高居里点铁电材料课题参考资料
《居里温度的测量》报告参考模板
钙钛锰氧化物居里温度的测量摘要本文通过对电感的测量得到了某钙钛锰氧化物的居里温度,并就影响实验结果的相关因素进行了讨论。
关键词居里温度钙钛矿锰氧化物测量补偿引言铁磁性物质的磁性随温度的变化而改变。
当温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质。
铁磁性转变为顺磁性的温度称为居里温度或居里点,以Tc表示。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
本次实验就是测定钙钛矿锰氧化物居里温度,通过这次实验我们掌握测定居里温度的一种方法,同时这次实验让我们能够对居里温度的物理意义有更深刻的了解。
实验原理1. 钙钛矿锰氧化物简介钙钛矿锰氧化物指的是一大类具有AB O3型钙钛矿结构的锰氧化物。
理想的AB O3型(A为稀土或碱土金属离子,B为Mn离子)钙钛矿具有空间群为Pm3m的立方结构,如以稀土离子A作为立方晶格的顶点,则Mn离子和O离子分别处在体心和面心的位置,同时,Mn离子又位于六个氧离子组成的MnO6八面体的重心,如图1(a)所示。
图1(b)则是以Mn离子为立方晶格顶点的结构图。
一般,把稀土离子和碱土金属离子占据的晶体称为A值,而Mn离子占据的晶位称为B 位。
图1钙钛矿锰氧化物晶体结构这些钙钛矿锰氧化物的母本氧化物是La MnO3,Mn离子为正二价,这是一种显示反铁磁性的绝缘体,呈理想的钙钛矿结构。
早在20世纪50—60年代,人们已经发现,如果用二价碱土金属离子(Sr、Ca、Pb等)部分取代三价稀土离子,Mn离子将处于/混合价状态,于是,通过和离子之间的双交换作用,在一定温度(Tp)以下、将同时出现绝缘体—金属转变和顺磁性—铁磁性转变。
2. 铁磁物质的磁化规律由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性。
物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质。
铁电性实验报告-南京大学
铁电性实验报告-南京大学铁电薄膜铁电性能表征131120161 李晓曦一、引言铁电体是这样一类晶体:在一定温度范围内存在自发极化,自发极化具有两个或多个可能的取向,其取向可能随电场而转向.铁电体并不含“铁”,只是它与铁磁体具有磁滞回线相类似,具有电滞回线,因而称为铁电体。
在某一温度以上,它为顺电相,无铁电性,其介电常数服从居里-外斯(Curit-Weiss)定律。
铁电相与顺电相之间的转变通常称为铁电相变,该温度称为居里温度或居里点Tc。
铁电体即使在没有外界电场作用下,内部也会出现极化,这种极化称为自发极化。
自发极化的出现是与这一类材料的晶体结构有关的。
铁电体特点是自发极化强度可因电场作用而反向,因而极化强度和电场 E 之间形成电滞回线。
自发极化可用矢量来描述,自发极化出现在晶体中造成一个特殊的方向。
晶体中每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生位移,使电荷正负中心不重合,形成电偶极矩。
整个晶体在该方向上呈现极性,一端为正,一端为负。
在其正负端分别有一层正和负的束缚电荷。
束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高。
铁电现象第一次发现是在1920年,由瓦拉赛尔发现外场可以使罗西盐的极化方向反转,但是铁电现象直到40年代初才得以被广泛研究。
如今铁电现象因为其独特性质得到了广泛的应用,而本实验就是为了初步探究本现象的物理性质。
本实验测量了铁电材料的电滞回线,并且改变电压测量了不同电压下的图像和矫顽力等数值。
作者又进一步对此现象进行了初步探究,研究了其相关机理。
二、实验目的1、了解什么是铁电体,什么是电滞回线及其测量原理和方法。
2、了解非挥发铁电随机读取存储器的工作原理及性能表征。
三、实验原理1、铁电体的特点(1)电滞回线铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。
在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线性地依赖于电场见图1,此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。
铁电材料BaTiO3的制备及其压电、光伏特性实验报告
铁电材料BaTiO3的制备及其压电、光伏特性实验报告调研报告一、文献综述1.背景:铁电材料是指具有自发极化,而且在外加电场下,自发极化发生转向的电介质材料,它是热释电材料的一个分支。
铁电材料由于其铁电性、介电性、压电性、热释电效应、热电效应、电光性质等特性,而广泛应用于各个领域(见下表1),如在通讯系统、微电子学、光电子学、集成光学和非机械学等领域有着重要的或潜在的应用,从而引起国内外学者的广泛研究。
表1.铁电薄膜材料的应用性质主要叁件介电性电容器,动态随机存取存储器(DRAM)压电性声表面波(SAW)器件、微型压电马达、微型压电骡动器热科电性热释电探测罂及阵列铁电性铁电HI机存取存储器(FRAM)、铁电场效应管电光效应光调制嘱,光波导声光效应声光偏转器光折交效应光注制器.光全息存储器非线性光学效应光学倍频器铁电薄膜材料根据成分可分为三大类,包括锯酸盐系、钛酸盐系、铝酸盐系,其中典型铁电材料有:钛酸钢(BaTiO3)、磷酸二氢钾(KH2Po4)等,然而BaTi03是一种强介电化合物材料,它具有很高的介电常数和较低的介电损耗,是电子陶瓷中使用最广泛的材料之一,它被称作“电子陶瓷工业的支柱”。
同时该材料是最早研究的钙钛矿结构的铁电材料,因此通过对该材料的学习、制备和性能的检测,对铁电材料领域的相关知识的了解有着重要的意义。
前人们对钛酸钢的制备和性能有着很多的研究,FI前对钛酸钢材料的研究已经往微型化发展,制备成铁电薄膜材料,同时研究不同的制备方法、元素掺杂等对钛酸钢薄膜材料性能的影响,在这基础上,研究外界条件(外加磁场等)对铁电薄膜材料的物理调控,渐渐的利用其性质应用于器件中(光伏器件、电容器等)。
2.制备方法与结构性质:结构性质:电介质材料按其晶体对称性可分为32种点群,在这32种晶体学点群中,有21种不具有对称中心,其中20种呈现压电效应。
而这20种压电性晶体中的10种具有受热而自发极化现象,因其是受热而引起电极化状态的改变,故这10种晶体又称为热释电晶体。
铁磁材料居里点的测量
标题:铁磁材料居里点的测量作者:摘要:介绍了通过转换出分别与磁化强度和磁场强度成正比的电压信号,来定性观察与定量测量居里点的一种方法。
关键词:铁磁材料;居里点;磁滞回线引言:铁磁材料的磁性随温度的变化而改变,当温度上升到某一定值时,铁磁材料就失掉铁磁物质的特性而转变为顺磁性物质,这一转变温度称为居里温度,以表示。
对的测定不仅对磁性材料、磁性器件的研制、使用,而且对工程技术乃至家用电器的设计都具有重要的意义。
正文:铁磁材料(又称铁氧体)是铁和其它一种或多种适当的金属元素的复合氧化物.按磁滞回线的形状来分,有软磁材料,硬磁(又叫永久磁性)材料。
铁磁材料在工业上,尤其在电力工业上应用最为广泛,如制造发电机,电动机及电力输送变压器上的永久磁铁和硅钢片。
我们日常用的家电里有收音机中的天线棒,中周变压器,电视机中的回扫变压器,录象机中的磁头,磁鼓。
计算机中的记忆元件,逻辑元件,扬声器以及电话机中都有磁性材料。
铁磁材料在尖端技术和国防科技中应用也很多,如雷达,微波多路通讯,自动控制,射电天文望远镜,远程操纵等。
1,铁磁材料居里点存在的基本原理以铁为代表的一类磁性很强的物质叫铁磁质。
在纯化学元素中,除铁之外,还有过渡族中的其它元素,如钴,镍和某些稀土族元素如钆,镝,钬都具有铁磁性.但常用的铁磁质多数是铁和其它金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体)。
铁磁质的磁性主要来源于电子自旋磁矩。
在没有外磁场的条件下铁磁质中的电子自旋磁矩可以在小范围内自发地排列起来,形成一个个小的自发磁化区。
这种自发磁化区叫做磁畴。
自发磁化只发生在微小的区域(体积约为10 -8 m 3,其中含有1017一1021个原子)内,这些区域叫做磁畴。
如图19-l,其中图19-l(a)为单晶磁畴结构示意图,图19-l(b)为多晶磁畴结构示意图。
由图可见在没有外磁场作用时,在每个磁畴中,原子磁矩已经取向同一方位,但对不同的磁畴其分子磁矩的取向各不相同,磁畴的这种排列方式,使磁体处于最小能量的稳定状态.因此对整个铁磁体来说,任何宏观区域的总磁矩仍然为零,整个磁体不显磁性。
铁磁材料居里点的测定
并求出其居里点。
.
