四川省成都市蓉城名校联盟2019-2020学年高一上学期期末联考数学答案

合集下载

2019-2020学年四川省成都市蓉城名校联盟高一上学期期中数学联考试题(含答案解析)

2019-2020学年四川省成都市蓉城名校联盟高一上学期期中数学联考试题(含答案解析)

【答案】A
【解析】首先求出函数解析式,再代入计算即可.
【详解】
f x x
解:设幂函数的解析式为
f

2
2 4 ,解得 4
f x x4
f 2 24 16
故选: A
【点睛】
本题考查待定系数法求函数解析式,及函数值的计算,属于基础题.
5.已知
a
log3
1 3
,
1
b 33 ,
c
1 3
3
故参加了活动的人数有 4 3 6 13 人.故两种活动都没参加的有15 13 2 人.
故答案为:2
【点睛】
本题主要考查了集合中元素的计算,属于基础题.
3m
15.若
4n
m, n
0,则 log4
3
______.(用 m,n
表示)
n 【答案】 m
【解析】利用换底公式化简即可.
【详解】
设 3m 4n a m, n 0,则 m log3 a, n log4 a ,
对任意两个不相等的正数 x1, x2 都有
x1 x2
,即
f
x1
x1 x1
f x2
x2 x2
0
g x1
x1
g x2
x2
0
,故
g(x)
在 0, 上为减函数.

f
2 0 g(2) ,故
f
2 0
2
.
综上, g(x) 为偶函数,且在 , 0上单调递增,在 0, 上单调递减.
f x
g 2 g 2 0
18.己知全集U R ,集合 A x 2„ x„ 0 , B x x 2x a 0 ,且 a 1 .

2019-2020学年高一数学上学期期末考试联考试题(含解析)

2019-2020学年高一数学上学期期末考试联考试题(含解析)

2019-2020学年高一数学上学期期末考试联考试题(含解析)注意事项:1. 本试卷满分150分,考试时间120分钟.2. 答卷前,考生务必将自己的姓名、考生号等信息填写在答题卡指定位置上.3. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】分析】根据并集定义求解.【详解】由题意.故选:D.【点睛】本题考查集合的并集运算,属于基础题.2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.3.下列函数中,与函数是同一函数的是()A. B. C. D.【答案】C【解析】【分析】判断函数解析式和定义域是否与函数相同,即可求解.【详解】选项A,,所以不正确;选项B,但定义域为,而函数的定义域为,所以不正确;选项C,,定义域为,所以正确;选项D,,但定义域为,所以不正确.故选:C.【点睛】本题考查对函数定义的理解,判断两个函数是否相同,不仅要解析式相同,而且定义域也要一样,属于基础题.4.函数的定义域是()A. B. C. D.【答案】D【解析】【分析】由对数真数大于0可得.【详解】由题意,,即定义域为.故选:D.【点睛】本题考查对数型复合函数的定义域,即求使对数式有意义的自变量的取值范围.5.若集合,集合,则集合与的关系是()A. B. C. D.【答案】B【解析】【分析】先确定集合中的元素,然后根据子集定义判断.【详解】由题意,,显然集合中的元素都属于,所以.故选:B.【点睛】本题考查集合的包含关系,根据子集定义判断.6.以点为圆心,且经过点圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.7.已知集合,,则图中阴影部分所表示的集合是()A. B.C. D.【答案】B【解析】【分析】用集合的运算表示出阴影部分后可得结论.【详解】阴影部分为,由题意,故选:B.【点睛】本题考查集合的混合运算,考查Venn图,掌握集合运算的定义是解题关键.8.函数的图象是()A. B. C.D.【答案】A【解析】【分析】确定函数的奇偶性与单调性,用排除法确定正确结论.【详解】,是偶函数,可排除C,D,又时,是增函数,排除B.故选:A.【点睛】本题考查由解析式选函数图象问题,可由解析式研究函数的性质,如奇偶性,单调性,对称性等等,研究函数值的变化规律,特殊的函数值等等用排除法确定正确选项.9.经过圆上一点的切线方程是()A. B.C. D.【答案】D【解析】【分析】由过切点的半径与切线垂直求出切线斜率,可得切线方程.【详解】由题意圆心,,所以切线斜率为,切线方程,即.故选:D.【点睛】本题考查求圆的切线方程,关键是求出切线斜率.这可利用切线性质:切线与过切点的半径垂直.10.如图,两条直线与的图象可能是()A. B. C.D.【答案】A【解析】【分析】显然,考虑直线的斜率,同时分和进行讨论.【详解】直线过原点,直线的斜率为1,排除B、D,直线的横截是,若,A不合题意,C也不合题意,若,C不合题,A符合题意.故选:A.【点睛】本题考查直线方程,由方程选择可能图象,从直线的特征研究,直线的斜率,直线的纵截距和横截距等等.11.设偶函数的定义域为,当时是增函数,则,,的大小关系是()A. B.C. D.【答案】B【解析】【分析】由偶函数把函数值的自变量转化到同一单调区间上,然后由单调性得出结论.【详解】因为是偶函数,所以,又,且在上是增函数,所以,即.故选:B.【点睛】本题考查函数的奇偶性与单调性,属于基础题.12.曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )A. (,+∞)B. (,]C. (0,)D. (,]【答案】D【解析】【分析】根据直线的点斜式方程可得直线经过点,曲线表示以圆心半径为2的圆的上半圆,由此作出图形,求出半圆切线的斜率和直线与半圆相交时斜率的最小值,数形结合可得结果.【详解】根据题意画出图形,如图所示:由题意可得:直线过A(2,4),B(-2,-1),又曲线y=1+图象为以(0,1)为圆心,2为半径的半圆,当直线与半圆相切,C为切点时,圆心到直线的距离d=r=2,由解得:k=;当直线过B点时,直线的斜率为=,则直线与半圆有两个不同的交点时,实数k的取值范围为(,],故答案为(,].故选D.【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题. 数形结合就是把抽象数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.函数的零点是______.【答案】【解析】【分析】解方程得出.【详解】由得,所以函数的零点是.故答案为:.【点睛】本题考查函数零点概念,掌握零点定义是解题关键.14.以点为圆心,且与直线相切的圆的方程是______.【答案】【解析】【分析】求出圆心到切线的距离即为圆半径,可得方程.【详解】由题意圆的半径为,所求圆的方程为.故答案为:.【点睛】本题考查圆的方程,解题关键是求出圆的半径,根据是圆的切线的性质:圆心到切线的距离等于圆的半径.15.如果直线的纵截距为正,且与两坐标轴围成的三角形的面积为8,则______.【答案】8【解析】【分析】先求出横、纵截距,由纵截距为正得出的范围,由三角形面积可求得.【详解】直线与轴的交点是,与轴交点是,由题意,,又,所以(-8舍去).故答案为:8.【点睛】本题考查直线方程,由直线方程求出它与坐标轴的交点即可求解.16.已知圆的方程为,对于圆有下列判断:①圆关于直线对称;②圆关于直线对称;③圆的圆心在轴上,且过原点;④圆的圆心在轴上,且过原点.其中叙述正确的判断是______.(写出所有正确判断的序号)【答案】②【解析】【分析】配方求出圆心坐标和圆的半径,然后判断.【详解】圆的标准方程是,圆心为,半径为,显然原点坐标适合圆的方程,因此原点一定在圆上,圆心在直线上,因此圆关于直线对称,圆心不可能在直线和坐标轴上,否则,此时不合题意.故答案为:②.【点睛】本题考查圆的标准方程,利用配方法易求得圆心坐标和半径.要注意所有过圆心的直线都是圆的对称轴.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(1)已知幂函数的图象经过点,求函数的解析式;(2)计算:.【答案】(1);(2)33.【解析】【分析】(1)设,代入已知点坐标计算;(2)由幂的运算法则和对数运算法则计算.【详解】(1)设,因为的图象经过点,所以,,所以;(2).【点睛】本题考查幂函数的解析式,考查幂的运算法则和对数运算法则,属于基础题.18.已知两条直线:,:.(1)若,求的值;(2)若,求的值.【答案】(1)1;(2).【解析】【分析】(1)由求解,同时要检验是否重合;(2)由求解.【详解】(1)由于,所以,解得或,时两直线方程分别为,,两直线平行,时,两直线方程分别为,,即,两直线重合,不合题意,舍去.所以;(2)若,则,.【点睛】本题考查两直线平行与垂直的条件.在由两直线平行求参数时要进行检验,排除重合的情形.19.已知圆:,直线过点.(1)判断点与圆的位置关系;(2)当直线与圆相切时,求直线的方程;(3)当直线的倾斜角为时,求直线被圆所截得的弦长.【答案】(1)圆外;(2)和;(3).【解析】【分析】(1)把点坐标代入圆的方程可判断;(2)讨论斜率不存在的直线是否为切线,斜率存在时设切线方程为,由圆心到切线距离等于半径求出,得切线方程.(3)写出直线方程,求得圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为,所以点在圆外.(2)过与轴垂直的直线是圆的切线,过与轴不垂直的直线设方程为,即,,所以,解得,切线方程为,即.所以所求切线方程为和;(3)由题意直线方程为,即,圆心到直线的距离为,又所以弦长为.【点睛】本题考查点与圆的位置关系和直线与圆的位置关系.过圆上的点的圆的切线只有一条,过圆外一点的圆的切线有两条,可分类讨论,分斜率存在和不存在两类.在求直线与圆相交弦长时,一般用几何方法求解,即求出圆心到直线的距离,由勾股定理计算.20.已知直线:,点到直线的距离为.(1)若直线过原点,求直线的方程;(2)若直线不过原点,且两坐标轴上的截距相等,求直线的方程.【答案】(1)和;(2)和.【解析】【分析】(1)设直线方程为,由点到直线距离公式求得参数;(2)设直线方程为,再由点到直线距离公式求得参数;【详解】(1)直线过原点,设直线方程为,即,由题意,整理得,解得,所以直线方程为和;(2)直线不过原点且截距相等,设其方程为,即,由题意,解得或,所以直线方程为和.【点睛】本题考查求直线方程,掌握直线方程的各种形式是解题关键.21.已知圆:和圆:,点,分别在圆和圆上.(1)求圆的圆心坐标和半径;(2)求的最大值.【答案】(1),半径为;(2).【解析】【分析】(1)圆方程配方后化为标准方程,可得圆心坐标和半径;(2)求出圆心距,圆心距加上两个半径即为的最大值.【详解】(1)圆标准方程是,圆心为,半径为,(2)圆的标准方程是,圆心为,半径为.由(1),所以.【点睛】本题考查圆的一般方程,考查两圆位置关系问题.圆的一般方程配方后成标准方程可得圆心坐标和半径,两圆上的点间距离的最值可由圆心距离与半径运算求得.22.某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:第天4(万股)36(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量与时间的一次函数解析式;(Ⅲ)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?【答案】(Ⅰ);(Ⅱ);(Ⅲ)第15天交易额最大,最大值为125万元.【解析】【分析】(Ⅰ)由一次函数解析式可得与时间所满足的函数解析式;(Ⅱ)设,代入已知数据可得;(Ⅲ)由可得,再根据分段函数性质分段求得最大值,然后比较即得.【详解】(Ⅰ)当时,设,则,解得,当时,设,则,解得所以.(Ⅱ)设,由题意,解得,所以.(Ⅲ)由(Ⅰ)(Ⅱ)得即,当时,,时,,当时,,它在上是减函数,所以.综上,第15天交易额最大,最大值为125万元.【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得.2019-2020学年高一数学上学期期末考试联考试题(含解析)注意事项:1. 本试卷满分150分,考试时间120分钟.2. 答卷前,考生务必将自己的姓名、考生号等信息填写在答题卡指定位置上.3. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】分析】根据并集定义求解.【详解】由题意.故选:D.【点睛】本题考查集合的并集运算,属于基础题.2.直线的倾斜角是( )A. B. C. D.【答案】B【解析】【分析】先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.3.下列函数中,与函数是同一函数的是()A. B. C. D.【答案】C【解析】【分析】判断函数解析式和定义域是否与函数相同,即可求解.【详解】选项A,,所以不正确;选项B,但定义域为,而函数的定义域为,所以不正确;选项C,,定义域为,所以正确;选项D,,但定义域为,所以不正确.故选:C.【点睛】本题考查对函数定义的理解,判断两个函数是否相同,不仅要解析式相同,而且定义域也要一样,属于基础题.4.函数的定义域是()A. B. C. D.【答案】D【解析】【分析】由对数真数大于0可得.【详解】由题意,,即定义域为.故选:D.【点睛】本题考查对数型复合函数的定义域,即求使对数式有意义的自变量的取值范围.5.若集合,集合,则集合与的关系是()A. B. C. D.【答案】B【解析】【分析】先确定集合中的元素,然后根据子集定义判断.【详解】由题意,,显然集合中的元素都属于,所以.故选:B.【点睛】本题考查集合的包含关系,根据子集定义判断.6.以点为圆心,且经过点圆的方程为( )A. B.C. D.【答案】B【解析】【分析】通过圆心设圆标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.7.已知集合,,则图中阴影部分所表示的集合是()A. B.C. D.【答案】B【解析】【分析】用集合的运算表示出阴影部分后可得结论.【详解】阴影部分为,由题意,故选:B.【点睛】本题考查集合的混合运算,考查Venn图,掌握集合运算的定义是解题关键.8.函数的图象是()A. B. C.D.【答案】A【解析】【分析】确定函数的奇偶性与单调性,用排除法确定正确结论.【详解】,是偶函数,可排除C,D,又时,是增函数,排除B.故选:A.【点睛】本题考查由解析式选函数图象问题,可由解析式研究函数的性质,如奇偶性,单调性,对称性等等,研究函数值的变化规律,特殊的函数值等等用排除法确定正确选项.9.经过圆上一点的切线方程是()A. B.C. D.【答案】D【解析】【分析】由过切点的半径与切线垂直求出切线斜率,可得切线方程.【详解】由题意圆心,,所以切线斜率为,切线方程,即.故选:D.【点睛】本题考查求圆的切线方程,关键是求出切线斜率.这可利用切线性质:切线与过切点的半径垂直.10.如图,两条直线与的图象可能是()A. B. C.D.【答案】A【解析】【分析】显然,考虑直线的斜率,同时分和进行讨论.【详解】直线过原点,直线的斜率为1,排除B、D,直线的横截是,若,A不合题意,C也不合题意,若,C不合题,A符合题意.故选:A.【点睛】本题考查直线方程,由方程选择可能图象,从直线的特征研究,直线的斜率,直线的纵截距和横截距等等.11.设偶函数的定义域为,当时是增函数,则,,的大小关系是()A. B.C. D.【答案】B【解析】【分析】由偶函数把函数值的自变量转化到同一单调区间上,然后由单调性得出结论.【详解】因为是偶函数,所以,又,且在上是增函数,所以,即.故选:B.【点睛】本题考查函数的奇偶性与单调性,属于基础题.12.曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )A. (,+∞)B. (,]C. (0,)D. (,]【答案】D【解析】【分析】根据直线的点斜式方程可得直线经过点,曲线表示以圆心半径为2的圆的上半圆,由此作出图形,求出半圆切线的斜率和直线与半圆相交时斜率的最小值,数形结合可得结果.【详解】根据题意画出图形,如图所示:由题意可得:直线过A(2,4),B(-2,-1),又曲线y=1+图象为以(0,1)为圆心,2为半径的半圆,当直线与半圆相切,C为切点时,圆心到直线的距离d=r=2,由解得:k=;当直线过B点时,直线的斜率为=,则直线与半圆有两个不同的交点时,实数k的取值范围为(,],故答案为(,].故选D.【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题. 数形结合就是把抽象数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.函数的零点是______.【答案】【解析】【分析】解方程得出.【详解】由得,所以函数的零点是.故答案为:.【点睛】本题考查函数零点概念,掌握零点定义是解题关键.14.以点为圆心,且与直线相切的圆的方程是______.【答案】【解析】【分析】求出圆心到切线的距离即为圆半径,可得方程.【详解】由题意圆的半径为,所求圆的方程为.故答案为:.【点睛】本题考查圆的方程,解题关键是求出圆的半径,根据是圆的切线的性质:圆心到切线的距离等于圆的半径.15.如果直线的纵截距为正,且与两坐标轴围成的三角形的面积为8,则______.【答案】8【解析】【分析】先求出横、纵截距,由纵截距为正得出的范围,由三角形面积可求得.【详解】直线与轴的交点是,与轴交点是,由题意,,又,所以(-8舍去).故答案为:8.【点睛】本题考查直线方程,由直线方程求出它与坐标轴的交点即可求解.16.已知圆的方程为,对于圆有下列判断:①圆关于直线对称;②圆关于直线对称;③圆的圆心在轴上,且过原点;④圆的圆心在轴上,且过原点.其中叙述正确的判断是______.(写出所有正确判断的序号)【答案】②【解析】【分析】配方求出圆心坐标和圆的半径,然后判断.【详解】圆的标准方程是,圆心为,半径为,显然原点坐标适合圆的方程,因此原点一定在圆上,圆心在直线上,因此圆关于直线对称,圆心不可能在直线和坐标轴上,否则,此时不合题意.故答案为:②.【点睛】本题考查圆的标准方程,利用配方法易求得圆心坐标和半径.要注意所有过圆心的直线都是圆的对称轴.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(1)已知幂函数的图象经过点,求函数的解析式;(2)计算:.【答案】(1);(2)33.【解析】【分析】(1)设,代入已知点坐标计算;(2)由幂的运算法则和对数运算法则计算.【详解】(1)设,因为的图象经过点,所以,,所以;(2).【点睛】本题考查幂函数的解析式,考查幂的运算法则和对数运算法则,属于基础题.18.已知两条直线:,:.(1)若,求的值;(2)若,求的值.【答案】(1)1;(2).【解析】【分析】(1)由求解,同时要检验是否重合;(2)由求解.【详解】(1)由于,所以,解得或,时两直线方程分别为,,两直线平行,时,两直线方程分别为,,即,两直线重合,不合题意,舍去.所以;(2)若,则,.【点睛】本题考查两直线平行与垂直的条件.在由两直线平行求参数时要进行检验,排除重合的情形.19.已知圆:,直线过点.(1)判断点与圆的位置关系;(2)当直线与圆相切时,求直线的方程;(3)当直线的倾斜角为时,求直线被圆所截得的弦长.【答案】(1)圆外;(2)和;(3).【解析】【分析】(1)把点坐标代入圆的方程可判断;(2)讨论斜率不存在的直线是否为切线,斜率存在时设切线方程为,由圆心到切线距离等于半径求出,得切线方程.(3)写出直线方程,求得圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为,所以点在圆外.(2)过与轴垂直的直线是圆的切线,过与轴不垂直的直线设方程为,即,,所以,解得,切线方程为,即.所以所求切线方程为和;(3)由题意直线方程为,即,圆心到直线的距离为,又所以弦长为.【点睛】本题考查点与圆的位置关系和直线与圆的位置关系.过圆上的点的圆的切线只有一条,过圆外一点的圆的切线有两条,可分类讨论,分斜率存在和不存在两类.在求直线与圆相交弦长时,一般用几何方法求解,即求出圆心到直线的距离,由勾股定理计算.20.已知直线:,点到直线的距离为.(1)若直线过原点,求直线的方程;(2)若直线不过原点,且两坐标轴上的截距相等,求直线的方程.【答案】(1)和;(2)和.【解析】【分析】(1)设直线方程为,由点到直线距离公式求得参数;(2)设直线方程为,再由点到直线距离公式求得参数;【详解】(1)直线过原点,设直线方程为,即,由题意,整理得,解得,所以直线方程为和;(2)直线不过原点且截距相等,设其方程为,即,由题意,解得或,所以直线方程为和.【点睛】本题考查求直线方程,掌握直线方程的各种形式是解题关键.21.已知圆:和圆:,点,分别在圆和圆上.(1)求圆的圆心坐标和半径;(2)求的最大值.【答案】(1),半径为;(2).【解析】【分析】(1)圆方程配方后化为标准方程,可得圆心坐标和半径;(2)求出圆心距,圆心距加上两个半径即为的最大值.【详解】(1)圆标准方程是,圆心为,半径为,(2)圆的标准方程是,圆心为,半径为.由(1),所以.【点睛】本题考查圆的一般方程,考查两圆位置关系问题.圆的一般方程配方后成标准方程可得圆心坐标和半径,两圆上的点间距离的最值可由圆心距离与半径运算求得.22.某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:第天4(万36股)(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量与时间的一次函数解析式;(Ⅲ)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?【答案】(Ⅰ);(Ⅱ);(Ⅲ)第15天交易额最大,最大值为125万元.【解析】【分析】(Ⅰ)由一次函数解析式可得与时间所满足的函数解析式;(Ⅱ)设,代入已知数据可得;(Ⅲ)由可得,再根据分段函数性质分段求得最大值,然后比较即得.【详解】(Ⅰ)当时,设,则,解得,当时,设,则,解得所以.(Ⅱ)设,由题意,解得,所以.(Ⅲ)由(Ⅰ)(Ⅱ)得即,当时,,时,,当时,,它在上是减函数,所以.综上,第15天交易额最大,最大值为125万元.【点睛】本题考查函数模型应用,解题时只要根据所给函数模型求出函数解析式,然后由解析式求得最大值.只是要注意分段函数必须分段计算最大值,然后比较可得.。

