第5章统计推断:参数估计
统计推断-参数估计
![统计推断-参数估计](https://img.taocdn.com/s3/m/f0546cbcb1717fd5360cba1aa8114431b90d8e99.png)
t(1-a/2,df):t的分位值, 决定于置信度和自由度,可通 过查表得到。
19
利用t分布构建总体均值的置信区间
电阻的电阻值服从正态分布,抽取了10个电阻值的观察 值如下:
电阻值 608 630 610 636 637 610 626 602 604 636
n
Z的分位值,决定于置信度 当置信度为95%时,Z的 0.975的分位值为1.96
应用以上公式的前提条件为:
总体σ已知,或者 大样本(n≥30)
16
学生t分布
定义
设x1,x2…xn是来自正态总体N (, 2 )的一个样本, x 和S为样
本均值和标准差,则:
t x ~ t(n 1)
2
(n 1)s2
2
~
2 (n 1)
2 (n 1) 表示为自由度为(n-1)的卡方分布,卡方分布有以下特
点:
非负非对称分布
21
卡方分布
利用卡方分布构建的总体方差(1-a)%置信区间公式如下:
(n 1)s2
2 (1 / 2, df
)
2
(n 1)s2
2 ( / 2, df
)
卡方的分位值可通过 查表得到.
代表性:所抽取样本能够代表所要研究的总体 随机性:总体中每一个个体都有相等的机会被选中 独立性:样本中一个个体被选中不影响另外一个个体被选中
的可能性
10
抽样分布
因为统计量从样本到样本是变化的,所以根据统计量 作出的任何推断必定带有不确定性,但这种不确定性 是有规律可循的,这种规律就体现在抽样分布中。
x
2 x
2
n
x
第二讲-第五章 t检验-2011
![第二讲-第五章 t检验-2011](https://img.taocdn.com/s3/m/c4b40b27b4daa58da0114a9a.png)
二、配对设计两样本平均数的差异显著性检验
非配对设计要求试验单位尽可能一致。如 果试验单位变异较大,如试验动物的年龄、体 重相差较大,若采用上述方法就有可能使处理 效应受到系统误差的影响而降低试验的准确性 与精确性。 为了消除试验单位不一致对试验结 果的影响,正确地估计处理效应,减少系统误 差,降低试验误差,提高试验的准确性与精确 性,可以利用局部控制的原则,采用配对设计。
表 非配对设计资料的一般形式
非配对设计两样本平均数差异显著性检 验的基本步骤如下:
(一)提出无效假设与备择假设
H0:1 2 ,H A:1 2
(二)计算t值 计算公式为:
t x1 x2 S x1x2
df (n1 1) (n2 1)
其中:
S x1x2
受 H A:1 2 ,表明长白后备种猪与蓝塘后
备种猪90kg背膘厚度差异极显著,这里表现 为长白后备种猪的背膘厚度极显著地低于蓝 塘后备种猪的背膘厚度。
【例5.4】 某家禽研究所对粤黄鸡进行饲 养对比试验,试验时间为60天,增重结果如 表5-4,问两种饲料对粤黄鸡的增重效果有无 显著差异?
一是非配对设计或成组设计两样本平均数差 异显著性检; 二是配对设计两样本平均数差异显著性检。
一、非配对设计两样本平均数的差异显著性检验 非配对设计或成组设计是指当进行只有两个处
理的试验时,将试验单位完全随机地分成两个组, 然后对两组随机施加一个处理。在这种设计中两组 的试验单位相互独立,所得的二个样本相互独立, 其含量不一定相等。非配对设计资料的一般形式见 下表。
两尾概率为0.01的临界t值:t0.01(18) =2.878,即:
P(|t|>2.101)= P(t>2.101) + P(t <-2.101)=0.05
统计推断中的参数估计一致性
![统计推断中的参数估计一致性](https://img.taocdn.com/s3/m/675ee3f7970590c69ec3d5bbfd0a79563c1ed4ec.png)
统计推断中的参数估计一致性在统计学中,参数估计是一项重要的技术,用于从样本数据中推断总体参数的值。
参数估计的准确性和一致性是评估估计方法优劣的重要指标之一。
本文将探讨统计推断中的参数估计一致性。
一、参数估计和一致性的概念参数估计是通过对样本数据进行统计分析,对总体参数进行估计的过程。
在统计推断中,我们通常使用点估计和区间估计来估计未知参数。
点估计是通过从样本中计算得到的一个值作为总体参数的估计,例如,样本均值作为总体均值的估计。
点估计的一致性是指当样本容量逐渐增大时,估计值趋于总体参数的性质。