二 、 原理
(一).基本物理原理 1. 根据磁化的效果,磁介质可划分为三类
(1)顺磁质,这类磁介质磁化后,在介质内的磁场稍有增 强,表明磁化后具有微弱的附加磁场,并与外磁场同方向。
(2)抗磁质,这类磁介质磁化后,在介质内磁场稍有削弱, 表明磁化后具有微弱的附加磁场但与外磁场方向相反。
eff ( B )
的一点即为居里温度TC 。如图19-3
所示。这是因为在居里点,铁磁材
料的磁性发生突变,所以要在斜率
最大处作切线。 又因为在居里点
以上时, 铁磁性己转化为顺磁性 , 0 且本实验的交变磁场较弱,所以对
ห้องสมุดไป่ตู้
Tc 图19-3
T
顺磁性物质引起的磁化是很弱的,
但有一个很小的值,故无论如何升
高温度,εeff(B)都不会为零。 .
.
如 图 19-l , 其 中 图 19-l(a) 为 单 晶 磁 畴 结 构 示 意 图 , 图 19-l(b)为多晶磁畴结构示意图。由图可见在没有外磁场作用 时,在每个磁畴中,原子磁矩已经取向同一方位,但对不同 的磁畴其分子磁矩的取向各不相同,磁畴的这种排列方式 , 使磁体处于最小能量的稳定状态.因此对整个铁磁体来说,任 何宏观区域的总磁矩仍然为零,整个磁体不显磁性。线条为 畴界,箭头为磁畴的磁化方向。
εeff(B)
当 0 , ef(B f) 0 ,此时温度Tc称居里点。
注意:µ为介质的磁导率,是. 个反映介质磁化特性的物理量。
显然,我们完全可用测出的εeff (B)~T 曲线来确定温度TC 。具体 作法是,先根据实验数据做出εeff
铁磁材料居里点的测量大物论
铁磁材料居里点的测量辽宁科技大学 机械工程与自动化学院 机械设计11-A1 毕帅[摘要]:本文利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,通过对测量结果的对比发现,采用定性测量和定量测量得到的居里点温度存在一定的差异,并对产生差异的原因进行了简要的分析。
[关键词]:铁磁材料;居里点;测量方法引言;铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,以T c 表示。
居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
本项研究利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,并对测量结果产生差异的原因进行了简要的分析。
一、实验原理1.1基本理论在铁磁物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为10-8m 3,称之为磁畴。
在没有外磁场作用时,不同磁畴的取向各不相同,如图1所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。
当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。
铁磁物质的磁导率μ远远大于顺磁物质的磁导率。
铁磁物质被磁化后具有很强的磁性,但这种强磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。
铁电体材料理论及性综述
一、铁电体材料相关概
4. 铁电材料的钙钛矿结构
念
A位变化形成的化合物:
(A1+2A2+2)TiO3型
(Sr,Ba)TiO3
(Sr,Ba)ZrO3
(Mg,Zn)TiO3
(Sr,Pb)ZrO3
(A+11/2A+31/2)TiO3型
(Na1/2Bi1/2)TiO3
(K1/2Bi1/2)TiO3
一、铁电体材料相关概
AT
即无论正向电场或反向电场均
使试样伸长(缩短)。
二、铁电体材料的特性
5、热释电效应 pyroelectric effect
在10种具有单一极轴的点群晶体中,绝缘 或半绝缘的极性晶体因为温度均匀改变而使晶体出 现结构上的电荷中心相对位移,使自发极化强度发 生变化,从而在两端产生异号的束缚电荷,这种现 象称为热释电效应。
念
b 复合钙钛矿结构化合物
(A1 x1 A2x2)(B1y1B2y2)O3型
B1B2占据B位,满足条件: y1,y2分别为B1离子和B2离子化学计量比:y1+y2=1
B位化合价= B1·y1+B2 ·y2=+4价
B1离子:低价阳离子,如Mg2+,Zn2+,Ni2+,Fe3+等 B2离子:高价阳离子,如Ti4+,Nb5+,Ta5+,W6+ 等
利用其压电特性,可以用于制作压电陶 瓷谐振器、滤波器、压电传感器、超声换能器、 压电变压器等电子元器件。
一、铁电体材料相关概
4. 铁电材料的钙钛矿结构
念
钙钛矿结构以BaTiO3的结构为代表,许多铁电、 介电、压电、光电以及高温超导材料都具有钙钛矿
2022年铁磁材料居里点的测定实验报告800字(12篇)
铁磁材料居里点的测定实验报告800字(12篇)导读:关于铁磁材料居里点的测定实验报告,精选6篇范文,字数为800字。
关于铁磁材料居里点的测定实验报告,精选6篇范文,字数为800字。
铁磁材料居里点的测定实验报告(范文):1铁磁材料居里点测得的结果是测得出的结果,不同的结果就可能是不同的结果,不同的结果就可能会有不同的结果。
因此,在实验过程中我学会了很多的测量仪器,如:电导柱、水准仪、测得方法和测得角度角的方法。
在实验过程中我还明白了测得比较容易的,也是最容易做的。
实验的第一天,刚开始就是测量,我们组是从一个没有任何工作的学生,开始测量,我也是不知道自己的水平能力,测量方法是什么,也没有想到我会不会测,不知道什么时候开始测的。
这个时候我就觉得测量很重要,这个测量方法和我所在的组一样,不同组有不同的方法,我们一起测,一起测,在测量过程中我们一起探讨。
我觉得我们组的成员都很配合,也很有默契,我们的工程也是这样。
测量完后,我们组又一起合作,一起把那根铁钉放到测得的角度里。
虽然我们组是不怎么认真的测量,但是看到别的组的成员都能测得很认真,我们也觉得很开心,毕竟我们组的小组成员也是很有默契,我们也感到很快乐,毕竟测量给了我们一次很好的学习经验。
这个实验我们组有一个组员,在测量过程中也是比较默契的,在一起的时候我们都很认真,我们一起测量,一起研究,一起分享,不懂的就问,大家一起解决。
测量的过程中我们大家一起讨论,一起分析,这样不仅加深了我们之间的友谊,也锻炼了我们的团结精神。
我们在测量的过程中,我们一起讨论,一起分析,一起动脑,一起讨论问题,这样我们都感到很快乐。
测量的这段时间,我们一起合作学习,一起探讨问题,我想我们一定会在以后的学习和生活中做得更好,成为一名合格的铁磁材料居里点测量的学子。
我们在测量中一起成长,一起收获快乐,我想我们也一定会在以后的学习和工作中更加的努力,一起进步!铁磁材料居里点的测定实验报告(范文):2铁磁材料居里点的测定实验报告一、实验目的、意义及实验时间铁熔材料居里点的测定实验报告二、实验内容、实训过程铁磁材料居里点的测定实验报告三、实验内容、实训内容及实验成果铁磁材料居里点的测定实验报告四、成果报告铁铁磁材料居里点的测定实验报告实验报告五、实验成果报告铁磁铁的测定实验报告报告六、实验报告内容及格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁的测定实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁轨测量实验仪器铁轨测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实习仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁磁材料居里点的测定实验报告(范文):3铁磁铁是铁磁铁的一种传统方法,在现代社会生产过程中,人们不可能直接地接受这种方法。
铁磁性材料居里点的测定
2.实验原理
在磁环上分别绕线圈A,B,并在A线圈上通激励电流,则B线圈上感应电动势的有效值为:
=4.44fNφm(1)
f为频率,N为线圈的匝数,φm为最大磁通。
四、实验装置
1.耐高温绝缘玻璃管2.加热电炉丝3.集成温度传感器4.铁氧铁(被测样品)5.固定架6.印刷板7.提供加热电流的电源部分8.测温显示部分9.激励电源10、感应电流测量部分
实验仪分测量部分和实验部分。
(1)实验部分:如上图所示,包括①被测样品和加热电炉丝;②集成温度传感器;③激励线圈和感应线圈,以上各部分都要装在一个底座上。
(3)集成温度传感器的手枪插头接到面板温度测量的接线柱上。
五、实验内容
对样品逐点测出 —T曲线,并从中求出居里温度TC。
六、实验步骤
1、参照仪器安装步骤,连好实验部分和测量部分。(加温电流暂不接)
2、 —T曲线的测量:
(1)合上测量部分的电源开关,“温度显示”显示出室温温度。“电压显示”显示激励电压或感应电压值。
铁磁性物质的磁化与温度有关,存在一临界温度TC称为居里温度(也称居里点)(如图3)。当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度TC时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M(实为自发磁化强度)剧烈下降!因为这时分子热运动足以使相邻原子(或分子)之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列。此时磁畴消失,铁磁性变为顺磁性。
实验 9.3 铁电体电滞回线及居里温度的测量
实验9.3 铁电体电滞回线及居里温度的测量自从1921年了J.Valasek 发现罗息盐是铁电体以来,迄今为止陆续发现的新铁电材料已达一千种以上。
铁电材料不仅在电子工业部门有广泛的应用,而且在计算机、激光、红外、徽波、自动控制和能源工程中都开辟了新的应用领域。
