨论
中考数学专题复习2:阅读理解题
中考数学专题复习2:阅读理解题Ⅰ、综合问题精讲:阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法.Ⅱ、典型例题剖析【例1】(,模拟,9分)如图 2-7-1所示,正方形ABCD和正方形EFGH的边长分别为2 2 和2 ,对角线BD、FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O在直线l上平移时,正方形 EFH也随之平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D=_______,O2 F=______;(2)当中心O2在直线 l上平移到两个正方形只有一个公共点时,中心距O1 O2 =_________.(3)随着中心 O2在直线 l上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)解:(1)O1D=2,O2 F=1;(2)O1 O2 =3;(2)当O1 O2>3或0≤O1 O2<1时,两个正方形无公共点;当O1 O2=1时,两个正方形有无数个公共点;当1<O1 O2<3时,两个正方形有2个公共点.点拨:本题实际上考查的知识点是“两圆的位置关系”,但形式有所变化.因此,可以再次经历探索两个圆之间的位置关系,认真分析并总结两圆五种位置关系所对应的圆心距d与半径R和r的数量关系,五种位置关系主要由两个因素确定:①公共点的个数;②一个圆上的点在另一个圆的外部还是内部,按这两个因素为线索来探究位置关系.然后,把这种利用平移实验直观探索方法迁移到研究“两个正方形的位置关系”上来.【例2】(,内江,9分)阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数。
2012年中考数学思想方法专题讲座——分类讨论
中考数学思想方法专题讲座——分类讨论在数学中,当被研究的问题存在多种情况,不能一概而论时,就需要按照可能出现的各种情况分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法叫分类讨论思想,它不仅是一种重要的数学思想,同时也是一种重要的解题策略.在研究问题时,要认真审题,思考全面,根据其数量差异或位置差异进行分类,注意分类应不重不漏,从而得到完美答案.一、分类讨论应遵循的原则: 1、分类应按同一标准进行; 2、分类讨论应逐级进行; 3、分类应当不重复,不遗漏。
二、分类讨论的主要因素:1、题设本身为分类定义;2、部分性质、公式在不同条件下有不同的结论;3、部分定义、定理、公式和法则本身有范围或条件限制;4、题目的条件或结论不唯一时;5、含参数(字母系数)时,须根据参数(字母系数)的不同取值范围进行讨论;6、推理过程中,未知量的值,图形的位置或形状不确定。
三、分类类讨论的步骤:1、确定分类对象;2、进行合理分类;3、逐类讨论,分级进行;4、归纳并作出结论。
四、分类讨论的几种类型:类型一、与数与式有关的分类讨论热点1.在实数中带有绝对值号,二次根式的化简中,应注意讨论绝对值号内的数、被开方数中的字母的正负性,()()a aaa a≥==-⎧⎪⎨⎪⎩例1. =+==||,则5,3||若2baba。
分析:因b b2=||,故原题可转化为绝对值的问题进行讨论。
解:∵3||=a;∴x= ,∵b b2=||=5;∴x= ,,8|53|||时,5,3当=+=+==baba,2|5-3|||时,5-,3当==+==baba,2|53-|||时,5,3-当=+=+==baba,8|5-3-|||时,5-,3-当==+==baba故应填。
小结:二次根式的化简往往可转化为与绝对值相关的问题。
而去绝对值时一般要根据绝对值的概念进行分类讨论。
【练习】 1. 化简:①︱x︳=②=2. 已知│x│= 4,│y│=12,且xy<0,则xy= .【点评】由xy<0知x,y异与应分x>0,y<0,及x<0,y>0两类.3.若||3,||2,,( )a b a b a b==>+=且则A.5或-1 B.-5或1; C.5或1 D.-5或-14.在数轴上,到-2的点的距离为3的点表示的数是.热点2:与函数及图象有关的分类讨论一次函数的增减性(k有正负之分):【例1】已知直线y=kx+3与坐标轴围成的三角形的面积为2,则k的值等于.【例2】若一次函数当自变量x的取值范围是-1≤x≤3时,函数y的范围为-2≤y≤6,•则此函数的解析式为.0,0,k y xk y xy kx b⎧⎪⎨⎪⎩=+时随的增大而增大时随的增大而减小热点3:不等式中的分类讨论在根据不等式的基本性质解不等式时,当遇到含字母系数的一元一次不等式时,要根据系数的正负性,决定不等号的方向变化,此时需要讨论其正负性;在分式的值大于零或小于零时计算分式中某字母的取值范围,也要讨论分子分母的正负性,以此建立不等式或不等式组求解.【例1】不等式mx >n (m 、n 是常数且m ≠0)的解是 .思路分析:x 前的系数m 的正负性不确定,故要对其讨论,再依据不等式基本性质求x 的取值.【例2】已知分式4-x 2x -3的值为负数,则x 的取值范围是 . 思路分析:欲求x 的取值范围,需要建立关于x 的不等式(组),由“两数相除,异号得负”知4-x 与2x -3异号,因此得⎩⎪⎨⎪⎧ 4-x >02x -3<0或⎩⎪⎨⎪⎧ 4-x <02x -3>0.分别解这两个不等式组即可.【练习】1.关于x 的一元一次不等式(2m +3)x >2m +3的解是 .解析:分2m +3>0和2m +3<0两种情况讨论.2.若分式2x +3x -1的值大于零,则x 的取值范围是 . 3.解不等式 (a +1)x >a 2-1.热点4:涉及问题中待定参数的变化范围的分类讨论。
数学高考二轮复习第1部分 专题2 规范答题示例
最大值为f(1a)=ln(1a)+a(1-1a)=-lna+a-1.
二 轮 复 习
因此f(1a)>2a-2等价于lna+a-1<0.
令g(a)=lna+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.
于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.
因此,a的取值范围是(0,1).
则h′(x)=x+3x2x-1,
数
二 轮
①当x∈(0,1)时,h′(x)<0,h(x)单调递减;
学
复
习
②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增;
所以h(x)min=h(1)=4. 因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,
所以a≤h(x)min=4,即a的取值范围为(-∞,4].
当a=-1时,f(x)=-x+lnx,f ′(x)=1-x x;
数 学
二 轮 复
当0<x<1时,f ′(x)>0;当x>1时,f ′(x)<0;
习
所以f(x)的单调增区间为(0,1).
专题二 函数与导数
(2)因为f ′(x)=a+1x,
令f ′(x)=0,解得x=-1a;
由f ′(x)>0,解得0<x<-1a;
[解析] (1)f′(x)=lnx+1,
数
学
二 轮 复 习
当x∈(0,1e)时,f′(x)<0,f(x)单调递减;
当x∈(1e,+∞)时,f′(x)>0,f(x)单调递增;
所以f(x)的最小值为f(1e)=-1e.