具体而言,若点估计的期望值等于被估计的总体参数,且随着样本容量的增加,点估计的方差趋于零,则称该点估计具有一致性。
区间估计是通过构造一个包含未知参数的区间来估计总体参数的范围,例如,通过样本数据构造一个置信区间。
一致性可以通过区间估计的置信水平和区间长度来评估,通常情况下,置信水平越高,区间长度越小,区间估计的一致性就越好。
二、最大似然估计与一致性最大似然估计是一种常用的参数估计方法,它通过寻找使得观测数据出现概率最大的参数值来进行估计。
最大似然估计具有一致性,即当样本容量增大时,最大似然估计值收敛于总体参数的真值。
为了证明最大似然估计的一致性,我们可以利用辛钦大数定律和中心极限定理进行推导。
根据辛钦大数定律,当样本容量足够大时,样本均值的分布将趋近于总体均值的分布。
而中心极限定理表明,当样本容量足够大时,样本均值的分布将近似服从正态分布。
因此,根据最大似然估计的一致性,我们可以得出结论:最大似然估计在满足一定条件下是一致的。
三、贝叶斯估计与一致性贝叶斯估计是另一种常用的参数估计方法,它基于贝叶斯定理和先验知识对参数进行估计。
与最大似然估计不同,贝叶斯估计引入了先验分布,使得参数估计更加灵活。
在贝叶斯估计中,参数的估计值是根据后验概率密度函数得到的,通常使用后验分布的均值或中位数作为参数的估计值。
贝叶斯估计也具有一致性,当样本容量增大时,后验分布收敛于总体参数的真值。
统计推断与参数估计方法
![统计推断与参数估计方法](https://img.taocdn.com/s3/m/a628d5fef021dd36a32d7375a417866fb84ac01c.png)
统计推断与参数估计方法统计推断是统计学中的一个重要分支,它的目标是通过对样本数据进行分析和推断,从而对总体进行推断和做出统计决策。
参数估计是统计推断的核心内容之一,它涉及到对总体的参数进行估计和推断。
本文将介绍统计推断的概念、方法以及参数估计的原理和常见方法。
一、统计推断概述统计推断是通过样本信息对总体进行推断的一种方法。
在现实生活中,很难获得总体数据,因此我们通常通过抽样来获取样本数据,然后根据样本数据对总体进行推断和做出统计判断。
统计推断可以分为两大类:参数推断和非参数推断。
参数推断是基于总体分布的假设,利用样本数据对总体参数进行推断。
非参数推断则不对总体分布做出假设,通过样本数据对总体分布进行推断。
二、参数估计原理参数估计是统计推断的一种重要方法,它的目标是通过样本数据对总体参数进行估计。
参数估计的核心思想是通过样本数据得到一个估计量,使得估计量与总体参数值尽可能接近。
常用的参数估计方法有最大似然估计、矩估计和贝叶斯估计等。
最大似然估计是根据样本数据的含量,通过计算总体参数最可能出现的取值,来估计总体参数值。
矩估计是通过样本矩的函数与总体矩的函数相等来估计总体参数值。
贝叶斯估计则是利用贝叶斯定理,根据已有信息和先验概率对总体参数进行估计。
三、常用的参数估计方法1. 最大似然估计最大似然估计是参数估计中最常用的方法之一。
最大似然估计的核心思想是选取一组参数值,使得给定样本数据出现的可能性最大。
最大似然估计可以简化为求解似然函数的最大值所对应的参数值。
2. 矩估计矩估计是通过样本矩的函数与总体矩的函数相等来进行参数估计。
矩估计的基本思想是利用样本矩估计总体矩,然后通过总体矩的函数得到对总体参数的估计。
3. 贝叶斯估计贝叶斯估计是基于贝叶斯定理的一种参数估计方法。
贝叶斯估计将参数估计问题转化为给定样本数据下参数的后验分布的估计问题。
通过引入先验分布和似然函数,可以得到对总体参数的估计。
四、参数估计的应用参数估计在各个领域中都有广泛的应用。
第五章 统计推断(1)
![第五章 统计推断(1)](https://img.taocdn.com/s3/m/15fb7b3458fb770bf78a55c3.png)
某一给定值。
检验程序:
(a) 确定假设H 0和H A: H 0:= 0;H A 有三种可能的形式: ( 1 ) 0 (2) 0 (若已知不可能小于 0 ) (3) 0 (若已知不可能大于 0 )
(b)计算检验的统计量:
1. 单个样本平均数检验
在实际研究中,常常要 检验一个样本平均数 x与已知的总体 平均数0是否有显著差异,即检 验该样本是否来自某一 已知 的总体。
已知的总体平均数一般 为一些公认的理论数值 。如畜禽正常 的生理指标、怀孕期、 生产性能指标等,都可 以样本平均数 与之比较,检验差异显 著性。
1.1 在σ已知的情况下,单个平均数的显著性 检验-u检验 检验程序:
• 两类错误之间的关系如何?