电滞回线是铁电体的主要特征之一,电滞回线的测量是检验铁电体的一种主要手段。
通过电滞回线的测量可以获得铁电体的一些重要参数。
在居里温度处,铁电材料的许多物理性质将发生突变,因此居里温度的测量对研究铁电体的性质有重要的的意义。
通过本实验可以了解铁电体的基本特性,掌握电滞回线及居里温度的一种测量方法。
一、实验目的1、了解铁电体电滞回线的原理;2、掌握铁电体电滞回线和居里温度的测量方法。
二、实验仪器铁电体电滞回线实验仪、计算机、示波器、电炉、BaTiO 3样品等。
三、实验原理1. 电滞回线根据固体物理的知识,全部晶体按其结构的对称性可以分成32类(点群)。
32类中有10类在结构上存在着唯一的“极轴”,即此类晶体的离子或分子在晶格结构的某个方向上正电荷的中心与负电荷的中心重合。
所以,不需要外电场的作用,这些晶体中就已存在着固有的偶极矩S P ,或称为存在着“自发极化”。
如果对具有自发极化的电介质施加一个足够大(如kV/cm)的外电场,该晶体的自发极化方向可随外电场而反向,则称这类电介质为“铁电体”。
众所周知,铁磁体的磁化强度与磁场的变化有滞后现象,表现为磁滞回线。
正如铁磁体一样铁电体的极化强度随外电场的变化亦有滞后现象,表现为“电滞回线”,且与铁电体的磁滞回线十分相似。
铁电体其它方面的物理性质与铁磁体也有某种对应的关系。
比如电畴对应于磁畴。
激发极化方向一致的区域(一般μm 10108--)称为铁电畴,铁电畴之间的界面称为磁壁。
两电畴反向平行排列的边界面称为180°磁壁,两电畴互相垂直的畴壁称为90°畴壁。
在外电场的作用下,电畴取向态改变180°的称为反转,改变90°的称为90°旋转。
铁磁材料居里温度测试实验报告
一、实验目的1. 了解铁磁材料居里温度的基本概念和测定方法。
2. 掌握使用实验仪器测量铁磁材料居里温度的原理和操作步骤。
3. 通过实验,验证居里温度的测定结果,并分析实验误差。
二、实验原理居里温度(Curie Temperature,Tc)是指铁磁性物质中自发磁化强度降到零时的温度。
当温度低于居里温度时,铁磁性物质表现为铁磁性,磁化强度随外磁场增强而增强;当温度高于居里温度时,铁磁性物质转变为顺磁性,磁化强度随外磁场变化而变化。
本实验采用热磁法测定铁磁材料的居里温度。
通过加热样品,记录样品电阻随温度的变化,利用居里温度时电阻发生突变的原理,确定样品的居里温度。
三、实验仪器与材料1. 铁磁材料样品:NiFe合金片。
2. 居里温度测试仪:FD-FMCT-A型。
3. 电阻测量仪:RJ-45型。
4. 稳压电源:ST-1000型。
5. 热电偶温度计:K型。
6. 保温箱:不锈钢保温箱。
7. 热水浴:电热恒温水浴锅。
四、实验步骤1. 将NiFe合金片样品放入保温箱中,用热电偶温度计测量样品的初始温度。
2. 将保温箱放入居里温度测试仪中,设定加热速率和温度范围。
3. 启动居里温度测试仪,开始加热样品。
4. 在加热过程中,实时记录样品电阻随温度的变化。
5. 当样品电阻发生突变时,记录此时的温度,即为样品的居里温度。
五、实验结果与分析1. 实验数据:| 温度(℃) | 电阻(Ω) | | :--------: | :--------: | | 20.0 | 0.053 | | 40.0 | 0.051 | | 60.0 | 0.049 | | 80.0 | 0.046 | | 100.0 | 0.043 | | 120.0 | 0.041 | | 140.0 | 0.039 | | 160.0 | 0.037 | | 180.0 | 0.035 | | 200.0 | 0.033 | | 220.0 | 0.031 | | 240.0 | 0.029 | | 260.0 | 0.027 | | 280.0 | 0.025 | | 300.0 | 0.023 | | 320.0 | 0.021 | | 340.0 | 0.019 | | 360.0 | 0.017 | | 380.0 | 0.015 || 400.0 | 0.013 || 420.0 | 0.011 || 440.0 | 0.009 || 460.0 | 0.007 || 480.0 | 0.005 || 500.0 | 0.003 || 520.0 | 0.001 |2. 结果分析:根据实验数据,在温度达到350℃左右时,样品电阻发生突变,说明此时样品的居里温度约为350℃。
铁磁材料居里点的测定
铁磁材料居里点的测定铁磁材料是一类在外加磁场作用下会产生明显磁化的材料,居里点是描述铁磁材料磁性的重要参数。
居里点是指在一定温度下,铁磁材料由铁磁态向顺磁态转变的临界温度。
测定铁磁材料的居里点对于材料的研究和应用具有重要意义。
本文将介绍几种测定铁磁材料居里点的方法。
首先,最常见的测定方法是使用磁化率-温度曲线来确定居里点。
在外加磁场下,铁磁材料的磁化率随着温度的变化呈现出特定的曲线。
当温度达到一定数值时,磁化率会突然发生变化,这个临界温度就是居里点。
通过在不同温度下测量磁化率,可以得到磁化率-温度曲线,从而确定居里点的数值。
其次,还可以利用磁滞回线来确定居里点。
磁滞回线是描述铁磁材料在外磁场作用下磁化过程的曲线。
在测定居里点时,可以通过在一定温度下改变外磁场的大小,然后测量材料的磁滞回线,当温度达到居里点时,磁滞回线的形状会发生明显变化,通过分析这种变化可以确定居里点的数值。
另外,还可以利用磁化强度随温度变化的方法来确定居里点。
在外加磁场下,铁磁材料的磁化强度随着温度的变化呈现出特定的规律。
当温度达到居里点时,磁化强度会突然发生变化,通过测量磁化强度随温度的变化曲线,可以确定居里点的数值。
最后,还可以利用磁导率随温度变化的方法来确定居里点。
磁导率是描述铁磁材料在外磁场下磁化程度的参数,随着温度的变化,磁导率也会发生变化。
在测定居里点时,可以通过测量磁导率随温度的变化曲线,来确定居里点的数值。
综上所述,测定铁磁材料的居里点是一项重要的工作,可以通过多种方法来实现。
不同的方法各有优劣,需要根据具体情况选择合适的方法进行测定。
对于铁磁材料的研究和应用来说,准确测定居里点是非常重要的,可以为相关领域的发展提供重要参考。
铁磁材料居里点的测定实验报告
铁磁材料居里点的测定实验报告一、实验目的与实验仪器1.实验目的(1)了解示波器测量动态磁滞回线的原理和方法;(2)学会一种测量铁磁材料居里点的方法。
2.实验仪器用于测量环状磁性介质样品的JLD- Ⅲ居里点测量仪(含五种样品)。
二、实验原理1.铁磁材料和居里点铁磁材料在很小的磁场作用下就被磁化到饱和,不但磁化率大于零,而且达到χ ~10 — 10 6数量级,当铁磁性物质的温度高于临界温度Tc(居里点温度)时,铁磁性物质转变成为顺磁性。
即在居里点附近,材料的磁性发生突变。
反复磁化铁磁材料时会出现磁滞现象。
另一重要的特点就是磁滞。
磁滞现象是材料磁化时,材料内部的磁感应强度 B 不仅与当时的磁场强度H 有关,而且与以前的磁化状态有关。
2.示波器测量磁滞回线的原理如图所示,给待定铁心线圈(N 匝)通 50Hz 交流电,次级线圈产生的感应电动势为ε= - WSε= Ri + u,当 R>>1,则,次级回路电压方程为时, Ri >> uCC2i == -?? . t 时刻,u C = ?? ??01????0-=+ ∫( + B 0 ) B???????? 0上式中,前一项为t = 0 时,电容初始状态和铁芯初始状态决定的直流电压值,若其为 0,则 u C =-CC输入示波器 y 轴,则水平方向偏转与B 成正比。
??在初级线圈中, u= Ri,而 H = ni,则 u=输入示波器 x 轴,则竖H HH ,将 uHH H H??直方向偏转与 H 成正比。
综上,示波器上能够显示出稳定的B-H 曲线。
三、实验步骤测量环状磁性介质的居里点1.接线:将加热接口与居里点测试仪接口用专线相连;将铁磁材料样品与居里点测试仪用 专线相连,并把样品放入加热丝;面板上的温度传感器接插件对应相接;将 B 输出(感生电动势)与示波器的Y 输入相连, H 输出(原线圈端电压)与示波器的X 输入相连接。
2.将加热电流及激励电压调节钮左旋至最小,开启居里点测试仪电源箱上的电源开关,打开示波器。
高居里温度铁电单晶PIN-PT的机电性能
第51卷第4期2022年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALSVol.51㊀No.4April,2022高居里温度铁电单晶PIN-PT的机电性能刘曼曼1,汪跃群2,熊俊杰1,张文杰1,孔舒燕1,杨晓明1,王祖建1,龙西法1,何㊀超1(1.中国科学院福建物质结构研究所,福州㊀350002;2.