原子物理第六章课后习题
原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子核物理及核辐射探测学第6章习题答案new(免费)

Ee
2.04 1.326 MeV 0.511 1 2.04(1 cos57.65)
6-11 解:
I (t ) I 0 e t ln 4 0.277 cm 1 5 cm
-1
6-12 某一能量的 射线在铅中的线性吸收系数为 0.6cm ,试问它的质量吸收系数及原子的 吸收截面是多少?按防护要求,要用多厚的铅容器才能使源射到容器外的 射线强度减弱 1000 倍? 解: (1) 线性吸收系数的定义为: N ,这里 是γ射线与物质相互作用的截面,N 为铅原子数的密度,关于 N,我们可由它的原子量和密度共同得到:
h 代入光子的能量 2.04MeV, 电子质量 0.511MeV tg , m0c 2 2
需要做个转换: 1 ctg
和 20 度角,得到 ctg 20 1 度方向的能量为:
2.04 tg 57.65 ,于是康普顿反冲电子在 20 0.511 2
6-8 试证明入射光子不能与自由电子发生光电效应。 (这是假设初始电子静止的情况计算得 到的,这个结论是可以推广的,因为总可以找到这样的一个参考系) 证明: 对于某个任意能量 E h 的γ光子,其动量为: P
h 。 c
发生光电效应后,光子消失,则自由电子继承γ光子的动能与动量,于是:
质量厚度为: 2.13 10
3
cm 4.1 g/cm3 8.7 103 g/cm 2
6-3 如果已知质子在某一物质中的射程和能量关系曲线,能否从这一曲线求得 d (氘核)与
t (氚核)在同一物质中的射程值?如能够,请说明如何计算。
解:可以。 某种带电粒子在介质中的射程具有这样的特性: M 其中 M 和 z 是入射带电粒子的质量与电荷,F(v)由 R(v ) 2 F (v ) 入射粒子的速度和 z 介质特性决定。 为求得某种能量下 d 和 t 在该介质中 的射程,首先需要 计算出 d 和 t 速度 v 的大小, 然后在质子的射程-能量关系曲线中找出与该速度 v 对应的射 程 Rp 。 由于同样速度下 d 和 t 的动能分别是质子的 2 和 3 倍, 则对具有某个能量 E 的 d 或 t, 只需在质子的射程-能量关系曲线中找到与质子能量 E/2 或 E/3 对应的射程 Rp, 再分别乘以 2 d 和 t 的 M/z 因子即可得到能量为 E 的 d 和 t 在该介质中的射程。即:d 和 t 的射程分别 Rp 的 2 和 3 倍。 6-4 请估算 4MeV 粒子在硅中的阻止时间。已经 4MeV 粒子在硅中射程为 17.8m。 解: 阻止时间:指的是将带电粒子阻止在吸收体内所需的时间。
原子物理学习题答案(褚圣麟)详解

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p ZeMv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.4钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
原子物理学 课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。
1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。
难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。
2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。
第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。
第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。
第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。
原子核物理课后习题-刘修改

原子核物理课后习题-刘修改核物理习题与思考题第一章原子核的基本性质1. 原子核半径的微观含义是什么?它与宏观半径有何区别?2. 半径为O 189核半径的1/3的稳定核是什么核?3. 若将原子核看作是一个均匀的球,试计算氢(1H )核的近似密度.4. 计算下列各核的半径:A He 1074742,g ,.23892U 设r0=1.451510-?米.。