二者的区别是I型错误只有在否定H0的情况下发生,而 II型错误只有在接受H0时才会发生。 二者的联系是,在样本容量相同的情况下,I型错误减 小,II型错误就会增大;反之II型错误减小,I型错误就 会增大。比如,将显著性水平α从0.05提高到0.01,就 更容易接受H0,因此犯I型错误的概率就减小,但相应 地增加了犯II型错误的概率。
第一节 假设检验的基本步骤及原理
1. 假设检验的基本步骤
我们通过一个例子来介绍假设检验的基本步骤:
例一,已知某品种玉米 单穗重X ~ N (300,9.52 ),即单穗重 总体平均数0 300g,标准差 9.5 g。在种植过程中喷洒 了某种药剂的植株中随 机抽取9个果穗,测得平均单穗 重 x 308g,试问这种药剂对该品 种玉米的平均单穗重 有无真实影响?
• (一)提出假设
首先对样本所在的总体 作一假设。假设喷洒了 药剂的玉米单穗重 总体平均数与原来的玉米单穗重总 体平均数0之间没有真实差异, 即=0。也就是说表面差异( x 0)是由抽样误差造成的 。
第五章 参数估计
![第五章 参数估计](https://img.taocdn.com/s3/m/950cfd53312b3169a451a4e2.png)
1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:
分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:
一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计
利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:
当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)
第05章 统计推断
![第05章 统计推断](https://img.taocdn.com/s3/m/78b99f0c844769eae009ed6e.png)
单侧检验 α=0.05或0.01 统计推断 第五章
§5.1 单个样本的统计假设检验
5.1.2 单个样本的显著性检验程序
统计假设检验的三步曲: 1、建立零假设(null hypothesis)——假设差异不显著或无关; 2、计算统计量(u-检验,t-检验,x2-检验,F-检验);
3、判断假设。 对于带备择假设的零假设:需根据备择假设的拒
F
s , df n 1, df n 1 s
下侧临界点F1-α的 值,按右式计算
解释: F< F0.05,或P>0.05,接受H0; F> F0.05,或P<0.05,拒 Fdf1,df2,α,df 1附表7中没有给出 df 2为分母自由度 为分子自由度, 1 绝H0, ② F < F 1-α
s ③HA:μ≠μ0,包括μ>μ0和μ<μ0 此时相应各备择假设的H0的拒绝域分别为:
①t > tα解释: t<t0.05,接受H0; t>t0.05,拒绝H0 ②t < -tα ③|t| > tα/2,或表示为|t| > tα(两侧)
t n 1
n
第五章 统计推断
§5.1 单个样本的统计假设检验
379.2 377.2 u 1.82 3. 3 n 9 由于u 1.82 u0.05 1.645 ,所以拒绝H0假设、接受HA。
即栽培条件的改善显著地提高了豌豆籽粒重量。
x 0
第五章 统计推断
§5.1 单个样本的统计假设检验
5.1.4 σ未知时平均数的显著性检验——t 检验(t-test) 检验的程序: (1)零假设H0:μ=μ0 备择假设:①HA:μ>μ0,若已知μ不可能小于μ0 (2)计算统计量: x 0 (3)判断统计量: ②HA:μ<μ0,若已知μ不可能大于μ0
统计分析方法论:推断统计分析——参数估计
![统计分析方法论:推断统计分析——参数估计](https://img.taocdn.com/s3/m/f16d83d99fc3d5bbfd0a79563c1ec5da50e2d6d6.png)
推断统计分析——参数估计课前准备下载Anaconda软件。
课堂主题本次课讲解推断统计当中参数估计的含义与应用。
课堂目标学习本次课,我们能够达到如下目标:熟知点估计与区间估计的概念与区别。
熟知中心极限定理的含义。
熟知正态分布及其特性。
知识要点推断统计分析概述推断的神奇一只熊掉入陷阱,陷阱深19.617米,下落时间整2秒。
请问熊是什么颜色的?A 白色B 棕色C 黑色D 黑棕色E 灰色首先,根据题目算出g=9.8085,陷阱所在地的纬度大概是44度左右。
根据熊的地理分布,南半球没有熊,可以得知应该是北纬44度;其次,既然为熊设计地面陷阱,一定是陆栖熊,而且大部分陆栖熊视力不好,难以分辨陷阱,所以容易掉入陷阱;至此,可选答案有:棕熊和美洲黑熊/亚洲黑熊,鉴于题目只有棕熊和黑熊,那么只剩下这两个答案。