四川省成都市蓉城名校联盟2019-2020学年高一上学期期末联考数学答案

四川省成都市蓉城名校联盟2019-2020学年高一上学期期末联考数学答案

蓉城名校联盟2019~2020学年度上期高中2019级期末联考数学参考答案及评分标准一、选择题:本题共12小题,每小题5分,共60分。

题号123456789101112答案BDACBCDCDBBA二、填空题:本题共4小题,每小题5分,共20分。

13.14.π5πππ(,212212k k k -+∈,Z 15.511-16.52三、解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(每小题5分,共10分)解:(1)原式2ln 2lg5lg 2lg51e =++-+……………………3分2lg5lg 21=+++……………………4分4=……………………5分(2)1sin sin cos 0cos 0cos 22ααααα=<∴<⇒= ,, (1)分原式sin()cos()sin()cos()2sin()ααααα---+=+……………………3分cos cos 2sin ααα-=+322--=(……………………5分(17题阅卷时请给步骤分)18.(12分)解:设点(,)P x y ,(1,2)C ,)0,4(A ……………………2分又平行四边形OABC ,(4,0)OA CB ==……………………3分由CP CB λ=,即(1,2)(4,0)x y λ--=……………………4分λ41+=∴x ,2=y ……………………6分(1)当21=λ时,即:32x y ==,……………………7分)2,3(P ∴……………………8分(2)(14,2)OP λ=+,(43,2)AP λ=-由OP AP ⊥,0OP AP ∴⋅=……………………9分即(41)(43)40λλ+-+=,216810λλ-+=……………………10分14104λλ-==,……………………12分(若用其他方法,同等给分)19.(12分)解:(1)①当1a =时,()0f x =,()f x 既为奇函数又为偶函数……………………1分证明:11()()11x x xx a a f x f x a a ----+-=+++11011x xx xa a a a --=+=++()f x ∴为奇函数……………………6分(2)当2=a 时,21()21x x f x -=+为增函数证明:任取12x x >,则2121212121()()2121x x x x f x f x ---=-++212112212122212221(21)(21)x x x x x x x x x x +++---+-+=++……………………8分21212(22)(21)(21)x x x x -=++21x x > ,21220x x >>()f x ∴在R 上为增函数……………………10分21()21x x f x -∴=+在[]1,2-上的值域为:13,35⎡⎤-⎢⎥⎣⎦要使()10f x m +-=在[]1,2-上有零点,则28,35m ⎡⎤∈⎢⎣⎦……………………12分(若用其他方法,同等给分)20.(12分)解:(1)x ωϕ-0π2π3π22πxπ12π37π125π613π12()f x 033-0π()3sin(26f x x =-最小正周期πT =,(2)第一步:x y sin =的图象向右平移=ϕπ6(个单位长度)得到=1y πsin(6x -的图象.第二步:1y 的图象(纵坐标不变)横坐标变为原来的21倍得到2πsin(2)6y x =-的图象.第三步:2y 的图象(横坐标不变)纵坐标变为原来的3倍得到()f x 的图象.(共有10空,其中()f x 的表达式3分,其余每空1分)21.(12分)解:(1)π12m θ==当,时,a =(2,1),b =(1,0)……………………1分a -b (1,1)=∴,||-a b……………………3分cos <a ,b >=⋅⋅a bab 5=……………………5分(2)()f θ=⋅a b sin cos θθ++2(sin cos )2sin cos sin cos m m θθθθθθ=++++……………………6分令sin cos t θθ+=,则22sin cos 1[t t θθ⋅=-∈,……………………7分设22()2(21)[=+-+=++-∈,h t mt mt m t mt m t m t ①当0m =时,min ()()(h t t h t h ===,……………………8分②当0m <时,函数()h t 的对称轴为1(12=-+t m (或212+=-m t m)当1(1)02m -+>(或2102+->m m),即210->>m时,min ()((1h t h m ==-…………………10分当1(1)02m -+(或2102+-m m),即12m -时,min ()1)h t h m ==++ (11)分1(102()1(12m m g m m m ⎧--<⎪⎪∴=⎨⎪+-⎪⎩…………………12分(若用其他方法,同等给分)22.(12分)解:(1)函数)(x f 的定义域为R ,即210mx mx -+ 在R 上恒成立当0=m 时,10 恒成立,符合题意……………………1分当0≠m 时,必有00<40m m >⎧⇒⎨∆⎩……………………3分综上:m 的取值范围是[]04,……………………4分(2)()()g x f x x x=-=- (ln )0g x ∴ ,对任意2,x e e ⎡⎤∈⎣⎦总成立,等价于220(ln )ln 1(ln )m x m x x -+ 在2[,]x e e ∈总成立………………5分即:()222(ln )ln 10(ln )ln 1(ln )m x m x m x m x x ⎧-+*⎨-+⎩ 在2[,]x e e ∈上恒成立………………6分设:x t ln =,因为2[,]x e e ∈,所以[]1,2t ∈,不等式组()*化为222()10()1m t t m t t t⎧-+⎨-+⎩ []1,2t ∈时,20t t - (当且仅当1=t 时取等号)1=t 时,不等式组显然成立………………7分当(]12t ∈,时,2222221()10()11m m t t t tm t t t t m t t ⎧-⎪⎧-+⎪-⇒⎨⎨-+-⎩⎪⎪-⎩ 恒成立………………8分2211111224t t t -=---+-( ,即12m - ………………10分221111t t t t t t -+==+-在(]1,2上递减,所以11t +的最小值为32,32m …………………11分综上所述,m 的取值范围是13,.22⎡⎤-⎢⎥⎣⎦…………………12分(若用其他方法,同等给分)11l 2l xy解析:12.易知当0k >,0x 时,()222272(24k f x x kx k x k =++=++,()f x 的图象如图所示.当直线y k =在图中1l 的位置时,22724k k k <<,得1427k <<,m n ,为方程222x kx k k ++=的两根,即2220x kx k k ++-=的两根,故22mn k k =-;而1ab =则22113272121,22232mn ab k k k k k k +-=-+-=-+<即264485k k -+<0,解得1588k <,所以1427k <<;当直线y k =在图中2l 的位置时,22k k 且0k >,得102k < ;此时0n =则112712232mn ab k k +-=-<,得51162k < .所以,k 的取值范围是54(,)167.16.()2251616533x x g x x x x -+==+-=+ ,当4x =时,()3g x =;因为12ππ1sin(2362x --- ,所以()52f x ;而()542f =,所以()min 52f x =.。

2019~2020学年度上期高中2019级期末联考数学试题

2019~2020学年度上期高中2019级期末联考数学试题

蓉城名校联盟2019〜2020学年度上期高中2019级期末联考数学考试时间共120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。

2.选择题使用2B铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。

3.考试结束后由监考老师将答题卡收回。

、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x-1 剟x 5, N} , B={x|2x,D. [0,3]B. {0,123}2.设向量b= (12,n) , c = (一1,2),若b// c,则n 二B. -624 D. - 242x _63 .已知函数f(x) =a 3(a 1)的图象过定点A,且点A在角二的终边上,则tan v的值为4 .设a =sin48 , b =cos41 , c=tan46,则下列结论成立的是A . b :: a :: c c ::: a ::: bC. a b ■■■■ c b :: c :::a5 .函数f (x) =ln(x -4x -21)的单调递减区间为A. (」:,2) B . (J -, _3) (2,:亿::)m」6.若f (x) =(lgm 1)x 2为幕函数,则f(3)二n5 n7•已知函数f(x)=sin(「x )(「.0)的最小正周期为 n ,贝y f ()=6 43X49.已知函数f (x)的定义域为(1,4),则函数g(x) = f(log 2x) +(的定义域为J 9—x 2A • 1 & △ ABC 中,D 为BC 边上一点,且 BC =5BD ,若 AD = mAB nAC ,12 •已知函数f(x)Jx 2如F,x,0Jn x , x >0f (x), k 的解集为11 1 27[m,n] U[a,b],且n ::: a , mn • ab k ,则实数k 的取值范围为2 一1 42732 C • (-,5)8 81 4D •咕)2 BA • (1,3)B •(0,2)C • (1,2)D •(2,3)10 .已知函数f(x)二sin(5x •「)(0剟n为偶函数,则函数g(x):1二2cos(2 x )在[0,乎]上的值域为A • [-1/ 3]B •[-1,2]C • [-2,2]D •[- 3,2]11 .函数f (x) =(x T)lg(x • 1)-3x-5的零点个数为A • 3B • 2C •1D • 0若关于x的不等式二、填空题:本题共 4小题,每小题5分,共20分。

2019—2020成都市高一数学期末考试卷含答案解析

2019—2020成都市高一数学期末考试卷含答案解析

2019—2019—2020成都市高一数学期末考试卷含答案解析一、选择题:1. 集合{1;2;3}的真子集共有( )A .5个B .6个C .7个D .8个 2. 已知角α的终边过点P (-4;3) ;则2sin cos αα+ 的值是( ) A .-1 B .1 C .52-D . 253. 已知扇形OAB 的圆心角为rad 4;其面积是2cm 2则该扇形的周长是( )cm.A .8B .6C .4D .2 4. 已知集合{}2,0x M y y x ==>;{})2lg(2x x y x N -==;则M N I 为( )A .(1,2)B .(1,)+∞C .[)+∞,2D .[)+∞,16. 函数 )252sin(π+=x y 是 ( ) A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数 D.周期为2π的偶函数 7. 右图是函数)sin(ϕω+=x A y 在一个周期内的图象;此函数的解析式为可为( )A .)32sin(2π+=x y B .)322sin(2π+=x y C .)32sin(2π-=x y ) D .)32sin(2π-=x y8.已知函数)3(log )(22a ax x x f +-=在区间[2;+∞)上是增函数; 则a 的取值范围是( )A .(]4,∞-B .(]2,∞-C .(]4,4-D .(]2,4-9. 已知函数()f x 对任意x R ∈都有(6)()2(3),(1)f x f x f y f x ++==-的图象关于点(1,0)对称;则(2013)f =( )A .10B .5-C .5D .010. 已知函数21(0)(),()(1)(0)x x f x f x x a f x x -⎧-≤==+⎨->⎩若方程有且只有两个不相等的实数根;则实数a 的取 值范围为( )A .(,0]-∞B .(,1)-∞C .[0,1)D .[0,)+∞二、填空题:11.sin 600︒= __________.12. 函数()lg 21y x =+的定义域是__________. 13. 若2510a b ==;则=+ba 11__________. 14. 函数12()3sin log f x x x π=-的零点的个数是__________.15. 函数()f x 的定义域为D ;若存在闭区间[,]a b D ⊆;使得函数()f x 满足:①()f x 在[,]a b 内是单调函数;②()f x 在[,]a b 上的值域为[2,2]a b ;则称区间[,]a b 为()y f x =的“倍值区间”.下列函数中存在“倍值区间”的有________①)0()(2≥=x x x f ;②()()xf x e x =∈R ; ③)0(14)(2≥+=x x xx f ; ④()sin 2()f x x x R =∈三、解答题16. 已知31tan =α; (1)求:ααααsin cos 5cos 2sin -+的值(2)求:1cos sin -αα的值3讨论关于x 的方程m x f =)(解的个数。

2019-2020学年四川省成都市蓉城名校联盟高一上学期期末联考数学试题(解析版)

2019-2020学年四川省成都市蓉城名校联盟高一上学期期末联考数学试题(解析版)

