电控燃油喷射系统图解

合集下载

汽油机电子控制燃油喷射系统PPT课件

汽油机电子控制燃油喷射系统PPT课件

二、电控燃油喷射系统的分类
(一)按喷射系统执行机构的不同分
多点喷射(MPI)
单点喷射(SPI)
(二)按喷射控制方式不同分
间歇喷射
连续喷射
(三)按喷射位置的不同分
进气道喷射式
缸内喷射式
(四)按空气流量测量方式分
速度密度控制
质量流量控制
节流速度控制
多点喷射
多点喷射系统是在 每缸进气口处装有 一只喷油器,由电 控单元(ECU)控制顺 序地进行分缸单独 喷射或分组喷射。 控制更为精确,使 发动机无论处于何 种状态,其过渡过 程的响应及燃油经 济性都是最佳的。
单点喷射系统结构简单,故障源少,可采用较低的喷油压力(只有0. 7—G1、G2耦合线圈; 反时针旋转怠速调整螺钉,旁通气道开口加大,发动机怠速转速升高。 该系统由传感器、电控单元(ECU)和执行器三部分组成 在油泵运转时,汽油不断穿过油泵和电动机,使之得到润滑和冷却。 V—点火信号产生电压 相比而言,由于缸外喷射方式汽油的喷油压力(0. 三是用直流电压表(万用表的直流电压挡),根据表针的摆动情况读取故障码。 7—G1、G2耦合线圈; (2)油路系统压力的检查 由于空气在进气管内的压力波动,该方法的测量精度稍差。
图2—1 多点喷射
返 回
单点喷射
由1~2个安装在 化油器所在的节气 门段的喷油器,将 燃油喷入进气流, 形成混合气进入进 气歧管,再分配到 各个气缸中。
单点喷射系统 结构简单,故障源 少,可采用较低的 喷油压力(只有 0.1MPa),成本低。
图2—2 单点喷射
返 回
间歇喷射
对每一个气缸的喷射都有一限制的喷射持续期,喷射是在进 气过程中的某段时间内进行的,喷射持续时间相应就是所控制的 喷油量。对于所有的缸内直接喷射系统和多数进气道喷射系统都 采用了间歇喷射的方式。间歇喷射由可细分为同时喷射、顺序喷 射和分组喷射。

2电控汽油喷射系统结构2

2电控汽油喷射系统结构2

三燃油系统在EFI系统中电动汽油泵将汽油从油箱泵出,经过燃油滤清器后再经压力调节器调压,将压力调整到比进气管压力高出约250kPa的压力,然后经输油管配送给各个喷油器和冷起动喷油器,喷油器根据ECU发来的喷射信号,把适量汽油喷射到进气歧管中。

当油路压力超过规定值时,压力调节器工作,多余的汽油返回油箱,从而保证送给喷油器的燃油压力不变。

当冷却水温度低时,冷起动喷油器工作,将燃油喷入进气总管,以改善发动机低温时起动性能。

燃油系统的框图及系统构成图如图1-31所示,它主要由汽油箱、电动汽油泵、燃油压力调节器、汽油滤清器、喷油器、冷起动喷油器和温度时间开关等构成。

图1-31 燃油系统框图及构成a)框图b)MPI燃油系统构成c)SPI燃油系统构成1-汽油箱2-电动汽油泵3-燃油滤清器4-喷油总管5-喷油器6-冷起动喷油器7-接进气歧管8-燃油压力调节器9-回油管10-各缸进气歧管11-吸入空气(一)燃油滤清器燃油滤清器把含在汽油中的氧化铁、粉尘等固体夹杂物质除去,防止燃油系统堵塞,减小机械磨损,确保发动机稳定运转,提高可靠性。

由于燃油系统发生故障,会严重影响车辆的行驶性能,所以为使燃油系统部件保持正常工作状态,燃油滤清器起着重要作用。

燃油滤清器要起到上述作用,应具有以下性能:1)过滤效率高;2)寿命长;3)压力损失小;4)耐压性能好;5)体积小、重量轻。

燃油滤清器安装在电动汽油泵的出口一侧,滤清器内部经常受到200kPa~300kPa的燃油压力,因此耐压强度要求在500kPa以上。

油管也应使用旋入式金属管,其结构如图1-32a 所示。

滤芯元件一般采用菊花形和盘簧形结构。

盘簧形具有单位体积过滤面积大的特点,如图1-32b所示。

图1-32 燃油滤清器a)总体结构 b)滤心元件构造(二)电动汽油泵电动汽油泵从油箱吸入汽油,加压后通过喷油器供给发动机。

电动汽油泵有两种安装方式:一种是在汽油箱外,安装在输送管路中的外装串联式;另一种是安装在油箱中的内装式。

彩色图解汽油机电子控制燃油喷射系统

彩色图解汽油机电子控制燃油喷射系统

彩色图解汽油机电子控制燃油喷射系统
电子控制燃油喷射系统(EFI)简称为“电控燃油喷射系统”“电喷系统”,是以电控单元为控制中心,并利用安装在发动机上的各种传感器测出发动机的各种运行参数,再按照电脑中预存的控制程序精确地控制喷油器的喷油量,使发动机在各种工况下都能获得最佳空燃比的可燃混合气。