既然陷阱深19.617米,土质一定为冲击母质,这样才易于挖掘。
棕熊虽然有地理分布,但多为高海拔地区,而且凶悍,捕杀的危险系数大,价值没有黑熊高,而且一般的熊掌、熊胆均取自黑熊。
又因为黑熊的地理分布与棕熊基本不重合,可以判定:该题的正确答案为掉进陷阱里的熊是黑色。
总体,个体与样本总体,是包含我们要研究的所有数据,总体中的某个数据,就是个体。
总体是所有个体构成的集合。
从总体中抽取部分个体,就构成了样本,样本是总体的一个子集。
样本中包含的个体数量,称为样本容量。
推断统计概念推断统计研究如何根据样本数据去推断总体数量特征的方法。
它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。
推断统计意义我们为什么要进行推断呢?因为在实际的研究中,获取总体数据通常比较困难,甚至也许是不可能完成的任务。
因此,我们就需要对总体进行抽样,通过样本的统计量去估计总体参数。
也就是说,总体的参数往往是未知的,我们为了获取总体的参数,就需要通过样本统计量来估计总体参数。
关于点估计与区间估计,说法正确的是()。
【不定项】D 点估计与区间估计都是通过样本统计量来估计总体参数的。
管理统计学第5参数估计
![管理统计学第5参数估计](https://img.taocdn.com/s3/m/f228ca4a6d85ec3a87c24028915f804d2b168730.png)
S2
1 n 1
n i 1
(Xi
X )2
二、极大似然估计法
先考察两个简单的例子。
【例3.4】某同学与一位男猎人一起外出打 猎,只见一只野鸡在前方窜过,只听一声 枪响,野鸡被他们两人中某一位一枪命中, 试推测这一发命中的子弹是谁打的,答案 是简单的,既然只发一枪且命中,而男猎 人的命中的概率一般大于这位同学命中的 概率,因此可以认为这一枪是男猎人射中 的。
直观上觉得P=3/4(即箱子中黑球数为3) 更可信,因为当P=1/4时抽到这样一个具 体样本的概率为1/43/41/4=3/64,当 P=3/4时,抽到这样一个具体样本的概率为 3/41/43/4=9/64,由于9/64>3/64,因 此在观察到上述样本中的三个球的颜色之
后,觉得P=3/4更可信,即你倾向于认为
计量 ˆ(x1, x2,, xn ) ,称为参数 的极大似
然估计量。
由定义3.1可知,求总体参数 的极大似然
估计值ˆ 的问题,就是求似然函数
L( )的极大值问题。在L( )可微时, 要使L( )取极大值 必须满足
dL
d
0
(3.1)
从上式可解得 的极大似然估计值。
由于lnL( )与L( )有相同的极值点,
化中求出相应的 值来,这个值就是 的
一个估计值。于是,我们可以给出极大似 然估计的定义。
定义3. 1 设总体的概率密度为 f (x, ) ,其
中 是未知参数,x1,x2,…,xn为X的
一组样本观察值。若能求得观察值的某个
函数 ˆ (x1, x2, x3,, xn) ,使得似然函数取极大 值,即L(x1, x2,, xn,ˆ) maxL(x1, x2,, xn,),则称ˆ 为 的一个极大似然估计值,其相应的统
第5章 参数估计
![第5章 参数估计](https://img.taocdn.com/s3/m/5f6bef59b307e87101f69663.png)
猎物射击,结果该猎物身中一弹,你认为谁打中的可能
性最大? 根据经验而断:老猎人打中猎物的可能性最大. 极大似然估计法的思想就是对固定的样本值,选
择待估参数的估计值使“样本取样本值”[离散型]或 “样
本取值落在样本值附近”[连续型] 的概率最大。
(2、极大似然估计的求法
单参数情形
根据总体分 布律写出似 然函数:换x 为xi
来得到待估参数θ 的极大似然估计值(驻点);
③ 、必要时,参照极大似然估计值写出极大似然
估计量.
【例6】求服从二项分布B(m,p)的总体X未知参数 p的极大似然估计量。 〖解〗单参数,离散型。 因为总体 X
~ B(m, p),
x m x
其分布律为
m x
f ( x; p) C p (1 p)
下面分离散型与连续型总体来讨论. 设离散型总体X的分布律
P{X x} p( x; )
( )
形式已知,θ 为待估参数. X 1 , X 2 ,..., X n 为来自总体X的
样本, x1 , x2 ,..., xn 为其样本值,则 X 1 , X 2 ,..., X n 的联合分
布律为:
用其观察值
ˆ( X , X ,..., X ), 1 2 n
——θ 的估计量
ˆ( x , x ,..., x ) 1 2 n
——θ 的估计值
来估计未知参数θ .