5. 宏观质量单位与微观质量单位有何不同? 同位素,同量异位素,同质异能素,同中子素之间有何区别? 对下列每一种核素至少举出一种同量异位素和一种同位素: U Cu N 2386314,,.6. 对下列每一种核素至少举出一种同位素和一种同中子异位素:Sn Pb O 12020816,,.7. 若将α粒子加速到其速度等于光速度的95%,则α粒子质量为多少u? 合多少千克?氢原子静止质量为M (He 4) =4.002603u .8. 若电子的速度为2.5810?米/秒,那么它的动能和总能量各为多少电子伏特?9. 计算下列核素的结合能和比结合能: U Ni Fe O C H 238585616122,,,,,. 10. 从Ca 4020中移出一个中子需要多少能量? 从中移出一个质子的能量又是多少?其中钙40,钙39的原子静止质量分别为: M (Ca 40) =39.96258u ,M (Ca 39) =38.97069u ,M (K 39) =38.9163710u.11. 计算从O O 1716和中移出一个中子需要的能量. 有关原子静止质量为: M (O 16)=15.994915u ,M ( O 15) =15.003072u ,M ( O 17)=16.999133u .12. 计算从和O 16F 17 中移出一个质子需要的能量. 有关原子质量为: M (N 15)=15.000108u ,M (F 17) =17.0022096u ,M (O 16) =16.999133u.13. 计算下列过程中的反应能和阈能:;422309023492He Th U +→;1262228623492C Rn U +→ O Po U 1682188423492+→14.K 40核的自旋角度动量|1P | =25η,郎德因子为g 1=-0.3241,计算K 40的核自旋方向相对Z 轴方向有几种可能的取向? 其最大分量是多少η? K 40的磁矩为多少核磁子N μ? 1P 与的相互取向如何?15.为什么重核的裂变和轻核的聚变可以放出大量的能量来?第二章放射性衰变的一般规律1.发生Po 21884α衰变后子体核为Pb 21482和α粒子的动能.2.已知K 41的原子量为40.9784u ,-β粒子的最大能量为βE =1.20Mev ,γ射线的能量γE =1.29 M ev ,计算Ar 41的原子量.3.已知Ne 22的原子量为21.99982u , +β粒子的最大能量为0.54 Mev ,γ射线的能量γE =0.27Mev ,试计算Na 22原子的质量.4.Cu 64能以-β,+β,EC 三种形式衰变,有关原子的静止质量如下: Cu 64:63.929759u , Ni 64:63.9296u , Zn 63:63.929145u. 试求: (1) +β, -β粒子的最大能量. (2) 在电子俘获中中微子的能量.5.放射性核衰变的规律是什么? 衰变常数λ的物理意义是什么?什么是半衰期和平均寿命?6.计算经过多少个半衰期后放射性核素的活度可以减少到原来的50%,3%,1%,0.1%,0.01%?7.已知U N P 2381432,,的半衰期分别为14.26天,5730年,4.468?109年,分别求出它们的衰变常数.8.实验测得0.1毫克的Pu 239的衰变率为1.38?107次核衰变,已知Pu 239原子静止质量M (Pu 239) =239.0521577u ,求Pu 239的半衰期.9.一个放射源在t=0 时的计数率为8000cps ,10分钟后的计数率为1000cps.其半衰期为多少? 衰变常数为多少? 1分钟后的计数率是多少?10.已知Ra 226的半衰期为1.6310?年,其原子静止质量为226.025u ,求1克Ra 226( 不包括子体 )每秒钟发射的α粒子数.11.放射性活度精确为1Ci 的Co 60(T=5.26年),P 32 (T=14.26天)的质量各为多少克?12.人体内含18%的C 和0.2%的K. 已知天然条件下C C 1214和的原子数之比为1.2:1012, 14C 的半衰期为5370年, 40K 的天然丰度为0.0118%,半衰期为1.26910?年. 试求体重为75千克的人体内部放射性活度.13.衰变常数为λ的放射性核素,每个原子核在单位时间内衰变的几率是多少? 不发生衰变的几率是多少? 每个核在0~t 时间内发生衰变和不发生衰变的几率又是多少?14.已知Ra 224的半衰期为3.66天,问在第一天内和前十天内分别裂变了多少分额? 若开始时有1毫克的Ra 224,问第一天和前十天中分别衰变掉多少个原子? 15.已知Po 210的半衰期为138.4天,问1毫克的Po 210其放射性活度为多少贝可勒尔? 