专题二 函数与导数
(2)2xlnx≥-x2+ax-3,则a≤2lnx+x+3x,
设h(x)=2lnx+x+3x(x>0),
专题二 函数与导数
高中数学思想二 分类讨论思想 专题练习
高中数学思想二 分类讨论思想 专题练习一.选择题1. 已知实数m 是2,8的等比中项,则曲线x 2-y 2m=1的离心率为( )A.2B.32C. 5D.5或322. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”.已知函数f (x )=e x+te x +1是“可构造三角形函数”,则实数t 的取值范围是( )A .[0,+∞)B .[0,1]C .[1,2]D .[12,2]3.已知集合()(){}{}210,log 1A x x a x a B x x =---<=<,若R B C A ⊆,则实数a 的取值范围是( ) A .(],1-∞-B .[)2,+∞C .(][),12,-∞-⋃+∞D .[]1,2-4.若11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列各式中一定成立的是( )A .n 0()l a b ->B .21b a ->C .11a b->- D .log log (0c c a b c >>且1)c ≠5.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .136.函数()log 1xa f x a x =-(0a >,且1a ≠)有两个零点,则a 的取值范围为( )A .(1,)+∞B .1(1,)e ⎧⎫⋃+∞⎨⎬⎩⎭C .{}ee(1,)-⋃+∞D .1ee (1,)⎧⎫⋃+∞⎨⎬⎩⎭7.已知函数,若,且,则的取值范围是( )A. B. C.D.8.已知函数()43120194f x ax x x =-++,()'f x 是()f x 的导函数,若()'f x 存在有唯一的零点0x ,且()00,x ∈+∞,则实数a 的取值范围是( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞9.已知函数,且在上的最大值为,则实数的值为( ) A . B .1 C. D .210.已知函数,(是常数),若在上单调递减,则下列结论中:①;②;③有最小值.正确结论的个数为( ) A .0 B .1 C.2 D .3二、填空题11.已知,,,则的取值范围为________.ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩m n <()()f m f n =n m -[32ln 2,2)-[32ln 2,2]-[1,2]e -[1,2)e -()()3sin 2f x ax x a R =-∈0,2π⎡⎤⎢⎥⎣⎦32π-a 1232()32f x x ax bx c =+++()232g x x ax b =++ a b c ,,()f x ()0 1,()()010f f ⋅≤()()010g g ⋅≥23a b -{|322}A x x =≤≤{|2135}B x a x a =+≤≤-B A ⊆a12.两条渐近线所成的锐角为,且经过点的双曲线的标准方程为____________. 13.若数列,则__________. 14. 已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为________ cm 2.三、解答题15.已知,设,成立;,成立,如果“”为真,“”为假,求的取值范围. 16.已知函数21()ln ()2f x a x x a R =+∈. (1)若函数()f x 在点(1,(1))f 处的切线方程为4230--=x y ,求实数a 的值; (2)当0a >时,证明函数()()(1)g x f x a x =-+恰有一个零点.17.已知函数,其中为自然对数的底数,常数.(1)求函数在区间上的零点个数;(2)函数的导数,是否存在无数个,使得为函数的极60︒{}n a 23n a n n +=+12231na a a n +++=+m R ∈[]: 1 1p x ∀∈-,2224820x x m m --+-≥[]: 1 2q x ∃∈,()212log 11x mx -+<-p q ∨p q ∧m ()116xa f x x e ⎛⎫=--+ ⎪⎝⎭2.718e =0a >()f x ()0,+∞()F x ()()()xF x e a f x '=-()1,4a ∈ln a ()F x大值点?说明理由.高中数学思想二 分类讨论思想 专题练习一.选择题1. 已知实数m 是2,8的等比中项,则曲线x 2-y 2m=1的离心率为( )A.2B.32C. 5D.5或32答案 D解析 ∵m 是2,8的等比中项,∴m 2=16,∴m =±4. 当m =4时,曲线为双曲线,其中a =1,c =5,e =ca =5; 当m =-4时,曲线为椭圆,其中a =2,c =3,e =c a =32,故选D.2. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”.已知函数f (x )=e x+te x +1是“可构造三角形函数”,则实数t 的取值范围是( )A .[0,+∞)B .[0,1]C .[1,2]D .[12,2]答案 D解析 f (x )=e x +t e x +1=1+t -1e x +1,由题意得f (x )>0恒成立,所以t -1e x +1>-1恒成立,即t >-e x 恒成立,所以t ≥0.①若t ∈[0,1],则f (x )是增函数,当x →+∞时,得f (x )max →1,当x →-∞时,得f (x )min →t ,所以值域为(t,1).因为三角形任意两边之和大于第三边,所以t +t ≥1,解得12≤t ≤1;②若t ∈(1,+∞),则f (x )是减函数,当x →+∞时,得f (x )min →1,当x →-∞时,得f (x )max →t ,所以值域为(1,t ),同理可得1+1≥t ,所以1<t ≤2,综上得t ∈[12,2].3.已知集合()(){}{}210,log 1A x x a x a B x x =---<=<,若R B C A ⊆,则实数a 的取值范围是( ) A .(],1-∞- B .[)2,+∞C .(][),12,-∞-⋃+∞D .[]1,2-【答案】C 【详解】由题意,可得集合()(){}{}101A x x a x a x a x a =---<=<<+,所以{R C A x x a =≤或1}x a ≥+,又由集合{}{}2log 102B x x x x =<=<<,因为R B C A ⊆,所以2a ≥或10a +≤,解得1a ≤-或2a ≥, 所以实数a 的取值范围是][,(),12∞-⋃+∞-, 故选:C .4.若11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列各式中一定成立的是( )A .n 0()l a b ->B .21b a ->C .11a b->- D .log log (0c c a b c >>且1)c ≠【答案】C 【详解】解析:指数函数13xy ⎛⎫= ⎪⎝⎭在(,)-∞+∞上是单调递减的, 由11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭可知,0a b >>. 所以11a b<,则11a b ->-.故C 正确;0a b ->,但不一定有1a b ->,则不一定有()ln 0a b ->,故A 错误;函数2xy =在(),-∞+∞上是单调递增的,0b a -<.则0221b a -<=,故B 错误; 当01c <<时,函数c y log x =在0,上单调递减,则log log c c a b <.故D 错误. 故选:C5.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .13【答案】C 【详解】当14x ≤<时,3y x =-+单调递减,()()241log 41f x f >=-=-, 当4x ≥时,()f x 单调递减,()()41f x f ≥=-,故()f x 在[)1,+∞上单调递减,由()(2)f x f x -=,得()f x 的对称轴为1x =,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ∴≥+,即()()221x x t -≥+, 即()22110t x t ++-≤,()()()22211011321110t t t t t t t ⎧++-≤⎪⇒-≤≤-⎨+++-≤⎪⎩ 故实数t 的最大值为13-. 