电子燃油喷射系统组成
电子燃油喷射系统结构
主要部件
■ 喷油器
多点喷射系统的喷油器位于进气口处(下图)。

喷油器的作用是接受ECU送来的喷油脉冲信号,精确地控制燃油
喷射量。

喷油器结构▲
■空气流量计
空气流量计将吸入的空气流量转换成电信号送至电控单元(ECU),作为决定喷油的基本信号之一,是用来测定吸入发动机的空气流量的传感器。

翼片式空气流量计▲
汽油缸内直喷系统
汽油缸内直喷是将喷油嘴安装在燃烧室内,将汽油直接喷注在气
缸燃烧室内,空气则通过进气门进入燃烧室与汽油混合成混合气被点燃做功,这种形式与直喷式柴油机相似(下图)。

目前一般汽油发动机上所用的汽油电控喷射系统,是将汽油喷入进气歧管或进气管道中,与空气混合成混合气后再通过进气门进入气缸燃烧室内被点燃做功。

汽油缸内直喷系统示意图▲
■ 典型汽油缸内直喷系统原理
下图所示为汽油缸内直喷系统采用两个油泵,油箱内的低压电动泵和由凸轮轴驱动的高压油泵。

典型汽油缸内直喷系统原理▲
■ 汽油缸内直喷系统结构主要部件。

汽车构造 电控燃油喷射系

汽车构造 电控燃油喷射系

滤网
电磁线圈
衔铁
针阀
4、冷起动喷油器
作用: 冷起动时,额外 加大喷油量,使混合 气瞬时加浓,便于着 火起动。 结构:
电插头
电磁线圈 阀门弹簧 阀门
喷嘴
5、流量板式空气流量计
作用: 通过流量板转角的变化来计量吸入的空气量,并将 转角的变化转变为电压信号输送到电脑。 旁通气道 结构:
调整螺钉
流量板
缓冲板
D型喷射系统工作原理
L型喷射系统工作原理
2、流量感应式多点汽油喷射系统
原理:以吸入的空气量作为控制喷油量的主要因素。 A、流量式电控汽油喷射系统(L型) 将空气流量转变为电信号输送到电脑,由电脑控制喷油量。 B、热线(热膜)式电控汽油喷射系统(LH型) 空气流量计中热线(热膜)电阻被空气冷却后,将其阻值的 变化以电流信号的形式输送到电脑,由电脑控制喷油量。 C、卡门涡流式(LD型) 气流通过进气道中一柱体时,在柱体后方产生旋涡,涡流的 大小与流速和流量成正比,将涡流大小通过光电发生器转变 为电信号输送到电脑,由电脑控制喷油量。
电控燃油喷射系统
李书伟
Tel:88968111 yclsw@
一、概述
电控汽油喷射系统示意图
1.电动汽油泵 2.燃油滤清器 3.活性炭罐电磁阀 4.活性炭罐 5.点火线 圈组件 6.相位传感器 7.喷油器 8.燃油压力调节器 9.节气门控制部件 10.空气流量传感器 11.氧传感器 12.冷却液温度传感器 13.爆震传感器 14.发动机转速传感器 15.空气温度传感器 16.控制器
在60 年代后期,电子工业的发展带动了汽车工 业的发展。单片微型计算机产生后, 应用在汽车上。 1967年,德国波许公司研制成功 K-Jetronic 机械式 汽油喷射系统。1982年,波许公司又推出KEJetronic 机电结合式汽油喷射系统。在1993年以前 生产的奔驰和奥迪轿车上,大多数采用的是 KEJetronic 系统。 1967年,波许公司研制D型EFI系统,就是利用进 气歧管的绝对压力信号和模拟计算机来控制A/F 空燃 比,并装备在奔驰280SE轿车上,使汽车的排放首先 达到了美国加州的排放标准

电子燃油喷射系统的组成和工作原理

电子燃油喷射系统的组成和工作原理

电子燃油喷射系统的组成和工作原理电控汽油喷射系统(EFI)由空气供给系统、燃油供给系统和电子控制系统组成,电控汽油喷射系统的组成如图2-1所示。

图2-1电控汽油喷射系统的组成示意图1-蓄电池 2-点火开关 3-空调开关 4-空气滤清器 5-怠速空气阀 6-温度传感器 7-喷油器8-空气流量计 9-节气门位置传感器 10-油压调节器 11-电控单元 12-燃油分配器 13-燃油滤清器 14-油箱 15-电动汽油泵 16-点火线圈 17-分电器 18-氧传感器 19-曲轴位置传感器空气供给系统的作用是根据发动机运行工况提供适量的空气,并根据ECU 的指令完成空气量的调节。