2019-2020学年四川省成都市蓉城名校联盟高一上学期期末联考数学试题一、单选题1.已知集合{|15,}A x x x =-≤≤∈N ,{}|28xB x =≤,则A B =I ( )A .{1,0,1,2,3}-B .{0,1,2,3}C .[1,3]-D .[0,3]【答案】B【解析】先化简集合A ,B ,再求A B I 即可 【详解】由题可知{}{|15,}0,1,2,3,4,5A x x x =-≤≤∈=N {}{}|283xB x x x =≤=≤故A B =I {0,1,2,3} 故选:B 【点睛】本题考查集合的交集运算,属于基础题2.设向量(12,)b n =r ,(1,2)c =-r ,若//b c r r ,则n =r( )A .6B .6-C .24D .24-【答案】D【解析】由向量平行的坐标关系求解即可 【详解】由()//122124b c n n ⇒⨯=⨯-⇒=-r r故选:D 【点睛】本题考查由向量平行的坐标运算求解参数,属于基础题 3.已知函数26()3(1)x f x a a -=+>的图象过定点A ,且点A 在角θ的终边上,则tan θ的值为( ) A .43B .34C .45D .35【答案】A【解析】采用整体法和函数图像平移法则即可求解【详解】26()3(1)x f x a a -=+>,令2603x x -=⇒=,则此时0(3)34f a =+=,则函数过定点A ()3,4,则4tan 3A = 故选:A 【点睛】本题考查函数过定点的判断,已知终边上的点求三角函数值,属于基础题 4.设sin 48a =︒,cos41b =︒,tan 46c =︒,则下列结论成立的是( ) A .b a c << B .c a b << C .a b c << D .b c a <<【答案】C【解析】将cos41b =︒转化为sin 49︒,再结合正弦函数的增减性和函数值域,即可求解 【详解】n cos41si 49b ︒==︒,因()0,90x ∈︒时,sin y x =为增函数,故1sin 49sin 48b a >=︒>=︒,又tan 46tan 451︒>︒=,故a b c << 故选:C 【点睛】本题考查由三角函数诱导公式和的增减性判断函数值的大小,属于基础题 5.函数()2()ln 421f x x x =--的单调递减区间为( ) A .(,2)-∞ B .(,3)-∞- C .(2,)+∞ D .(7,)+∞【答案】B【解析】先求函数的定义域,再根据复合函数同增异减的性质即可求解 【详解】由题可知,()()242107307x x x x x -->⇒-+>⇒>或3x <-,()2()ln 421f x x x =--可看作()2ln ,421f t t t x x ==--,则()f t 为增函数,2421t x x =--,当(),3x ∈-∞-时,t 单调递减,当()7,x ∈+∞时,t 单调递增,根据复合函数的增减性,当(),3x ∈-∞-时,()2()ln 421f x x x =--为减函数故选:B 【点睛】本题考查对数型复合函数的增减区间判断,属于基础题 6.若12()(lg 1)m f x m x -=+为幂函数,则(3)f =( ) A .9 B .19C .3D .3 【答案】C【解析】由幂函数的性质可求参数m 和幂函数表达式,将3x =代入即可求解 【详解】12()(lg 1)m f x m x-=+为幂函数,则lg 111m m +=⇒=,则()12f x x =,则(3)3f =,故选:C 【点睛】本题考查幂函数解析式和函数值的求解,属于基础题 7.已知函数()sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,则54f π⎛⎫= ⎪⎝⎭( )A .1B .12C .0D .32【答案】D【解析】由最小正周期求参数ω,再代值运算即可 【详解】因函数的最小正周期为π,则22T ππωω==⇒=,5573()sin 2,sin 2sin sin 6446332f x x f ππππππ⎛⎫⎛⎫⎛⎫=-=⨯-=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:D 【点睛】本题考查由函数的最小正周期求参数,函数具体值的求解,属于基础题8.ABC V 中,D 为BC 边上一点,且5BC BD =,若AD mAB nAC =+uuu r uu u r uuu r,则2n m -=( )A .25B .35-C .25-D .35【答案】C【解析】以AB u u u r 和AC u u ur 向量为基底向量,将AD u u u r 向量通过向量的加法和减法公式转化为基底向量,即可求解对应参数,m n 【详解】()11415555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,则41,55m n ==,则2422555n m -=-=-故选:C 【点睛】本题考查平面向量基本定理,属于中档题9.已知函数()f x 的定义域为(1,4),则函数()12()log x g x f x -=+( ) A .(1,3) B .(0,2)C .(1,2)D .(2,3)【答案】D【解析】建立不等式组()2log 1,4x ∈且290->x 即可求解 【详解】 由题可知2291og 0l 4x x -<<>⎧⎨⎩,解得()2,3x ∈, 故选:D 【点睛】本题考查具体函数的定义域求法,属于基础题10.已知函数()sin(5)(0)f x x ϕϕπ=+剟为偶函数,则函数1()2cos 23g x x ϕ⎛⎫=-⎪⎝⎭在50,12π⎡⎤⎢⎥⎣⎦上的值域为( )A.[- B .[1,2]-C .[2,2]-D.[2]【答案】B【解析】由函数为偶函数可得,2k k Z πϕπ=+∈,可求ϕ值,再采用整体法求出123x ϕ-在50,12π⎡⎤⎢⎥⎣⎦的范围,结合函数图像即可求解值域【详解】因为函数()sin(5)(0)f x x ϕϕπ=+剟为偶函数,故,2k k Z πϕπ=+∈又0ϕπ剟,故2ϕπ=, 则()2cos 26g x x π⎛⎫=-⎪⎝⎭,当50,12x π⎡⎤∈⎢⎥⎣⎦时,令22,663t x πππ⎡⎤=-∈-⎢⎥⎣⎦,当23t π=时,函数取得最小值,min 2()2cos 13g x π==-,当0t =时,max ()2cos 02g x ==,故函数的值域为[1,2]- 故选:B 【点睛】本题考查由奇偶性求解参数,在给定区间求解函数值域,属于中档题 11.函数()(1)lg(1)35f x x x x =-+--的零点个数为( ) A .3 B .2C .1D .0【答案】B【解析】可采用构造函数形式,令()()()35lg 1,1x h x x g x x +=+=-,采用数形结合法即可求解 【详解】由题可知,1x >-,当1x =时,()80f x =-≠, 令358()(1)lg(1)350lg(1)311x f x x x x x x x +=-+--=⇒+==+--, 令()()()35lg 1,1x h x x g x x +=+=-,画出函数图像,如图:则两函数图像有两交点,故函数()(1)lg(1)35f x x x x =-+--的零点个数为2个 故选:B 【点睛】本题考查函数零点个数的求解,数形结合思想,属于中档题12.已知函数222,0()ln ,0x kx k x f x x x ⎧++⎪=⎨>⎪⎩„,若关于x 的不等式()f x k „的解集为[,][,]m n a b ⋃,且n a <,127232mn ab k +-<,则实数k 的取值范围为( )A .54,167⎛⎫⎪⎝⎭B .14,87⎛⎫ ⎪⎝⎭C .15,88⎛⎫ ⎪⎝⎭D .14,27⎡⎫⎪⎢⎣⎭【答案】A【解析】易知0k >,由表达式画出函数图像,再分类讨论y k =与函数图像的位置关系,结合不等关系即可求解 【详解】易知当0k >,0x „时,22227()224k f x x kx k x k ⎛⎫=++=++ ⎪⎝⎭, ()f x 的图象如图所示.当直线y k =在图中1l 的位置时,22724k k k <<,得1427k <<, ,m n 为方程2220x kx k k ++-=的两根,即2220x kx k k ++-=的两根, 故22mn k k =-; 而1ab =则2211327212122232mn ab k k k k k k +-=-+-=-+<, 即2644850k k -+<,解得1588k <<,所以1427k <<;当直线y k =在图中2l 的位置时,22k k „且0k >,得102k <„;此时0n = 则112712232mn ab k k +-=-<,得51162k <≤. 所以,k 的取值范围是54,167⎛⎫⎪⎝⎭.故选:A 【点睛】本题考查函数零点与方程根的关系,数形结合思想,分类讨论思想,属于中档题二、填空题13.若向量a =r ,b r 为单位向量,a r 与b r 的夹角为3π,则a b ⋅=r r ______.【解析】由a =r求出模长,再由向量的数量积公式求解即可【详解】由题可知,a ==r 1cos 132a b a b π⋅=⋅⋅=⨯=r r r r【点睛】本题考查向量数量积的计算,属于基础题14.已知一个扇形的面积为26cm π,弧长为2cm π,圆心角为θ,则函数()tan(2)f x x θ=+的单调递增区间为______.【答案】5,212212k k ππππ⎛⎫-+⎪⎝⎭,k Z ∈ 【解析】由已知先求出圆心角,再采用整体代入法即可求解 【详解】 由1126622S l r r r ππ=⋅=⨯⨯=⇒=,则263l r ππθ===, 则()tan(2)tan(2)3f x x x πθ=+=+,令2,,322x k k k Z πππππ⎛⎫+∈-++∈⎪⎝⎭,解得5,212212k k x ππππ⎛⎫∈-+ ⎪⎝⎭,k Z ∈故答案为:5,212212k k ππππ⎛⎫-+⎪⎝⎭,k Z ∈ 【点睛】本题考查扇形的弧长域面积公式的基本应用,整体法求解正切函数的单调区间,属于基础题15.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 剟时,()21x f x =-,则()2log 11f =______.【答案】511-【解析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 剟时,()21x f x =-即可求解【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈,则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题16.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 【答案】52【解析】可拆分理解,构造251616()5x x g x x x x -+==+-,由对勾函数可得4x =时取得最小值,又当4x =时,12sin 236x ππ⎛⎫-- ⎪⎝⎭也取到最小值,即可求解 【详解】令251616()5x x g x x x x-+==+-,由对勾函数性质可知当4x =时,min ()3g x =;因为121sin 2362x ππ⎛⎫--- ⎪⎝⎭…,当4x =时,121sin 2362x ππ⎛⎫--=- ⎪⎝⎭,所以当4x =时,()f x 取到最小值,5(4)2f =,所以min 5()2f x =. 故答案为:52【点睛】本题考查函数最值的求解,拆分构造函数是解题关键,属于中档题三、解答题17.求下列表达式的值. (1)202ln 2lg5lg (lg31)5e +++-; (2)已知:1sin 2α=,sin cos 0αα⋅<. 求:sin(2)cos()sin()sin 2cos 22παπαπαππαα-+--+⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭的值. 【答案】(1)4;(2)3【解析】(1)结合对数的运算性质求解即可;(2)由条件判断α为第二象限的角,再结合同角三角函数和诱导公式化简求值即可 【详解】(1)原式2ln 2lg5lg2lg51e =++-+2lg5lg21=+++4=(2)1sin 2α=Q ,sin cos 0αα<,cos 0cos αα∴<⇒= 原式sin()cos sin cos 2sin ααααα--+=+2cos 3cos 2sin 22ααα⎛-- -===+ 【点睛】本题考查对数式的化简求值,同角三角函数的基本求法,诱导公式的应用,属于基础题18.如图,平行四边形OABC 的一边OA 在x 轴上,点(4,0)A ,(1,2)C ,P 是CB 上一点,且CP CB λ=u u u r u u u r.(1)当12λ=时,求点P 的坐标; (2)连接AP ,当λ为何值时,OP AP ⊥. 【答案】(1)(3,2)P ;(2)14【解析】利用平行四边形性质可得OA CB =u u u r u u u r ,结合CP CB λ=u u u r u u u r可得(1,2)(4,0)x y λ--=,(1)将12λ=代入即可求解; (2)利用0OP AP OP AP ⊥⇔⋅=u u u r u u u r,求解关于λ的一元二次方程即可; 【详解】设点(,)P x y ,(1,2)C Q ,(4,0)A又平行四边形OABC ,(4,0)OA CB ==u u u r u u u r由CP CB λ=u u u r u u u r,即(1,2)(4,0)x y λ--=14x λ∴=+,2y =(1)当12λ=时,即:3x =,2y = (3,2)P ∴(2)(14,2)OP λ=+u u u r ,(43,2)AP λ=-u u u r由OP AP ⊥,0OP AP ∴⋅=u u u r u u u r即(41)(43)40λλ+-+=,216810λλ-+=410λ-=,14λ=【点睛】本题考查由向量的平行与垂直求解对应点坐标和参数问题,属于基础题19.已知定义在R 上的函数1()(0)1x x a f x a a -=>+.(1)判断函数的奇偶性,并加以证明;(2)当2a =时,判断函数()f x 的单调性并加以证明;并求()10f x m +-=在[1,2]-上有零点时,m 的取值范围.【答案】(1)详见解析;(2)增函数,证明见解析;28,35m ⎡⎤∈⎢⎥⎣⎦【解析】(1)需进行分类讨论,当1a =时和当1a ≠时两种情况,结合奇偶函数定义即可判断;(2)结合增函数定义即可求解 【详解】解:(1)当1a =时,()0f x =,()f x 既为奇函数又为偶函数②当1a ≠时,1()(0)1x x a f x a a -=>+为奇函数证明:1111()()01111x x x xx x x xa a a a f x f x a a a a ------+-=+=+=++++ ()f x ∴为奇函数(2)当2a =时,21()21x x f x -=+为增函数证明:任取21x x >,则()()21212121212121x x x x f x f x ---=-++ ()()2121122121222122212121x x x x x x x x x x +++---+-+=++ ()()()21212222121x x x x -=++21x x >Q ,21220x x >> ()f x ∴在R 上为增函数21()21x xf x -∴=+在[1,2]-上的值域为:13,35⎡⎤-⎢⎥⎣⎦要使()10f x m +-=在[1,2]-上有零点,则28,35m ⎡⎤∈⎢⎥⎣⎦【点睛】本题考查函数奇偶性与增减性的判断与证明,属于中档题20.某同学学习习惯不好,把黑板上老师写的表达式忘了,记不清楚是()sin()0,0,02f x A x A πωϕωϕ⎛⎫=->> ⎪⎝⎭剟还是()cos()00,02f x A x A πωϕωϕ⎛⎫=->> ⎪⎝⎭剟.翻出草稿本发现在用五点作图法列表作图时曾算出过一些数据(如下表).(1)请你帮助该同学补充完表格中的数据,写出该函数的表达式()f x ,并写出该函数的最小正周期;(2)若利用sin y x =的图象用图象变化法作()y f x =的图象,其步骤如下:(在空格内填上合适的变换方法)第一步:sin y x =的图象向右平移ϕ=_____得到1y =_____的图象; 第二步:1y 的图象(纵坐标不变)______得到2y =_____的图象; 第三步:2y 的图象(横坐标不变)_____得到()f x 的图象. 【答案】(1)填表见解析;()3sin 26f x x π⎛⎫=-⎪⎝⎭;T π=;(2)详见解析; 【解析】(1)结合5点作图法原理即可快速求解,可判断函数周期为π,即2ω=,当0x ωϕ-=时,函数值为0,可判断为正弦函数,再将具体点坐标代入即可求出对应ϕ值;(2)由(1)知,()3sin 26f x x π⎛⎫=-⎪⎝⎭,结合函数图像平移法则即可求解;【详解】 1)由对应关系可知,函数最小正周期为T π=,故2ω=,3A =,将12x π=代入()()3sin 2f x x ϕ=-可得sin 2012πϕ⎛⎫⨯-= ⎪⎝⎭,又02πϕ剟,故6π=ϕ,故函数表达式为()3sin 26f x x π⎛⎫=- ⎪⎝⎭,最小正周期T π=(2)第一步:sin y x =的图象向右平移6π=ϕ(个单位长度)得到1sin 6y x π⎛⎫=- ⎪⎝⎭的图象.第二步:1y 的图象(纵坐标不变)横坐标变为原来的12倍得到2sin 26y x π⎛⎫=- ⎪⎝⎭的图象.第三步:2y 的图象(横坐标不变)纵坐标变为原来的3倍得到()f x 的图象 【点睛】本题考查五点代入法的具体应用,函数解析式的求法,函数图像平移法则的具体应用,属于中档题21.已知:向量(2,)a m m =r ,(sin cos ,2sin cos )b θθθθ=+r.(1)当1m =,2πθ=时,求||a b -r r 及a r 与b r夹角的余弦值;(2)若给定sin cos [θθ+∈,0m …,函数()sin cos f a b θθθ=⋅++r r的最小值为()g m ,求()g m 的表达式.【答案】(1)||a b -=r r;(2)1(102()1(12m m g m m m ⎧--<⎪⎪=⎨⎪++-⎪⎩„„【解析】(1)当1m =,2πθ=时,求得(2,1)a =r,(1,0)b =r ,结合模长和夹角公式即可求解;(2)先化简得()2(sin cos )2sin cos sin cos f m m θθθθθθθ=++++,采用换元法令sin cos t θθ+=,设2()(21)h t mt m t m =++-,再分类讨论0m =和0m <时对应表达式,再结合对称轴与定义域关系可进一步求解; 【详解】(1)当1m =,2πθ=时,(2,1)a =r,(1,0)b =r(1,1)a b -=r r,||a b ∴-=r rcos ,||||a b a b a b ⋅<>===⋅r rr r r r (2)()sin cos f a b θθθ=⋅++r r2(sin cos )2sin cos sin cos m m θθθθθθ=++++令sin cos t θθ+=,则22sin cos 1t θθ⋅=-,[t ∈ 设22()2(21)h t mt mt m t mt m t m =+-+=++-,[t ∈ ①当0m =时,()h t t =,min ()(h t h == ②当0m <时,函数()h t 的对称轴为112t m ⎛⎫=-+⎪⎝⎭(或212m t m+=-) 当1102m ⎛⎫-+> ⎪⎝⎭(或2102m m +->),即102m >>-时,min ()((1h t h m ==--当1102m ⎛⎫-+ ⎪⎝⎭„(或2102m m +-„),即12m -„时,min ()1)h t h m ==1(102()1(12m mg mm m⎧---<⎪⎪∴=⎨⎪++-⎪⎩„„【点睛】本题考查向量坐标的模长公式和角角公式求解,三角换元法在三角函数中的应用,含参二次函数在给定区间最值的求法,属于难题22.已知:函数()f x=,()m∈R.(1)若()f x的定义域为R,求m的取值范围;(2)设函数()()g x f x x=-,若(ln)0g x„,对于任意2,x e e⎡⎤∈⎣⎦总成立.求m的取值范围.【答案】(1)[0,4];(2)13,22⎡⎤-⎢⎥⎣⎦【解析】(1)分类讨论,当参数0m=时,10≥恒成立,符合题意;当参数0m≠时,满足m>⎧⎨∆⎩„,解不等式组即可;(2)将不等式等价转化为222(ln)ln10(ln)ln1(ln)m x m xm x m x x⎧-+⎨-+⎩…„在2,x e e⎡⎤∈⎣⎦上恒成立,令lnt x=,不等式组化为()()222101m t tm t t t⎧-+⎪⎨-+⎪⎩…„,[1,2]t∈,再采用分离参数法,通过求解关于t的函数最值,进而求解参数m范围【详解】(1)函数()f x的定义域为R,即210mx mx-+…在R上恒成立,当0m=时,10≥恒成立,符合题意当0m≠时,必有04mm>⎧⇒<⎨∆⎩„„综上:m的取值范围是[0,4](2)()()g x f x x x=-=Q(ln)0g x∴„,对任意2,x e e⎡⎤∈⎣⎦总成立,等价于220(ln)ln1(ln)m x m x x-+剟在2,x e e⎡⎤∈⎣⎦总成立即:222(ln )ln 10(ln )ln 1(ln )m x m x m x m x x ⎧-+⎨-+⎩…„(*)在2,x e e ⎡⎤∈⎣⎦上恒成立 设:ln t x =,因为2,x e e ⎡⎤∈⎣⎦,所以[1,2]t ∈,不等式组(*)化为()()222101m t t m t t t⎧-+⎪⎨-+⎪⎩…„[1,2]t ∈时,20t t -…(当且仅当1t =时取等号)1t =时,不等式组显然成立当(1,2]t ∈时,()()22222211011m m t t t tt m t t t m t t ⎧⎧-⎪-+⎪⎪⎪-⇒⎨⎨--+⎪⎪⎪⎪-⎩⎩……„„恒成立 2211121124t t t -=--⎛⎫--+⎪⎝⎭„,即12m - (22)1111t t t t t t-+==+-在(1,2]上递减,所以11t +的最小值为32,32m „ 综上所述,m 的取值范围是13,22⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查由具体函数定义域范围求解参数范围,由不等式恒成立求解参数取值范围,分离参数法的应用,转化与化归能力,计算能力,属于难题。