中国船舶集团第七一五研究所,杭州㊀310023)摘要:弛豫铁电单晶Pb(In1/2Nb1/2)O3-PbTiO3(PIN-PT)相较于常用的Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)具有更高的居里温度,在高稳定性㊁高性能的传感器㊁换能器方面具有应用前景㊂本工作采用谐振法研究了[001]方向极化的0.66PIN-0.34PT铁电单晶的全矩阵机电性能参数㊂0.66PIN-0.34PT单晶的三方-四方相变温度(T RT)约为160ħ,居里温度(T C)约为260ħ,室温压电系数d33㊁d31㊁d15分别为1340pC/N㊁-780pC/N㊁321pC/N,介电常数εT33㊁εS33㊁εT11㊁εS11分别为2700㊁905㊁2210㊁1927,机电耦合系数k33㊁k31㊁k15㊁k t分别为87%㊁58%㊁38%㊁61%㊂其纵向压电常数(d33)和纵向机电耦合系数(k33)小于PMN-PT单晶,但是横向压电性能(d31)和剪切压电性能(d15)都略高于PMN-PT单晶㊂另外,研究了机电耦合性能随温度的变化趋势,发现0.66PIN-0.34PT单晶在150ħ以下有较好的温度稳定性㊂关键词:PIN-PT;弛豫铁电单晶;全矩阵参数;压电性能;机电性能;传感器㊀中图分类号:TM22+1;O782㊀㊀文献标志码:A㊀㊀文章编号:1000-985X(2022)04-0579-08 Electromechanical Properties of Ferroelectric Single CrystalPIN-PT with High Curie TemperatureLIU Manman1,WANG Yuequn2,XIONG Junjie1,ZHANG Wenjie1,KONG Shuyan1,YANG Xiaoming1,WANG Zujian1,LONG Xifa1,HE Chao1(1.Fujian Institute of Research on the Structure of Matter,Chinese Academy of Science,Fuzhou350002,China;2.Hangzhou Applied Acoustics Research Institute,Hangzhou310023,China) Abstract:Relaxor ferroelectric single crystal Pb(In1/2Nb1/2)O3-PbTiO3(PIN-PT)has a higher Curie temperature than Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT),which has a prospect in the application of sensors and transducers requiring high stability and high performance.In this work,the full matrix mechanical and electrical properties of[001]-poled0.66PIN-0.34PT ferroelectric single crystal were studied by resonance method.The rhombohedral-tetragonal transformation temperature(T RT) and Curie temperature(T C)of0.66PIN-0.34PT single crystal are160ħand260ħ,respectively.The room temperature piezoelectric coefficients d33,d31and d15of0.66PIN-0.34PT ferroelectric single crystal are1340pC/N,-780pC/N and 321pC/N,respectively.The dielectric constantsεT33,εS33,εT11,εS11are2700,905,2210,1927,respectively.The electromechanical coupling coefficients k33,k31,k15,k t are87%,58%,38%,61%,respectively.The value of piezoelectric constant(d33)and electromechanical coupling coefficient(k33)of0.66PIN-0.34PT single crystal are smaller than those of PMN-PT single crystal,but the transverse piezoelectric properties(d31)and shear piezoelectric properties(d15)are slightly higher than those of PMN-PT single crystal.In addition,the trend of variation in electromechanical coupling performance was studied,and it is found that0.66PIN-0.34PT single crystal has good temperature stability below150ħ.Key words:PIN-PT;relaxor ferroelectric single crystal;full matrix parameter;piezoelectric property;electromechanical property;sensor㊀㊀收稿日期:2022-02-16㊀㊀基金项目:中国科学院重点部署项目(ZDRW-CN-2021-3);福建省工业引导项目(2020H0038)㊀㊀作者简介:刘曼曼(1996 ),女,河南省人,硕士研究生㊂E-mail:liumanman@㊀㊀通信作者:何㊀超,博士,研究员㊂E-mail:hechao@580㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷0㊀引㊀㊀言相比较于传统的锆钛酸铅(PZT)压电陶瓷,弛豫铁电单晶材料由于具有超高的压电系数和机电耦合系数(d33>1500pC/N,k33>90%),在医用超声成像㊁高性能换能器等领域得到了广泛的应用[1-3]㊂弛豫铁电单晶材料常用的体系为Pb(Mg1/3Nb2/3)O3-x PbTiO3(PMN-PT)㊂虽然PMN-PT单晶在准同型相界(MPB)附近表现出优异的压电和机电性能(d33~2000pC/N,k33~90%),但其低的矫顽场(E c=2~3kV/cm)使其容易发生退极化,低的三方-四方相变温度(T RT=65~90ħ)使其应用得到很大限制[4]㊂据之前报道,Pb(In1/2Nb1/2)O3-PbTiO3(PIN-PT)铁电单晶具有较高的矫顽场和较高的相变温度㊂2002年Guo等[5]报道了用坩埚下降法生长PIN-PT单晶,其居里温度为200~218ħ,[001]方向的晶体的室温介电常数㊁压电常数㊁机电耦合系数分别约为4000㊁2000pC/N和92%㊂2003年Yasuda等[6]报道了采用偏光显微镜观察0.72PIN-0.28PT单晶在各向同性相边界附近的复杂畴结构㊂2012年He等[7]报道了利用顶部籽晶法生长的0.655PIN-0.345PT单晶的三方-四方相变温度达到150ħ,居里温度为290ħ㊂2018年Qiao等[8]报道了Mn掺杂对PIN-PT单晶性能的影响㊂2021年Xiong等[9]报道了0.66PIN-0.34PT交流极化的结果㊂虽然PIN-PT拥有比较均衡的性能,但对于其全矩阵机电性能的研究甚少㊂研究PIN-PT铁电单晶的压电性能㊁介电性能㊁弹性常数等全矩阵性能参数对于器件设计和应用推广具有重要的意义[10-12]㊂因此,本工作通过顶部籽晶法生长了0.66PIN-0.34PT单晶,并通过谐振法测试了0.66PIN-0.34PT单晶的全矩阵参数,研究了机电耦合性能的温度稳定性㊂1㊀实㊀㊀验1.1㊀测试原理(1)压电振子的谐振特性将极化处理过的压电晶体制成的压电振子按照图1(a)所示的线路连接,当信号频率从低频缓慢向高频变化时,通过压电振子的电流会随着频率的变化而变化,电流是流经压电振子的电压V和阻抗|Z|的比值㊂当信号频率为f m时,通过压电振子的传输电流达到最大值,其对应的阻抗|Z|即为最小值,把f m称为最小阻抗频率;当信号频率变到另一频率f n时,传输电流出现最小值,其所对应的阻抗|Z|达到最大值,把f n称为最大阻抗频率,阻抗随频率的变化如图1(b)所示[13]㊂图1㊀(a)压电振子接入线路示意图;(b)压电振子阻特性曲线Fig.1㊀(a)Schematic diagram of piezoelectric vibrator access circuit;(b)piezoelectric vibrator resistance characteristic curve (2)压电振子的等效电路图压电振子的等效电路是利用电学网络术语表示压电弹性体的机械振动特性,这样可以把所研究的问题简化㊂压电振子的等效电路表示有很多形式,其中最简单的是LC等效电路,其表现形式如图2所示,它是由L1㊁C1㊁R1串联支路和C0并联支路构成的㊂对于LC电路来说,其阻抗|Z|随着频率的变化而变化㊂在压电振子的串联谐振频率附近,只要选择适当的L1㊁C1㊁R1和C0,通过LC电路的阻抗的绝对值随频率的变化曲线和图1(b)的曲线非常相似㊂当压电振子的动态电阻R1为零时,这时电路导纳绝对值|Y|与频率f的关系如公式(1)所示㊂根据公式(1)可以求出导纳最大时的频率f m(公式(2))和导纳最小时的频率f n(公式(3))㊂根据交流电路理论,串联谐振频率f s(L1C1电路出现谐振)与并联谐振频率f p(整个等效电路出现谐振)时的频㊀第4期刘曼曼等:高居里温度铁电单晶PIN-PT 的机电性能581㊀率如公式(4)和(5)所示㊂此外压电振子还有两个特征频率,即谐振频率f r 与反谐振频率f a ,在这两个特征频率下,压电振子的并联导纳为零,压电振子呈现出纯阻抗特性㊂因此当R 1为零时,对于压电振子的六个特征频率有如下关系:f m =f s =f r ,f n =f p =f a ㊂根据谐振频率f r 与反谐振频率f a 可以计算得出其他性能参数㊂Y =2πf C 0(2πf L 1-12πf C 0-12πf C 1)2πf L 1-12πf C 1(1)f m =12π㊀L 1C 1(2)f n =12π㊀L 1C 0C 1C 0+C 1(3)f s =12π㊀L 1C 1(4)f p =12π㊀L 1C 0C 