今后,不再区分估计量和估计值而统称为θ 的估计,
ˆ . 均记为
二、构造估计量的两种方法
1、矩估计法 理论根据:样本矩(的连续函数)依概率收敛于总
因为X~N(μ ,σ 2),所以X总体的概率密度为
2 1 (x ) 2 f ( x; , ) exp ( R, 0) 2 2 2
第5章 统计推断
![第5章 统计推断](https://img.taocdn.com/s3/m/9eff3e0f76c66137ee061909.png)
第 5 章 统计推断5.1 统计推断概述统计推断就是利用样本的数据,对总体的数量特征作出具有一定可靠程度的估计和判断。
统计推断的基本内容有参数估计和假设检验两方面。
概括地来讲,参数估计是指研究一个随机变量,推断它的数量特征和变动模式。
而假设检验是检验随机变量的数量特征和变动模式是否符合我们事先所作的假设。
参数估计和假设检验的共同特点是它们对总体都不很了解,都是利用部分样本所提供的信息对总体的数量特征作出估计或判断。
所以,统计推断的过程必定伴有某种程度的不确定性,需要用概率来表示其可靠程度,这是统计推断的一个重要特点。
5.1.1 参数估计参数估计是以样本统计量作为未知总体参数的估计量,并通过对样本各单位的实际观察取得样本数据,计算样本统计量的取值,把它作为总体参数的估计量。
参数估计包括点估计和区间估计。
点估计是直接以样本统计量作为相应总体参数的估计量。
例如,用样本均值作为总体均值的点估计量,用样本方差作为总体方差的点估计量。
点估计的优点在于它能提供总体参数的的具体估计值,可以直接作为决策的数量依据。
但是,点估计事实上几乎不可能做到完全准确,更谈不上有多大的置信度。
而区间估计是估计总体参数以某种概率保证程度(置信度)落入某一区间,这样就有把握多了。
对总体被估计参数θ作区间估计,就是要给出区间的下限1ˆθ和上限2ˆθ,使被估计参数落在(1ˆθ,2ˆθ)内的概率为1α−,即 12ˆˆ()1P θθθα≤≤=− 其中,1α−就是置信度,α被称为显著性水平,如图 5-1。
ˆθ12图 5-1 区间估计在SPSS 中没有专门的参数估计命令。
参数的点估计值可以在Descriptives 命令中得到,例如用统计量mean 作为总体均值的点估计,用统计量variance 作为总体方差的点估计等。
参数的区间估计可以通过Explore 命令得到(参见4.4节的内容),也可以在各种假设检验的过程中可以得到(参见本节后面的内容)。
f第五章 统计推断
![f第五章 统计推断](https://img.taocdn.com/s3/m/2a45c5a80029bd64783e2ca4.png)
【例5.1-1b】
用 实 验 动 物 做 实 验 材 料 , 要 求 动 物 平 均 体 重 μ=10.00g, 若 μ<10.00g需再饲养,若μ>10.00g则应淘汰。已知总体标准差 σ=0.40g。从实验动物群体中,随机抽取含量n=10的样本, 样本平均数y=10.23g。这批动物实际饲养的时间比根据以往 经验所需饲养的时间长。问这批动物能否用于实验。
n 10
若假设成立,则得到实际样本这一事件为小概率事件。 假设不成立,拒绝零假设,接受备择假设。
在假设H0正确的情况下,计算样本实际发 生的概率P,若P>α,接受H0 ;若P<α, 拒绝H0 ,接受HA 。在实际应用时,并 不直接求出具体的概率值,而是建立在α 水平上H0的拒绝域和接受域。
拒绝域(rejection region):在上尾、或下尾、 或双侧检验中,U > uα、或U < -uα、或|U| > uα/2的区域,称为在α水平上H0的拒绝域。 接受域(acceptance region):相应的U < uα, 或U > -uα ,或-uα/2 < U < uα/2的区域,称为 在α水平上H0的接受域。 临界值(critical value):接受域的端点称为 临界值。
用实验动物做实验材料 , 要求动物平均体重 μ=10.00g,若 μ<10.00g需再饲养,若μ>10.00g则应淘汰。已知总体标准 差σ=0.40g。从实验动物群体中,随机抽取含量n=10的样本, 样本平均数y=9.77g。这批动物实际饲养时间比根据以往经 验所需饲养的时间短。问这批动物能否用于实验。
参数估计
![参数估计](https://img.taocdn.com/s3/m/721ea7230b4c2e3f57276313.png)
~ N (0,1)
ˆ Z 2 p
ˆ (1 p ˆ) p n
27
总体比例的置信区间:例子
1986年对悉尼995 名青少年的随机调 查发现,有21.7% 的人每天都抽烟。 试估计悉尼青少年 中每天都抽烟的青 少年比例的90%的 置信区间。
ˆ 5, n(1 p ˆ) 5 解:显然有 np 因此可以用正态分布进行估计。 Z/2=1.645
L U
P( ˆ ˆ ) 1
L U
ˆ , ˆ )就称为未知总体参数的置信区间。 成立,则该区间 (
L U
21
二、总体均 值的区间估 计 σ2已知?
是
2
是 总体正态?