2019-2020学年四川省成都市高一(上)期末数学试卷

2019-2020学年四川省成都市高一(上)期末数学试卷

2019-2020学年四川省成都市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)设集合{2A =-,1-,0,1},{1B =-,0,1,2},则(AB = ) A .{2-,1-,0,1} B .{1-,0,1,2}C .{0,1,2}D .{1-,0,1}2.(5分)已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(3,4)P -,则sin α的值是( )A .45-B .35-C .35D .453.(5分)已知向量(3,1)a =-,(,4)b m =.若a b ⊥,则实数m 的值为( )A .12-B .43-C .43D .124.(5分)半径为3,弧长为π的扇形的面积为( )A .2πB .32πC .3πD .9π5.(5分)函数()x f x e x =+的零点所在一个区间是( )A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)6.(5分)552log 10log 0.25(+= )A .0B .1C .2D .47.(5分)下列关于函数()sin 21f x x =+的表述正确的是( )A .函数()f x 的最小正周期是2πB .当2x π=时,函数()f x 取得最大值2C .函数()f x 是奇函数D .函数()f x 的值域为[0,2]8.(5分)已知函数32(0,1)3x y a a a -=->≠的图象恒过定点P .若点P 在幂函数()f x 的图象上,则幂函数()f x 的图象大致是( )A .B .C .D .9.(5分)设0.53a =,0.3log 0.5b =,cos3c =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .b c a >>D .c a b >>10.(5分)已知(,)2παπ∈,若2cos()6πα-=,则5sin()6πα+的值为( ) A .2 B 2 C .14 D 14 11.(5分)已知关于x 的方程9340x x a -+=有一个大于32log 2的实数根,则实数a 的取值范围为( )A .(0,5)B .(4,5)C .(4,)+∞D .(5,)+∞12.(5分)已知函数()sin ()f x x R ωω=∈是7(,)212ππ上的增函数,且满足3|()()|244f f ππ-=,则()12f π的值组成的集合为( ) A .11,2⎧⎫--⎨⎬⎩⎭ B .31,⎧⎪-⎨⎪⎪⎩⎭ C .131,2⎧⎪--⎨⎪⎪⎩⎭ D .311,2⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭ 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)设函数31,0()2,0x x f x x x ⎧+=⎨->⎩,则(f f (2))的值为 .14.(5分)汽车从A 地出发直达B 地,途中经过C 地.假设汽车匀速行驶,5h 后到达B 地.汽车与C 地的距离s (单位:)km 关于时间t (单位:)h 的函数关系如图所示,则汽车从A 地到B 地行驶的路程为 km .15.(5分)在矩形ABCD 中,已知E ,F 分别是BC ,CD 上的点,且满足BE EC =,2CF FD =.若(,)AC AE AF R λμλμ=+∈,则λμ+的值为 .16.(5分)已知A ,B 是函数()|21|x f x =-图象上纵坐标相等的两点,线段AB 的中点C 在函数()2x g x =的图象上,则点C 的横坐标的值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知(0,)2πα∈,且sin cos 1sin cos 3αααα-=+. (Ⅰ)求tan α的值;(Ⅱ)求cos sin αα-的值.18.(12分)已知函数()1(0,1)x f x a a a =->≠满足1(1)(2)4f f -=. (Ⅰ)求a 的值;(Ⅱ)解不等式()0f x >.19.(12分)已知向量a 与b 的夹角23πθ=,且||3a =,||2b =. (Ⅰ)求a b ,||a b +;(Ⅱ)求a 与a b +的夹角的余弦值.20.(12分)近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式0M v v ln m=计算火箭的最大速度/vm s ,其中0/v m s 是喷流相对速度,mkg 是火箭(除推进剂外)的质量,Mkg 是推进剂与火箭质量的总和,M m称为“总质比”.已知A 型火箭的喷流相对速度为2000/m s . (Ⅰ)当总质比为330时,利用给出的参考数据求A 型火箭的最大速度;(Ⅱ)经过材料更新和技术改进后,A 型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的15,若要使火箭的最大速度至少增加800/m s ,求在材料更新和技术改进前总质比的最小整数值.参考数据:330 5.8ln ≈,0.82.225 2.226e <<.21.(12分)已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如图所示. (Ⅰ)求函数()f x 的解析式; (Ⅱ)当113[,]33x ∈-时,试由实数m 的取值讨论函数()()g x f x m =-的零点个数.22.(12分)设a ,b R ∈,若函数()f x 定义域内的任意一个x 都满足()(2)2f x f a x b +-=,则函数()f x 的图象关于点(,)a b 对称;反之,若函数()f x 的图象关于点(,)a b 对称,则函数()f x 定义域内的任意一个x 都满足()(2)2f x f a x b +-=.已知函数53()1x g x x +=+. (Ⅰ)证明:函数()g x 的图象关于点(1,5)-对称; (Ⅱ)已知函数()h x 的图象关于点(1,2)对称,当[0x ∈,1]时,2()1h x x mx m =-++.若对任意的1[0x ∈,2],总存在22[,1]3x ∈-,使得12()()h x g x =成立,求实数m 的取值范围.。

2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)

2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)

2019-2020 学年度第一学期期末联考高一数学试题第 I 卷(选择题)一、选择题(本大题共 10 小题,每题 5 分,共 50 分.每题只有一个正确答案)1.若 A={0,1,2 } , B = { x 1? x 2} , 则A?B(){ } { 0,1,2 }{}{1,2 }A . 1B .C . 0,1D .2. sin15 o cos15o 值为()A .1B .1C.3 D. 324243. 函数 f ( x)1lg(1 x) 的定义域是 ()1 xA .( - ,- 1)B .(1,+ )C .(-1,1)∪(1,+ )D .(- ,+ )4.已知点 P( x,3) 是角终边上一点,且 cos4),则 x 的值为(B . 55D . 4A . 5C . 45.已知 a0.7 0.8 ,blog 2 0.8, c1.10.8 ,则 a,b, c 的大小关系是()A . a b cB . b a cC . a c bD . b c a6.设函数 y = x 3 与 y( 1 )x 2 的图像的交点为 ( x 0,y 0) ,则 x 0 所在的区间是 ()2A .(0,1)B.(1 ,2) C .(2 , 3) D .(3 ,4)7.在自然界中,存在着大批的周期函数,比方声波,若两个声波随时间的变化规律分别为:y 1 3sin 100 t , y 2 3cos 100 t ,则这两个声波合成后即yy 1 y 2 的振幅为()A . 3B . 6C . 3 2 D. 6 28.以下函数中,不拥有奇偶性的函数是 ( )A . yexexB . y lg1 x1 xC . ycos2xD . y sin x cos x9.若 yAsin( x)( A0,0,| |) 的最小值为2,其图像相邻最高点与最低点横坐标之差为2 ,且图像过点(20, 1),则其分析式是()A . y 2sin( x )6B. y 2sin( x )3C . y2sin( x) 2 6xD . y 2sin( )2 310.如右图,点 P 在半径为 1的半圆上运动, AB 是直径, P当 P 沿半圆弧从 A 到 B 运动时,点 P 经过的行程 x 与 APBxB O A的面积 y 的函数y f ( x) 的图像是以下图中的()yy11 12OC π2πx OD第 II卷(非选择题)π2πx二、填空题(本大题共 5 小题,每题 5 分,共25 分.将答案填在题后横线上)11.(log29)(log 3 4).12.把函数y= 3sin2 x的图象向左平移个单位获得图像的函数分析是.13.已知tan 2 ,则 cos26.14.若函数f x 知足 f ( x 1) f ( x) ,且当x1,1 时, f x x ,则 f 2 f 3f4.15.函数f ( x)| cos x | cos x 具备的性质有.(将全部切合题意的序号都填上)( 1)f (x)是偶函数;( 2)f (x)是周期函数,且最小正周期为;( 3)f (x)在[, ] 上是增添的;2( 4)f (x)的最大值为2.三、解答题(本大题共 6 小题,共75 分.解答应写出文字说明、证明过程或演算步骤)16.已知会合M ={x 1 < x < 2},会合Nx 3x 4 .2( 1)求AèB;P ={}( 2)设会合x a < x < a + 2,若 P 腿(A B) ,务实数 a 的取值范围.117.(本小题满分12 分)已知tan2, tan,此中0,0.3( 1)求tan() 的值;( 2)求角的值.18.(本小题满分12 分)已知函数 f (x) sin( x)sin( x) .32( 1)求f (x)的最小正周期;3,求 g(x) 在区间[0,] 上的值域.( 2)若g (x) f ( x)4219.(此题满分12 分)辽宁号航母纪念章从2012 年10 月5 日起开始上市.经过市场检查,获得该纪念章每 1 枚的市场价y(单位 : 元) 与上市时间x(单位 : 天 ) 的数据以下:上市时间x 天41036市场价y 元905190(1) 依据上表数据联合散点图,从以下函数中选用一个适合的函数描绘辽宁号航母纪念章的市场价y与上市时间x 的变化关系并说明原因: ①y ax b ;②y ax 2bx c ;③y a log b x .(2)利用你选用的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价钱.20. ( 本小题满分13 分)已知函数 f (x)cx1, 0 x c,知足 f (c)9 x.2 c 21, c ≤ x128(1)求常数 c 的值;(2)解对于 x 的不等式 f (x)21.821. ( 本小题满分14 分 ) 已知函数mf( )|x|1( x0).x x( 1)当m 2时,判断f (x)在(,0) 的单一性,并用定义证明.( 2)若对随意x R ,不等式 f (2x)0 恒建立,求 m 的取值范围;( 3)议论f (x)零点的个数.2019-2020 学年度第一学期期末 考高一数学参照答案参照答案: 一、1.A2.B 3 .C4.D5.B 6 .B 7 .C 8 .D 9 .C10.A 二、填空11. 4 12. 13 .3 14. 115.( 1)( 3)(4)56三、解答{ x 1 < x < 4}16.解:( 1) A? B⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 ( 2)由(1) A ? B {x 1 < x < 4 }, ⋯⋯⋯⋯⋯⋯⋯⋯ 9 分ì?a 3 1?1#a2⋯⋯⋯⋯⋯⋯⋯⋯ 12 分í?2 ? 4?a +1tantan217.解:( 1) tan()37⋯⋯⋯⋯⋯⋯⋯⋯ 5 分1 tan tan1 ( 2) 131tantan2( 2) tan(31⋯⋯⋯⋯⋯⋯⋯⋯ 10 分)tan tan111( 2)1 3因 tan2 0,tan0 ,3因此, 022因此2,2故4⋯⋯⋯⋯⋯⋯⋯⋯ 12 分18.解:f (x)( 1 sin x3cos x)cos x⋯⋯⋯⋯⋯⋯⋯⋯ 2 分221 sin x cos x3cos 2 x221sin 2x3(1 cos 2x) ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分441sin(2 x3) 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分24( 1)因此T 2.⋯⋯⋯⋯⋯⋯⋯⋯ 8 分21(2)g (x)) ,sin(2 x23因 0 ≤ x ≤2 ,因此3 ≤ 2x3 ≤ ,3因此3≤ sin(2 x)≤1,233≤ 1sin(2 x) ≤ 1,423 2因此 g(x) 在区 [0,] 上的 域 [3 ,1] .⋯⋯⋯⋯⋯⋯⋯⋯ 12 分24 219.解 :(1) ∵跟着 x 的增添, y 的 先减后增,而所 的三个函数中y ax b 和 ya logb x 然都是 函数,不 足 意,∴ yax 2 bx c .⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 把点 (4 , 90) , (10 , 51) , (36 , 90) 代入 yax 2 bx c 中,16a 4b c90得 100a 10bc 51⋯⋯⋯⋯⋯⋯⋯⋯6 分1296a 36b c 90解得 a 110, c 126⋯⋯⋯⋯⋯⋯⋯⋯ 8 分, b1 4 1∴ yx 2 10x 126 (x 20)2 26 ,⋯⋯⋯⋯⋯⋯⋯⋯ 10 分44∴当 x 20 , y 有最小 y min 26 .⋯⋯⋯⋯⋯⋯ 11 分答: 宁号航母 念章市 价最低 的上市天数 20 天,最低的价钱 26 元.⋯⋯⋯⋯12 分20.解: (1)∵ f ( c)9 ,即 c c1 9 ,2 8 28解得 c1⋯⋯⋯⋯⋯⋯⋯⋯ 5 分.21 x 1, 0 x 1(2) 由 (1) 得 f ( x)21, 1≤ x2 ,2 4x12由 f ( x)2,适当 0x12 x1 ⋯⋯⋯⋯⋯⋯⋯⋯9 分1,解得4 ;822当1≤ x 1 ,解得 1≤ x5 . ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分228∴不等式 f ( x)2 1的解集 { x | 2 x 5} .⋯⋯⋯⋯⋯⋯⋯⋯ 13 分8 4821.分析:( 1)当 m2 ,且 x0 , f ( x)x 2 1 是 减的.⋯⋯⋯⋯⋯⋯⋯1 分x明: x 1x 2 0 ,f (x 1)f (x 2 )x 12 1 ( x 22 1)x 1x 2(x 2 x 1 ) (2 2x 1)x 2( x 2 x 1 )2( x 2 x 1)x 1x 2( x 22 ⋯⋯⋯⋯⋯⋯3 分x 1 )(1 ) x 1 x 2又 x 1 x 2 0 ,因此 x 2 x 1 0 , x 1x 2 0 ,因此 ( x 2 x 1 )(1 2 0)x 1x 2 因此故当f ( x 1 ) f ( x 2 ) 0 ,即 f (x 1) f (x 2 ) ,m 2 , f ( x) x2在 ( ,0) 上 减的. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1 x( 2)由 f (2 x ) 0 得 | 2x | m x1 0 ,形 (2 x )22x22x(2 x ) 2m 0 ,即 m而 2x(2 x )2(2 x 1)21 ,12 41当 2x即 x1 (2 x (2 x )2 )max ,2 14因此 m⋯⋯⋯⋯⋯⋯⋯⋯ 9 分.4( 3)由 f (x)0 可得 x | x | xm 0( x 0) , m x | x | x(x 0)令 g( x)x x | x |x 2 x, xx 2x, x 0作 y g (x) 的 像及直y m ,由 像可得:当 m1 1f ( x) 有 1 个零点.或 m,4 4当 m10 或 m1或 m, f (x) 有 2 个零点;41 14当 0mm0 , f ( x) 有 3 个零点.⋯⋯⋯⋯⋯⋯⋯⋯ 14 分或44。

2019-2020学年四川省成都市蓉城名校联盟高一上学期期中数学联考试题(含答案解析)

2019-2020学年四川省成都市蓉城名校联盟高一上学期期中数学联考试题(含答案解析)
(2)根据对数的运算法则及对数的性质计算可得.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分数指数幂的运算,对数的运算及对数的性质的应用,属于基础题.
18.己知全集 ,集合 ,且 .
(1)若 ,求 及 ;
(2)若 ,求实数 的取值范围.
【答案】(1) 或 , (2)
【解析】(1)根据函数的交并补求解即可.
12.已知 , ,把一个直角边长为2的等腰直角三角形 沿直角边 平行于 轴滑动,若点 刚好在 图象上,点 在 图象上时,点 的坐标为()
A. B. C. D.
【答案】B
【解析】根据 与 的平移关系与等腰直角三角形 边长为2可求得 ,再设 的坐标利用 求解即可.
【详解】
因为 ,故 为 往上平移 个单位所得.又等腰直角三角形 边长为2即 ,解得 .
10.已知函数 与 的定义如下:
0
1
2
3
0
1
3
2
0
2
3
1
若方程 有解,则满足的集合是()
A. B. C. D.
【答案】B
【解析】根据函数的一一对应关系直接枚举即可.
【详解】
因为 , , ,
.故 ,则 满足的集合是 .
故选:B
【点睛】
本题主要考查了函数的定义应用,属于基础题.
11.已知定义在 上的减函数 满足条件: ,则关于 的不等式 的解集为()
3.下列各组的两个函数为相等函数的是()
A. , B. ,
C. , D. ,
【答案】C
【解析】判断函数相等,需要满足定义域相同且解析式相同.
【详解】
解:对于 :函数 的定义域为 ,而函数 的定义域为 ,定义域不相同,故不是相等函数;

2021年1月5日四川省成都市蓉城名校联盟高2022届高2019级期末联考文科数学试题及参考答案

2021年1月5日四川省成都市蓉城名校联盟高2022届高2019级期末联考文科数学试题及参考答案

1蓉城高中教育联盟2020~2021学年度上期高中2019级期末联考文科数学参考答案及评分标准一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