合多少居里?16.已知Rn 222的半衰期为3.824天,问1居里的Rn 222的质量是多少千克?17.什么是放射性原子核的多分支衰变? 原子核多分支衰变是满足什么样的衰变规律? 写出其表达式.18.什么是原子核的递次衰变?对于递次衰变序列A C B →→,若A ,B 核的衰变常数分别为B A λλ,,它们在任一时刻t 原子核数目为)(),(t N t N B A ,试求出子体B 随时间变化的规律.19.什么叫做放射性平衡? 天然放射系有几种平衡的情况? 它们产生的条件是什么?第三章射线与物质的相互作用1. 4兆电子伏的α粒子在空气中的射程为2.5厘米( ρ空气=1.29?103-克/立方厘米),假定射程与密度成反比,试求4兆电子伏的α粒子在水中和铅中的射程(ρ铅=11.3克/立方厘米)?2. 一束准直的能量为2.04Mev 的伽玛光子束穿过薄铅片,在20°方向上测量反冲电子,试求该方向发射的康普顿反冲电子的能量是多少?3. 铯Cs 137放射源放出的γ光子能量为0.661Mev ,Co 60伽玛源放出的1.17Mev 和1.33Mev ,试求这些光子同物质发生康普顿效应时产生的反射光子(180=θ°)的能量和反冲电子的能量.4. 什么是光电效应? 康普顿效应? 电子对效应? 试论述它们的微观作用机理. 各种反应的特点和产生的条件是什么? 有何次级效应?5. 对于康普顿散射,试导出γE ′=)cos 1(12θγγ-+c m E E e ,)cos 1()cos 1(22θθγγ-+-=E c m E E e e ,2)1(2θφγtg c m E ctg e += 三个公式.6. 什么是反应截面? 什么是吸收系数? 它们的量纲分别是多少? 使用什么单位?它们的物理意义又是什么?7. 已知入射γ光子的波长为0.2埃,试计算在康普顿效应中,当散射光子对入射光子前进方向各取30°,90°时,散射光子对入射光子波长的改变多少? 散射光子和反冲电子的能量各为多少?8. 能量为1Mev 的γ光子,由于康普顿散射波长增加了25%,试求反冲电子的能量.9. 若某物质对入射γ射线的吸收系数为11.0-=cm μ ,试求入射γ射线从I 0减弱到1/2I 0时所需的厚度.10. 若铝和铅的吸收系数分别为118.5,44.0--==cm cm pb Al μμ,问多厚的铝与6cm 的铅对γ射线强度的减弱相当?11. 某一能量的γ射线在铅中的线性吸收系数为5.8cm -1,则它的质量吸收系数和原子的总反应截面是多少? (Pb=11.3gcm -3 ,A=207.21u , Z=82)12. .Tl 204源放出的β射线的最大能量为0.77Mev ,密度为1.4克/立方厘米的薄膜对该β射线的质量衰减系数为mg cm m /03.02=μ,若要使该β射线在穿过薄膜后强度减少为原来的2/3,求薄膜的厚度为多少毫米?13. 15兆电子伏的γ射线在铅中的总吸收截面为20靶恩,若要使该γ射线强度分别降低1/e和1/100,问需要的铅片厚度各是多少?14. 试说明能量分辨率的物理意义.闪烁探测器测得的γ射线仪器谱和理论谱有何不同?15. 闪烁探测器的光学偶合剂为什么不能用水? 光学偶合剂和光导的作用是什么?16. 使用闪烁探测器和使用Ge ( Li )探测器时,分别应注意哪些问题? 为什么?17. 在用闪烁探测器测量计数或进行能谱分析时,其闪烁测量系统的闪烁体和光电倍增管应如何选取?第四章放射性测量中的统计误差1. 设t=0时放射性核的总数为 N 0,在0-t 时间内衰变掉的原子核数为n ,每一个核在0-t 时间内发生衰变的几率为p=1-t eλ-,不发生衰变的几率为q=t e λ-,试导出二项式分布规律。
原子物理学杨福家1-6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4))sin(sin ϕθϕαα+='VM V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
第一课原子物理第六章习题

K _____K_α_______K_β________ -87.9
EM 2.97keV
EN
Ek
hc k
EN 0.58KeV
习题
6 - 5 (2)计算激发L线系所需最小能量与Lα线的波长
习题
6-6 一束波长为0.54nm的单色光入射到一组晶面上,在与入射束偏 离为120°的方向上产生一级衍射极大,试问晶面间距为多大?
习题
6-3
钕原子(Z=60)的L吸收限为0.19nm,试问从钕原子中电离一 个K电子需要做多少功?