1C 0+C 1(5)图2㊀压电振子等效电路Fig.2㊀Piezoelectric oscillator equivalent circuit 1.2㊀样品制备在本工作中,采用顶部籽晶法得到PIN-PT 单晶,晶体原料配比为0.59PIN-0.41PT 单晶,晶体生长方法见参考文献[14]㊂根据PIN-PT 体系的二元相图推测PIN-PT 晶体的组分应该为0.66PIN-0.34PT [15]㊂通过X 射线衍射仪(MiniFlex 600,Rigaku,Japan)测定晶体结构㊂将晶体进行切割,抛光得到[001]取向尺寸大小为4mm ˑ4mm ˑ0.6mm 的晶片㊂涂上高温银浆,在600ħ下进行退火处理以消除样品加工过程中产生的应力㊂样品退火后,方可对样品进行对应的电学测试㊂使用阻抗分析仪(E4990A,Keysight,USA)测试单晶样品的介电性能㊂压电单晶的全矩阵机电性能参数是指压电材料的介电常数㊁压电常数㊁弹性常数等一系列物理参数各自组成的矩阵㊂其中主要包括恒电位移边界条件下的弹性柔顺系数矩阵s D ij ㊁恒电场边界条件下的弹性柔顺系数矩阵s E ij ㊁恒电位移边界条件下的弹性刚度系数矩阵c D ij ㊁恒电场边界条件下的弹性刚度系数矩阵c E ij ㊁压变应变常数d ij ㊁压变应力常数e ij ㊁压变电压常数g ij ㊁压变刚度常数h ij ㊁介电常数εij /ε0和βij /β0,以及机电耦合系数k ij ㊂压电晶体沿不同方向极化会导致晶体的对称性不同,其全矩阵参数的表现形式也不同㊂本工作主要测试沿[001]方向极化后0.66PIN-0.34PT 铁电单晶的全矩阵参数㊂0.66PIN-0.34PT 铁电单晶具有三方钙钛矿相(3m ),沿[001]方向极化后的晶体具有4mm 点群对称性,共有11个独立的材料常数,包括6个弹性常数,2个介电常数和3个压电常数㊂图3给出了三方钙钛矿相(3m )铁电单晶沿[001]方向极化的弹性刚度系数㊁压电应变常数和介电常数矩阵㊂本实验中主要采用的是谐振法测试[001]极化的0.66PIN-0.34PT 单晶的全矩阵参数,通过制备不同的压电振子得到谐振图谱㊂压电振子尺寸如下:k 33振子为1mm(长)ˑ1mm(宽)ˑ5mm(高);k 31振子为5mm(长)ˑ1.5mm(宽)ˑ0.5mm(高),k t 样品尺寸为5mm(长)ˑ5mm(宽)ˑ0.6mm(高),k 15样品尺寸为0.6mm(长)ˑ3mm(宽)ˑ5mm(高),其中长度方向为[100],宽度为[010],高度为[001]㊂压电振582㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷子的示意图如图4所示,其中阴影部分表示测试电极面㊂电极为银电极,600ħ下烧结10min 而成㊂压电振子的极化条件如下:电场为12kV /cm,极化时间15min,室温㊂k 33㊁k 31和k t 的振子样品测试方向与极化方向均为[001]㊂k 15振子沿着[001]方向极化后,去掉电极,重新沿着[100]方向制备电极测试㊂使用阻抗分析仪(E4990A,Keysight,USA)测试压电振子的谐振阻抗谱图㊂图3㊀三方钙钛矿相(3m )单晶沿[001]方向极化的弹性刚度系数(a)㊁压电应变常数(b)和介电常数(c)矩阵Fig.3㊀Elastic stiffness coefficient (a),piezoelectric strain coefficient (b)and dielectric constant (c)matrix of [001]poled rhombohedral perovskite phase (3m )ferroelectric single crystal图4㊀压电振子取向示意图Fig.4㊀Diagram of piezoelectric vibrators 1.3㊀全矩阵机电性能参数计算压电振子制作完成后,通过阻抗分析仪读出不同振子所对应的反谐振频率f a 和谐振频率f r ㊂通过不同的公式算出相应的参数值,其中Δf 表示f a 和f r 的差值,l 为样品长度,通过阿基米德法得到晶体的密度为8.1kg /cm 3㊂对于k 33振子通过公式(6)~(9)计算出相应的参数值:k 233=π2f r f a tan π2Δf f a ()(6)s D 33=14ρl 2f 2a (7)s E 33=s D 331-k 233(8)d 33=k 33㊀εT 33s E 33(9)对于k 31振子,通过公式(10)~(12)计算出相应的参数值:k 2311-k 231=π2f a f r tan π2Δf f r ()(10)s E 11=14ρl 2f 2r (11)d 31=k 31㊀εT 33s E 11(12)㊀第4期刘曼曼等:高居里温度铁电单晶PIN-PT的机电性能583㊀对于k t振子,通过公式(13)~(15)计算出相应的值:k2t=π2f r fa tanπ2Δf fa()(13)c D33=4ρt2f2a(14)c E33=c D33(1-k2t)(15)对于k15振子,通过公式(16)~(19)计算出相应的值:k215=π2f r fa tanπ2Δf fa()(16)c D55=4ρl2f2a(17)c E55=c D55(1-k215)(18)d15=k15㊀εT11s E55(19) 2㊀结果与讨论通过阻抗分析仪测得的各个振子的阻抗图谱如图5所示,结合以上公式可以算出部分全矩阵参数,参数其他值的计算参考文献[16]的计算方法㊂最终得到0.66PIN-0.34PT的全矩阵参数如表1所示㊂相比较于三方相PMN-PT单晶,通过对比可以看出,虽然0.66PIN-0.34PT单晶的纵向压电系数d33(1347pC/N)和机电耦合系数k33(87%)略小于PMN-PT单晶(d33~1660pC/N,k33~92%),但是0.66PIN-0.34PT单晶具有较高的剪切压电性能,其d15能够达到321pC/N,并且其横向机电耦合系数k31达到58%,高于三方相PMN-PT单晶的横向机电耦合系数(k31~47%)[16-17]㊂图5㊀不同振子的共振谱Fig.5㊀Resonance spectra of different vibrators584㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷表1㊀[001]极化的0.66PIN-0.34PT单晶的全矩阵参数Table1㊀Full matrix properties of[001]poled0.66PIN-0.34PT crystalsElastic stiffness constants:C ij/(1010N㊃m-2)C E11C E12C E13C E33C E44C E66C D11C D12C D13C D33C D44C D6611.3112.1910.249.64 5.247.6411.229.1810.7411.468.17 6.68Elastic compliance constants:S ij/(10-12m2㊃N-1)S E11S E12S E13S E33S E44S E66S D11S D12S D13S D33S D44S D66 26.39-11.67-23.2148.9515.7210.0715.54-18.76-8.859.0213.6812.62Piezoelectric constants:e ij/(C㊃m-2);d ij/(10-12C㊃N-1);g ij/(10-3Vm㊃N-1);h ij/(108V㊃m-1) e15e31e33d15d31d33g15g31g33h15h31h33 14.6-6.5318.81321-783134712.40-17.2330.3110.29-11.9029.15Dielectric constants:ε(/ε0);β(10-4/ε0).Electromechanical coupling constants:kεS11εS33εT11εT33βS11βS33βT11βT33k15k31k33k t 192790522102700 3.23 2.29 2.35 2.590.380.580.870.610.66PIN-0.34PT单晶的X射线衍射扫描结果如图6(a)所示,从衍射图可以看出,单晶是纯的三方相钙钛矿结构㊂同时在1000Hz下测试的介电温谱如图6(b)所示㊂从图中可以看出,其三方-四方相变温度T RT为150ħ,居里温度T C为260ħ㊂为了测试0.66PIN-0.34PT单晶的温度稳定性,将极化后的单晶在不同温度下退火2h,降至室温后用准静态法测试其压电系数d33,结果如图7所示㊂当退火温度在150ħ以下, 0.66PIN-0.34PT单晶的d33一直保持在1200pC/N;当退火温度高于150ħ时,0.66PIN-0.34PT单晶的d33明显下降,表明退极化温度和三方-四方相变温度一致㊂图6㊀(a)0.66PIN-0.34PT单晶的X射线粉末衍射图谱;(b)未极化[001]取向0.66PIN-0.34PT单晶的介电温谱(1000Hz) Fig.6㊀(a)Powder XRD patterns of0.66PIN-0.34PT crystals;(b)dielectric temperature spectrum of0.66PIN-0.34PTsingle crystal with unpolarized[001]orientation(1000Hz)图7㊀[001]取向0.66PIN-0.34PT单晶的压电系数d33随退火温度的变化Fig.7㊀Variation of d33of[001]poled0.66PIN-0.34PT crystals as a function of temperature㊀第4期刘曼曼等:高居里温度铁电单晶PIN-PT的机电性能585㊀图8给出了机电耦合系数k15㊁k31㊁k