燃油供给系统的作用根据发动机各个工况提供适量的燃油,并根据ECU的指令完成燃油量的调节。

电控单元(ECU)是整个电控汽油喷射系统的中心,发动机状态信息通过各种传感器收集后进入电控单元,经电控单元处理后发出相应的指令来控制执行元件动作。

电控系统的优点是设计者预先将发动机所有可能的工作状况进行优化,并以数据形式全部存贮在存贮器内。

这样EFI 系统就可以控制发动机总是在最佳工况下工作。

还可以按照汽车的使用目的,将确定的优化了的实验数据预先存贮。

如以节油、减少排气污染即经济性指标为目的,或以缩短汽车行驶时间即以动力性为目的发动机实验数据,将这些控制数据优化确定下来,发动机的工作性能也就不随发动机的使用而改变了。

电控单元首先读取进气歧管真空度(进气流量)、发动机转速、冷却水温度、进气温度、节气门位置等传感器输入的信息,然后将这些信息与存贮在ROM 存储器中的预置好的信息进行比较,进而确定在这种状态下发动机所需的油量和点火提前时间。

预先存贮在存储器内的信息是由发动机优化数据实验获得的。

一般来讲,进气歧管真空度(或进气流量)和发动机转速是主参数,由它们可以确定在此工况下的基本燃油供给量和基本的点火正时时刻。

其他几个参数对基本量起修正作用。

2.1 空气供给系统的组成和工作原理2.1.1 空气供给系统的组成空气供给系统由空气滤清器、空气计量装置、节气门体、节气门位置传感器和怠速控制(阀)等装置组成。

电控燃油喷射系统讲解

电控燃油喷射系统讲解

第三节电磁喷油器一、结构(如图2—6所示),主要由滤网、电接头、电磁线圈、衔铁、针阀、上密封圈,下密封圈等组成。

图2—6(a)结构(b)安装1—滤网;2—电接头;3—电磁线圈;4—衔铁;5—针阀;6—喷油轴针;7--燃油分配管;9--上密封圈;10—下密封圈二、种类主要有:轴针式、球阀式和片阀式。

图2—7单点喷射系统喷油器请参考相关资料。

按给油方式又分为上部给油和下部给油,一般都采用上部给油方式,采用下部给油的车型是单点喷射和日产公司。

三、喷油器控制控制方式有两种即电压驱动和电流驱动。

电流驱动只可以用低电阻喷油器,电压驱动可以用低电阴和高电阻两种喷油器,低电阻一般为0.6—3欧姆、高电阻一般为12—17欧姆。

1、电压驱动图2—8高电阻喷油器这种驱动方式简单,在发动机工作中,当VT三极管导通时,接通喷油器回路,喷油器工作即会将燃油喷出。

图2—9低电阻喷油器在低电阻喷油器中减少了电磁线圈的电阻和匝数,减少了电感,其优点是喷油器本身响应特性好,但由于电阻减小而使是电流增大,会使线圈烧坏,因此在电路中加入附加电阻。