否
n≥30? 否 是 否
x Z
n
x t
s
2
n
x Z 2
n
增大n; 非参数 方法等。
实际中总体方差总是未知的, 因而这是应用最多的公式。在 大样本时t值可以用z值来近似。
n 1)s
2
2
~ n 1)
2
总体方差在置信水平1-α下的置信区间为:
n 1)s 2 2 2 n 1)
2
n 1)s 2 1 2 n 1)
2
29
•总体方差的区间估计:例子
检验一批电子元件,共抽取了10件检验,电子元 件使用寿命的样本方差为8175.56,试在95%的 置信概率下对该批产品使用寿命的方差和标准差 进行区间估计。 解:电子元件的使用寿命可看作服从正态分布,根 据正态总体方差置信区间的公式,可得该批电子 元件使用寿命的方差的置信区间为:
(n 1)
19
5.3 区间估计
卫生统计学七版 第五章参数估计基础
![卫生统计学七版 第五章参数估计基础](https://img.taocdn.com/s3/m/13bfd7332f60ddccda38a0fa.png)
二、总体均数及总体概率的区间估计
(一)总体均数的置信区间
1、t 分布法
当 未知且 n 较小时,估计双侧置信 区间:
(X
-t
,
s X
,
X
t ,
s X
)
可简写为:
X
t ,
s X
或X t,
s n
总体均数的95%双侧置信区间为:X
t0.05,
s X
例5-2(P95) 已知某地27名健康成年男子血红蛋白 含量的均数为125g/L,标准差为15g/L,试估计该地健康 成年男子血红蛋白平均含量的95%和99%置信区间 。
二项分布 n 31 X 25 n X 6 查附表6,得7 37 改错
该药物治疗脑血管梗塞有效概率的95%置信区间为 63%~93%。
2、正态近似法 适用范围:np>5,且n(1-p)> 5
例5-6(P96) 用某种仪器检查已确诊的乳腺癌患者 120名,检出乳腺癌患者94例,检出率为78.3%,试估计该 仪器乳腺癌总体检出率的95%置信区间。 np 1200.783 93.96 n(1 p) 1200.217 26.04
第三节 总体均数及总体概率的估计
一、参数估计的基础理论
参数估计区 点间 估估 计计
对总体参数估计的范围称为置信区间,用CI(confidence interval)
表示,其置信度为(1 ),一般取置信度为95%,即取为0.05,此区
间的较小值称为置信下限,较大值称为置信上限。一般进行双侧置信区 间的估计。
第五章 参数估计基础
公共卫生学院 邹焰
定量资料
统计描述等级资料(有序分类资 料)
统计推断-参数估计
![统计推断-参数估计](https://img.taocdn.com/s3/m/fab1b37de518964bcf847c81.png)
统计推断-参数估计从本章开始我们介绍统计推断,所谓统计推断就是由样本推断总体,统计推断包括参数估计和假设检验两部分,它们是统计推断最基本而且是互相有联系的两部分,本章介绍统计推断的第一部分参数估计。
参数通常指总体分布中的特征值和和各种分布中的参数,例如二点分布B(1,P)中的p,泊松分布P()中的,正态分布N(、)的、等,习惯用表示参数,通常参数是未知的。
参数估计的形式有两类,设x1,x2,…,x n是来自总体的样本。
我们用一个统计量的取值作为参数的估计值,则称为的点估计(量),就是参数的点估计,如果对参数的估计需要对估计作出可靠性判断,就需要对这一可靠性给出可靠性区间或置信区间,叫区间估计。
下面首先介绍点估计7.1点估计的几种方法直接用来估计未知参数的统计量称为参数的点估计量,简称为点估计,人们可以运用各种方法构造出很多的估计,本节介绍两种最常用的点估计方法。
它们是:矩法和极大似然法。
7.1.1替换原理和矩法估计用下面公式表示的方法叫矩法例7-1对某型号的20辆汽车记录每5L汽油的行驶里程(km),观测数据如下:29.827.628.327.930.128.729.928.027.928.728.427.229.528.528.030.029.129.829.626.9这是一个容量为20的样本观测值,对应总体是该型号汽车每5L汽油的行驶里程,其分布形式尚不清楚,可用矩法估计其均值,方差,本例中经计算有=28.695,=0.9185由此给出总体均值,方差的估计分别为即【答疑编号:10070101针对该题提问】矩法估计的统计思想(替换原理)十分简单明确,众人都能接受,使用场合甚广。
例7-2设总体为指数分布,其密度函数为x 1,…,x n是样本,由于,亦即,故的矩法估计为例7-3设x1,…,x n是来自服从区间(0,)上的均匀分布的样本,>0为未知参数。
求的矩估计。
【答疑编号:10070102针对该题提问】解:易知总体X的均值为由矩法的矩估计为比如,若样本值为0.1,0.7,0.2,1,1.9,1.3,1.8,则的估计值=2×(0.1+0.7+0.2+1+1.9+1.3+1.8)=2例7-4在一批产品取样n件,发现其中有m件次品,试用此样本求该批产品的次品率p的矩估计。
第五章 统计推断
![第五章 统计推断](https://img.taocdn.com/s3/m/e122e57ac850ad02de8041b1.png)
2019/4/2
22
本章习题
3. 某种产品生产过程设计规格为每批平均生产 120 个,超过或低于这个标准都是不合理的。有10批 产品组成的样本中,每批生产的产品数量如下: 108 118 120 122 119 113 124 122 120 123。 检验样本结果能否表示该生产过程运作正常? (假定总体服从正态分布,α=0.05。)
6
1、假设检验问题
【例5.1】 在超市上出售的某种品牌方便面,按规定每
包净重少于 100 克的比例不得超过 1%。技术监督部门 从某超市的货架上任意抽取 200包该种品牌的方便面, 经检验发现有 3包(1.5%)重量少于 100克,试问:超 市出售的这种方便面是否符合质量标准?