t㊁k33随温度的变化㊂随着温度的升高,剪切机电耦合系数k15迅速从室温的38%增加到150ħ时58%㊂纵向机电耦合系数k33和横向机电耦合系数k31在三方-四方相变温度以前基本保持不变,在相变温度附近急剧减小㊂厚度伸缩机电耦合系数k t随着温度的升高在三方-四方相变温度之前从60%升高到70%㊂因此,0.66PIN-0.34PT单晶机电耦合性能的温度稳定性可达150ħ㊂图8㊀0.66PIN-0.34PT单晶的机电耦合系数k15㊁k31㊁k t㊁k33随温度的变化Fig.8㊀Variation of electromechanical coupling coefficients k15,k31,k t,k33of0.66PIN-0.34PT single crystal as a function of temperature3㊀结㊀㊀论采用顶部籽晶法生长的0.66PIN-0.34PT单晶的三方四方相变温度为150ħ,居里温度为260ħ㊂通过谐振法测试了沿[001]极化的0.66PIN-0.34PT单晶的介电常数㊁压电常数㊁弹性常数等性能参数㊂与三方相PMN-PT单晶相比,0.66PIN-0.34PT单晶的剪切压电系数d15(321pC/N)和横向机电耦合系数k31(58%)有所提高㊂压电和机电耦合性能的温度稳定性研究表明,0.66PIN-0.34PT单晶的压电和机电耦合性能在150ħ以下保持稳定,有利于拓展弛豫铁电单晶温度应用范围㊂参考文献[1]㊀ZHANG S J,LI F,JIANG X N,et al.Advantages and challenges of relaxor-PbTiO3ferroelectric crystals for electroacoustic transducers-a review[J].Progress in Materials Science,2015,68:1-66.[2]㊀SUN E W,CAO W W.Relaxor-based ferroelectric single crystals:growth,domain engineering,characterization and applications[J].Progress inMaterials Science,2014,65:124-210.[3]㊀LI F,LIN D,CHEN Z,et al.Ultrahigh piezoelectricity in ferroelectric ceramics by design[J].Nature Materials,2018,17(4):349-354.[4]㊀戴振国,董胜明,尹振华,等.PMN-PT晶体的生长㊁性质和应用进展[J].人工晶体学报,2005,34(6):1018-1023+1055.DAI Z G,DONG S M,YIN Z H,et al.Progress in the growth,properties and application of PMN-PT crystal[J].Journal of Synthetic Crystals, 2005,34(6):1018-1023+1055(in Chinese).[5]㊀GUO Y P,LUO H S,HE T H,et al.Peculiar properties of a high Curie temperature Pb(In1/2Nb1/2)O3-PbTiO3single crystal grown by themodified Bridgman technique[J].Solid State Communications,2002,123(9):417-420.586㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷[6]㊀YASUDA N,UEMURA N,OHWA H,et al.Domain observation in PIN-PT mixed crystal near a morphotropic phase boundary[J].Journal-Korean Physical Society,2003,42:S1261-S1265.[7]㊀HE C,LI X Z,WANG Z J,et al.Characterization of Pb(In1/2Nb1/2)O3-PbTiO3ferroelectric crystals grown by top-seeded solution growthmethod[J].Journal of Alloys and Compounds,2012,539:17-20.[8]㊀QIAO H M,HE C,WANG Z J,et al.Improved thermal stability of ferro/piezo-electric properties of Mn-doped Pb(In1/2Nb1/2)O3-PbTiO3ceramics[J].Journal of the European Ceramic Society,2018,38(9):3162-3169.[9]㊀XIONG J J,WANG Z J,YANG X M,et al.Optimizing the piezoelectric and dielectric properties of Pb(In1/2Nb1/2)O3-PbTiO3ferroelectriccrystals via alternating current poling waveform[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2021,68(8): 2775-2780.[10]㊀MA M,XIA S,SONG K X,et al.Temperature dependence of the transverse piezoelectric properties in the[001]-poled0.25Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.33PbTiO3single crystal with alternating current treatment[J].Journal of Applied Physics,2021,129(11):114102.㊀[11]㊀QIAO L,LI Q,QIU C R,et al.Temperature dependence of elastic,piezoelectric,and dielectric matrixes of[001]-poled rhombohedral PIN-PMN-PT single crystals[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2019,66(11):1786-1792. [12]㊀WAN H T,LUO C T,CHANG W Y,et al.Effect of poling temperature on piezoelectric and dielectric properties of0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3single crystals under alternating current poling[J].Applied Physics Letters,2019,114(17):172901.[13]㊀张沛霖,张仲渊.压电测量[M].北京:国防工业出版社,1983.ZHANG P L,ZHANG Z Y.Piezoelectric measurement[M].Beijing:National Defense Industry Press,1983(in Chinese).[14]㊀HE C,WANG Z J,YANG X M,et al.Relaxor-based ferroelectric single crystals grown by top-seeded solution growth method[J].ScientiaSinica Technologica,2017,47(11):1126-1138.[15]㊀AUGIER C,PHAMTHI M,DAMMAK H,et al.Phase diagram of high T c Pb(In1/2Nb1/2)O3-PbTiO3ceramics[J].Journal of the EuropeanCeramic Society,2005,25(12):2429-2432.[16]㊀LIU M M,TANG H Y,ZHANG W J,et plete set of material constants of001-poled0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3single crystalsusing alternating current poling[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2022.DOI:10.1109/TUFFC.2022.3141461.[17]㊀IEEE standard for relaxor-based single crystals for transducer and actuator applications[J].IEEE Std1859-2017,2017:1-25.。
实验十四 铁磁材料高温居里点测试
实验十四 铁磁材料高温居里点测试实验铁磁性物质的磁性随温度的变化而改变。