二、填空题:本题共4小题,每小题5分,共20分。

13.95;14.0.4;15.16;16三、解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(10分)解:(1)所有的结果为:),(21a a ,),(31a a ,),(11b a ,),(21b a ,),(31b a ,),(32a a ,),(12b a ,),(22b a ,),(32b a ,),(13b a ,),(23b a ,),(33b a ,),(21b b ,),(31b b ,),(32b b 共15种;-------------------5分(2)记“选派结果至少有一名男志愿者”为事件A ,则事件A 包含的基本事件有),(21a a ,),(31a a ,),(11b a ,),(21b a ,),(31b a ,),(32a a ,),(12b a ,),(22b a ,),(32b a ,),(13b a ,),(23b a ,),(33b a 共12个基本事件;--------------------7分∴124()155P A ==-------------------10分18.(12分)解:(1)①当抛物线焦点在x 轴正半轴时,设方程为22(0)y px p =>.--------------------1分抛物线过点(4,4)P ,有1682p p =⇒=--------------------2分∴此时抛物线方程为:24y x=--------------------3分②当抛物线焦点在y 轴正半轴时,设方程为22(0)x py p =>.抛物线过点(4,4)P ,有1682p p =⇒=--------------------4分∴此时抛物线方程为:24x y =--------------------5分综上所述,抛物线标准方程为:24y x =或24x y=--------------------6分(2)易得椭圆的左、右焦点分别为(3,0)(3,0)-,,左、右顶点分别为(5,0)(5,0)-,-----------8分设双曲线方程为:22221(0,0)x y a b a b-=>>易得3a =,5c =--------------------10分∴29a =,22216b c a =-=--------------------11分∴该双曲线方程为:221916x y -=.--------------------12分题号123456789101112答案A D C A D B C A B D B C2解:(1)由题可得:(0.010.0150.0350.01)101a ++++⨯=-------------------2分解得:0.03a =-------------------4分(2)该校学生生物成绩优秀的频率为0.03100.01100.4⨯+⨯=-------------------6分∴该校学生生物成绩优秀的人数为0.41000400⨯=-------------------8分(3)估计此校本次考试的生物平均分为550.1650.15750.35850.3950.176.5⨯+⨯+⨯+⨯+⨯=-------------------12分20.(12分)解:(1)设圆C 的方程为220x y Dx Ey F ++++=,则-------------------1分193048201640D E F D F D F ++++=⎧⎪++++=⎨⎪++=⎩-------------------3分解得:2D =-;0E =;8F =-∴圆C 的方程为22280x y x +--=-------------------6分(2)连续抛掷一枚骰子两次,每一次都有6种情况,所以基本事件的总数为6636⨯=个-------------------8分满足在圆C 内的点有(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)共6个-------------------10分∴点(,)x y 在圆C 内的概率为61366=.-------------------12分21.(12分)解:(1) 22114x y m m +=--表示焦点在x 轴上的双曲线1040m m ->⎧∴⎨-<⎩解得:14m <<-------------------2分∴q :14m <<若p 是q 的充分不必要条件,则p q ⇒,q p ¿-------------------3分1114a a -⎧⎨+⎩ 解得:23a ∴实数a 的取值范围为[2,3]-------------------6分(2)若1a =,则p :02m <<-------------------7分当p q ∨为真,p q ∧为假时,则p 和q 必为一真一假-------------------8分当p 为真,q 为假时,则0214m m m <<⎧⎨⎩或 ,解得01m < -------------------10分当p 为假,q 为真时,则0214m m m ⎧⎨<<⎩或 ,解得24m < 综上,实数m 的取值范围为(0,1][2,4)-------------------12分3解:(1)由题设可得2224211a ab =⎧⎪⎨+=⎪⎩-------------------1分2242a b ⎧=⎪⇒⎨=⎪⎩-------------------3分∴椭圆E 的方程为:22142x y +=-------------------4分(2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩-------------------5分得2222(12)4240k x k x k +-+-=-------------------6分设1122(,)(,)M x y N x y ,有221212224241212k kx x x x k k -+==++-------------------7分 121244PM PN y y k k x x ==--,-------------------8分又 121244PM PN y y k k x x +=+--.-------------------9分整理得12121212[25()8]4()16PM PN k x x x x k k x x x x -+++=-++-------------------10分 22121222482025()8801212k k x x x x k k --++=-+=++∴0PM PN k k +=-------------------11分即直线PM 与直线PN 的斜率互为相反数-------------------12分。

2019-2020学年高一数学上学期期末考试联考试题(含解析)

2019-2020学年高一数学上学期期末考试联考试题(含解析)

2019-2020学年高一数学上学期期末考试联考试题(含解析)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】确定集合,由集合运算的定义求解.【详解】因为集合,所以,所以.故选:C.【点睛】本题考查集合的运算,属于基础题.2.函数的定义域是()A. B. C. D.【答案】A【解析】【分析】使解析式有意义,因此必须有且.【详解】由,得,即,所以.故选:A.【点睛】本题考查求函数定义域,即求使函数式有意义的自变量的取值范围.3.若直线与平行,则的值为()A. 1B. -1C.D.【答案】B【解析】【分析】由两直线平行的充要条件计算.【详解】因为直线与平行,所以,解得.故选:B.【点睛】本题考查两直线平行的充要条件.两直线平行,是必要条件,不是充要条件,仅由求出参数值,一般要代入直线方程检验是否平行.4.函数的零点所在的区间是( )A B. C. D.【答案】A【解析】【分析】根据函数单调递增和,得到答案.【详解】是单调递增函数,且,,所以的零点所在的区间为故选:【点睛】本题考查了零点所在的区间,意在考查学生对于零点存在定理的应用.5.已知,,,则的边上的中线所在的直线方程为( )A. B.C. D.【答案】B【解析】【分析】计算得到,,再计算直线方程得到答案.【详解】的中点为,,∴边上的中线所在的直线方程为,即.故选:【点睛】本题考查了直线方程,意在考查学生的计算能力.6.若直线被圆截得的弦长为,则( )A. B. 5 C. 10 D. 25【答案】B【解析】【分析】圆的圆心坐标为,半径,根据弦长得到,计算得到答案.【详解】圆的圆心坐标为,半径,直线被圆截得的弦长为,可得圆心到直线的距离为,则.故选:【点睛】本题考查了根据弦长求参数,意在考查学生的计算能力.7.若实数,,,则()A. B. C. D.【答案】B【解析】【分析】与中间值 0和1比较后可得.【详解】因为对数函数是单调递减的,所以,同理,,所以,而,所以.故选:B.【点睛】本题考查比较对数的大小,对于同底数的对数,可以利用对数函数的单调性比较,不同底数的对数可以与中间值0,1等比较后得出结论.8.已知圆柱的底面圆的面积为,高为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A. B. C. D.【答案】C【解析】【分析】圆柱轴截面的对角线是球的直径,由此可求得球半径.【详解】因为圆柱的底面圆的面积为,所以圆柱的底面圆的半径为,又因为圆柱的两个底面的圆周在同一个球的球面上,所以该球的半径,则该球的表面积为.故选:C.【点睛】本题考查球与内接圆柱的关系,可通过作圆柱的轴截面与球联系,圆柱的轴截面矩形的外接圆是球的大圆.9.函数的部分图象大致为()A. B.C. D.【答案】C【解析】【分析】根据函数解析式,判断函数的奇偶性,排除A、B,再根据函数值的正负情况,即可判断.【详解】由题意,,即是定义在上的奇函数,所以排除A,B;当时,;当时,,排除D故选:C.【点睛】本题考查由函数解析式判断性质进而识别图像,属于中等题型.10.某几何体的三视图如图所示,则该几何体的表面积为( )A. B. C. D.【答案】A【解析】【分析】根据三视图,得到原几何体,结合三视图中的线段长度,计算出每部分的表面积,从而得到答案.【详解】由三视图可知,该几何体由一个半球与一个圆锥拼接而成,且球的半径和圆锥底面圆半径相同,如图所示由三视图可知,半球半径为,所以半球的表面积为,圆锥的底面圆半径为,母线长为,所以圆锥的侧面积为,所以该几何体的表面积.故选:A.【点睛】本题考查由三视图还原几何体,求球的表面积和圆锥侧面积,属于简单题.11.已知,,点是圆:上的动点,则的最小值为( )A. 9B. 14C. 18D. 26【答案】D【解析】【分析】设为坐标原点,,化简得到,再计算得到答案.【详解】设为坐标原点,,则,又,所以.故选:【点睛】本题考查了圆相关的最值问题,变换是解题的关键.12.设,,分别是方程,,的实根,则( )A. B. C. D.【答案】C【解析】【分析】将方程有实根转化为两函数有交点,利用图像判断交点的位置,进而判断选项【详解】由题,对于,由与的图像,如图所示,可得;对于,由与的图像,如图所示,可得;对于,由与的图像,如图所示,可得或故【点睛】本题考查零点的分布,考查转化思想与数形结合思想第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知点,,则以线段为直径的圆的标准方程为______.【答案】【解析】【分析】求出圆心坐标和半径可得.【详解】因为圆心的坐标为,,所以该圆的标准方程为.故答案为:.【点睛】本题考查求圆的标准方程,属于基础题.14.已知函数是幂函数,则______.【答案】27【解析】【分析】根据幂函数定义求出参数.【详解】因为是幂函数,所以,解得,即,所以.故答案为:27.【点睛】本题考查幂函数的概念,属于基础题.15.已知圆:与圆:,则两圆的公共弦所在的直线方程为______.【答案】【解析】分析】两圆方程相减可得公共弦所在直线方程.【详解】将圆:化为,联立两圆方程两圆方程相减,得两圆公共弦所在直线的方程为.故答案为:.【点睛】本题考查两圆相交,求公共弦所在直线方程.不需要求出交点坐标,只要两圆方程相减即得.16.如图,在中,,,分别为,边上的中点,且,.现将沿折起,使得到达的位置,且,则______.【答案】【解析】【分析】由于折叠过程中与和的垂直关系保持不变,因此可得平面,结合平行的性质可得,然后在直角三角形中可求得.【详解】易知,,,所以平面,因为,,所以.又,所以平面,所以,从而.故答案为:.【点睛】本题考查空间图形折叠问题,考查线面垂直的判定定理和性质定理.属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合或,.(1)当时,求;(2)若,求实数的取值范围.【答案】(1)或;(2).【解析】【分析】(1)计算,或,再计算得到答案.(2)根据得到,故或,计算得到答案.【详解】(1)因为,所以,即,当时,或,所以或.(2)因为,所以, ,则或,即或,所以实数的取值范围为.【点睛】本题考查了并集的计算,根据包含关系求参数,意在考查学生对于集合知识的综合应用.18.已知直线的方程为,与垂直且过点.(1)求直线的方程;(2)若直线经过与的交点,且垂直于轴,求直线的方程.【答案】(1);(2)【解析】【分析】(1)由垂直求出直线斜率,写出点斜式方程后化简即可.(2)求出直线与的交点坐标可得方程.【详解】解:(1)由与垂直,则可设:,∵过,∴,解得,∴:.(2)联立与,可得与的交点坐标为,又垂直于轴,则直线的方程为.【点睛】本题考查求直线方程,考查两直线垂直的条件.属于基础题.19.已知函数是定义在上的奇函数,当时,.(1)求的解析式;(2)若是上的单调函数,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即时要是增函数,且端点处函数值不小于0.【详解】解:(1)因为函数是定义在上的奇函数,所以,当时,,则,所以,所以.(2)若是上的单调函数,且,则实数满足,解得,故实数的取值范围是.【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系.20.已知圆的圆心在轴正半轴上,且圆与轴相切,点在圆上.(1)求圆的方程;(2)若直线:与圆交于,两点,且,求的值.【答案】(1);(2)或【解析】【分析】(1)设出圆心坐标为,得圆标准方程,利用在圆上求出参数;(2)求出圆心到直线的距离,然后通过勾股定理列式求得.【详解】解:(1)设圆心,则圆的方程可设为.因为点在圆上,所以,解得.故圆的方程为.(2)由(1)可知圆的圆心,半径.因为,所以圆心到直线的距离,即,解得或.【点睛】本题考查求圆的标准方程,考查直线与圆相交弦长问题.圆的弦长可通过圆心到直线的距离,圆的半径由勾股定理求得:弦长(为弦心距).21.如图,在三棱锥中,,,,,平面,过作于,过作于,连接.(1)证明:.(2)求三棱锥的体积.【答案】(1)证明见解析;(2)【解析】【分析】(1)由平面,得,从而得平面,即得,于是有平面,从而,得出平面.最后得证线线垂直;(2)由(1)得是三棱锥的高,求出高和底面面积即可得体积.【详解】(1)证明:因为平面,所以.又,,所以平面,所以,又,,所以平面,从而.又,,所以平面.因为平面,所以.(2)解:由(1)知是三棱锥的高,所以.由已知,又,,由(1)知平面,则,所以,所以,所以.【点睛】本题考查证明线线垂直,考查求三棱锥体积.在证线线垂直时用的是线面垂直的性质定理,而要证线面垂直就要证线线垂直,本题利用线面垂直判定定理和性质定理进行线线垂直与线面垂直的多次转换,务必注意.22.已知函数,其中为自然对数的底数.(1)证明:在上单调递增;(2)函数,如果总存在,对任意都成立,求实数的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)用增函数定义证明;(2)分别求出和的最大值,由的最大值不小于的最大值可得的范围.【详解】(1)设,则,∵,∴,,∴,即,∴上单调递增;(2)总存,对任意都成立,即,的最大值为,是偶函数,在是增函数,∴当时,,∴,整理得,,∵,∴,即,∴,∴.即的取值范围是.【点睛】本题考查函数的单调性,考查不等式恒成立问题.单调性的证明只能按照定义的要求进行证明.而不等式恒成立问题要注意问题的转化,本题中问题转化为,如果把量词改为:对任意,总存在,使得成立,则等价于,如果把量词改为:对任意,任意,使得恒成立,则等价于,如果把量词改为:存在,存在,使得成立,则等价于.(的范围均由题设确定).2019-2020学年高一数学上学期期末考试联考试题(含解析)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】确定集合,由集合运算的定义求解.【详解】因为集合,所以,所以.故选:C.【点睛】本题考查集合的运算,属于基础题.2.函数的定义域是()A. B. C. D.【答案】A【解析】【分析】使解析式有意义,因此必须有且.【详解】由,得,即,所以.故选:A.【点睛】本题考查求函数定义域,即求使函数式有意义的自变量的取值范围.3.若直线与平行,则的值为()A. 1B. -1C.D.【答案】B【解析】【分析】由两直线平行的充要条件计算.【详解】因为直线与平行,所以,解得.故选:B.【点睛】本题考查两直线平行的充要条件.两直线平行,是必要条件,不是充要条件,仅由求出参数值,一般要代入直线方程检验是否平行.4.函数的零点所在的区间是( )A B. C. D.【答案】A【解析】【分析】根据函数单调递增和,得到答案.【详解】是单调递增函数,且,,所以的零点所在的区间为故选:【点睛】本题考查了零点所在的区间,意在考查学生对于零点存在定理的应用.5.已知,,,则的边上的中线所在的直线方程为( )A. B.C. D.【答案】B【解析】【分析】计算得到,,再计算直线方程得到答案.【详解】的中点为,,∴边上的中线所在的直线方程为,即.故选:【点睛】本题考查了直线方程,意在考查学生的计算能力.6.若直线被圆截得的弦长为,则( )A. B. 5 C. 10 D. 25【答案】B【解析】【分析】圆的圆心坐标为,半径,根据弦长得到,计算得到答案.【详解】圆的圆心坐标为,半径,直线被圆截得的弦长为,可得圆心到直线的距离为,则.故选:【点睛】本题考查了根据弦长求参数,意在考查学生的计算能力.7.若实数,,,则()A. B. C. D.【答案】B【解析】【分析】与中间值 0和1比较后可得.【详解】因为对数函数是单调递减的,所以,同理,,所以,而,所以.故选:B.【点睛】本题考查比较对数的大小,对于同底数的对数,可以利用对数函数的单调性比较,不同底数的对数可以与中间值0,1等比较后得出结论.8.已知圆柱的底面圆的面积为,高为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A. B. C. D.【答案】C【解析】【分析】圆柱轴截面的对角线是球的直径,由此可求得球半径.【详解】因为圆柱的底面圆的面积为,所以圆柱的底面圆的半径为,又因为圆柱的两个底面的圆周在同一个球的球面上,所以该球的半径,则该球的表面积为.故选:C.【点睛】本题考查球与内接圆柱的关系,可通过作圆柱的轴截面与球联系,圆柱的轴截面矩形的外接圆是球的大圆.9.函数的部分图象大致为()A. B.C. D.【答案】C【解析】【分析】根据函数解析式,判断函数的奇偶性,排除A、B,再根据函数值的正负情况,即可判断.【详解】由题意,,即是定义在上的奇函数,所以排除A,B;当时,;当时,,排除D故选:C.【点睛】本题考查由函数解析式判断性质进而识别图像,属于中等题型.10.某几何体的三视图如图所示,则该几何体的表面积为( )A. B. C. D.【答案】A【解析】【分析】根据三视图,得到原几何体,结合三视图中的线段长度,计算出每部分的表面积,从而得到答案.【详解】由三视图可知,该几何体由一个半球与一个圆锥拼接而成,且球的半径和圆锥底面圆半径相同,如图所示由三视图可知,半球半径为,所以半球的表面积为,圆锥的底面圆半径为,母线长为,所以圆锥的侧面积为,所以该几何体的表面积.故选:A.【点睛】本题考查由三视图还原几何体,求球的表面积和圆锥侧面积,属于简单题.11.已知,,点是圆:上的动点,则的最小值为( )A. 9B. 14C. 18D. 26【答案】D【解析】【分析】设为坐标原点,,化简得到,再计算得到答案.【详解】设为坐标原点,,则,又,所以.故选:【点睛】本题考查了圆相关的最值问题,变换是解题的关键.12.设,,分别是方程,,的实根,则( )A. B. C. D.【答案】C【解析】【分析】将方程有实根转化为两函数有交点,利用图像判断交点的位置,进而判断选项【详解】由题,对于,由与的图像,如图所示,可得;对于,由与的图像,如图所示,可得;对于,由与的图像,如图所示,可得或故【点睛】本题考查零点的分布,考查转化思想与数形结合思想第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知点,,则以线段为直径的圆的标准方程为______.【答案】【解析】【分析】求出圆心坐标和半径可得.【详解】因为圆心的坐标为,,所以该圆的标准方程为.故答案为:.【点睛】本题考查求圆的标准方程,属于基础题.14.已知函数是幂函数,则______.【答案】27【解析】【分析】根据幂函数定义求出参数.【详解】因为是幂函数,所以,解得,即,所以.故答案为:27.【点睛】本题考查幂函数的概念,属于基础题.15.已知圆:与圆:,则两圆的公共弦所在的直线方程为______.【答案】【解析】分析】两圆方程相减可得公共弦所在直线方程.【详解】将圆:化为,联立两圆方程两圆方程相减,得两圆公共弦所在直线的方程为.故答案为:.【点睛】本题考查两圆相交,求公共弦所在直线方程.不需要求出交点坐标,只要两圆方程相减即得.16.如图,在中,,,分别为,边上的中点,且,.现将沿折起,使得到达的位置,且,则______.【答案】【解析】【分析】由于折叠过程中与和的垂直关系保持不变,因此可得平面,结合平行的性质可得,然后在直角三角形中可求得.【详解】易知,,,所以平面,因为,,所以.又,所以平面,所以,从而.故答案为:.【点睛】本题考查空间图形折叠问题,考查线面垂直的判定定理和性质定理.属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合或,.(1)当时,求;(2)若,求实数的取值范围.【答案】(1)或;(2).【解析】【分析】(1)计算,或,再计算得到答案.(2)根据得到,故或,计算得到答案.【详解】(1)因为,所以,即,当时,或,所以或.(2)因为,所以, ,则或,即或,所以实数的取值范围为.【点睛】本题考查了并集的计算,根据包含关系求参数,意在考查学生对于集合知识的综合应用.18.已知直线的方程为,与垂直且过点.(1)求直线的方程;(2)若直线经过与的交点,且垂直于轴,求直线的方程.【答案】(1);(2)【解析】【分析】(1)由垂直求出直线斜率,写出点斜式方程后化简即可.(2)求出直线与的交点坐标可得方程.【详解】解:(1)由与垂直,则可设:,∵过,∴,解得,∴:.(2)联立与,可得与的交点坐标为,又垂直于轴,则直线的方程为.【点睛】本题考查求直线方程,考查两直线垂直的条件.属于基础题.19.已知函数是定义在上的奇函数,当时,.(1)求的解析式;(2)若是上的单调函数,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即时要是增函数,且端点处函数值不小于0.【详解】解:(1)因为函数是定义在上的奇函数,所以,当时,,则,所以,所以.(2)若是上的单调函数,且,则实数满足,解得,故实数的取值范围是.【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系.20.已知圆的圆心在轴正半轴上,且圆与轴相切,点在圆上.(1)求圆的方程;(2)若直线:与圆交于,两点,且,求的值.【答案】(1);(2)或【解析】【分析】(1)设出圆心坐标为,得圆标准方程,利用在圆上求出参数;(2)求出圆心到直线的距离,然后通过勾股定理列式求得.【详解】解:(1)设圆心,则圆的方程可设为.因为点在圆上,所以,解得.故圆的方程为.(2)由(1)可知圆的圆心,半径.因为,所以圆心到直线的距离,即,解得或.【点睛】本题考查求圆的标准方程,考查直线与圆相交弦长问题.圆的弦长可通过圆心到直线的距离,圆的半径由勾股定理求得:弦长(为弦心距).21.如图,在三棱锥中,,,,,平面,过作于,过作于,连接.(1)证明:.(2)求三棱锥的体积.【答案】(1)证明见解析;(2)【解析】【分析】(1)由平面,得,从而得平面,即得,于是有平面,从而,得出平面.最后得证线线垂直;(2)由(1)得是三棱锥的高,求出高和底面面积即可得体积.【详解】(1)证明:因为平面,所以.又,,所以平面,所以,又,,所以平面,从而.又,,所以平面.因为平面,所以.(2)解:由(1)知是三棱锥的高,所以.由已知,又,,由(1)知平面,则,所以,所以,所以.【点睛】本题考查证明线线垂直,考查求三棱锥体积.在证线线垂直时用的是线面垂直的性质定理,而要证线面垂直就要证线线垂直,本题利用线面垂直判定定理和性质定理进行线线垂直与线面垂直的多次转换,务必注意.22.已知函数,其中为自然对数的底数.(1)证明:在上单调递增;(2)函数,如果总存在,对任意都成立,求实数的取值范围.【答案】(1)证明见解析;(2)【解析】【分析】(1)用增函数定义证明;(2)分别求出和的最大值,由的最大值不小于的最大值可得的范围.【详解】(1)设,则,∵,∴,,∴,即,∴上单调递增;(2)总存,对任意都成立,即,的最大值为,是偶函数,在是增函数,∴当时,,∴,整理得,,∵,∴,即,∴,∴.即的取值范围是.【点睛】本题考查函数的单调性,考查不等式恒成立问题.单调性的证明只能按照定义的要求进行证明.而不等式恒成立问题要注意问题的转化,本题中问题转化为,如果把量词改为:对任意,总存在,使得成立,则等价于,如果把量词改为:对任意,任意,使得恒成立,则等价于,如果把量词改为:存在,存在,使得成立,则等价于.(的范围均由题设确定).。