在功率管VT截止时,喷油器电磁线圈存在电感,会将三极管击穿,因此与三极管并连设计了消弧回路。

图2、电流驱动当开启开始阶段,三极管处于饱和导通状态,喷油器内电流最大,称为峰值电流,一般为4—8A。

当A点电压达到设定值时,控制回路使三极管VT在喷油期间以约20MHZ的频率交替的导通和截止,使电流保持在1—2A左右,使针阀保持打开状态。

四、喷油正时控制分为三种基本类型即同时喷射、分组喷射和顺序喷射。

1、同时喷射图2—12,同时喷射控制电路图2—13,同时喷射正时图4个喷油器同时喷射,通常曲轴每转一转,喷一次油,喷油正时与发动机工作行程没有关系。

2、分组喷射图2—15,正时图分组喷射正时图分组喷射就是把所有气缸的喷油器分成2—4组,四缸机一般分两组,两组轮流交替喷射,每一个工作循环中各喷油器均喷射一次。

汽车构造课件 5章 电控汽油喷射系统

汽车构造课件 5章 电控汽油喷射系统
(1)高压涡流喷油器:装在气缸盖上,配合高压燃油泵,将汽油直接喷入气 缸中,喷油压力达50~120kg/cm2之间。
(2)进气涡流产生装置:三菱汽车公司采用两条垂直进气道,进气道中不装 控制阀,如图5.41所示。丰田汽车公司两条进气道中,一为直线孔道,一为 螺旋孔道,直线孔道中设涡流控制阀,低负荷时关闭,空气经螺旋孔道进入 气缸,可形成强烈涡流,如图5.42所示。日产汽车公司采用两条进气道,其 中一条进气道装设涡流控制阀,如图5.43所示。
第五章 电控汽油喷射系统
主讲教师:
5.1 概述
5.1.1 电控汽油喷射系统的优点
图5.1化油器燃油供给系统与电控燃油喷射系统的比较
5.1.2 组成和工作原理
• 1. 基本组成 尽管电子控制汽油喷射系统的类型较多,但其组成基本相同,即由
燃油供给系统、空气供给系统、电子控制系统组成。
图5.2电控发动机燃油供给系统
13-进气温度传感器 14-继电器组 15-氧传感器 16-发动机温度传感器 17-热时间开关 18-分电器 19-补充空气阀 20-怠速混合气调节螺钉 21-蓄电池 22-点火开关
2)D型汽油喷射系统 D型汽油喷射系统是最早应用在汽车发动机上的电子控制多点间歇式汽油喷射系 统,其基本特点是以进气管压力和发动机转速作为基本控制参数,用来控制喷 油器的基本喷油量。D型汽油喷射系统的组成如图5.13所示。
2 系统分类 (1)按喷射控制装置的型式分类
按喷射控制装置的型式不同可分为:机械控制式、机电混合控制式及电子控制式。 (2)按喷油器喷射部位的不同分类
按喷射部位的不同可分为缸内喷射和缸外喷射两种。缸外喷射系统分为进气管和 进气道喷射。
图5.5 进气管喷射(节气门体喷射,单点喷射)

电控汽油喷射系统 教学PPT课件

电控汽油喷射系统  教学PPT课件

情境二 空气供给系统
空气供给系统是电喷汽油喷射发动机的重 要组成部分。按照进气量检测方式的不同, 可以分为D型和L型。空气供给系统主要的作 用是准确检测和控制进气量。本活动主要介 绍了空气供给系统的作用、分类、基本组成、 工作流程及结构原理。
一、系统作用与分类
(一)空气供给系统的作用
为发动机可燃混合气的形成提供必需的空气,并且能够 实现对进气量进行检测和控制。
图2-33 汽车排放“三害气体”
一、尾气排放的控制
为了达到控制尾气污染 问题,汽车生产厂商采用了 闭环控制技术,即在排气管 上安装氧传感器的办法。氧 传感器闭环控制过程中向 ECU发送反馈信号,起到 监测尾气的作用,也就可以 间接知道混合气体燃烧的状 况。如图2-35所示。
图2-35 尾气排放闭环控制框图
图 2-4 奥迪轿车典型的空气供给系统结构示意图
三、基本元件的构造及原理 (一)空气滤清器 电控汽油喷射发动机装用的空气滤清器一般都是 干式纸质滤芯式,其结构原理与普通发动机上的空 气滤清器相同。如图2-5所示。
图2-5 空气滤清器
• (二)节气门体 • 节气门体安装在进气管中,用以控制发动机正常运行工况下的进气 量。节气门体主要由节气门和怠速空气道组成。由于电控汽油喷射发 动机怠速运转时,一般将节气门完全关闭,所以专门设有怠速空气道, 以供给发动机怠速时所需的空气量。怠速空气道由ECU通过怠速控制阀 控制。如图2-6所示。
(三)检查节气门体内腔的积垢和结胶情况,必要时用清洗剂进行 清洗。注意: 绝对不允许用砂纸或刮刀等清理积垢和结胶,以免损伤节 气门体内腔,导致节气门关闭不严或改变怠速空气道尺寸,影响发动机 正常工作。如图2-9所示。
图2-9 清洗节气门体
情境三 燃油供给系统

电控燃油喷射系统图解

电控燃油喷射系统图解

电控燃油喷射系统(EFI)图解EFI的优点:1、在任何情况下都能获得精确的空燃比2、混合气的各缸分配均匀性好3、采用EFI的汽车加速性能好4、充气效率高5、良好的启动性能和减速减油或断油EFI的工作原理:电控汽油喷射系统主要由下列四部分组成:进气系统供油系统控制系统点火系统如下图:1、进气系统如下图:2、供油系统主要由油压调节器、喷油器和喷油泵组成。