Ek
hcR( Z
1)2
(1
1 22
)
35.5KeV
hc 1.24nm KeV
EL L 0.19nm 65.5KeV
Ek EL Ek 42KeV
习题
hc hc hc
EL
Ek k
k
k
13.6keV
E(KeV) N ______________________ -0.58
M ______________________ L _________________K__γ ___
-2.97 -13.6
hc EM Ek k
6 - 5 铅的K吸收限为0.4141nm,K线系各谱线的波长为别 为:0.0167nm(Kα);0.0146nm(Kβ);0.0142(Kγ),
现请:
(1)根据这些数据画出铅的X射线能级图
(2)计算激发L线系所需最小能量与Lα线的波长
Ek
hc k
87.9KeV
hc EL Ek k
习题
习题
(整理)原子物理学杨福家1-6章 课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
第六章 原子结构(习题)

第六章 原子结构(习题)一、选择题:1. 3985下列各组表示核外电子运动状态的量子数中合理的是………………………( )(A) n = 3,l = 3 ,m = 2,m s = 21- (B) n = 2,l = 0 ,m = 1,m s =21 (C) n = 1,l = 0 ,m = 0,m s =21 (D) n =0,l = 0 ,m = 0,m s =21-2. 3984径向概率分布图中,节面的个数等于…………………………………………( )(A) n - l (B) l - m (C) n -l - 1 (D) n - l + 13. 3983核外量子数n = 4,l = 1的电子的个数最多是…………………………………( )(A) 3 (B) 4 (C) 5 (D) 64.3980 s , p , d , f 各轨道的简并轨道数依次为……………………………………………( )(A) 1, 2, 3, 4 (B) 1, 3, 5, 7 (C) 1, 2, 4, 6 (D) 2, 4, 6, 85. 3978 径向概率分布图中,概率峰的个数等于………………………………………( )(A) n - l (B) l - m (C) n - l + 1 (D) l - m + 16. 3968 下列原子或离子中,电子从2p 轨道跃迁到1s 轨道放出光的波长最短的是( )(A) Li (B) Cl (C) Fe (D) Fe 2+7. 0911 ψ (3, 2, 1)代表简并轨道中的一个轨道是……………………………………( )(A) 2p 轨道 (B) 3d 轨道 (C) 3p 轨道 (D) 4f 轨道8. 0906 电子云是 ……………………………………………………………………( )(A) 波函数ψ 在空间分布的图形(B) 波函数|ψ | 2在空间分布的图形(C) 波函数径向部分R n , l (r )的图形(D) 波函数角度部分平方Y 2l , m (θ , ϕ)的图形9. 0905 下列各组量子数中,合理的一组是…………………………………………( )(A) n = 3, l = 1, m l = +1, m s = +21 (B) n = 4, l = 5, m l = -1, m s = +21 (C) n = 3, l = 3, m l = +1, m s = -21 (D) n = 4, l = 2, m l = +3, m s = -21 10. 0903 在H 原子中,对r = 0.53A (10-8cm) 处的正确描述是……………………( )(A) 该处1s 电子云最大 (B) r 是1s 径向分布函数的平均值(C) 该处为H 原子Bohr 半径 (D) 该处是1s 电子云界面11. 4371 在周期表中,氡(Rn, 86号)下面一个未发现的同族元素的原子序数应该是………( )(A) 140 (B) 126 (C) 118 (D) 10912. 7005 18电子构型的阳离子在周期表中的位置是………………………………( )(A) s 和p 区 (B) p 和d 区 (C) p 和ds 区 (D) p ,d 和ds 区13. 3982 按鲍林(Pauling)的原子轨道近似能级图,下列各能级中,能量由低到高排列次序正确的是………………………………………………………………………………… ( )(A) 3d , 4s , 5p (B) 5s , 4d , 5p (C) 4f , 5d , 6s , 6p (D) 7s , 7p , 5f , 6d14. 3970下列阳离子基态的电子组态中属于 [Kr]4d 6的是…………………………… ( )(A) Tc + (B) Rh 3+ (C) Rh 2+ (D) Cd 2+15. 3944 原子序数为1 ~ 18的18种元素中,原子最外层不成对电子数与它的电子层数相等的元素共有……………………………………………………………………………… ( )(A) 6种 (B) 5种 (C) 4种 (D) 3种16. 3936 关于原子结构的叙述中:①所有原子核均由中子和质子构成;②原子处于基态时,次外层电子不一定是8个;③稀有气体元素,其基态原子最外层有8电子;④最外层电子数为2的原子一定是金属原子。
原子物理学杨福家第六章习题答案