四川省成都市蓉城高中教育联盟2019_2020学年高一数学6月联考试题理含解析

四川省成都市蓉城高中教育联盟2019_2020学年高一数学6月联考试题理含解析
【解析】
【分析】
(1)利用等差数列的通项公式即可求解.
(2)设农家乐第n年后开始盈利,盈利为y万元,则 ,令 ,解不等式即可.
(3)列出年平均获利 ,利用基本不等式即可求解.
【详解】解:(1)由题意知,每年需付出的费用是以12为首项,4为公差的等差数列,

(2)设该农家乐第n年后开始盈利,盈利为y万元,
四川省成都市蓉城高中教育联盟2019-2020学年高一数学6月联考试题 理(含解析)
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.以下空间几何体是旋转体的是( )
A.圆锥B.棱台C.正方体D.三棱锥
【答案】A
【解析】
【分析】
圆锥是旋转体,旋转轴为一条直角边所在的直线. 棱台 、正方体和三棱锥是多面体.
9.一个水平放置的正方体的正视图不可能是( )
A. B. C. D.
【答案】C
【解析】
【分析】
画出正方体,然后从不同的角度看,得到正视图,即可得到答案.
【详解】正方体如图所示,
若沿 看为正视,则正视图为A,若沿 看为正视,则正视图为B,
若沿 看为正视,则正视图为D,故ABD都有可能,不可能的是C.
故选:C.
【详解】以直角三角形的直角边所在的直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.
棱台,正方体和三棱锥是多面体.
故选:A.
【点睛】本题考查旋转体和多面体的概念,棱台和圆台的区别,圆锥和棱锥的区别;考查了概念辨析能力,属于容易题目.
2.已知数列 为等差数列,其中 ,公差 ,则 ( )
A. 1B. 3C. 5D. 7

由 ,得 ,解得 ,

2019-2020年高一上学期期末联考数学试题 含答案

2019-2020年高一上学期期末联考数学试题 含答案

2019-2020年高一上学期期末联考数学试题含答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,第Ⅰ卷为1-8题,共40分,第Ⅱ卷为9-20题,共110分. 全卷共计150分. 考试时间为120分钟.注意事项:1、答第一卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上.3、考试结束,监考人员将答题卡收回.参考公式:锥体的体积公式,其中S为锥体的底面积,h为锥体的高.第I卷(本卷共计40 分)一、选择题:(本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 直线x+y+1=0的倾斜角和在y轴上的截距分别为()A. 135︒,-1B. 135︒,1C. 45︒,-1D. 45︒,12. 已知A, B均为集合U={1,3,5,7,9}的子集,且A∩B={3},A∩(C U B) ={9},则A=()A. {1,3}B. {3,7,9}C. {3,5,9}D. {3,9}3. 下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是()A. y =x3B. y =|x|+1C. y = -x2+1D. y =2-|x|4. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A. ①和②B. ②和③C. ③和④D. ②和④5. 如图,ABCD-A1B1C1D1为正方体,下列结论中不正确...的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°6. 某四面体的三视图如右图所示,该四面体四个面的面积中,最大的是()A.8 B.C.10 D.7. 已知点A(-5, 4)、B(3, 2), 过点C(-1, 2), 且与点A、B的距离相等的直线方程是()A. x+4y-7=0B. 4x-y+7=0C. x+4y-7=0或x+1=0D. x+4y-7=0或4x-y+7=08. 设a>1,若对任意的x∈[a, 2a],都有y∈[a, a2] 满足方程log a x+log a y =3,这时a的取值的集合为()A.{a|1<a≤2} B.{a|a≥2} C.{a|2≤a≤3} D.{2,3}第II卷(本卷共计110 分)注意事项:请用黑色墨水签字笔在答题卡...上作答,在试题卷上答题无效.二、填空题:(本大题共6小题,每小题5分,满分30分)9. 函数y =lg(1-x)的定义域为___________.10. 函数f(x)=e x+x-2的零点个数为___________.11. 正方体的八个顶点中,有四个顶点恰好是正四面体的顶点,则正四面体的体积与正方体的体积之比是_________.12.已知直线l:x-y+4=0与圆C: (x-1)2+(y-1)2=2,则C上各点到l的距离的最小值为______.13. 若函数f(x)=log a x(a>0, a≠1)在区间上的最大值为1,最小值为m,且函数g(x)=(m+1)x2在区间[0, +∞)上是增函数,则a =_________.14. 据气象台预报:在我市正南方400km的海面A处有一台风中心,正以每小时40km的速度向西北方向移动,在距台风中心300km以内的地区将受其影响. 从现在起经过约__________小时,台风将影响我市.(结果精确到0.1小时)三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知∆ABC的顶点为A(1, 3),B(3, 1),C(-1, 0).AO ∙BCV(I )求AB 边所在直线的方程; (II )求∆ABC 的面积.16.(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,A 1A =AC =BC =1,AB =, 点D 是AB 的中点. (I )求证:AC 1//平面CDB 1; (II )求三棱锥A 1-ABC 1的体积.17.(本小题满分14分)如图,AB 是圆O 的直径,C 是圆周上不同于A 、B 的一点,VA ⊥平面ABC ,VA =AB . (I )证明:平面VAC ⊥平面VBC ;(II )当三棱锥A-VBC 的体积最大值时,求VB 与平面VAC 所成角的大小.18.(本小题满分14分)已知圆C 的半径为2,圆心C 在x 轴的正半轴上,直线3x -4y +4=0与圆C 相切.(I)求圆C的方程;(II)是否存在过点P(0, -3)的直线l与圆C交于不同两点A、B,且弦AB的垂直平分线m 过点Q(3, -3),若存在,求出直线l的方程;若不存在,请说明理由.19.(本小题满分14分)如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),物体E移动时单位时间....内的淋雨量包括两部分:①P或P的平行面(只有一个面淋雨)的淋雨量,设其值与|v-4|⨯S成正比,比例系数为;②其它面的淋雨量之和,其值为,记y为物体E移动过程中的总淋雨量,当移动距离d=100,面积S=时.(Ⅰ)写出y的表达式;(Ⅱ)设0<v≤10,试确定移动速度v,使总淋雨量y最少.20.(本小题满分14分)已知函数f(x)=ax2+bx+1(a≠0)对于任意x∈R都有f(1+x)=f(1-x),且函数y=f(x)+2x为偶函数;函数g(x)=1-2x.(I) 求函数f(x)的表达式;(II) 求证:方程f(x)+g(x)=0在区间[0, 1]上有唯一实数根;(III) 若有f(m)=g(n),求实数n的取值范围.xx-xx第一学期期末三校联考高一数学答案及评分标准说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.4、只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分40分.二、填空题:本大题每小题5分,满分30分.9. (-∞, 1) 10. 1 11. 1:3 12. 13. 14. 4.6三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分) 解:(I )AB 边所在直线的方程为, …………2分即x+y-4=0. …………4分 (II )22)31()13(|AB |22=-+-=, …………6分点C 到直线AB 的距离,就是AB 边上的高h , …………10分所以,5252221h |AB |21S ABC =⨯⨯=⋅=∆. …………12分 16.(本小题满分12分) 证:(I ) 设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1, …………3分 ∵ DE ⊂平面CDB 1, AC 1⊄平面CDB 1,∴ AC 1//平面CDB 1. …………5分 (II )底面三边长AC=BC=1,AB=, ∴ AC ⊥BC , …………7分∵A 1A ⊥底面ABC ,∴ A 1A ⊥BC ;而A 1A ⋂AC=C , ∴ BC ⊥面AA 1C 1C , 则BC 为三棱锥B -A 1AC 1的高; ……9分 ∴ 6112113*********=⨯⨯⨯=⨯==--BC S V V AC A AC A B ABC A ∆. …………12分 (注:若用其他求得,相同标准给分)17.(本小题满分14分)(I )证明:∵AB 是圆O 的直径,C 是圆O 上的一点,∴BC ⊥AC , …………2分由VA ⊥平面ABC , ∴BC ⊥VA ,而AC ⋂VA=A , ∴ BC ⊥面VAC , …………4分 由BC ⊂平面VBC , ∴平面VAC ⊥平面VBC. …………6分(II )方法1:∵VA ⊥平面ABC ,∴VA 为三棱锥V-ABC 的高,则ABC ABC ABC V VBC A S 3a 2VA S 31V V ∆∆--=⋅==,当∆ABC 的面积最大时,最大. …………8分 设AB=2a ,设BC=x (0<x<2a),则,则)x a 4(x 21x a 4x 21S 22222ABC -=-⋅=∆∴当x 2=2a 2时,即时,∆ABC 的面积最大,最大. …10分由(1)知:BC ⊥面VAC ,则∠BVC 为VB 与平面VAC 所成角, …………12分 在Rt ∆VBC 中,,,, ∴∠BVC=30︒,故直线VB 与平面VAC 所成角为30︒. …………14分 方法2:∵VA ⊥平面ABC ,∴VA 为三棱锥V-ABC 的高,则ABC ABC ABC V VBC A S 3a 2VA S 31V V ∆∆--=⋅==,当∆ABC 的面积最大时,最大. …………8分 设AB=2a ,过点C 做CM ⊥AB ,垂足为M , 则∴当M 与O 重合时,CM 最大,此时, ∴当,∆ABC 的面积最大,最大. …10分 (下同方法1) 18.(本小题满分14分) 解:(I )设圆心为C(a, 0)(a>0),则圆C 的方程为(x-a)2+y 2=4, …………1分因为圆C 与3x-4y+4=0相切,所以10|43|,243|43|22=+=++a a 即, …………4分解得a=2或(舍去), …………5分所以圆C 的方程为(x-2)2+y 2=4. …………6分 (II )假设符合条件的直线l 存在,显然直线l 的斜率存在,设直线l 的方程为y=kx-3,∵直线l 与圆相交于不同两点,则圆心C 到直线l 的距离 ,解得, …………9分直线m 的方程为, 即x+ky+3k-3=0.由于直线m 垂直平分弦AB ,故圆心C(2,0)必在直线m 上, 解得. ……12分 而,故不存在直线l ,使得过点Q(3, -3)的直线m 垂直平分弦AB . …………14分 19.(本小题满分14分) 解:(I )由题意知,E 移动时单位时间内的淋雨量为, …………3分故. …………6分 (II )由(I)知,当0<v ≤4时,当4<v ≤10时,故⎪⎩⎪⎨⎧≤<+-≤<-=104,151040,15110v vv v y . …………10分 在(0,4]上,y 是关于v 的减函数;在(4,10]上,y 是关于v 的增函数; …………12分 则当v=4时,.故移动速度v =4时,使总淋雨量y 最少. …………14分 20.(本小题满分14分)解:(I )∵对于任意x ∈R 都有f(1+x)=f(1-x),∴函数f(x)的对称轴为x=1,得b=-2a.……2分又函数y=f(x)+2x= ax 2+(b+2)x+1为偶函数, ∴b= -2.a=1.∴f(x)= x 2-2x+1= (x-1)2. …………4分(II )设h(x)= f(x)+g(x)= (x-1)2+1-2x,∵ h(0)=2-20= 1>0,h(1)= -1<0,∴ h(0)h(1)<0. …………6分又∵(x-1)2, -2x在区间[0,1]上均单调递减,所以h(x)在区间[0,1]上单调递减,……………8分∴ h(x)在区间[0,1]上存在唯一零点.故方程f(x)+g(x)=0在区间[0, 1]上有唯一实数根. …………9分(注:若用图象说明,视说理情况酌情给部分分数)(III)由题可知∴f(x)=(x-1)2≥0.g(x)= 1-2x <1, …………11分若有f(m)=g(n),则g(n)∈[0, 1),…………13分则1-2n≥0,解得n≤0.故n的取值范围是n≤0. …………14分。