供油系统的工作原理图:喷油泵工作原理燃油泵装在油箱内,涡轮泵由电机驱动。

当泵内油压超过一定值时,燃油顶开单向阀向油路供油。

当油路堵塞时,卸压阀开启,泄出的燃油返回油箱。

如下图:喷油器工作原理:喷油器是电磁式的。

当喷油器不工作时,针阀在回位弹簧作用下将喷油孔封住。

当ECU的喷油控制信号将喷油器的电磁线圈与电源回路接通时,针阀才在电磁力的吸引下克服弹簧压力、摩擦力和自身重量,从静止位置往上升起,燃油喷出。

多点喷油系统中喷油器通过绝缘垫圈安装在进气歧管或进气道附近的缸盖上,并用输油管将其固定。

多点喷油系统每缸有一个喷油器。

英文称为multi point injection .简称为MP I。

如下图:喷油器单点喷油系统的喷油器安装在节气门体上,各缸共用一个喷油器。

英文为single point inje ction. 简称为SPI。

如下图:油压调节器工作原理油压力调节器的功能是调节喷油压力。

喷油器喷出的油量是用改变喷油信号持续时间来进行控制的。

由于进气歧管内真空度是随发动机工况而变化的,即使喷油信号的持续时间和喷油压力保持不变,工况变化时喷油量也会发生少量的变化,为了得到精确的喷油量,必须使油压A和进气歧管真空度B的总和保持不变。

如下图:3、控制系统控制系统由传感器、执行器和电子控制单元三部分组成如下图:传感器传感器是感知信息的部件,负责向ECU提供发动机和汽车运行状况。

如下图:ECUECU的功用是采集和处理各种传感器的输入信号,根据发动机工作的要求(喷油脉宽、点火提前角等),进行控制决策的运算,并输出相应的控制信号。

1电控汽油喷射系统结构1.

1电控汽油喷射系统结构1.

第一章发动机电控汽油喷射系统的结构与维修第一节电控汽油喷射系统的结构一电控汽油喷射系统的组成图1-1所示为常见电控汽油喷射系统在汽车上的安装情况及零件分配图,图1-2所示为电控汽油喷射系统的操作原理图。

图1-1 电控汽油喷射系统在汽车上的安装情况及零件分配图1-喷油器2-燃油压力调节器3-辅助空气阀4-汽油滤清器5-温度时间开关6-水温传感器7-冷起动喷油器8-空气流量计9-节气门室10-进行温度传感器11-节气门位置传感器12-电控单元13-降压电阻14-电动汽油泵15-汽油缓冲器图1-2 电控汽油喷射系统操作原理图1-油箱2-汽油滤清器3-电动汽油泵4-辅助空气阀5-汽油缓冲器6-燃油压力调节器7-冷起动喷油器8-水温传感器7-冷起动喷油器8-水温传感器9-喷油器10-温度时间开关11-节气门位置传感器12-怠速调整螺钉13-空气流量计14-进气温度传感器15-旁通气道调整螺钉16-空气滤清器17-电控单元18-点火线圈19-点火开关20-EFI 继电器21-电动汽油泵继电器按其控制原理完成方式来看,电控汽油喷射系统由电控单元(ECU)、传感器和执行器三个部分组成,如图1-3所示。

图1-3 电控汽油喷射系统的组成电控汽油喷射系统均有一个电控单元(ECU),它是系统的核心控制元件。

ECU一方面接收来自传感器的信号;另一方面完成对信息的处理工作,同时发出相应的控制指令来控制执行元件的正确动作。

ECU接收的信息主要有发动机转速、空气流量、节气门位置、进气温度、冷却液温度、曲轴位置、负荷和氧传感器信息等。

传感器是电控汽油喷射系统的“触角”,是感知信息的部件,它负责向电控单元提供汽车的运行状况和发动机的工况。

传感器主要有空气流量传感器(空气流量计)、节气门位置传感器(节气门开关)、氧传感器(测定空燃比)、爆震传感器、曲轴转角传感器、发动机转速传感器及各种温度传感器等。

执行器负责执行电控单元发出的各项指令,执行器主要有喷油器、怠速步进电动机、电动汽油泵、继电器和点火线圈等。

电控燃油喷射系统

电控燃油喷射系统

电控燃油喷射系统电控燃油喷射系统的基本任务是以减少发动机机有害物排放为主要目标,尽可能兼顾发动机的其它性能要求。

为了实现这一基本任务,空燃比的精确控制是关键,因此现代电子控制汽油喷射系统都遵守以空气流量和发动机转速为基本控制参数,以电控单元( ECU)为控制核心,以喷油器为控制对象的控制原则。

一个完整的电控汽油喷射系统通常由空气供给系统、燃油供给系统和电子控制系统三个子系统构成。

如图1-0.图1-01.空气供给系统空气供给系统任务是向汽油机提供清洁的、与发动机负荷相适应的、经过计量的新鲜空气,使它们在进气管或气缸内与喷油器喷出的汽油形成质量好的可燃混合气。