练习六习题1-2解6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试问它的工作电压是多少?解:依据公式答:它的工作电压是100kV .6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α)(10Z ;将值代入上式,10246.0101010)⨯⨯===1780 Z =43即该元素为43号元素锝(Te). 第六章习题3,46-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功?6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长.分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.解: (1)由已知的条件可画出X 射线能级简图.K K α L α K β K γ (2)激发L 线系所需的能量:K在L 壳层产生一个空穴所需的能量E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能.或即有m 即L α线的波长为0.116nm.6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120︒的方向上产生一级衍射极大,试问该晶面的间距为多大?︒的方向上产生一级衍射极大sin θn=1解得 d =0.312 nm 第六章习题8参考答案6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量.6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量.(1)其中c m光子去的能量为电子获得的能量 k E h h ='-νν依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E由此可算出: νγγh E E 22=+E c E00=+ 2)(2cm EE h h o =-νν代入数据.010⨯=-光E 2解之: E 光=55.9 keV 第六章习题9参考答案6-9 若入射光子与质子发生康普顿散射,试求质子的康普顿波长.如?则 依6-8m EE =可得出:6-10 康普顿散射产生的散射光子,再与原子发生相互作用,当散射角θ>60°时,无论入射光子能量多么大,散射光子总不能再产生正负电子偶.试证明之. 第六章习题11,126-11 证明:光子与自由电子相碰,不可能发生光电效应. 6-12 证明:在真空中不可能发生“光子一电子对”过程. 第六章习题13、14参考答案6-13已知铑(Z=45)的电子组态为1s 22s 22p 63s 23p 63d 104s 24p 64d 85s I ,现请:(1)确定它的基态谱项符号;(2)用它的K αX 射线作康普顿散射实验,当光子的散射角为60°时,求反冲电子的能量(已知K α的屏蔽系数b =0.9);(3)在实验装置中用厚为0.30cm 的铅屏蔽该射线.如果改用铝代替铅,为达到同样的屏蔽效果,需要用多少厚的铝?(μpb =52.5 cm -I ;μAl =0.765cm -1)解:(1)电子组态中4d 85s 1未填满,所以为基态的电子组态4d 25s l 1= l 2=2,l 3=0其原子态计算先2d 电子耦合,得出最低态3F 4,3,2.找出基态3F 4,再与s 耦合,得4F 9/2.为基态.(2)因为X K α射线的能量为:216)(10248.0b z h h K -⨯=αν9.0≈b反冲电子的能量为:60=θ 代入上式得eV E K 384=(3)由郎伯-比耳定律可得: 用Pb 屏蔽时 10Pbx e I I μ-= (1)用Al 屏蔽时 20Alx e I I μ-= (2)比较(1)(2)式可得: 21x x Al Pb μμ=其中 15.52-=cm Pb μ1765.0-=cm Al μx 1=0.3cm得: x 2=20.59cm6-14已知铜和锌的K αX 射线的波长分别为0.015 39 nm ,和0.014 34 nm ,镍的K 吸收限为0.148 9 nm ,它对铜和锌的K αX 射线的质量吸收系数分别为48 cm 2/g 和325 cm 2/g .试问:为了使铜的K α射线与锌的K α射线的相对强度之比提高10倍,需要多厚的镍吸收片? 解: 按朗伯-比耳定律经镍吸收片吸收后,铜的强度 ρ-=x e I I 480锌的强度 23250''ρx e I I -=由于 I 0所以2mg/cm 31.8=x ρ 镍的密度为 ρ=8.9g/cm 3所以 x =9.3 μm。
原子物理学第四,五,六,七章课后习题答案

第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。
试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。
原子物理学第四,五,六,七章课后习题答案-推荐下载

原子的基态为 4S. 试求 4S 、4P 谱项的量子数修正项∆S 、∆P 值各为 多少?
K 原子的主线系波数
~
p n
n ,
~
R (4 S )2
1 p
~
p n
~
1 2.858 107
~
T4S 3.4990 106 m 1
而
T4S
所以 4 S
R T4P
1.3046 106 m1
第五章 多电子原子
1. He 原子的两个电子处在 2p3d 电子组态.问可能组成哪几种原子态?用
原子态的符号表示之.已知电子间是 LS 耦合.