2019-2020学年四川省成都市高一(上)期末数学试卷

2019-2020学年四川省成都市高一(上)期末数学试卷

2019-2020学年四川省成都市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)设集合{2A =-,1-,0,1},{1B =-,0,1,2},则(A B = )A .{2-,1-,0,1}B .{1-,0,1,2}C .{0,1,2}D .{1-,0,1}2.(5分)已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(3,4)P -,则sin α的值是( )A .45-B .35-C .35D .453.(5分)已知向量(3,1)a =-,(,4)b m =.若a b ⊥,则实数m 的值为( ) A .12-B .43-C .43D .124.(5分)半径为3,弧长为π的扇形的面积为( ) A .2πB .32π C .3π D .9π5.(5分)函数()x f x e x =+的零点所在一个区间是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)6.(5分)552log 10log 0.25(+= ) A .0B .1C .2D .47.(5分)下列关于函数()sin 21f x x =+的表述正确的是( ) A .函数()f x 的最小正周期是2π B .当2x π=时,函数()f x 取得最大值2C .函数()f x 是奇函数D .函数()f x 的值域为[0,2]8.(5分)已知函数32(0,1)3x y a a a -=->≠的图象恒过定点P .若点P 在幂函数()f x 的图象上,则幂函数()f x 的图象大致是( )A .B .C .D .9.(5分)设0.53a =,0.3log 0.5b =,cos3c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .a c b >>C .b c a >>D .c a b >>10.(5分)已知(,)2παπ∈,若2cos()6πα-=,则5sin()6πα+的值为( )A .2B 2C .14D 14 11.(5分)已知关于x 的方程9340x x a -+=有一个大于32log 2的实数根,则实数a 的取值范围为( ) A .(0,5)B .(4,5)C .(4,)+∞D .(5,)+∞12.(5分)已知函数()sin ()f x x R ωω=∈是7(,)212ππ上的增函数,且满足3|()()|244f f ππ-=,则()12f π的值组成的集合为( )A .11,2⎧⎫--⎨⎬⎩⎭B .31,⎧⎪-⎨⎪⎪⎩⎭C .131,2⎧⎪--⎨⎪⎪⎩⎭D .311,2⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.(5分)设函数31,0()2,0x x f x x x ⎧+=⎨->⎩,则(f f (2))的值为 .14.(5分)汽车从A 地出发直达B 地,途中经过C 地.假设汽车匀速行驶,5h 后到达B 地.汽车与C 地的距离s (单位:)km 关于时间t (单位:)h 的函数关系如图所示,则汽车从A 地到B 地行驶的路程为 km .15.(5分)在矩形ABCD 中,已知E ,F 分别是BC ,CD 上的点,且满足BE EC =,2CF FD =.若(,)AC AE AF R λμλμ=+∈,则λμ+的值为 .16.(5分)已知A ,B 是函数()|21|x f x =-图象上纵坐标相等的两点,线段AB 的中点C 在函数()2x g x =的图象上,则点C 的横坐标的值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知(0,)2πα∈,且sin cos 1sin cos 3αααα-=+.(Ⅰ)求tan α的值; (Ⅱ)求cos sin αα-的值.18.(12分)已知函数()1(0,1)x f x a a a =->≠满足1(1)(2)4f f -=. (Ⅰ)求a 的值; (Ⅱ)解不等式()0f x >.19.(12分)已知向量a 与b 的夹角23πθ=,且||3a =,||2b =. (Ⅰ)求a b ,||a b +;(Ⅱ)求a 与a b +的夹角的余弦值.20.(12分)近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式0Mv v lnm=计算火箭的最大速度/vm s ,其中0/v m s 是喷流相对速度,mkg 是火箭(除推进剂外)的质量,Mkg 是推进剂与火箭质量的总和,Mm称为“总质比”.已知A 型火箭的喷流相对速度为2000/m s . (Ⅰ)当总质比为330时,利用给出的参考数据求A 型火箭的最大速度;(Ⅱ)经过材料更新和技术改进后,A 型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的15,若要使火箭的最大速度至少增加800/m s ,求在材料更新和技术改进前总质比的最小整数值.参考数据:330 5.8ln ≈,0.82.225 2.226e <<.21.(12分)已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如图所示.(Ⅰ)求函数()f x 的解析式;(Ⅱ)当113[,]33x ∈-时,试由实数m 的取值讨论函数()()g x f x m =-的零点个数.22.(12分)设a ,b R ∈,若函数()f x 定义域内的任意一个x 都满足()(2)2f x f a x b +-=,则函数()f x 的图象关于点(,)a b 对称;反之,若函数()f x 的图象关于点(,)a b 对称,则函数()f x 定义域内的任意一个x 都满足()(2)2f x f a x b +-=.已知函数53()1x g x x +=+. (Ⅰ)证明:函数()g x 的图象关于点(1,5)-对称;(Ⅱ)已知函数()h x 的图象关于点(1,2)对称,当[0x ∈,1]时,2()1h x x mx m =-++.若对任意的1[0x ∈,2],总存在22[,1]3x ∈-,使得12()()h x g x =成立,求实数m 的取值范围.2019-2020学年四川省成都市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)设集合{2A =-,1-,0,1},{1B =-,0,1,2},则(A B = )A .{2-,1-,0,1}B .{1-,0,1,2}C .{0,1,2}D .{1-,0,1}【解答】解:集合{2A =-,1-,0,1},{1B =-,0,1,2}, 则{1AB =-,0,1},故选:D .2.(5分)已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(3,4)P -,则sin α的值是( )A .45-B .35-C .35D .45【解答】解:角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(3,4)P -, 则4sin 5α==-,故选:A .3.(5分)已知向量(3,1)a =-,(,4)b m =.若a b ⊥,则实数m 的值为( ) A .12-B .43-C .43D .12【解答】解:向量(3,1)a =-,(,4)b m =, 若a b ⊥,则0a b =, 即3140m -+⨯=,解得43m =. 故选:C .4.(5分)半径为3,弧长为π的扇形的面积为( ) A .2π B .32π C .3π D .9π【解答】解:由已知可得扇形的弧长为l π=,半径为3r =,则扇形的面积为1133222S lr ππ==⨯⨯=.故选:B .5.(5分)函数()x f x e x =+的零点所在一个区间是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)【解答】解:函数()x f x e x =+是R 上的连续函数,1(1)10f e-=-<,(0)10f =>, (1)(0)0f f ∴-<,故函数()x f x e x =+的零点所在一个区间是(1,0)-, 故选:B .6.(5分)552log 10log 0.25(+= ) A .0B .1C .2D .4【解答】解:552log 10log 0.25+ 55log 100log 0.25=+ 5log 25=2=故选:C .7.(5分)下列关于函数()sin 21f x x =+的表述正确的是( ) A .函数()f x 的最小正周期是2π B .当2x π=时,函数()f x 取得最大值2C .函数()f x 是奇函数D .函数()f x 的值域为[0,2]【解答】解:根据题意,函数()sin 21f x x =+,依次分析选项: 对于A ,()sin 21f x x =+,其最小正周期22T ππ==,A 错误; 对于B ,当4x π=时,sin 2x 取得最大值1,函数()f x 取得最大值2,B 错误;对于C ,()sin 21f x x =+,()sin(2)11sin 2f x x x -=-+=-,不是奇函数,C 错误; 对于D ,()sin 21f x x =+,有1sin21x -,则02y ,即函数()f x 的值域为[0,2],D 正确;故选:D .8.(5分)已知函数32(0,1)3x y a a a -=->≠的图象恒过定点P .若点P 在幂函数()f x 的图象上,则幂函数()f x 的图象大致是( )A .B .C .D .【解答】解:函数32(0,1)3x y a a a -=->≠的图象恒过定点1(3,)3P .设幂函数()f x x α=,代入133α=,解得1α=-.1()f x x∴=. 则幂函数()f x 的图象大致是A . 故选:A .9.(5分)设0.53a =,0.3log 0.5b =,cos3c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .a c b >>C .b c a >>D .c a b >>【解答】解:0.50331>=,1a ∴>,0.30.30.30log 1log 0.5log 0.31=<<=,01b ∴<<,32ππ<<,cos30∴<,0c ∴<,a b c ∴>>, 故选:A .10.(5分)已知(,)2παπ∈,若2cos()6πα-=,则5sin()6πα+的值为( )A .2B 2C .14D 14 【解答】解:设6πθα=-,则2cos θ=,6παθ=-,则55sin()sin()sin()sin 666πππαθπθθ+=-+=-=, (,)2παπ∈,5(6πθ∴∈-,)3π-,则2214sin 1()44θ=---=-, 故选:C .11.(5分)已知关于x 的方程9340x x a -+=有一个大于32log 2的实数根,则实数a 的取值范围为( ) A .(0,5)B .(4,5)C .(4,)+∞D .(5,)+∞【解答】解:令3x t =;因为34332log 2log 434log x t >=⇒>=; 即2()4f t t at =-+有一个大于4的零点; 故f (4)244405a a =-⨯+<⇒>; 故选:D .12.(5分)已知函数()sin ()f x x R ωω=∈是7(,)212ππ上的增函数,且满足3|()()|244f f ππ-=,则()12f π的值组成的集合为( )A .11,2⎧⎫--⎨⎬⎩⎭B .31,⎧⎪-⎨⎪⎪⎩⎭C .131,2⎧⎪--⎨⎪⎪⎩⎭D .311,2⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭【解答】解:满足3|()()|244f f ππ-=,3|sin sin |244ππωω∴-=,可得:sin 14πω=,3sin 14πω=-,或sin 14πω=-,3sin 14πω=,①由sin 14πω=,3sin 14πω=-,可得:1242k ππωπ=+,232342k ππωπ=+,1k ,2k Z ∈,182k ω∴=+,2823k ω=+,1k ,2k Z ∈,取11k =-,23k =-,可得6ω=-,则函数()sin(6)f x x =-,在7(,)212ππ上是增函数,此时可得:()112f π=-.②由sin 14πω=-,3sin 14πω=,可得:1242k ππωπ=-,23242k ππωπ=+,1k ,2k Z ∈,182k ω∴=-,28233k ω=+,1k ,2k Z ∈,取10k =,21k =-,可得2ω=-,则函数()sin(2)f x x =-在7(,)212ππ上是增函数,此时可得:1()122f π=-. 综上可得:()12f π的值组成的集合为{1-,1}2-.故选:A .三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.(5分)设函数31,0()2,0x x f x x x ⎧+=⎨->⎩,则(f f (2))的值为 1 .【解答】解:由f (2)220=-=,(0)011f =+=, 故答案为:114.(5分)汽车从A 地出发直达B 地,途中经过C 地.假设汽车匀速行驶,5h 后到达B 地.汽车与C 地的距离s (单位:)km 关于时间t (单位:)h 的函数关系如图所示,则汽车从A 地到B 地行驶的路程为 500 km .【解答】解:由图象可知,从A 地到C 地,用时2h ,路程为200km ,所以速度200100/2v km h ==, 因为汽车匀速行驶,所以从C 地到B 地的路程为:100(52)300km ⨯-=, 所以从A 地到B 地的路程为:200300500()km +=, 故答案为:500km .15.(5分)在矩形ABCD 中,已知E ,F 分别是BC ,CD 上的点,且满足BE EC =,2CF FD =.若(,)AC AE AF R λμλμ=+∈,则λμ+的值为75. 【解答】解:如图;因为矩形ABCD 中,已知E ,F 分别是BC ,CD 上的点,且满足BE EC =,2CF FD =.若(,)AC AE AF R λμλμ=+∈, ∴AC AB AD =+;1122AE AB BE AB BC AB AD =+=+=+;1133AF AD DF AD DC AD AB =+=+=+;1111()()()()2332AE AF AB AD AD AB AB AD λμλμλμλμ∴+=+++=+++; ∴113112λμλμ⎧+=⎪⎪⎨⎪+=⎪⎩⇒4535λμ⎧=⎪⎪⎨⎪=⎪⎩;λμ∴+的值为75; 故答案为:7516.(5分)已知A ,B 是函数()|21|x f x =-图象上纵坐标相等的两点,线段AB 的中点C 在函数()2x g x =的图象上,则点C 的横坐标的值为 12- .【解答】解:21,0()|21|12,0x xxx f x x ⎧-=-=⎨-<⎩, 设A ,B 的坐标分别为1(x ,121)x -,2(x ,212)x -.则122112x x -=-,线段AB 的中点12(2x x C +,1222)2x x -,线段AB 的中点C 在函数()2xg x =的图象上,∴121222222x xx x +-=, ∴12222x x =-,代入121222222x xx x +-=, 化为:2222(12)(22)2x x x -=-,化为:22x =,12x = ∴12122x x +=, 解得121x x +=-.则点C 的横坐标的值为12-.故答案为:12-.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知(0,)2πα∈,且sin cos 1sin cos 3αααα-=+.(Ⅰ)求tan α的值; (Ⅱ)求cos sin αα-的值. 【解答】解:(Ⅰ)由sin cos 1sin cos 3αααα-=+,得sin 2cos αα=.tan 2α∴=.(Ⅱ)22sin cos 1αα+=,又sin 2cos αα=, ∴21cos 5α=.(0,)2πα∈,∴cos α=∴sin 2cos αα==∴cos sin αα-=. 18.(12分)已知函数()1(0,1)x f x a a a =->≠满足1(1)(2)4f f -=.(Ⅰ)求a 的值; (Ⅱ)解不等式()0f x >. 【解答】解:(Ⅰ)()1(0,1)x f x a a a =->≠,f ∴(1)f -(2)22(1)(1)a a a a =---=-. 由214a a -=,解得12a =.a ∴的值为12. (Ⅱ)不等式()0f x >即1()102x ->,∴1()12x >.即011()()22x >.1()2x y =在(,)-∞+∞上单调递减,0x ∴<.∴不等式()0f x >的解集为(,0)-∞.19.(12分)已知向量a 与b 的夹角23πθ=,且||3a =,||2b =. (Ⅰ)求a b ,||a b +;(Ⅱ)求a 与a b +的夹角的余弦值. 【解答】解:(Ⅰ)由已知,得222221||||cos 32() 3.||()232(3)272a b a b a b a b a a b b θ==⨯⨯-=-+=+=++=+⨯-+=.(Ⅱ)设a 与a b +的夹角为α. 则2()cos ||||||||a a b a a ba ab a a b α++==++.∴cosα=∴a 与a b +. 20.(12分)近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式0Mv v lnm=计算火箭的最大速度/vm s ,其中0/v m s 是喷流相对速度,mkg 是火箭(除推进剂外)的质量,Mkg 是推进剂与火箭质量的总和,Mm称为“总质比”.已知A 型火箭的喷流相对速度为2000/m s . (Ⅰ)当总质比为330时,利用给出的参考数据求A 型火箭的最大速度;(Ⅱ)经过材料更新和技术改进后,A 型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的15,若要使火箭的最大速度至少增加800/m s ,求在材料更新和技术改进前总质比的最小整数值.参考数据:330 5.8ln ≈,0.82.225 2.226e <<.【解答】解:(Ⅰ)当总质比为330时,2000330v ln =, 由参考数据得2000 5.811600/v m s ≈⨯=,∴当总质比为330时,A 型火箭的最大速度约为11600/m s ;(Ⅱ)由题意,经过材料更新和技术改进后,A 型火箭的喷流相对速度为3000/m s ,总质比变为5Mm, 要使火箭的最大速度至少增加800/m s ,则需300020008005M M ln ln m m-, 化简,得320.85M Mln ln m m-, ∴32()()0.85M M ln ln m m -,整理得0.8125M ln m, ∴0.8125M e m ,则0.8125Me m⨯,由参考数据,知0.82.225 2.226e <<,0.8278.125125278.25e ∴<⨯<,∴材料更新和技术改进前总质比的最小整数值为279.21.(12分)已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如图所示.(Ⅰ)求函数()f x 的解析式;(Ⅱ)当113[,]33x ∈-时,试由实数m 的取值讨论函数()()g x f x m =-的零点个数.【解答】解:(Ⅰ)由函数()f x 的部分图象知,2A =;函数()f x 最小正周期为1374()833T =⨯-=,即28πω=,解得4πω=;又77()2sin()2312f πϕ=+=,则72122k ππϕπ+=+,k Z ∈; 解得212k πϕπ=-+,k Z ∈;又||2πϕ<,所以12πϕ=-;所以函数()f x 的解析式为()2sin()412f x x ππ=-.(Ⅱ)由题意,()()g x f x m =-在113[,]33-内的零点个数,即为函数()y f x =与y m =的图象在113[,]33x ∈-时公共点的个数;由(Ⅰ)知,()2sin()412f x x ππ=-,113[,]33x ∈-;又1()13f -=-,7()23f =,13()03f =,画出图象如图所示;由图象知,函数()f x 在区间17(,)33-上单调递增,在区间717(,)33上单调递减;()i 当1m <-或2m >时,()y f x =与y m =的图象在113[,]33x ∈-时没有公共点,()ii 当10m -<或2m =时,()y f x =与y m =的图象在113[,]33x ∈-时恰有一个公共点;()iii 当02m <时,()y f x =与y m =的图象在113[,]33x ∈-时恰有两个公共点.综上可知,当1m <-或2m >时,函数()g x 的零点个数为0; 当10m -<或2m =时,函数()g x 的零点个数为1; 当02m <时,函数()g x 的零点个数为2.22.(12分)设a ,b R ∈,若函数()f x 定义域内的任意一个x 都满足()(2)2f x f a x b +-=,则函数()f x 的图象关于点(,)a b 对称;反之,若函数()f x 的图象关于点(,)a b 对称,则函数()f x 定义域内的任意一个x 都满足()(2)2f x f a x b +-=.已知函数53()1x g x x +=+. (Ⅰ)证明:函数()g x 的图象关于点(1,5)-对称;(Ⅱ)已知函数()h x 的图象关于点(1,2)对称,当[0x ∈,1]时,2()1h x x mx m =-++.若对任意的1[0x ∈,2],总存在22[,1]3x ∈-,使得12()()h x g x =成立,求实数m 的取值范围.【解答】解:(Ⅰ)53()1x g x x +=+,(x ∈-∞,1)(1--⋃,)+∞, ∴57(2)1x g x x +--=+. ∴5357()(2)1011x x g x g x x x +++--=+=++. 即对任意的(x ∈-∞,1)(1--⋃,)+∞,都有()(2)10g x g x +--=成立. ∴函数()g x 的图象关于点(1,5)-对称.(Ⅱ)532()511x g x x x +==-++,易知()g x 在2(,1)3-上单调递增. ()g x ∴在2[,1]3x ∈-时的值域为[1-,4].记函数()y h x =,[0x ∈,2]的值域为A .若对任意的1[0x ∈,2],总存在22[,1]3x ∈-,使得12()()h x g x =成立,则[1A ⊆-,4].[0x ∈,1]时,2()1h x x mx m =-++,h ∴(1)2=,即函数()h x 的图象过对称中心(1,2).()i 当02m,即0m 时,函数()h x 在(0,1)上单调递增.由对称性知,()h x 在(1,2)上单调递增.∴函数()h x 在(0,2)上单调递增.易知(0)1h m =+.又(0)h h +(2)4=,h ∴(2)3m =-,则[1A m =+,3]m -.由[1A ⊆-,4],得11430m m m -+⎧⎪-⎨⎪⎩,解得10m -.()ii 当012m <<,即02m <<时,函数()h x 在(0,)2m上单调递减,在(,1)2m 上单调递增. 由对称性,知()h x 在(1,2)2m -上单调递增,在(2,2)2m-上单调递减. ∴函数()h x 在(0,)2m 上单调递减,在(,2)22m m-上单调递增,在(2,2)2m -上单调递减.∴结合对称性,知[A h =(2),(0)]h 或[(),(2)]22m mA h h =-.02m <<,(0)1(1h m ∴=+∈,3).又(0)h h +(2)4=,h ∴(2)3(1,3)m =-∈.易知2()1(1,2)24m m h m =-++∈.又()(2)422m mh h +-=,∴(2)(2,3)2mh -∈.∴当02m <<时,[1A ⊆-,4]成立.()iii 当12m,即2m 时,函数()h x 在(0,1)上单调递减. 由对称性,知()h x 在(1,2)上单调递减. ∴函数()h x 在(0,2)上单调递减.易知(0)1h m =+.又(0)h h +(2)4=,h ∴(2)3m =-,则[3A m =-,1]m +. 由[1A ⊆-,4],得13412m m m --⎧⎪+⎨⎪⎩.解得23m .综上可知,实数m 的取值范围为[1-,3].。