空气供给系统由空气滤清器、空气量计量装置、节气门体和节气门位置传感器、进气总管和进气歧管等组成。

如图1-1图1-11.1空气量计量装置空气量计量装置的作用是对发动机吸入的新鲜空气量进行直接或间接的测量, 并把测量结果转换成电压或频率信号输送到 ECU, ECU 根据输入信号及其它参数计算出每一工作循环吸入的新鲜空气质量直接测量方式采用空气流量计测量空气的体积流量或质量流量,间接测量方式大都采用进气歧管绝对压力传感器测量进气歧管的绝对压力。

1.2空气流量计电控汽油喷射发动机中使用的空气流量计主要有翼片式空气流量计、卡门旋涡式空气流量计、热线式空气流量计和热膜式空气流量计四种。

1.3节气门体和节气门位置传感器1.3.1 节气门体节气门体安装在空气流量计和发动机进气总管之间的进气管上(对于采用空气流量计进气和电控汽油机),或者安装在空气滤清器与进气总管之间(对于使用进气歧管绝对压力传感器的汽油机)。

节气门体一般由节气门、怠速旁通气、怠速调整螺钉、辅助空气阀等组成。

节气门通过拉索与油门踏板相连,驾驶员通过油门踏板控制节气门开度,使发动机的输出扭矩与所需的牵引力相适应。

对于设置怠速旁通气道的节气门体,怠速旁通气道布置在主进气通道一侧,发动机怠速运转时,节气门完全关闭,怠速所需要的空气经旁通气道布置在气道进入总管。

电控燃油喷射系统(EFI)图解分析

电控燃油喷射系统(EFI)图解分析

电控燃油喷射系统(EFI)图解EFI的优点:1、在任何情况下都能获得精确的空燃比2、混合气的各缸分配均匀性好3、采用EFI的汽车加速性能好4、充气效率高5、良好的启动性能和减速减油或断油EFI的工作原理:电控汽油喷射系统主要由下列四部分组成:进气系统供油系统控制系统点火系统如下图:无请空赏和片1、进气系统如下图:2、供油系统主要由油压调节器、喷油器和喷油泵组成。

供油系统的工作原理图:喷油泵工作原理燃油泵装在油箱内,涡轮泵由电机驱动。

当泵内油压超过一定值时,燃油顶开单向阀向油路供油。

当油路堵塞时,卸压阀开启,泄出的燃油返回油箱。

如下图:喷油器工作原理:喷油器是电磁式的。

当喷油器不工作时,针阀在回位弹簧作用下将喷油孔封住。

当ECU的喷油控制信号将喷油器的电磁线圈与电源回路接通时,针阀才在电磁力的吸引下克服弹簧压力、摩擦力和自身重量,从静止位置往上升起,燃油喷出。

多点喷油系统中喷油器通过绝缘垫圈安装在进气歧管或进气道附近的缸盖上,并用输油管将其固定。

多点喷油系统每缸有一个喷油器。

英文称为 multi point injection .简称为MPI。

如下图:喷油器单点喷油系统的喷油器安装在节气门体上,各缸共用一个喷油器。

英文为single point injection. 简称为SPI。

如下图:油压调节器工作原理油压力调节器的功能是调节喷油压力。

喷油器喷出的油量是用改变喷油信号持续时间来进行控制的。

由于进气歧管内真空度是随发动机工况而变化的,即使喷油信号的持续时间和喷油压力保持不变,工况变化时喷油量也会发生少量的变化,为了得到精确的喷油量,必须使油压A和进气歧管真空度B的总和保持不变。

如下图:3、控制系统控制系统由传感器、执行器和电子控制单元三部分组成如下图:传感器传感器是感知信息的部件,负责向ECU提供发动机和汽车运行状况。

如下图:ECUECU的功用是采集和处理各种传感器的输入信号,根据发动机工作的要求(喷油脉宽、点火提前角等),进行控制决策的运算,并输出相应的控制信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电控燃油喷射系统(EFI)图解EFI的优点:1、在任何情况下都能获得精确的空燃比2、混合气的各缸分配均匀性好3、采用EFI的汽车加速性能好4、充气效率高5、良好的启动性能和减速减油或断油EFI的工作原理:电控汽油喷射系统主要由下列四部分组成:进气系统供油系统控制系统点火系统如下图:1、进气系统如下图:2、供油系统主要由油压调节器、喷油器和喷油泵组成。