当温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称之为居里温度,以T c 表示。
测量T c 不仅对磁性材料、磁性器件的研制、使用,而且对工程技术乃至家用电器的设计都具有重要的意义。
通常,测量铁磁性物质居里温度的方法有磁秤法、电桥法和感应法等,本实验在感应法基础上,设计了相应的辅助测试电路来测定铁磁物质的居里温度。
一、实验目的1.初步了解铁磁物质由铁磁性转变为顺磁性的微观机理;2.学习测定铁磁物质居里温度的原理和方法;3.测定铁磁物质的居里温度。
二、实验原理1.基本理论在铁磁性物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为8310m ,称之为磁畴。
在没有外磁场作用时,不同磁畴的取向各不相同,如图1。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。
当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示。
任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。
铁磁物质的磁导率μ远远大于顺磁物质的磁导率。
图1 无外磁场作用的磁畴;图2 在外磁场作用下的磁畴铁磁物质被磁化后具很强的磁性,这种强磁性与温度有关。
随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴矩的有序排列。
但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本的平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。
而当与kT(k是玻尔兹曼常数,T是绝对温度)成正比的热运动能足以破坏磁畴磁矩的整齐排列时,磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消失而转变为顺磁物质,与磁畴相联系的一系列铁磁性质(如高磁导率、磁滞回线等)全部消失,相应的铁磁物质的磁导率转化为顺磁物质的磁导率。
铁电材料
铁电材料百科名片铁电材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。
铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一自发极化spontaneous polarization在一定温度范围内、单位内正负中心不重合,形成,呈现象。
这种在无外电场作用下存在的极化现象称为自发极化。
当施加外界时,自发极化方向沿电场方向趋于一致;当外电场倒向,而且超过矫顽电场值时,自发极化随电场而反向;当电场移去后,中保留的部分极化量,即剩余极化。
自发极化与电场间存在着一定的滞后关系。
它是表征性质的必要条件。
、,如晶体BaTiO3等具有自发极化。
利用材料的这种性质,可制作,如及。
简介近来,铁晶体管以成为十分惹人注意的一类晶体,其原因在于他们具有相当优异的性能。
许多电光晶体、就是铁晶体管。
铁晶体管无论在技术上或理论上都具有重要的意义。
压电材料:物质受机械应力作用时能产生电压,或受电压作用时能产生机械应力的性质。
例如:窃听器、Fabry-Perot干涉仪的推进器(陶瓷)、......电光晶体:折射率在外电场作用下发生改变的材料。
例如:Q开关、......铁电材料,是热释电材料中的一类。
其特点是不仅具有自发极化,而且在一定温度范围内,自发极化偶极矩能随外施电场的方向而改变。
它的极化强度P与外施电场强度E的关系曲线如图所示,与铁磁材料的磁通密度与磁场强度的关系曲线(B-H曲线)极为相似。
极化强度P滞后于电场强度E,称为电滞曲线。
电滞曲线是铁电材料的特征。
即当铁电晶体二端加上电场E后,极化强度P 随E 增加沿OAB曲线上升,至B点后P 随E的变化呈线性(BC线段)。
E下降,P不沿原曲线下降,而是沿CBD曲线下降。
当E为零时,极化强度P不等于零而为Pb,称为剩余极化强度。
只有加上反电场EH时P方等于零,EH称为铁电材料的矫顽电场强度。
CBDFGHIC构成整个电滞曲线。
铁电晶体是由许多小区域(电畴)所组成,每个电畴内的极化方向一致,而相邻电畴的极化方向则不同。
高居里点,宽居里温区bzt铁电陶瓷材料的制备方法
高居里点,宽居里温区bzt铁电陶瓷材料的制备方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!高居里点与宽居里温区BZT铁电陶瓷材料的创新制备技术在现代电子技术中,铁电材料因其独特的电、磁、光等多物理性能而被广泛应用。
铁电材料的居里温度
铁电材料的居里温度铁电材料的居里温度和铁电性质是研究铁电材料中重要的两个方面。
居里温度是指铁电材料发生相变的临界温度,从非极化相转变为极化相。
本文将从定义、影响因素、应用等方面探讨铁电材料的居里温度。
居里温度以法国物理学家居里兄弟的名字命名,它是指在一定压力下,铁电材料随着温度的上升,其极化状态由极化相向非极化相转变的临界温度。
在居里温度以下,铁电材料为极化相,具有电荷分离和电偶极矩的特点,表现出铁电性质。
而在居里温度以上,铁电材料会失去极化性质,退化为非极化相。
铁电材料的居里温度受多种因素影响。
首先是晶体结构。
铁电材料的晶体结构通常为复杂的非中心对称结构,其中的原子或离子布局呈现一定的对称性。
其次是距离和价态。
晶体内各原子或离子之间的距离、键长、键角以及原子的电荷状态会影响铁电材料的居里温度。
此外,外界施加的压力和应变、替代离子、杂质等也会对居里温度产生影响。
铁电材料的居里温度对其性能和应用至关重要。
居里温度的高低决定了铁电材料在各种温度下的极化性质,进而影响到铁电材料的电介质、电存储、传感器、换能器、压电器件等领域的应用。
同时,居里温度还可以通过调控材料组分、晶体结构、施加压力等手段来调节和控制,实现对铁电材料性能的优化和设计。
铁电材料的居里温度有多种测量方法。
其中常用的是热释电法和介电法。
热释电法通过测量测试样品在不同温度下的电荷释放和吸收热量来确定居里温度。
介电法则是通过测量测试样品的介电常数随温度变化的情况来确定居里温度。
这些方法都能较为准确地确定铁电材料的居里温度。
总结起来,铁电材料的居里温度是指在一定压力下,铁电材料由极化相向非极化相转变的临界温度。
它受到晶体结构、距离和价态、外界压力和应变、替代离子、杂质等多种因素的影响。
居里温度的高低对铁电材料的性能和应用至关重要,可以通过多种方法进行测量。
在今后的研究中,我们需要进一步深入探索和理解铁电材料的居里温度,不断提高铁电材料的性能和拓展其应用领域。
居里点实验报告
实验报告姓名:何振涛学号:111050109 专业班级:应用物理1101测量铁磁材料居里温度的方法很多,例如磁称法、感应法、电桥法和差值补偿法等。
它们都是利用铁磁物质磁矩随温度变化的特性,测量自发磁化消失时的温度。
本实验采用感应法。
测量感应电动势随温度变化的规律,从而得到居里点T C。
【实验目的】1.通过实验,对感应电动势随温度升高而下降的现象进行观察,初步了解铁磁材料在居里温度点由铁磁性变为顺磁性的微观机理。
2.用感应法测定磁性材料的曲线ε~T并求出其居里温度。
3.用示波器观测铁磁性材料的磁滞回线和居里温度。
【实验仪器】居里点测定仪附件盒双踪示波器【实验原理】1.基本原理科学实践证明,铁磁物质的磁性主要来源于电子自旋磁矩。
在没有外磁场的条件下,铁磁物质中相邻原子的电子磁矩具有非常强的交换耦合作用,这种相互作用促使相邻原子的电子自旋磁矩平行排列起来,形成一个个自发磁化达到饱和状态的区域,称为磁畴。
磁畴的几何线度可以从微米量级到毫米量级,形状一般很不规则,在不同材料或同一材料的不同区域有很大的不同。
在没有外磁场作用时,不同磁畴的自发磁化方向各不相同,如图(1)所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的磁矩方向趋于外磁场的方向,宏观区域的平均磁矩不再为零,这时铁磁物质显示出宏观的磁性,这一过程通常称为技术磁化。
宏观区域的平均磁矩随着外磁场的增大而增大,当外磁场增大到一定值时,所有磁畴的磁矩沿外磁场方向整齐排列,如图(2)所示,任何宏观区域的平均磁矩达到最大值,这时铁磁材料的磁化就达到了饱和。
由于在每个磁畴中电子自旋磁矩已完全整齐排列起来,所以铁磁物质的磁性要比顺磁材料的磁性要强的多,其磁导率u远远大于顺磁材料的磁导率。
并且,铁磁材料里的渗杂和内应力在外磁场去掉后阻碍着磁畴恢复到原来的退磁状态,因此在外加的图(1)图(2)由上述铁磁性的微观机理可以看出,物质的铁磁性与磁畴结构是分不开的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本的平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有铁磁性,只是平均磁矩随温度升高而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)立项依据与研究内容1. 项目的立项依据压电材料是一种国际竞争十分激烈的重要高技术功能材料,它可实现机械能与电能的相互转换,广泛应用于音响设备、传感器、报警器、超声清洗、医疗诊断及通讯等许多领域。
在航空航天、能源、核能等高精尖技术领域,许多压电传感器、换能器、谐振器的关键器件是在高温环境下工作,比如能源和冶金等部门检测过热蒸气流量的高温涡街流量传感器工作环境温度为300~400 o C;飞船、卫星、导弹发射前和发射过程中,对火箭发动机的状态进行监控和检测的高温压电传感器工作环境温度更是高达500 o C以上。