2019-2020学年四川成都市第一学期期末质量检测 高一数学含答案

2019-2020学年四川成都市第一学期期末质量检测 高一数学含答案

1 ) cos ,则 cos 2 ( 3 3 6 5 5 7 7 A. B. C. D. 9 18 9 18 10、函数 y log a (2 ax) 在[0,1]上是减函数,则实数 a 的取值范围是( ) A. 0 a 1 B. 1 a 2 C. a 1 D. 1 a 2 2x x 11 、若关于 x 的方程 a (1 lg m )a 1 0 (a 0 且 a 1) 有实数解 , 则实数 m 的取值范围是
第二部分(非选择题
共 90 分)
2 C、60 D、 3 3 4、下列函数与 y x 有相同图象的一个是( )
A. y x 2 C. y a loga x
A. y x 1
2
x2 B. y x (a 0, 且 a 1) D. y log a a x (a 0, 且 a 1)
9、已知 sin ( ) A. 0 m 10 或 m 10 C. m 10
3
B. 0 m 10 D. 0 m
3
第一部分(选择题
共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1、已知 A x | 3 x 6 , B x | 2 x 5,则 (CR A) B ( ) A、 x | 2 x 3
20.(本小题满分 12 分)成都市出租车公司拟出资购买 100 辆电动汽车用于旅游出租。当每辆车 的月租金为 0.5 万元时,可以把所有的汽车全部租出。当每辆车的月租金增加 0.05 万元时,未租 出的汽车将会增加一辆。租出的每辆汽车,公司每个月还需要支付 0.1 万元的保险及维护费用, 未租出的每辆汽车,公司每个月还需要支付 0.05 万元的管理费。 (1)当某月租出 80 辆汽车时,公司这个月的收益是多少? (2)如何管理公司的汽车租凭,可以使公司每个月的收益最大,最大值为多少?

2019~2020学年度上期高中2019级期末联考数学试题

2019~2020学年度上期高中2019级期末联考数学试题

蓉城名校联盟2019~2020学年度上期高中2019级期末联考数 学考试时间共120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。

2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。

3.考试结束后由监考老师将答题卡收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{15A x x x =-∈,剟N },{|28}x B x =…,则AB =A .{1,0,1,2,3}-B .{0,1,2,3}C .[1,3]-D .[0,3]2.设向量b (12,)n =,c (1,2)=-,若b ∥c ,则n = A .6B .6-C .24D .24-3.已知函数26()3(1)x f x a a -=+>的图象过定点A ,且点A 在角θ的终边上,则tan θ的值为A .43B .34C .45D .354.设sin48a =︒,cos41b =︒,tan46c =︒,则下列结论成立的是 A .b a c << B .c a b <<C .a b c <<D .b c a <<5.函数2()ln(421)f x x x =--的单调递减区间为 A .(,2)-∞B .(,3)-∞-C .(2,)+∞D .(7,)+∞6.若12()(lg 1)m f x m x -=+为幂函数,则(3)f =A .9B .19C D7.已知函数π()sin()()6f x x ωω=->0的最小正周期为π,则5π()4f =A .1B .12C .0 D8.△ABC 中,D 为BC 边上一点,且5BC BD =,若AD mAB nAC =+,则2n m -=A .25B .35-C .25-D .359.已知函数()f x 的定义域为(1,4),则函数12()(log )x g x f x -=+的定义域为 A .(1,3) B .(0,2)C .(1,2)D .(2,3)10.已知函数()sin(5)(0π)f x x ϕϕ=+剟为偶函数,则函数1()2cos(2)3g x x ϕ=-在5π[0,]12上的值域为 A.[- B .[1,2]-C .[2,2]-D.[11.函数()(1)lg(1)35f x x x x =-+--的零点个数为A .3B .2C .1D .012.已知函数2220()ln 0x kx k x f x x x ⎧++⎪=⎨>⎪⎩,,…,若关于x 的不等式()f x k …的解集为[,][,]m n a b ,且n a <,127232mn ab k +-<,则实数k 的取值范围为 A .54(,)167 B .14(,)87 C .15(,)88D .14[,)27二、填空题:本题共4小题,每小题5分,共20分。

2021年1月5日四川省成都市蓉城名校联盟高2022届高2019级期末联考理科数学试题参考答案

2021年1月5日四川省成都市蓉城名校联盟高2022届高2019级期末联考理科数学试题参考答案

蓉城高中教育联盟2020~2021学年度上期高中2019级期末联考理科数学参考答案及评分标准一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

二、填空题:本题共4小题,每小题5分,共20分。

13.95;14.0.4;15.16;16.3三、解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(10分)解:(1)所有的结果为:),(21a a ,),(31a a ,),(11b a ,),(21b a ,),(31b a ,),(32a a ,),(12b a ,),(22b a ,),(32b a ,),(13b a ,),(23b a ,),(33b a ,),(21b b ,),(31b b ,),(32b b 共15种;-------------------5分(2)记“选派结果至少有一名男志愿者”为事件A ,则事件A 包含的基本事件有),(21a a ,),(31a a ,),(11b a ,),(21b a ,),(31b a ,),(32a a ,),(12b a ,),(22b a ,),(32b a ,),(13b a ,),(23b a ,),(33b a 共12个基本事件;--------------------7分∴124()155P A ==-------------------10分18.(12分)解:(1)由题可得:(0.010.0150.0350.01)101a ++++⨯=-------------------2分解得:0.03a =-------------------4分(2)该校学生生物成绩优秀的频率为0.03100.01100.4⨯+⨯=-------------------6分∴该校学生生物成绩优秀的人数为0.41000400⨯=-------------------8分(3)估计此校本次考试的生物平均分为550.1650.15750.35850.3950.176.5⨯+⨯+⨯+⨯+⨯=-------------------12分19.(12分)解:(1)设圆C 的方程为220x y Dx Ey F ++++=,则-------------------1分193048201640D E F D F D F ++++=⎧⎪++++=⎨⎪++=⎩-------------------3分解得:2D =-;0E =;8F =-∴圆C 的方程为22280x y x +--=-------------------6分题号123456789101112答案ADCABCBDDABC(2)连续抛掷一枚骰子两次,每一次都有6种情况,所以基本事件的总数为6636⨯=个-------------------8分满足在圆C 内的点有(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)共6个-------------------10分∴点(,)x y 在圆C 内的概率为61366=.-------------------12分20.(12分)解:(1) 22114x y m m +=--表示焦点在x 轴上的双曲线1040m m ->⎧∴⎨-<⎩解得:14m <<-------------------2分∴q :14m <<若p 是q 的充分不必要条件,则p q ⇒,q p¿-------------------3分1114a a -⎧⎨+⎩ 解得:23a ∴实数a 的取值范围为[2,3]-------------------6分(2)若1a =,则p :02m <<-------------------7分当p q ∨为真,p q ∧为假时,则p 和q 必为一真一假-------------------8分当p 为真,q 为假时,则0214m m m <<⎧⎨⎩或 ,解得01m < -------------------10分当p 为假,q 为真时,则0214m m m ⎧⎨<<⎩或 ,解得24m < 综上,实数m 的取值范围为(0,1][2,4)-------------------12分21.(12分)解:(1) 抛物线过点(4,4)P ∴2424p =⨯,解得2p =-------------------2分∴抛物线方程为24y x =-------------------3分∴抛物线的焦点F 的坐标为(1,0)-------------------4分抛物线的准线方程为1-=x -------------------5分(2)设11(,)A x y ,22(,)B x y 联立214y x y x=-⎧⎪⎨=⎪⎩,消去y 整理得:2610x x -+=.所以0∆>,126x x +=,121x x =-------------------6分弦长||AB =∴弦长8AB ==;-------------------8分点P 到直线l的距离22d =;-------------------10分∴118222PAB S AB d =⨯=⨯⨯= -------------------12分22.(12分)解:(1)由题设可得2224211a a b =⎧⎪⎨+=⎪⎩-------------------1分2242a b ⎧=⎪⇒⎨=⎪⎩-------------------3分∴椭圆E 的方程为:22142x y +=-------------------4分(2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩-------------------5分得2222(12)4240k x k x k +-+-=-------------------6分设1122(,)(,)M x y N x y ,有221212224241212k k x x x x k k -+==++-------------------7分 121244PM PN y y k k x x ==--,.-------------------8分又 121244PM PN y y k k x x +=+--.-------------------9分整理得12121212[25()8]4()16PM PN k x x x x k k x x x x -+++=-++-------------------10分22121222482025()8801212k k x x x x k k--++=-+=++∴0PM PN k k +=-------------------11分即MPO NPO ∠=∠所以x 轴平分MPN ∠.-------------------12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蓉城名校联盟2019~2020学年度上期高中2019级期末联考
数学参考答案及评分标准
一、选择题:本题共12小题,每小题5分,共60分。

题号123456789101112
答案
B
D
A
C
B
C
D
C
D
B
B
A
二、填空题:本题共4小题,每小题5分,共20分。

13.14.π5πππ
(
,212212
k k k -+∈,Z 15.511
-
16.
52
三、解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(每小题5分,共10分)解:

1)原式2ln 2lg5lg 2lg51
e =++-+……………………3分2lg5lg 21=+++……………………4分4
=……………………5分
(2)1sin sin cos 0cos 0cos 22
ααααα=
<∴<⇒= ,, (1)
分原式sin()cos()
sin()cos()2sin()
ααααα---+=
+……………………3分
cos cos 2sin ααα-=+322
--
=(……………………5分
(17题阅卷时请给步骤分)18.(12分)
解:设点(,)P x y ,(1,2)C ,)
0,4(A ……………………2分又平行四边形OABC ,(4,0)OA CB ==
……………………3分由CP CB λ=
,即(1,2)(4,0)
x y λ--=……………………4分λ41+=∴x ,2
=y ……………………6分(1)当21
=
λ时,即:32x y ==,……………………7分)
2,3(P ∴……………………8分
(2)(14,2)OP λ=+
,(43,2)
AP λ=-
由OP AP ⊥,0
OP AP ∴⋅=
……………………9分即(41)(43)40λλ+-+=,216810
λλ-+=……………………10分14104
λλ-==
,……………………12分
(若用其他方法,同等给分)
19.(12分)解:
(1)①当1a =时,()0f x =,()f x 既为奇函数又为偶函数
……………………1分
证明:11()()11x x x
x a a f x f x a a ----+-=+++11011x x
x x
a a a a --=+=++()f x ∴为奇函数
……………………6分
(2)当2=a 时,21
()21
x x f x -=+为增函数
证明:任取12x x >,
则212
1212121
()()2121
x x x x f x f x ---=-++212112212122212221(21)(21)
x x x x x x x x x x +++---+-+=
++……………………8分
212
12(22)(21)(21)
x x x x -=++21x x > ,21220x x >>()f x ∴在R 上为增函数
……………………10分
21()21x x f x -∴=+在[]1,2-上的值域为:13,35⎡⎤
-⎢⎥
⎣⎦要使()10f x m +-=在[]1,2-上有零点,则28,35m ⎡⎤
∈⎢⎣⎦
……………………12分
(若用其他方法,同等给分)20.(12分)解:(1)
x ωϕ
-0π2π3π22πx
π12π3
7π12
5π613π12
()
f x 0
3
3
-0
π
()3sin(26
f x x =-最小正周期πT =,
(2)第一步:x y sin =的图象向右平移=
ϕπ6(个单位长度)得到=1y π
sin(6
x -的图象.第二步:1y 的图象(纵坐标不变)横坐标变为原来的
21倍得到2π
sin(2)6
y x =-的图象.第三步:2y 的图象(横坐标不变)纵坐标变为原来的3倍得到()f x 的图象.
(共有10空,其中()f x 的表达式3分,其余每空1分)21.(12分)解:
(1)π
12
m θ==
当,时,a =(2,1),b =(1,0)……………………1分a -b (1,1)=∴,||-a b
……………………3分cos <a ,b >=
⋅⋅a b
a
b 5
=……………………5分
(2)()f θ=⋅a b sin cos θθ
++2(sin cos )2sin cos sin cos m m θθθθθθ
=++++……………………6分令sin cos t θθ+=
,则22sin cos 1[t t θθ⋅=-∈,……………………7分
设22()2(21)[=+-+=++-∈,h t mt mt m t mt m t m t ①当0m =
时,min ()()(h t t h t h ===,……………………8分
②当0m <时,函数()h t 的对称轴为1(12=-+t m (或21
2+=-
m t m
)当1
(1)02m -+
>(或2102+-
>m m
),即210->>m
时,min ()((1h t h m ==-…………………10分
当1(1)02m -+
(或2102+-
m m
),即1
2m -
时,min ()1)h t h m ==++ (11)

1(102
()1(12m m g m m m ⎧--<⎪⎪∴=⎨⎪+-
⎪⎩
…………………12分
(若用其他方法,同等给分)22.(12分)
解:(1)函数)(x f 的定义域为R ,即2
10mx mx -+ 在R 上恒成立
当0=m 时,10 恒成立,符合题意
……………………1分当0≠m 时,必有00<4
0m m >⎧⇒⎨∆⎩
……………………3分综上:m 的取值范围是[]04,
……………………4分
(2
)()()g x f x x x
=-=- (ln )0g x ∴ ,对任意2,x e e ⎡⎤∈⎣⎦总成立,
等价于22
0(ln )ln 1(ln )m x m x x -+ 在2[,]x e e ∈总成立
………………5分即:()222
(ln )ln 10(ln )ln 1(ln )
m x m x m x m x x ⎧-+*⎨-+⎩ 在2[,]x e e ∈上恒成立………………6分
设:x t ln =,因为2[,]x e e ∈,所以[]1,2t ∈,
不等式组()*化为222
()10
()1m t t m t t t
⎧-+⎨-+⎩ []1,2t ∈时,20t t - (当且仅当1=t 时取等号)
1=t 时,不等式组显然成立
………………7分
当(]12t ∈,时,22222
21()10()11
m m t t t t
m t t t t m t t ⎧
-⎪⎧-+⎪-⇒⎨⎨-+-⎩⎪⎪-⎩ 恒成立………………8分
22111
11224
t t t -
=-
--+-( ,即12m - ………………10分
221111t t t t t t -+==+-在(]1,2上递减,所以11t +的最小值为32,3
2
m …………………11分
综上所述,m 的取值范围是13,.22⎡⎤
-⎢⎥⎣⎦
…………………12分
(若用其他方法,同等给分)
1
1
l 2
l x
y
解析:
12.易知当0k >,0x 时,()2
2
2
272(24
k f x x kx k x k =++=++
,()f x 的图象如图所示.
当直线y k =在图中1l 的位置时,
22724k k k <<,得1427
k <<,m n ,为方程222x kx k k ++=的两根,
即22
20x kx k k ++-=的两根,故2
2mn k k =-;而1ab =则2211327
2121,22232
mn ab k k k k k k +-
=-+-=-+<即2
64485k k -+<0,解得1
58
8
k <,所以1427
k <<;
当直线y k =在图中2l 的位置时,22k k 且0k >,得102
k < ;此时0
n =则1127
12232
mn ab k k +-=-<,得51162k < .
所以,k 的取值范围是54(
,)167
.16
.()22
51616533x x g x x x x -+==+-=+ ,当4x =时,()3g x =;
因为12ππ1
sin(2362
x --- ,所以()52f x ;而()542f =,所以()min 52f x =.。

相关文档
最新文档