故选:C.6.函数()log 1xa f x a x =-(0a >,且1a ≠)有两个零点,则a 的取值范围为( )A .(1,)+∞B .1(1,)e ⎧⎫⋃+∞⎨⎬⎩⎭C .{}ee(1,)-⋃+∞D .1ee (1,)⎧⎫⋃+∞⎨⎬⎩⎭【答案】D 【详解】()0f x =,得1log a x x a =,即11log xax a ⎛⎫= ⎪⎝⎭.由题意知函数1log a y x =图象与函数1xy a ⎛⎫= ⎪⎝⎭图象有两个交点.当1a >时,11log ,xay x y a ⎛⎫== ⎪⎝⎭草图如下,显然有两交点.当01a <<时,函数1log a y x =图象与函数1xy a ⎛⎫= ⎪⎝⎭图象有两个交点时,注意到11,log xay y x a ⎛⎫== ⎪⎝⎭互为反函数,图象关于直线y x =对称,可知函数1x y a ⎛⎫= ⎪⎝⎭图象与直线y x =相切,设切点横坐标0x ,则0111ln 1x x x a a a ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得01e,e .e x a -=⎧⎪⎨⎪=⎩ 综上,a 的取值范围为1e e (1,)-⎧⎫+∞⎨⎬⎩⎭.故选:D .7.已知函数,若,且,则的取值范围是( )ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩m n <()()f m f n =n m -A. B. C.D.【答案】A【解析】如图,作出函数的图象,不妨设,由可知函数的图象与直线有两个交点,而时,函数单调递增,其图象与轴交于点,所以.又,所以,,由,得,解得.由,即,解得;由,即,解得;记(),.所以当时,,函数单调递减;当时,,函数单调递增.所以函数的最小值为;而,.所以.8.已知函数()43120194f x ax x x =-++,()'f x 是()f x 的导函数,若()'f x 存在有唯一的零点0x ,且()00,x ∈+∞,则实数a 的取值范围是( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞【答案】A 【解析】[32ln 2,2)-[32ln 2,2]-[1,2]e -[1,2)e -()y f x =()()f m f n t ==()()f m f n =()f x y t =0x ≤()y f x =y (0,1)01t <≤m n <0m ≤0n >01t <≤0ln(1)1n <+≤01n e <≤-()f m t =112m t +=22m t =-()f n t =ln(1)n t +=1t n e =-()1(22)21t t g t n m e t e t =-=---=-+01t <≤()2tg t e '=-0ln 2t <<()0g t '<()g t ln 21t <≤()0g t '>()g t ()g t ln 2(ln 2)2ln 2132ln 2g e =-+=-0(0)12g e =+=(1)2112g e e =-+=-<32ln 2()2g t -≤<()3231f x ax x =-+'.显然()00f '≠,令()0f x '=得:2331x a x-=,()0x ≠ 令()2331x t x x -=,()0x ≠,()()()4311x x t x x+-'=-知: 当(),1x ∈-∞-时,()0t x '<,()t x 为减函数;当()1,0x ∈-时,()0t x '>,()t x 为增函数; 当()0,1x ∈时,()0t x '>,()t x 为增函数;当()1,x ∈+∞时,()0t x '<,()t x 为减函数, 作出()t x 的大致图象如图所示,则当()12a t <-=-时,()t x 存在唯一的正零点.故选A9.已知函数,且在上的最大值为,则实数的值为( ) A .B .1 C. D .2 【答案】B【解析】由已知得,对于任意的,有,当时,,不合题意;当时,,从而在单调递减,又函数在上图象是连续不断的,故函数在上的最大值为,不合题意;当时,,从而在,单调递增,又函数在上图象是连续不断的,故函数在上的最大值为,解得.()()3sin 2f x ax x a R =-∈0,2π⎡⎤⎢⎥⎣⎦32π-a 1232()()sin cos f x a x x x '=+[]20x π∈,sin cos 0x x x +>0a =()32f x =-0a <()[]002x f x π∈'<,,()f x [0]2π, [0]2π,()203f =-0a >]2[0x π∈,,()0f x '>()f x [0]2π, [0]2π,()223322f a πππ-=⋅-=1a =10.已知函数,(是常数),若在上单调递减,则下列结论中:①;②;③有最小值.正确结论的个数为( ) A .0 B .1 C.2 D .3 【答案】C【解析】由题意,得,若函数在上单调递减,则,即,所以,故②正确;不妨设,则,故①错;画出不等式组表示的平面区域,如图所示,令,则,①当,即时,抛物线与直线有公共点,联立两个方程消去得,,所以;当,即时,抛物线与平面区域必有公共点,综上所述,,所以有最小值,故③正确,故选C .二、填空题11.已知,,,则的取值范围为________. 【答案】【解析】因为,所以.当时,,可得;当时,()32f x x ax bx c =+++()232g x x ax b =++ a b c ,,()f x ()0 1,()()010f f ⋅≤()()010g g ⋅≥23a b -()232f x x ax b '=++()f x (0,1)(0)0(1)0f f '≤⎧⎨'≤⎩0320b a b ≤⎧⎨++≤⎩()()01(32)0g g b a b ⋅=⋅++≥32()235f x x x x =--+()()015(1235)0f f ⋅=⋅--+>0320b a b ≤⎧⎨++≤⎩23z a b =-2133z b a =-33z ->-9z <2133zb a =-230a b ++=b 2690a a z ++-=2(3)0z a =+≥09z ≤<33z-≤-9z ≥0z ≥23z a b =-{|322}A x x =≤≤{|2135}B x a x a =+≤≤-B A ⊆a (,9]-∞B A ⊆Φ≠Φ=B B 或Φ=B 1253+<-a a 6<a Φ≠B,可得,综上:. 12.两条渐近线所成的锐角为,且经过点的双曲线的标准方程为____________.【答案】或 【解析】分类讨论:当双曲线的焦点位于轴时,其标准方程为,其渐近线方程为:,则:,解得:,双曲线的方程为; 当双曲线的焦点位于轴时,其标准方程为,其渐近线方程为:,则:,解得:,双曲线的方程为; 综上可得,双曲线方程为:或. 13.若数列,则__________. 【答案】【解析】令,得,所以.当时,.与已知式相减,得,所以,时,适合⎪⎩⎪⎨⎧≤-≥+≥22533126a a a 96≤≤a 9≤a 60︒22113x y -=223177y x -=x 22221x y a b -=by x a=±22603{ 231btan aa b ==-=221{ 3a b ==22113x y -=y 22221y x a b -=ay x b=±22603{ 321btan aa b ==-=227{ 37a b ==223177y x -=22113x y -=223177y x -={}n a 23n a n n +=+12231na a a n +++=+226n n +1n =4a 1=16a 1=2n ≥)1(3)1(a a a 21-n 21-+-=+++n n 22)1(3)1()3(22+=----+=n n n n n a n 2)1(4+=n a n 1n =1a.所以,所以,∴. 14. 已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为________ cm 2.答案 18+23或12+4 3解析 该几何体有两种情况:第一种,由如图①所示的棱长为2的正方体挖去一个三棱锥P -ABC 所得到的,所求的表面积为6×22-3×(12×2×2)+34×(22)2=18+23(cm 2).