供油系统的工作原理图:喷油泵工作原理燃油泵装在油箱内,涡轮泵由电机驱动。

当泵内油压超过一定值时,燃油顶开单向阀向油路供油。

当油路堵塞时,卸压阀开启,泄出的燃油返回油箱。

如下图:喷油器工作原理:喷油器是电磁式的。

当喷油器不工作时,针阀在回位弹簧作用下将喷油孔封住。

当ECU的喷油控制信号将喷油器的电磁线圈与电源回路接通时,针阀才在电磁力的吸引下克服弹簧压力、摩擦力和自身重量,从静止位置往上升起,燃油喷出。

多点喷油系统中喷油器通过绝缘垫圈安装在进气歧管或进气道附近的缸盖上,并用输油管将其固定。

多点喷油系统每缸有一个喷油器。

英文称为multi point injection .简称为MP I。

如下图:喷油器单点喷油系统的喷油器安装在节气门体上,各缸共用一个喷油器。

英文为single point inje ction. 简称为SPI。

如下图:油压调节器工作原理油压力调节器的功能是调节喷油压力。

喷油器喷出的油量是用改变喷油信号持续时间来进行控制的。

由于进气歧管内真空度是随发动机工况而变化的,即使喷油信号的持续时间和喷油压力保持不变,工况变化时喷油量也会发生少量的变化,为了得到精确的喷油量,必须使油压A和进气歧管真空度B的总和保持不变。

如下图:3、控制系统控制系统由传感器、执行器和电子控制单元三部分组成如下图:传感器传感器是感知信息的部件,负责向ECU提供发动机和汽车运行状况。

如下图:ECUECU的功用是采集和处理各种传感器的输入信号,根据发动机工作的要求(喷油脉宽、点火提前角等),进行控制决策的运算,并输出相应的控制信号。

当前电控发动机中除了控制喷油外,还控制点火、EGR、怠速和增压发动机的废气阀等,由于共用一个ECU对发动机进行综合控制,所以也被称为发动机管理系统。

如下图:中间的金属方盒为电子控制单元,箭头指向电子控制单元的部件为传感器,箭头从电子控制单元出去的部件为执行器。

在电控发动机中最主要的输入接口是传感器接口(例如转速、负荷、温度、压力等)。

最主要的输出接口是控制接口,它控制外部执行机构的动作(例如:喷油器、点火模块、喷油泵、怠速执行器等)。

执行器如图:4、点火系统点火控制系统由传感器、电子控制单元和执行器组成。

如下图:执行器为点火模块和点火线圈。

最常见的为无分电器点火系统,它是两个气缸共用一个点火线圈。

目前也有采用每个气缸一个点火线圈的。

如下图:空燃比控制策略为了满足发动机各种工况的要求,混合气的空燃比不能都采用闭环控制,而是采用闭环和开环相结合的策略。

主要分为三种控制方式:A:冷起动和冷却水温度低时通常采用开环控制方式。

由于起动转速低、冷却水温度低、燃油挥发性差,需对燃油进行一定的补偿。

混合气空燃比与冷却水温度有关,随着温度增加,空燃比逐渐变大。

B:部分负荷和怠速运行时此时可分为两种情况:a 若为了获得最佳经济性,可采用开环控制方式,将空燃比控制在比化学计量比大的稀混合气状态下工作。

b 为了获得低的排放,并有较好的燃油经济性,必须采用电控汽油喷射系统加三元催化转化器,进行空燃比闭环控制。

图中虚线部分为未加三元催化转化器时,CO、HC和NOx排放浓度与空燃比的关系。

实线部分采用三元催化转化器后CO、HC和NOx与空燃比的关系。

从图中可看出采用三元催化转化器时只有当空燃比在化学计量比附近很窄范围内HC、CO和NOx排出浓度均较小。

装有电控汽油喷射发动机采用闭环控制方式,才能使混合气空燃比严格控制在化学计量比附近很窄的范围内,使三元催化转化器净化效率最高。

C:节气门全开(WOT)时:为了获得最大的发动机功率和防止发动机过热,采用开环控制,将混合气空燃比控制在12.5~13.5范围内。

此时发动机内混合气燃烧速度最快,燃烧压力最高,因而输出功率也就越大。

如下图:点火控制为了使发动机发出最大功率,应使最高燃烧压力出现在上止点后10°~15°左右,点火时刻用点火提前角来表示。

它是指火花塞电极间跳火开始到活塞运行至上止点时这段时间内曲轴所转过的角度。

点火过迟:使发动机功率下降,油耗增加。

点火过早:使功率下降,还容易产生爆震。

发动机的最佳点火提前角,不仅要使发动机的动力性、经济性最佳,还应使有害排放物最少。

Note: 最佳点火提前角的控制策略起动期间:固定值起动后A:基本点火提前角的控制:由转速和负荷确定B:点火提前角的修正:a 部分负荷工况根据冷却水温、进气温度和节气门位置等信号进行修正。