解:p 电子的轨道角动量和自旋角动量量子数分别为 l1 1,
d 电子的轨道角动量和自旋角动量量子数分别为 l1
R (4 S )2
R R 1.0973731107 m1
4 S 1.7709
S 2.2291
R (n P )2
R (4 S )2
R T4S
m 1
,
n 4,5,
3.4990 106 m1
K 原子共振线为主线系第一条线, 是原子从 4P 到 4S 跃迁产生的光
1.2206 106 m1
~
f 1
T3D
T4F
1 1.8459 106 m
T4F T3D 5.4174 105 m 1 6.8496 105 m 1
5.4174 105 m 1
3. K 原子共振线波长为 7665Å,主线系系限波长为 2858Å. 已知 K
第四章 碱金属原子
0
原子物理学习题标准答案(褚圣麟)很详细

hcRH(12
12)
其中hcRH13.6电子伏特
1
n
E1
13.6
(1
1) 10.2
电子伏特
22
E2
13.6
(1
12) 12.1
电子伏特
3
E3
13.6
(1
12)
12.8
电子伏特
4
其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有
12.5电子伏特能量的
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。
A,漫线系第一条的波长为
8193A,
基线系第一条的波长为
18459A,主线系的系限波长为
2413
A。试求
、
、
、
4F
各
3S
3P
3D
谱项的项值。
解:将上述波长依次记为
p max,d max,f max,p,
即p max5893 A,d max8193 A,f max18459 A,p2413 A
容易看出:
(1.60
10
19)2
1.14 1013
米
106
1.60
10
19
由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核
代替质子时,其与靶核的作用的最小距离仍为
1.14 1013米。
1/14
1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05 102公斤/米2的银
箔上,粒
解:设靶厚度为t'。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的
厚度t',而是t
原子与原子核物理课后答案PS免挂咯好东西要一起分享哦

第一章 原子的基本状况若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子物理杨福家第六章习题解答

课 后 答 案 网
. 解:由康普顿波长定义 w 则 质子的康普顿波长为
hc 1.24 λ = m0c2 = 511 = 0.002426nm
λ
=
hc mpc2
=
1.24 938×103
= 0.00132 fm
a 依 6-8 题公式
2(hν )2 − 2hνEmax = Emax mpc2
d 可得出: hν = 54.6 MeV
依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式
有最小值的条件是θ=π 由此可推得
hν
− hν ′ = hν
− hν 1 + 2γ
= 2γhν 1 + 2γ
= Emax
3
由此可算出: Emax + 2γEmax = 2γhν
hν
hν
Emax + 2 m 0c 2 Emax = 2 m 0c 2 hν
m 解: 由于 入 射束 在偏离 120° 的方 向上 产生 一级 衍射 极大 sinθ
=sin120°= 3
o 2
依据公式 nλ = 2d sin θ n=1
课 后 答 案 网
c 0.54nm = 2 × 3 . 2
解得 d=0.312 nm
w 第六章习题 8 参考答案
a 6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求
= ϕK
−ϕL
= λKα
=
0.0146nm
= 84.93keV
在 L 壳层产生一个空穴所需的能量
wwELK= φK-φL
φL =φK- ELK =87.94 keV -84.93keV=3.01 keV
φ为合能.