第二种,由如图②所示的棱长为2的正方体挖去三棱锥P -ABC 与三棱锥M -DEF 所得到的,所求的表面积为6×22-6×(12×2×2)+2×34×(22)2=12+43(cm 2).n a 2)1(4+=n a n 441+=+n n a n 12231n a a an +++=+n n n n 622)448(2+=++-三、解答题15.已知,设,成立;,成立,如果“”为真,“”为假,求的取值范围.【解析】若为真:对,恒成立,设,配方得,∴在上的最小值为,∴,解得,∴为真时:;若为真:,成立,∴成立.设,易知在上是增函数,∴的最大值为,∴,∴为真时,,∵”为真,“”为假,∴与一真一假,当真假时,∴,当假真时,∴,综上所述,的取值范围是或. 16.已知函数21()ln ()2f x a x x a R =+∈. (1)若函数()f x 在点(1,(1))f 处的切线方程为4230--=x y ,求实数a 的值; (2)当0a >时,证明函数()()(1)g x f x a x =-+恰有一个零点. (1)()'af x x x=+. 由切线的斜率为2得()'112f a =+=. ∴1a =.(2)()21ln 2g x a x x =+()1a x -+,0x >, ∴()'a g x x x =+()()()11x a x a x---+=. 1.当01a <<时,m R ∈[]: 1 1p x ∀∈-,2224820x x m m --+-≥[]: 1 2q x ∃∈,()212log 11x mx -+<-p q ∨p q ∧m p []1 1x ∀∈-,224822m m x x -≤--()222f x x x =--()()213f x x =--()f x []1 1-,3-2483m m -≤-1322m ≤≤p 1322m ≤≤q []1 2x ∃≤,212x mx -+>21x m x -<()211x g x x x x -==-()g x []1 2,()g x ()322g =32m <q 32m <p q ∨p q ∧p q p q 132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩32m =p q 132232m m m ⎧<>⎪⎪⎨⎪<⎪⎩或12m <m 12m <32m =由()'0g x >得0x a <<或1x >,()'0g x <得1a x <<, ∴()g x 在()0,a 上递增,在(),1a 上递减,在()1,+∞上递增.又()21ln 2g a a a a =+()11ln 12a a a a a ⎛⎫-+=-- ⎪⎝⎭0<,()()22ln 220g a a a +=+>,∴当01a <<时函数()g x 恰有一个零点. 2.当1a =时,()'0g x ≥恒成立,()g x 在()0,+∞上递增.又()11202g =-<,()4ln40g =>, 所以当1a =时函数()g x 恰有一个零点. 3.当1a >时,由()'0g x >得01x <<或x a >,()'0g x <得1x a <<, ∴()g x 在()0,1上递增,在()1,a 上递减,在(),a +∞上递增. 又()1102g a =--<, ()()22ln 220g a a a +=+>,∴当1a >时函数()g x 恰有一个零点.综上,当0a >时,函数()()()1g x f x a x =-+恰有一个零点.17.已知函数,其中为自然对数的底数,常数.(1)求函数在区间上的零点个数;(2)函数的导数,是否存在无数个,使得为函数的极大值点?说明理由.【解析】(1),当时,单调递减;当时,单调递增;因为,所以存在,使,且当时,,当时,.故函数在区间上有1个零点,即. (2)(法一)当时,.因为当时,;当,. 由(1)知,当时,;当时,.下证:当时,,即证., 记…,所以在单调递增,由,所以存在唯一零点,使得,且时,单调递减,时,单调递增.所以当时,.…… 由,得当时,. 故.当时,单调递增;当时,单调递减.所以存在()116xa f x x e ⎛⎫=--+ ⎪⎝⎭2.718e =0a >()f x ()0,+∞()F x ()()()x F x e a f x '=-()1,4a ∈ln a ()F x ()6x a f x x e ⎛'⎫=-⎪⎝⎭06a x <<()()0f x f x '<,6ax >()()0f x f x '>,()00,110666a a a f f f ⎛⎫⎛⎫<=-+=⎪ ⎪⎝⎭⎝⎭0,166a a x ⎛⎫∈+ ⎪⎝⎭()00f x =00x x <<()0f x <0x x >()0f x >()f x ()0,+∞0x 1a >ln 0a >()0,ln x a ∈0x e a -<()ln ,x a ∈+∞0x e a ->()00,x x ∈()0f x <()0,x x ∈+∞()0f x >()1,a e ∈0ln a x <()ln 0f a <()2ln ln 11ln 166a a f a a a a a ⎛⎫=--+=--+ ⎪⎝⎭()[]2ln 1,1,6x g x x x x x e =--+∈()()3ln ,033x xg x x g x x''-='=->()g x '()1,e ()()110,1033eg g e ''=-=-()01,t e ∈()01g t '=()01,x t ∈()()0,g x g x '<()0,x t e ∈()()0,g x g x '>()1,x e ∈()()(){}max 1,g x g g e <()()21610,066e g g e -=-<=<()1,x e ∈()0g x <()0ln 0,0ln f a a x <<<0ln x a <<()()()()()0,0,0,xxe af x F x e a f x F x -'-<=0ln a x x <<()()()()()0,0,0,x xe af x F x e a f x F x -><=-<',使得为的极大值点.(2)(法二)因为当时,;当,. 由(1)知,当时,;当时,.所以存在无数个,使得为函数的极大值点,即存在无数个,使得成立,①…由(1),问题①等价于,存在无数个,使得成立,因为, 记,因为,当时,,所以在单调递增,因为,所以存在唯一零点,使得,且当时,单调递减;当时,单调递增;所以,当时,,②由,可得,代入②式可得,当时,, 所以,必存在,使得,即对任意有解, ()()1,1,4a e ∈⊂ln a ()F x ()0,ln x a ∈0x e a -<()ln ,x a ∈+∞0x e a ->()00,x x ∈()0f x <()0,x x ∈+∞()0f x >()1,4a ∈ln a ()F x ()1,4a ∈0ln a x <()1,4a ∈()ln 0f a <()2ln ln 11ln 166a a f a a a a a ⎛⎫=--+=--+ ⎪⎝⎭()()2ln 1,1,46x g x x x x x =--+∈()()ln ,1,4,3x g x x x '=-∈()33x g x x '-'=3,22x ⎛⎫∈ ⎪⎝⎭()0g x ''>()g x '3,22⎛⎫ ⎪⎝⎭()3312ln 0,2ln202223g g ⎛⎫=-=''- ⎪⎝⎭03,22t ⎛⎫∈⎪⎝⎭()00g t '=03,2x t ⎛⎫∈ ⎪⎝⎭()()0,g x g x '<()0,2x t ∈()()0,g x g x '>3,22x ⎡⎤∈⎢⎥⎣⎦()()200000min ln 16t g x g t t t t ==--+()00g t '=00ln 3t t =()()2000min 16t g x g t t ==-+03,22t ⎛⎫∈ ⎪⎝⎭()()220000311106628t t g t t -=-+=-≤-<3,22x ⎛⎫∈⎪⎝⎭()0g x <()3,2,ln 02a f a ⎛⎫∈< ⎪⎝⎭所以对任意,函数存在极大值点为.3,22a ⎛⎫∈⎪⎝⎭()F x ln a。
初中数学精品课件: 专题二 含有参数的函数问题
增大,∴k<0,
∵二次函数 y=k(x2+x-1)=kx+122-54k, 的对称轴为直线 x=-12,
【答案】 (1)当k=1时,y=x2+3x+1,当k=0时,y= x+1,图略.