在本例中,超市上出售的这种方便面的不合格率是未 知的,我们关心的问题是:如何根据这 200 包方便面 (样本)的不合格率 p=1.5% 来判断超市上出售的这种 品牌的方便面(总体)的不合格率 P≤1% 是否成立?
并非因为它存在逻辑的绝对错误,只是因为它存
在的可能性很小。
2019/4/2 14
6、假设检验的一般步骤
( 1 )根据所研究的问题,提出原假设 H0 和备择 假设H1;
(2)构造检验统计量;
( 3 )计算检验统计量的值和检验统计量观测值 发生的概率; (4)给定显著性水平α(即发生第一类错误的最 大允许概率),并做出统计决策。
2019/4/2
15
5.2 单样本 t 检验
单样本的 T 检验,是一个正态总体在方差未知时,总体 均值与某一已知数是否有显著性差异的假设检验;检验 统计量为(该统计量服从自由度为n-1的t分布):
t
x 0 s/ n
x 0
第五章 统计推断
![第五章 统计推断](https://img.taocdn.com/s3/m/e7ccd26a561252d380eb6e20.png)
为研究电渗处理对草莓果实中钙离子含量的影响, 选用10个草莓品种来进行电渗处理与对照的对比试验, 结果如下,问电渗处理对草莓钙离子含量是否有影响?
电渗处理草莓果实钙离子含量
品种号
1
2
3
4
5
6
7
8
910电渗ຫໍສະໝຸດ 理22.2323.42
23.25
21.38
24.45
22.42
24.37
21.75
19.82
三,假设测验的基本方法 ①对所研究的总体首先提出一个无效假设 ②规定测验的显著水平α(一般α=0.05有时α=0.01) ③在承认上述无效假设正确的前提下,获得平均数的抽样分布,计 算假设正确的概率 ④根据"小概率事件实际上不可能发生"的原理接受或否定无效假 设 如小麦品种 旧品种:0=300kg/亩 σ=75kg 新品种:1=330kg/亩 y=330kg 第一步:首先提出假设: HA:1≠0 第二步:平均数的抽样分布,计算概率: = 15 ( kg ) σ y = σ / n = 75 / 25 样本容量n=25 H0:1=0=300kg
135.2
135.2
133.5
(二),成对资料平均数的假设测验
若试验设计是将性质相同 若试验设计是将性质相同的两个供试单位配成一对, 性质相同的两个供试单位配成一对 配成一对, 并设多个配对,然后对每一配对的两个供试单位分别随机 成对数据. 地给予不同处理,所得的观察值为成对数据 地给予不同处理,所得的观察值为成对数据.
1.提出假设.H0:1-2=0,即两条生产线的平均日产量无显著 差异.对HA:1-2≠0,即两条生产线上的平均日产量有显著差 异. 2.确定显著水平.α=0.01. .确定显著水平.α 0.01. 3.检验计算. y1 = 65 . 83 S 2 = 59.7299 y 2 = 59 .77 S 2 2 = 42.8747
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为是总体参数未在区间内的比例
3. 常用的置信水平值有 99%, 95%, 90%
相应的 为0.01,0.05,0.10
置信区间
(confidence interval)
1. 由样本统计量所构造的总体参数的估计区间称 为置信区间
2. 统计学家在某种程度上确信这个区间会包含真 正的总体参数,所以给它取名为置信区间
6
一个总体参数的估计
总体参数 均值 比例 方差
符号表示
X
P 2
样本统计量 x p S2
7
二、点估计与区间估计
估计方法
点估计
矩估计法 顺序统计量法 最大似然法 最小二乘法
区间估计
8
点估计
(point estimate)
1. 做法:用样本估计量的值直接作为总体参数的 估计值 ▪ 例:用样本均值直接作为总体均值的估计; 用样本成数直接作为总体成数的估计 ▪ 例:用两个样本均值之差直接作为总体均 值之差的估计
2. 缺点:没有考虑抽样误差的大小;没有给出估 计值接近总体参数的程度
3. 点估计的方法有矩估计法、顺序统计量法、最 大似然法、最小二乘法等
9
区间估计
(interval estimate)
1. 在点估计的基础上,给出总体参数估计的一个区间 范围,该区间由样本统计量加减抽样误差而得到的
2. 根据样本统计量的抽样分布能够对样本统计量与总 体参数的接近程度给出一个概率度量
第五章 参数估计
第一节 参数估计的基本原理 第二节 一个总体参数的区间估计 第三节 两个总体参数的区间估计 第四节 样本容量的确定
学习目标