原子物理学课后习题答案第6章

第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。
(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。
解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。
钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。
(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。
解:裂开后的谱线同原谱线的波数之差为:mcBeg m g m vπλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。
对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。
mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。
特斯拉。
00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。
解:在弱磁场中,不考虑核磁矩。
2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。
原子物理 褚圣麟课后习题答案

πa 2
4
×
cos sin
θ
2 dθ = 2
3 θ
16
a
2
×
dΩ
sin
4
θ
2
= ……= 0.2866 × a2
百分比 dn/n = NtA×dσ/A = Nt dσ = 29/106 所以 dσ = 4.496 × 10-28 a = 3.96 × 10-14 m 即 Zα × ZAg × e2 / (4πε0×E) = a = 3.96 × 10-14 m 计算得 ZAg = ….. = 48 约等于实际值 47 第一章习题课: 能量为 3 MeV 的α粒子束射向厚度为 1.5 μm 的 Pb 箔。试求α粒子被散射到 60°~90°的几率。Pb的密度 为 11350 kg/m3,原子序数为 82,原子量为 207。 解:单个铅原子质量:MPb = 207 × 1.66 × 10-27 kg = 3.436 × 10-25 kg 单位体积内铅原子数:N = ρ / MPb = … = 3.303 × 1028 个/m3 散 射 到 60°~90° 度 方 向 的 几 率 P(60°~90°) =
D
Z 方向原子的加速度 az = fz/m 刚脱离磁场时刻 原子 Z 方向的瞬时速度 vz = az × t1 原子在 Z 方向的偏转位移 d/2 = 1/2 × az × t12 + vz × t2 代入数值计算得 μz = 1.007 μB = 9.335 × 10-24 J/T 第二章习题课:禇圣麟教材 76 页 2 、4、 6 题;杨福家教材 68 页 2-3、2-10 题。 1 计算基态氢原子的电离电势和第一激发电势。 解:氢原子能级能量 En = - hcR/n2 = -13.6 eV/n2 n= 1, 2, 3, …….. 基态 n =1 ,第一激发态 n = 2 ,电离后 n = ∞ 容易求得:第一激发电势 10.2 V,电离电势 13.6 V 2 估算 He+ 离子、Li2+ 离子第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线的波长分 别与氢原子上述物理量之比。 解:类氢离子能级能量 En = -hcRAZ2/n2 ≈ -hcRHZ2/n2 n = 1,2,3,…. 2 轨道半径 rn = a1 × n /Z 电离能 Eionization = (E∞ - E1) = hcRHZ2 第一激发能:Eexcitation = E2 - E1 = 3/4 hcRHZ2 赖曼系第一条谱线的波长 λ = hc/(E2-E1) = 4/(3RHZ2) 因此:第一玻尔轨道半径比 1 :2 和 1 :3 电离电势比 4 :1 和 9 :1 第一激发电势比 4 :1 和 9 :1 赖曼系第一条谱线波长比 1 :4 和 1 :9 3 氢与其同位素氘混在同一放电管中, 摄下两种原子的光谱线。 问 巴耳末系的第一条谱线 (Hα) 之间的波 -1 -1 长差 Δλ 有多大?已知 RH = 10967758 m ,RD = 10970742 m 解:巴耳末系满足 1/λ = R (1/4 – 1/n2) n = 3, 4, 5, 6,……….. 对于谱线 Hα ,n=3,1/λα = 5R/36, λα = 36/5R
《原子物理》(褚圣麟)习题解答

1
3
=RH [
4.试估算一次电离的氦离子 He 、二次电离的锂离子 Li
的第一玻尔轨道半径、电离电
势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解: He 、 Li
都是类氢粒子,由玻尔理论可列表如下:
r1 ( A)
H 0.529 0.265 0.176
0
V (V )
4 0 h 2 v2 e2 m 0.529 10 10 (m) ,其中 a1 2 2 a1 4 0 a1 4 me
由此求得电子的线速度: v 2.18核转动的频率: f
v 6.56 1015 ( s 1 ) 。 2a1
电子的加速度: a
v2 8.98 10 22 (ms 2 ) 。 a1
2. 试用氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
第 4 页
~ =RH 〔 解:∵
1 1 ~ =RH 。∴ U hcR H 13.6(V ) 2 〕,电离情况对应于 n=∞,即 2 1 n e 3 RH , 4
4 2 me 4 2n 当 n 1 时, n cR 2 2 = n n 4 0 2 n 3 h 3
第 7 页
9. Li 原子序数 Z=3,其光谱的主线系可用下式表示:
~=
R R 2 (1 0.5951) (n 0.0401) 2
+++ + ++
已知 Li 原子电离成 Li 离子需要 203.44ev 的功。问如果把 Li 离子电离成 Li 离子, 需要多少 ev 的功? 解:第一步,由已知公式求出 Li Li 所需的功:
原子物理学杨福家1-6章-课后习题标准答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hv,
hv c
,静止的自由电子具有能量
E0
,
碰撞后电子能量,动量为 E, p ,由能量守恒有: hv E0 E Ek E0 , (1)
由动量守恒有:hv p, (2) ,碰撞后电子的速度可接近光速,应用相对论关系式, c
第4页共6页
式(1),(2)可改写成: hv
E
E0
mc 2
m0c 2 ,
6.5.Prove that for most of the elements,the intensities of the K1 x-rays are double the intensities of the K 2 x-rays.