(2) 对任意实数 k,函数的图象都经过点(-2,-1) 和点(0,1). 证明:把 x=-2 代入函数 y=kx2+(2k+1)x+1, 得 y=-1,即函数 y=kx2+(2k+1)x+1 的图象经 过点(-2,-1);把 x=0 代入函数 y=kx2+(2k+ 1)x+1,得 y=1,即函数 y=kx2+(2k+1)x+1 的 图象经过点(0,1). (3) 当 k 为任意负实数,该函数的图象总是开口向 下的抛物线,其对称轴为 x=-2k2+k 1=-1-21k,
分析:此题的前 3 个小问题不困难,不多加解释.
④ 证明:抛物线的对称轴为直线 x=21m,因为 m>1,所 以 2m>2,所以21m<12,即对称轴在12的左侧,所以 x<12在
对称轴的左侧,所以 y 随 x 的增大而增大. ⑤ 证明:抛物线的对称轴为直线 x=21m,因为 m>1, 所以 2m>2,所以21m<12,即对称轴在12的左侧,所以 x>1 在对称轴的右侧,所以函数图象在递减后有一段递 增,所以⑤错误.
要使二次函数 y=k(x2+x-1)满足上述条件,
在 k<0 的情况下,x 必须在对称轴的左边, 即 x<-12时,才能使得 y 随着 x 的增大而增大, ∴综上所述,k<0 且 x<-12. (3)由(2)可得 Q-12,-54k,
初中数学专题“分类讨论”专题练习(含答案)
“分类讨论”专题练习1.已知AB 是圆的直径,AC 是弦,AB =2,AC =2,弦AD =1,则∠CAD = .2. 若(x 2-x -1)x +2=1,则x =___________.3. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( ) A.2a b+ B.2a b- C.2a b +或2a b- D. a+b 或a-b5.同一平面上的四个点,过每两点画一直线,则直线的条数是( ) A.1 B.4 C.6 D.1或4或66. 若||3,||2,,( )a b a b a b ==>+=且则A .5或-1B .-5或1C .5或1D .-5或-1 7.已知抛物线y =ax 2+bx +c 经过点(1,2).(1)若a =1,抛物线顶点为A ,它与x 轴交于两点B 、C ,且△ABC 为等边三角形,求b 的值.(2)若abc =4,且a ≥b ≥c ,求|a |+|b |+|c |的最小值.8.长宽都为整数的矩形,可以分成边长都为整数的小正方形。
例如一个边长2⨯4的矩形:可以分成三种情况: (1)(2)一个长宽为3⨯6的矩形,可以怎样分成小正方形,请画出你的不同分法。
9.已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.分成两个正方形,面积分别为4,4分成8个正方形,面积每个都是1分成5个正方形,1个面积为4,4个面积是110.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A C ,在坐标轴上,60cm OA =,80cm OC =.动点P 从点O 出发,以5cm/s 的速度沿x 轴匀速向点C 运动,到达点C 即停止.设点P 运动的时间为s t . (1)过点P 作对角线OB 的垂线,垂足为点T .求PT 的长y 与时间t 的函数关系式,并写出自变量t 的取值范围;(2)在点P 运动过程中,当点O 关于直线AP 的对称点O '恰好落在对角线OB 上时,求此时直线AP 的函数解析式; (3)探索:以A P T ,,三点为顶点的APT △的面积能否达到矩形OABC 面积的14?请说明理由.答案:1. 15°或105°2. 2、-1、0、-23. 腰长6底边9或腰长8底边54.C5.D6.C7. 解:⑴由题意,a +b +c =2, ∵a =1,∴b +c =1 抛物线顶点为A (-b 2,c -b 24)设B (x 1,0),C (x 2,0),∵x 1+x 2=-b ,x 1x 2=c ,△=b 2-4c >0 ∴|BC|=| x 1-x 2|=| x 1-x 2|2=(x 1+x 2)2-4 x 1x 2=b 2-4c ∵△ABC 为等边三角形,∴b 24 -c = 32b 2-4c即b 2-4c =23·b 2-4c ,∵b 2-4c >0,∴b 2-4c =2 3∵c =1-b , ∴b 2+4b -16=0, b =-2±2 5 所求b 值为-2±2 5⑵∵a ≥b ≥c ,若a <0,则b <0,c <0,a +b +c <0,与a +b +c =2矛盾. ∴a >0. ∵b +c =2-a ,bc =4a∴b 、c 是一元二次方程x 2-(2-a )x +4a =0的两实根.∴△=(2-a )2-4×4a≥0,∴a 3-4a 2+4a -16≥0, 即(a 2+4)(a -4)≥0,故a ≥4. ∵abc >0,∴a 、b 、c 为全大于0或一正二负.①若a 、b 、c 均大于0,∵a ≥4,与a +b +c =2矛盾; ②若a 、b 、c 为一正二负,则a >0,b <0,c <0, 则|a |+|b |+|c |=a -b -c =a -(2-a )=2a -2, ∵ a ≥4,故2a -2≥6当a =4,b =c =-1时,满足题设条件且使不等式等号成立. 故|a |+|b |+|c |的最小值为6. 8.分7种情况画图9.解:(1)由()332)1(+⋅=⋅-m m ,得m =-,因此k =(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =,BC =因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,故不符题意.当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则1AF ,12AD m =,由点(1A --,,得点11(1)D m --,.因此()()32323111=+-+-m m ,解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.此时的长度不等,故四边形ADBC 是梯形.如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH mm =>,则2DH =,由点(10)C -,,得点22(1)D m -+, 因此()323122=⋅+-m m .解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形.如图3,当过点C 作AB 同理可得,点(2D --,,四边形ABCD 是梯形. 综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:6D ⎛ ⎝⎭或(1D 或(2D --,. 图1图2 图310.解:(1)在矩形OABC 中,60OA =,80OC =,100OB AC ∴===PT OB ⊥,Rt Rt OPT OBC ∴△∽△. PT OP BC OB ∴=,即560100PT t=,3y PT t ∴== 当点P 运动到C 点时即停止运动,此时t 的最大值为80165=.所以,t 的取值范围是016t ≤≤.(2)当O 点关于直线AP 的对称点O '恰好在对角线OB 上时,A T P ,,三点应在一条直线上(如答图2).AP OB ∴⊥,12∠=∠. Rt Rt AOP OCB ∴△∽△,OP AOCB OC∴=. 45OP ∴=.∴点P 的坐标为(450),设直线AP 的函数解析式为y kx b =+.将点(060)A ,和点(450)P ,代入解析式,得60045.a b k b =+⎧⎨=+⎩,解这个方程组,得4360.k b ⎧=-⎪⎨⎪=⎩, ∴此时直线AP 的函数解析式是4603y x =-+.(3)由(2)知,当4595t ==时,A T P ,,三点在一条直线上,此时点A T P ,, 不构成三角形.故分两种情况:(i )当09t <<时,点T 位于AOP △的内部(如答图3).过A 点作AE OB ⊥,垂足为点E ,由AO AB OB AE =可得48AE =.APT AOP ATO OTP S S S S ∴=--△△△△211160544843654222t t t t t t =⨯⨯-⨯⨯-⨯⨯=-+. 若14APT OABC S S =△矩形,则应有26541200t t -+=,即292000t t -+=.此时,2(9)412000--⨯⨯<,所以该方程无实数根.所以,当09t <<时,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.(答图2)(答图1)(ii )当916t <≤时,点T 位于AOP △的外部.(如答图4)此时2654APT ATO OTP AOP S S S S t t =+-=-△△△△.若14APT OABC S S =△矩形,则应有26541200t t -=,即292000t t --=.解这个方程,得192t +=,2902t -=<(舍去).由于288162525>=,991722t +∴=>=.而此时916t <≤,所以92t +=也不符合题意,故舍去. 所以,当916t <≤时,以A P T ,,为顶点的APT △的面积也不能达到矩形OABC 面积的14. 综上所述,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.。
1分类讨论型问题模型