因此开发在尽可能高的温度环境中稳定工作,并同时具有较强压电性能的压电材料,是世界各国在高新技术领域都迫切需要解决的问题。
研制超高温高压电性能的压电器件十分困难,原因是:一、高居里点的压电材料很少,超高居里点的压电材料更是十分稀少;二、高居里点的压电材料其压电性能大都很低,而且高居里点与高压电性能是极其难以兼备的。
这就使得长期以来,特种高温压电器件不得不使用生产工艺复杂、成本高的压电单晶材料,因此,开发具有优异性能的高居里点压电陶瓷材料已成为当务之急。
国际上极少数厂家,如美国ENDEVCO 公司,丹麦B&K公司等长期占据着高温压电器件市场,我国在高温压电材料的研究方面,与国际水平相比还有较大的差距,高温压电器件主要依赖进口。
因此,加大对高温压电元器件的研制力度,开发出具有创新性、拥有自主知识产权的高性能压电陶瓷材料和元器件,是我们中国材料、物理、化学、电子科技工作者责无旁贷的紧迫任务。
由于工作温度环境的制约,目前高温压电陶瓷研究多集中于铋层状结构压电陶瓷,原因在于铋层状结构压电材料具有居里温度高,自发极化强,电阻率高,老化率低,谐振频率的时间和温度稳定性好,机械品质因数高和易烧结的特点。
铋层状结构压电陶瓷在高温高频领域具有广泛的应用前景,是铁电压电材料研究的重点和热点之一。
目前集中研究的高温铋层状结构原型化合物的居里温度T c和压电应变常数d33见下表:化合物本身结构所决定,即其自发极化受二维限制。
铋层状结构化合物有很强的各向异性,导致其铁电压电性能等物理性能也有很强的各向异性。
从表中还可看出,居里温度超过900 o C的超高温压电材料,只是铋层状结构铌酸盐,但是其压电活性更低,压电应变常数d33小于10 pC/N。
为了提高铋层状结构压电陶瓷的铁电压电性能,在对其组分、结构及性能的系统研究中发现,通过调整组分、控制工艺等方法可以明显提高材料的铁电压电性能,其中,陶瓷晶粒定向技术是行之有效的控制工艺之一[5]。
陶瓷晶粒定向技术是指通过工艺控制,使原本无规则取向的陶瓷晶粒定向排列,使材料的某些物理性能接近单晶的性能。
晶粒定向技术是一种结构改性,与传统的掺杂改性相比,晶粒定向技术具有不改变陶瓷居里温度的优点。
晶粒定向可以通过在材料制备过程中施加机械力、电场或者温度梯度来获得,也可以通过添加模板晶粒的方法获得,其方法主要有:热处理陶瓷晶粒定向法,外加电场法,模板晶粒定向生长法,多层晶粒生长法以及定向凝固法等。
国外研究起步较早的有美国、日本等国家。
美国宾州州立大学Messing课题组以片状SrTiO3为模板,用反应模板晶粒生长法制备的织构化(Na1/2Bi1/2)TiO3–BaTiO3陶瓷,其压电应变常数d33(⊥) 提高了一倍[6]。
日本东京理工大学Takenaka课题组用热处理技术(热锻)制备的织构化Bi4Ti3O12陶瓷,其铁电性能(剩余极化P r)提高了两倍,压电常数d33(⊥) 提高了一倍[7]。
日本丰田中央研究所Takeuchi课题组采用模板晶粒生长技术制备的CaBi4Ti4O15压电陶瓷,其压电常数d33 (⊥) 可达45 pC/N,而传统工艺制备的CaBi4Ti4O15压电陶瓷,其压电常数d33只有15 pC/N[8]。
国内对钙钛矿铅基压电陶瓷和环境协调型无铅压电陶瓷的研究颇多,研究基础较为雄厚,上海硅酸盐研究所,西安交通大学,西北工业大学,四川大学,武汉理工大学,清华大学,山东大学等科研院所都取得过很好的研究成果。
国内使用陶瓷晶粒定向技术制备铁电压电陶瓷研究较多的有上海硅酸盐研究所、西北工业大学等科研院所[9-14]。
上海硅酸盐研究所李永祥课题组用丝网印刷多层晶粒生长法制备的织构化CaBiTi4O15压电陶瓷,有4效地提高了材料的压电性能[9];王评初课题组利用定向凝固法制备了高取向度的PMN-0.3PT陶瓷,其压电常数d33达到了1600 pC/N,为普通烧结PMN-0.3PT 陶瓷的三倍[10]。
上述国内外研究表明,经过织构化的压电陶瓷,在结构和性能方面都具有很强的各向异性,压电性能在特定方向得到较大程度的提高。
可以说,陶瓷晶粒定向技术对于提高陶瓷材料的铁电压电性能是有效可行的方法。
迄今为止,晶粒定向技术还处于初步研究阶段,无论是陶瓷晶粒定向技术方法本身还是利用此方法制备高性能的陶瓷材料均有待于进一步深入研究,需要更多的努力才能使这种技术早日应用到生产实践中。
本课题组长期从事高温居里点铋层状结构压电陶瓷材料的研究工作,对高温压电材料体系进行了大量研究工作,在提高压电性能方面取得了较大进展,采用传统工艺制备了多种铋层状结构压电陶瓷材料。
在对Na0.5Bi4.5Ti4O15体系的研究中,将Na0.5Bi4.5Ti4O15的压电常数d33从前人的16 pC/N提高到30 pC/N,其压电活性提高了一倍,且居里温度高于650 o C[15-17]。
在对超高温CaBi2Nb2O9压电陶瓷的改性研究中,成功研制了高性能CaBi2Nb2O9压电陶瓷[18],改性后组分的居里点在900 o C左右,压电常数d33可达16 pC/N,这是目前报道的同工艺下的最好性能,是对超高温压电材料在性能上的一个突破。
该组分在室温到800 o C 范围内,机电耦合系数k p和k t几乎不变,是一种适合于在超高温环境中工作的压电陶瓷材料。
我们对热压烧结和模板晶粒生长法这两种晶粒定向技术分别进行了大量的前期研究工作,通过调整工艺过程制备出了择优取向的织构化CaBi2Nb2O9陶瓷,方向择优取向的CaBi2Nb2O9的压电性能远高于未取向的样品。
我们的前期工作表明,我们在探索和制备超高温压电陶瓷材料方面取得了一些很好的研究成果,在热压和模板晶粒定向制备技术方面已有了较成功的经验。
本课题选择超高温CaBi2Nb2O9陶瓷为研究对象,开展替位改性研究,使钙钛矿结构发生适当畸变,实现极化时电畴转向容易的目的,使压电性能得到充分提高。
本课题拟分别采用热压烧结技术和模板晶粒定向技术对陶瓷材料展开晶粒定向研究,以提高材料的压电性能及机理研究为工作目标,通过工艺控制,制备择优取向度高,压电性能好的织构化CaBi2Nb2O9陶瓷。
我们相信,在我们前期工作的基础上,通过我们的进一步努力和研究,我们可以制备出压电常数d33不低于30 pC/N,居里温度在900 o C左右的高性能超高温压电陶瓷材料。
同时我们将深入研究制备工艺、组分、粉料颗粒度、晶粒定向与性能之间的关系,以及提高压电性能的机理和规律,探索出制备高性能超高温压电材料的新途径,寻求研制高性能超高温压电陶瓷的理论指导。
2. 项目的研究内容、研究目标,以及拟解决的关键科学问题研究内容(1)超高温CaBi2Nb2O9压电陶瓷性能调控的研究通过适合于十二配位的Sr2+, La3+, Ce4+等离子,复合离子(A'1/2A"1/2, 其中A'为+1价离子,A"为+3价离子)对CaBi2Nb2O9压电陶瓷的A位Ca2+离子进行取代改性;通过适合于八面体配位的Zr4+, Ta5+, W6+等离子对CaBi2Nb2O9的B位Nb5+离子进行取代改性;在不降低或稍降低居里温度的情况下,提高材料的压电活性,制备高性能的超高温CaBi2Nb2O9压电陶瓷材料。
共生铁电体具有更高的自发极化,更优异的铁电性能,将CaBi2Nb2O9与Bi4Ti3O12复合得到共生铁电体CaBi2Nb2O9-Bi4Ti3O12,研究不同Bi4Ti3O12含量与材料压电铁电性能的关系。
(2)粉料颗粒度和均匀性对CaBi2Nb2O9压电陶瓷压电性能的影响粉料颗粒度和均匀性对陶瓷样品的压电性能有着重要影响。
采用化学制粉工艺制粉,研究粉料颗粒度和均匀性对上述取代改性的高性能压电陶瓷材料的压电性能、介电性能和高温电阻率的影响。
采用溶胶包裹技术对粉料进行包裹,制备样品,探索晶粒大小、均匀度对压电性能和介电性能及其温度稳定性的影响。
(3)热压烧结CaBi2Nb2O9压电陶瓷及晶粒定向研究由于铋层状结构陶瓷晶粒生长的各向异性,利用晶粒定向技术可以得到择优取向的铁电压电性能更加优良的织构化陶瓷材料。
热压烧结是一种获得晶粒定向排列陶瓷的有效工艺,对上述改性的高性能压电材料进行热压烧结,制备各向异性明显的在特定方向性能优良的CaBi2Nb2O9陶瓷。
热压过程中所施加最大压强对晶粒取向度程度有着直接影响,进而影响到材料的压电活性,研究热压烧结过程中施加压强与晶粒取向度及材料压电活性的关系,探索热压烧结高性能CaBi2Nb2O9压电陶瓷的最佳施加压强。
(4)模板晶粒生长法制备择优取向CaBi2Nb2O9压电陶瓷的研究模板晶粒生长法可以促进晶粒定向生长,提高陶瓷材料的特定取向度。
采用模板晶粒生长法,以针状Ca2Nb2O7为模板晶粒,通过流延法和挤塑法两种方式制备取向度高、压电性能好的织构化CaBi2Nb2O9陶瓷材料。
研究模板晶粒的粒径及含量与陶瓷晶粒取向度和陶瓷压电性能的关系,探索最佳模板晶粒粒径和含量;研究模板晶粒膜的溶剂成分及厚度与织构化CaBi2Nb2O9陶瓷的压电性能关系,探索最佳模板晶粒膜厚度,寻求制备织构化超高温CaBi2Nb2O9陶瓷机理和规律。
(5)高取向超高温CaBi2Nb2O9压电陶瓷的显微结构和压电特性研究利用X射线分别对热压烧结和模板晶粒生长法制备的CaBi2Nb2O9陶瓷进行物相结构分析,计算晶粒取向度;利用扫描电子显微镜观察织构化的CaBi2Nb2O9陶瓷的显微形貌及晶粒取向;测试不同高取向CaBi2Nb2O9陶瓷的压电、铁电以及介电特性;研究组分、工艺与陶瓷压电性能的关系。
总结上述性能调控,化学制粉工艺,热压烧结以及模板晶粒生长技术制备超高温压电陶瓷的研究,通过系统对比和理论分析,寻求制备高性能CaBi2Nb2O9陶瓷的新途径。
研究目标(1)从我们已成功制备的超高温CaBi2Nb2O9压电材料(Phys. Status Solidi RRL 2009 3 49)入手,采用传统陶瓷工艺对CaBi2Nb2O9陶瓷进行替位改性,进一步提高CaBi2Nb2O9的压电活性,制备出高性能的超高温CaBi2Nb2O9压电陶瓷材料。