b 满负荷工况要特别小心控制点火提前角,以免产生爆震。

c 最大和最小提前角的控制:微处理器计算的点火提前角必须控制在一定范围内,否则发动机很难正常运转。

闭合角控制闭合角是沿用了传统点火系的概念。

在电子控制的点火系统中是指初级电路接通的时间。

点火线圈的次级电压是和初级电路断开时的初级电流成正比。

通电时间短时,初级电流小,会使感应的次级电压偏低,容易造成失火。

初级电流大,对点火有利;但通电时间过长,会使点火线圈发热,甚至烧坏,还会使能耗增大。

因此要控制一个最佳通电时间。

蓄电池电压下降时,在相同的通电时间里初级电流能达到的值会变小。

因此必须对通电时间修正。

爆震控制汽车发动机利用电火花将混合气点燃,并以火焰传播方式使混合气燃烧。

如果在传播过程中,火焰还未到达时,局部地区混合气自行着火燃烧,使气流运动速度加快,缸内压力、温度迅速增加,造成瞬时爆燃,这种现象称为爆震。

爆震会使气体强烈振动,产生噪音;也会使火花塞、燃烧室、活塞等机件过热,严重情况会使发动机损坏。

在发动机结构参数已确定的情况下,采用推迟点火提前角是消除爆震既有效又简单的措施之一。

装有爆震传感器的发动机能检测爆震界限,通过电子控制单元将点火时刻调到接近爆震极限的位置,从而改善了发动机的性能。

当发动机出现爆震时,ECU根据爆震程度,推迟点火时刻,爆震程度大的,不仅推迟的角度大,而且是先快后慢,直到爆震消失为止。

为了保证良好的发动机性能,爆震消失后,又将点火提前角逐步加大,增加的速率也分为快、慢两种。

当发动机再次出现爆震时,点火提前角再次推迟。

通常点火提前角推迟的速率要大于点火提前角增加的速率。

废气再循环控制EGR率,如图常用EGR率表示EGR的控制量。

它用进入气缸的混合气中废气的比例表示。

EGR率与发动机动力性、经济性和排放性能有关。

EGR率增加过大时,使燃烧速度太慢,燃烧变得不稳定,失火率增加,使HC也会增加;EGR率过小,NOx排放达不到法规要求,易产生爆震,发动机过热等现象。

因此EGR率必须根据发动机工况要求进行控制。

EGR控制系统中,EGR阀是关键部件。

不同的EGR率是通过EGR阀的调节来实现的。

电控发动机中广泛采用电子控制EGR阀方法。

直线型EGR阀是由ECU控制针阀位置,调节从排气进入进气歧管孔口的大小,精确地控制EGR率。

EGR工作期间通过监测针阀位置反馈信号控制针阀位置。

并根据冷却水温度、节气门位置和进气流量控制EGR针阀的位置。

EGR的控制策略:增加EGR率可以使NOx排出物降低,但同时会HC排出物和燃油消耗增加。

因此在各种工况采用的EGR率必须是对动力性、经济性和排放性能的综合考虑。

试验结果说明:当EGR率小于10%时,燃油消耗量基本上不增加,当EGR率大于20%时,发动机燃烧不稳定,工作粗暴,HC排放物将增加10%。

因此通常将EGR率控制在10%~20%范围内较合适。

随着负荷增加EGR率允许值也增加(如下图阴影部分)。

A:怠速和低负荷时,NOx排放浓度低,为了保证稳定燃烧,不进行EGR。

B:只有热态下进行EGR。

发动机温度低时,NOx排放浓度也较低,为了保证正常燃烧,冷机时不进EGR。

C:大负荷、高速时,为了保证发动机有较好的动力性,此时混合气较浓,NOx排放生成物较少,可不进行EGR或减少EGR率。

D:废气再循环量对NOx排放和油耗的影响还受到空燃比、点火提前角等因素的影响。

因此在EGR率进行控制时,同时对点火等进行综合控制,就能得到较好的发动机性能。

燃油挥发的控制为了控制燃油箱逸出的燃油蒸汽,电控发动机普遍采用了碳罐,油箱中的燃油蒸汽在发动机不运转时被碳罐中的活性碳所吸附,当发动机运转时,依靠进气管中的真空度将燃油蒸汽吸入发动机中。

电子控制单元根据发动机的工况通过电磁阀控制真空度的通或断达到燃油蒸汽的控制。

采用燃油蒸汽的控制可减少大气中的碳氢化合物和节约燃料。

5、EFI的发展趋势缸内直喷汽油发动机采用电控缸内直接喷射方法,在火花塞附近供给浓混合气,以利着火;在其它区域供给稀混合气,进行分段喷油。

达到分层燃烧的目的。

据报导空燃比为30时,仍可燃烧。

此种方法可节约燃料三分之一以上。

为了减少稀燃时的NOx,在排气系统中安装了两只温度传感器、两只氧传感器和两级催化转化器。

带有在集成诊断系统OBD II 的发动机管理系统。

相关文档
最新文档