专题二:分类讨论型问题分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.1. (2018哈尔滨)(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.2. (2018黑龙江龙东)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.3. (2018湖北荆州)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y=上,实数a满足a3﹣a=1,则四边形DEBF的面积是.4. (2018山东淄博)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.1. (2018哈尔滨)(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.2. (2018黑龙江龙东)(3.00分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8 .【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=6.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP =S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP =S△ABC=×6=4.32;④当CB=CP=4时,如图3所示,S等腰△BCP =S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.3. (2018湖北荆州)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y=上,实数a满足a3﹣a=1,则四边形DEBF的面积是6或2或10 .【分析】根据乘方,可得a的值,根据正方形的对称中心在坐标原点,可得B 点的横坐标等于纵坐标,根据平行四边形的面积公式,可得答案.【解答】解:由a3﹣a=1得a=1,或a=﹣1,a=3.①当a=1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=6②当a=﹣1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=1,四边形DEBF的面积是2x•y=2×1×1=2;③当a=3时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=10,故答案为:6或2或10.【点评】本题考查了反比例函数的意义,利用乘方的意义得出a的值是解题关键,又利用了中心对称的正方形,平行四边形的面积.4. (2018山东淄博)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得m=1×3=3,∴y与x之间的函数关系式为y=(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y 2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).。
中考二轮专题复习:第2课时 分类讨论
第二轮复习二 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=. 点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O2沿x 轴向右平移,在平移的过程中与x轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG ·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
课标版数学中考第二轮专题复习-分类讨论型试题(含答案
分类讨论型问题探究分类思想是解题的一种常用思想方法,它有利于培养和发展学生思维的条理性、缜密性、灵活性,使学生学会完整地考虑问题、化整为零地解决问题,学生只有掌握了分类的思想方法,在解题中才不会出现漏解的情况.例1(2005年黑龙江) 王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.分析:本题是无附图的几何试题,在此情况下一般要考虑多种情况的出现,需要对题目进行分情况讨论。
分类思想在中考解题中有着广泛的应用,我们在解题中应仔细分析题意,挖掘题目的题设,结论中可能出现的不同的情况,然后采用分类的思想加以解决. 解:(1)当等腰三角形为锐角三角形时(如图1),由勾股定理得AE =25(m )由DE ∥FC 得,FCEDAC AE =,得FC =24(m ) S △ABC =12 ³40³24=480(m 2)(2)当等腰三角形为钝角三角形时(如图2)同理可得,S △ABC =1264³24=768(m 2)说明:本题主要考查勾股定理、相似三角形的判定及性质等内容。
练习一 1、(2005年资阳市)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A.2a b + B.2a b - C.2a b +或2a b - D. a+b 或a-b2.(2005年杭州)在右图的几何体中, 上下底面都是平行四边形, 各个侧面都是梯形, 那么图中和下底面平行的直线有( )(A) 1条 (B) 2条 (C) 4条 (D) 8条3(2005年潍坊市)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ).A .5cmB .11cmC .3cmD .5cm 或11cm图1图2A4.(2005年北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ²,则∠BCA的度数为____________。
专题二:勾股定理与探究性问题
勾股定理的运用二——与分类讨论、最短路径、坐标问题、三角形的存在性问题等探究问题一、勾股定理与分类讨论思想的运用(1)边的属性不确定,是直角边还是斜边;1、(易错)已知一个直角三角形的两边长分别为5和12,则第三边长是_________(2)高的位置不确定,在三角形内还是三角形外,这种情况也等同于这个三角形是锐角、直角、钝角三角形中的哪一种?2,BC边上的高AD=6,则BC等于()2、(易错)在△ABC中,AB=10,AC=10A、10B、8C、6或10D、8或10(3)等腰三角形的腰和底不确定时3、已知等腰三角形的两边为10和12,则这个三角形的面积是____________(4)没有图形,且点的位置不确定,重点语句如:在直线AB上,包含两层意思,在线段AB上,或线段AB的延长线上2,BC=1,∠ABC=45°,以AB为一边作等腰三角形ABD,使∠ABD=90°,4、在△ABC中,AB=2连接CD,则线段CD的长为__________5、Rt△ABC中,∠BAC=90°,AB=AC=2,以AC为一边在△ABC外部(点D与点B不在AC的同侧)作等腰直角三角形ACD,则线段BD的长为___________6、Rt△ABC中,∠A=90°,BC=4,且∠ACB=60°,点P是直线AB上不同于A,B的一点,且∠ACP=30°,则PB的长为________________二、最短路径展开――→两点之间,线段最短利用勾股定理求解1、如图,有一圆柱形油罐,已知:油罐的底面周长是12m,高AB是5m,要从A点环绕油罐建梯子,正好到A的正上方B点,梯子最短需要()变式:(2018·黄冈)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为__________cm.(杯壁厚度不计)2、如图,长方体的长为5cm,宽为4cm,高为3cm,一只蚂蚁在长方体的表面爬行,从点A爬到点B的最短路径是多少厘米?类型二:利用垂线段最短求线段和最短,特征:已知一定点确定两动点求线段和最短,常常有或隐含有角平分线,需过定点作对边的垂线段,得最短线段;3、如图,在锐角三角形ABC中,BC=24,∠ABC=45°,BD平分∠ABC,M,N分别是BD,BC上的动点,则CM+MN的最小值是___________4、如图,在△ABC中,AB=AC=5,D为BC中点,AD=4,P为AD上任意一点,E为AC上任意一点,则PC+PE的最小值是___________________B第3题第4题第5题类型三:利用轴对称构造两点之间线段最短,常有两定点确定一动点或两定点确定两动点或一定点确定两动点等情形,主要方法是把起点和终点利用轴对称转化要经过的直线的两侧形成两点之间线段最短。
专题02 数轴多动点问题中的分类讨论(原卷版)
(1)当点P到达点B时,点Q表示的数为____________.
利用此结论,回答以下问题:
(1)数轴上表示1和4的两点的距离是,数轴上表示﹣1和﹣4的两点之间的距离是.
(2)|a﹣1|=2,则a=,|a﹣1|+|a+3|=6,则a=.
(3)当|a﹣1|+|a+3|取最小值时,此时符合条件的非负整数a是.
(4)如图,已知A,B分别为数轴上的两点,点A表示的数是﹣30,点B表示的数是50;
(1)若点P到点M点N的距离相等,则点P对应的数为:.
(2)数轴上是否存在点P到点M点N的距离之和为8,若存在,请求出x的值,若不存在,请说明理由.
(3)当点P以每分钟一个单位长度的速度,从运动,它们同时出发几分钟后P点到点M点N的距离相等.