1. 估计量与估计值的概念 2. 点估计与区间估计的区别 3. 评价估计量优良性的标准 4. 一个总体参数的区间估计方法 5. 两个总体参数的区间估计方法 6. 样本容量的确定方法
3. 用一个具体的样本所构造的区间是一个特定的 区间,我们无法知道这个样本所产生的区间是 否包含总体参数的真值
我们只能是希望这个区间是大量包含总体参数真 值的区间中的一个,但它也可能是少数几个不包 含参数真值的区间中的一个
置信区间与置信水平
均值的抽样分布
x
/2
1-
x
(1 - ) % 区间包含了 % 的区间未包含
n N
较小的样本容量
A
ˆ
20
第二节 一个总体参数的区间估计
一. 总体均值的区间估计 二. 总体比例的区间估计 三. 总体方差的区间估计
一个总体参数的区间估计
总体参数 均值 比例 方差
符号表示
2
样本统计量
X总体、2已知,或非正态总体、大样本)
总体均值的区间估计
36个投保人年龄的数据
23 35 39 27 36 44 36 42 46 43 31 33 42 53 45 54 47 24 34 28 39 36 44 40 39 49 38 34 48 50 34 39 45 48 45 32
总体均值的区间估计
(例题分析)
解:已知n=36, 1- = 90%,z/2=1.645。根据样本数
1. 估计量:用于估计总体参数的样本统计量 变量
如样本均值、样本比例(成数)、样本方差等
例如: 样本均值就是总体均值 的一个估计量
2. 估计值:估计参数时计算出来的统计量的具 体值
如果样本均值 x =80,则80就是的估计值 注:有时,对估计量和估计值并不刻意区分,都称
为估计,根据上下文很容易明确其指代
/2
X
影响区间宽度的因素
1. 总体数据的离散程度,用 来测度
2.
样本容量, X
n
3. 置信水平 (1 - ),影响 z 的大小
常用置信水平及 z 2 值
置信水平 1-
90%
0.10
95%
0.05
99%
0.01
/2
0.05 0.025 0.005
z 2 1.645 1.96 2.58
16
评价估计量的标准
比如,某班级平均分数在75~85之间,置信水平是95%
置信区间
样本统计量 (点估计)
置信下限
置信上限
区间估计的图示
Xz2X
X
- 2.58x
X
-1.65 x
+1.65x + 2.58x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
置信水平
1. 将构造置信区间的步骤重复很多次,置 信区间包含总体参数真值的次数所占的 比例称为置信水平
17
无偏性
(unbiasedness)
无偏性:估计量(随机变量)的数学期望等于被估计的总体参 数
中心极限定理证明了:样本平均数和样本成数都满足无偏
性
P(ˆ )
E(x) X E(p) P
ˆ 无偏 2
A
有偏
ˆ1 B
总体参数
ˆ
18
有效性
(efficiency)
有效性:对同一总体参数的两个无偏点估计量,有更小 标准差的估计量更有效
据计算得:x39.5,s7.77 总体均值在1-置信水平下的置信区间为
x z 2
s 39.51.6457.77
n
36
39.5 2.13
37.37,41.63
投保人平均年龄的置信区间为37.37岁~41.63岁
总体均值的区间估计
(正态总体、2未知、小样本)
P(ˆ )
ˆ1 的抽样分布
B
样本平均 数比中位 数更有效
A
ˆ 2 的抽样分布
ˆ
19
一致性
(consistency)
一致性:随着样本容量的增大,估计量的值越来越接 近被估计的总体参数
大数定律已经证明了:样本平均数和样本成数都满足 一致性
P(ˆ ) 较大的样本容量
lim x X n N
B
lim p P
参数估计在统计方法中的地位
统计方法
描述统计
推断统计
参数估计
假设检验
统计推断的过程
总体
样
样本统计量
本
例如:样本均
值、比例、方
差
第一节 参数估计的基本原理
一、估计量与估计值 二、点估计与区间估计 三、评价估计量的标准
一、估计量与估计值
(estimator & estimated value)
随机
(大样本)
1. 假定条件
总体服从正态分布,且方差(2) 已知 如果不是正态分布,可由正态分布来近似 (n 30)
2. 使用正态分布统计量Z
Z X ~N(0,1) n
3. 总体均值 在1-置信水平下的置信区间为
Xz2
n或 Xz2
S(未)知
n
总体均值的区间估计
(例题分析)
【例】一家保险公司收集到由36位投保个人组成的随机样本, 并得到每个投保人的年龄(周岁)数据如下表。试建立投保人 年龄90%的置信区间