②点Q到达点C后,改变方向,按原速度向负半轴方向运动,求再经过几秒钟,点P与点Q能相遇.
③在②的条件下,点Q改变方向后,直接写出又经过几秒钟点P与点Q相距3个单位.
例6.(2021·重庆一中月考)如图,数轴上有三点A,B,C,表示的数分别是 , ,3,请回答:
(1)若使C,B两点的距离等于A,B两点的距离,即 ,则需将点C向左移动_______个单位长度;
(1)直接写出点A表示的数为,点B表示的数为,并在数轴上将A,B表示出来;
(2)点P为数轴上任意一点,其表示的数为x.
①如果点P到点A、点B的距离相等,那么x=;
北师大版八年级数学下册期末复习专题训练(二) 分类讨论在等腰三角形中的五种思路
8.如图2-ZT-1,直线m与直线n交于点B,m,n所夹锐角为 50°,A是直线m上的点,在直线n上寻找一点C,使△ABC是 等腰三角形,这样的点C有___4_角形时分三种情况讨论:①若点C是顶角的顶 点,则有BC=AC,即点C在线段AB的垂直平分线上,即点C为线段AB的 垂直平分线与直线n的交点,只有一个;②若点A是顶角的顶点,则有AC =AB,由两直线所夹锐角为50°,可知此时点C在直线n上,只有一个; ③若点B是顶角的顶点,则有AB=CB,此时点C在直线n上,有两个.综 上可知,满足条件的点C有4个.故答案为4.
专题训练(二)
分类讨论在等腰三角形中的五种思路
思路一 关于边长不确定的讨论
1.等腰三角形两边的长分别为4 cm和8 cm,则它的周长为( C )
A.16 cm
B.17 cm
C.20 cm
D.16 cm或20 cm
[解析] C 已知等腰三角形的两边长分别为4 cm和8 cm,若腰长是4 cm, 则三角形的三边长分别是4 cm,4 cm,8 cm,4+4=8(cm),不满足三角 形的三边关系,舍去;若腰长是8 cm,则三角形的三边长分别是8 cm,8 cm,4 cm,此时满足三角形的三边关系,三角形的周长是20 cm.故选C.
思路四 关于中线的位置不确定的讨论
11.已知等腰三角形一腰上的中线把这个三角形的周长分成12和 15两部分,求这个三角形的三边长. 解:如图,在△ABC 中,AB=AC,且 AD=BD.设 AB=x,BC=y, (1)若 AC+AD=15,BC+BD=12, (2)则x2x2+ +xy==1125,,解得xy==71.0,
3.已知等腰三角形的周长是20,其中一边长为6,则另外两边的
长度分别是( C )
技法专题第2讲分类讨论思想、转化与化归思想
一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论思想在解题中的应用
1
由数学概念而引起的分类讨论:如绝对值的定义、不等式 的定义、二次函数的定义、直线的倾斜角等.
①当 m≤0 时,g′(x)≤0,则 g(x)的单调递减区间是(-∞,
+∞);
②当m>0时,令g′(x)<0,解得x<- 2m 或x> 2m ,则
g(x)的单调递减区间E是v(a-lu∞a,ti-on2omn) l,y.( 2m,+∞). ated w综i上th所A述s,pmos≤e0.S时l,idge(xs)的fo单r调.N递E减T区3间.5是C(-li∞en,t+P∞ro);file 5.2
Evaluation only. ated witfh(a)A=s-p3o,se则.Sf(l6i-deas)=for .NET 3.5 Client P(rofi)le 5.2
AC.o-p74yright 2019-201B9.A-sp54 ose Pty Ltd.
C.-34
D.-14
解析:由于 f(a)=-3,
综上知,||PPFF21||=72或 2.
[技法领悟]
(1)本题中直角顶点的位置不定,影响边长关系,需按
直角顶点不同的位E置v进a行lu讨at论io.n only. ated with Aspose.Slides for .NET 3.5 Client Profile 5.2
C(2o)涉py及r几ig何h问t 2题0时19,-2由0于1几9 A何s元p素os的e形P状ty、L位t置d.变化
专题二 第三讲 数学思想方法与答题模板建构(文)
(2)∵a1=2,a1+a2=1,∴a2=-1. 又∵an+2-an=4, ∴数列的奇数项与偶数项分别成等差数列,公差均为 4. S2n+1=(a1+a3+„+a2n+1)+(a2+a4+„+a2n) n+1n nn-1 =(n+1)×2+ 2 ×4+n×(-1)+ 2 ×4 =4n2+n+2.
[点评] 本题考查数列的通项与前n项和的关系,以及等差数
列的定义,单调数列的判断等内容.转化条件4Sn=(an+1)2
为解题的关键.
在等比数列求和中经常对公比q进行分类,而有的数列通
项公式以分段函数给出,或以(-1)n形式给出的,要分类 求解.求含参数极限有时也要分类讨论.
[例1] (2011· 四川高考)已知{an}是以a为首项,q为公比的等 比数列,Sn为它的前n项和. (1)当S1,S3,S4成等差数列时,求q的值; (2)当Sm,Sn,Sl成等差数列时,求证:对任意自然数k,am+
2.在等差(比)数列的通项公式和前n项和公式中共有5个量
a1、d(或q)、n、an及Sn,这5个量中知道其中任意3个量
的值,就可以通过运用方程思想,解方程(或方程组)求 出另外2个量的值.
[例2] (2011· 江西高考)已知两个等比数列{an},{bn},满 足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3. (1)若a=1,求数列{an}的通项公式;
⇒第一步 列出含有a1和d的方程; ⇒第二步 推出a1=d=a; ⇒第三步 写出an.
1 1 1 (2)记 Tn= + a +„+ a ,因为 a2n=2na,┄┄┄┄┄┄(7 分) a2 22 2n 1 1n 1- 2 11 1 1 12 所以 Tn=a( + 2+„+ n)=a· 2 2 2 1 1- 2 1 1 =a[1-( )n].┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(10 分) 2 1 1 从而,当 a>0 时,Tn< ;当 a<0 时,Tn> .┄┄┄┄(12 分) a1 a1
分类讨论思想方法
分类讨论思想1、专题概述分类讨论是一种逻辑方法与数学思想,在高考中占有重要位置,其原因有:〔1〕分类讨论问题一般都覆盖较多知识点,具有较强的综合性、探索性,有利于知识面的考查;〔2〕有关分类讨论思想的数学问题具有明显的逻辑性;〔3〕它需要有一定的分析能力与分类技巧,有利于培养学生思维的条理性和概括性;〔4〕分类讨论思想与生产实践和高等数学都紧密相关。
解分类讨论问题的实质是将整体问题化为假设干个部分解决,从而增加了题设条件,它表达了化整为零、积零为整的思想与归类整理的方法,这正是分类讨论的根本原因。
引起分类讨论的原因主要是以下几个方面:〔1〕问题所涉及到的数学概念是分类进行定义的。
如绝对值的定义、指对数函数的定义、直线的斜率与倾斜角等,这种分类讨论题型可以称为概念型。
〔2〕问题中涉及到的数学定理、公式和运算性质、法那么有X 围或者条件限制,或者是分类给出的。
如等比数列的前n 项和的公式,分q =1和q ≠1两种情况,这种分类讨论题型可以称为性质型。
〔3〕解含有参数的题目时,由于参数的取值不同会导致所得结果不同,或者由于不同的参数值而要不同的求解或证明方法,因此必须根据参数的不同取值X 围进行讨论,这称为含参型。
〔4〕由数学运算要求引起的分类讨论,如利用不等式性质时注意使用条件等。
〔5〕较复杂的或非常规的数学问题,需要采取分类讨论的解题策略来解决的。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都需要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时要遵循的原那么及其须知:〔1〕被分类的对象的集合的全域是确定的;〔2〕每一次分类的标准要统一,要分清主次、科学划分;〔3〕每一次分类必须要“不漏不重〞;〔4〕如需多次分类,必须是逐级进行,不越级讨论;〔5〕要注意简化或避免分类讨论,优化解题过程。
解答分类讨论问题时,我们的基本方法和步骤是:〔1〕确定讨论对象及其X 围;〔2〕确定分类标准,合理分类,分类互斥;〔3〕逐类进行讨论,分级进行,获取阶段性结果;〔4〕最后进行归纳小结,综合得出结论。
分类讨论思想方法-文档资料
分类讨论思想方法
分类讨论思想方法
在解答某些数学问题时,有时会有多种情 况,对各种情况加以分类,并逐类求解,然 后综合归纳,这就是分类讨论法。 分类讨论是一种逻辑方法,也是一种数学 思想。有关分类讨论的数学问题具有明显的 逻辑性、综合性、探索性,能训练人的思维 条理性和概括性,所以在高考试题中占有重 要的位置。
→明确讨论对象,确定对象的全体 →确定分类标准,正确进行分类 →逐步进行讨论,获取阶段性结果 →归纳小结,综合得出结论。
2.逻辑划分应遵循的原则: 分类的对象是确定的,标准是统一的,不遗漏、不重复、 分层次,不越级讨论。 3.多层次分类及“二分法”——处理复杂问题的分类方法。
4.分类讨论后如何归纳结论。
l o g( x ) l o g( x ) a1 a1
log 1 x )|=…… a(
例2.已知集合A和集合B各含有12个元素,A∩B含有4个元素, 试求同时满足下面两个条件的集合C的个数:①C (A∪B) 且C中含有3个元素;②C∩A≠φ。 【分析】由已知并结合集合的概念,C中的元素分两类: ①属于A元素;②不属于A而属于B的元素。并由含A中 元素的个数1、2、3,而将取法分三种。 【解】 C
1 · 12
C
2 + 8
C
2 12·
C
1 8+
C
3 · 12
C 80 =1084
3 3 【另解】(排除法): C C 1 0 8 4 2 0 8 例3.设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有 f(x)>0,求实数a的取值范围。
【分析】含参的一元二次函数在有界区间上的值域问题, 先对开口方向讨论,再对其抛物线对称轴的位置进行分 类讨论。(也属数形结合法)
导数专题二、极值问题----导数专题超级经典讲义
导数专题二、极值问题【知识结构】【知识点】 一、函数的极值定义函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()(),f x f x <则称0()f x 是函数的一个极大值,记作0=()y f x 极大值;如果对0x 附近的所有点都有0()(),f x f x >则称0()f x 是函数的一个极小值,记作0=().y f x 极小值极大值与极小值统称为极值,称0x 为极值点. 极大值与极小值统称为极值.极大值点与极小值点统称为极值点.极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
可导函数()f x 的极值点必定是它的驻点。
但是反过来,函数的驻点却不一定是极值点,例如3y x =,点()0,0是它的驻点,却不是它的极值点。
极值点上()f x 的导数为零或不存在,且函数的单调性必然变化。
极值问题主要建立在分类讨论的基础上, 二、求函数的极值点和极值注意事项:1.求极值或极值点,必须点明是极大还是极小。
若没有另一个,要说明没有。
2.要知道如何判断是否存在极值或者极值点。
3.如果已知极值或者极值点,求参数的时候,最后结果需要检验。
4.极值点是导函数的根,如果有两个根,要在合适的时候想到伟达定理。
三、求函数极值的三个基本步骤 第一步、求导数()f x ';第二步、求方程()0f x '=的所有实数根;第三步、考察在每个根0x 附近,从左到右,导函数()f x '的符号如何变化.如果()f x '的符号由正变负,则0()f x 是极大值;如果由负变正,则0()f x 是极小值.如果在()0f x '=的根0x x =的左右侧,()f x '的符号不变,则0()f x 不是极值.【考点分类】考点一、分类讨论求函数极值(点);【例1-1】(2015-2016海淀一模文19)已知函数1()x xf x e-=. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的零点和极值;(Ⅲ)若对任意12,[,)x x a ∈+∞,都有1221()()f x f x e-≥-成立,求实数a 的最小值. 【答案】2(1)2'()()x x x x e e x x f x e e----== (Ⅰ)设切线斜率为k ,所以()'02k f ==-,01(0)1f e==,所以曲线()y f x =在点(0,1)处的切线方程为12y x -=-,即210x y +-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题训练
1.(2012年辽宁营口)圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为( )
A .1
B .3
C .1或2
D .1或3
2.已知线段AB =8 cm ,在直线AB 上画线段BC ,使BC =5 cm ,则线段AC 的长度为 ( )
A .3 cm 或13 cm
B .3 cm
C .13 cm
D .18 cm
3.(2011年贵州贵阳)如图Z2-3,反比例函数y 1=k 1x
和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x
>k 2x ,则x 的取值范围是( )
图Z2-3
A .-1<x <0
B .-1<x <1
C .x <-1或0<x <1
D .-1<x <0或x >1
4.(2012年湖南张家界)当a ≠0时,函数y =ax +1与函数y =a x
在同一坐标系中的图象可能是( )
A B C D 5.(2011年山东济宁)如果一个等腰三角形的两边长分别是5 cm 和6 cm ,那么此三角形的周长是( )
A .15 cm
B .16 cm
C .17 cm
D .16 cm 或17 cm
6.(2012年四川泸州)为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:
(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;
(2)若每户居民每月用电量超过100度,则超过部份按0.80元/度计算(未超过部份仍按每度电0.50元计算). 现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )
A B C D
7.等腰三角形ABC 的两边长分别为4和8,则第三边长为________.
8.(2011年四川南充)过反比例函数y =k x
(k ≠0)图象上的一点A ,分别作x 轴、y 轴的垂线,垂足分
别为B ,C .若△ABC 的面积为3,则k 的值为________.
9.(2011年浙江绍兴)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则这个点叫做和谐点.例如,图Z2-4中过点P 分别作x 轴、y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.
(1)判断点M (1,2),N (4,4)是否为和谐点,并说明理由;
(2)若和谐点P (a,3)在直线y =-x +b (b 为常数)上,求点a ,b 的值.
图Z2-4
10.(2012年江苏扬州)如图Z2-5,已知抛物线y =ax 2
+bx +c 经过点A (-1,0),B (3,0),C (0,3)三点,直线l 是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;
(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.
图Z2-5。