证明:对大多数元素, K1 射线的强度为 K 2 射线的两倍。
K 系激发机理:K 层电子被击出时,K 壳层形成空位,原子系统能量由基态升到 K 激发态, 原子系统能量升高,使体系处于不稳定的激发态,按能量最低原理,L、M、N 层中的电子 会跃迁到 K 层的空位,为保持体系能量平衡,在跃迁的同时,这些电子会将多余的能量以 X 射线光量子的形式释放。高能级电子向 K 层空位填充时产生 K 系辐射,L 层电子填充空位时,
第2页共6页
hv p 2
E0
p
hv E 2 2 p
p
hv Ek cos
p
E0 , (1) 2, (2)
由相对论关系式:
E2
p2c2
E
2 0
,
(3)
E0 m0c2 , (4)
式(3),(4)代入式(1)有:
h v v m0c 2 2 p 2c 2 (m0c 2 )2 , (5)
, (13)
第3页共6页
Ek hv
1
时, 1
1 cos
最小,
Ek最大
1 cos
反冲电子能够得到的最大能量为
Ek ,max
hv
1
2 2
, (14)
因此由(12),(14)得: hvm in Ek,max hv, (15)
证毕。
6.10.In Compton scattering,if the maximum energy which a photon could transfer to a rest electron is 10keV,what is the energy of incident
第5页共6页
S
L
J
32
3
92
12
3
52
依照洪特定则,基态为 4F 9 2
(2)对于 K 线,由莫塞莱公式有,入射光子能量为:
原子态 4F 9 2 2F5 2
EK
hRc Z
b 2 1
1 22
313.6 45 0.9 2 eV
4
19.84keV
在康普顿散射中,反冲电子的能量为:
Ek
1 cos hv 1 1 cos
解:电子组态中 4d 85s1 未填满,4d 85s1 与 4d 25s1 具有相同的原子态,对于 4d 25s1 , 先计算两个同科 d 电子耦合, l1 l2 2, L 4,3, 2,1, 0; s1 s2 1 2, S 0,1 根据同科电子偶数规则,即 L S 偶数 S 0, L 0, 2, 4, J 0, 2, 4 ,对应原子态为: 1S0 , 1D2 , 1G4 S 1, L 1, J 2,1, 0 ,对应原子态为: 3P2,1,0 S 1, L 3, J 4,3, 2 ,对应原子态为: 3F4,3,2 依照洪特定则,基态为 3F4 再与 s 电子耦合, l1 3,l2 0, L 3; s1 1, s2 1 2, S 3 2,1 2, J 9 2,5 2 ,
光电效应是指光子与原子内层的电子(束缚电子)碰撞后,光子能量被电子全部
吸收而变为光电子。光子和自由电子(外层电子)相互作用一般产生的是康普顿
效应,光子的部分能量传递给电子,电子反冲,光子散射.体现了光的粒子性,证明
如下:
假设光子与自由电子相碰,可以发生光电效应,则光子能量全部转移给自由电子,
光子湮灭。碰撞前入射光子能量,动量为
m0c
著名的康普顿散射公式
式(9)可改写为:
1 hv
1 hv
1 m0c 2
1
cos
, (10)
则可得到散射光子的能量表达式: hv
1
hv
1 cos
,
hv m0c 2
, (11)
因此当
时,有 hvm in
hv 1 2
, (12)
将式(11)代入式(1)得反冲电子的动能:
Ek
hv
hv
hv
1 cos 1 1 cos
第六章 X 射线
6.1.The minimum wavelength of the continuous x-ray spectra from an
x-ray tube is 0.124 A .What is its working potential?
某一 X 射线发出的连续 X 光谱的最短波长为 0.0124nm,它的工作电压是多少?
incident beam,a maximum first-order diffraction is observed.What is the
spacing of the crystal planes?
一束波长为 0.54nm 的单色光入射到一组晶面上,在与入射束偏离为120 的方向
上产生一级衍射极大,试问该晶面的间距为多大?
0.30cm
21cm
第6页共6页
hv c
p
E 2 E02 (3) c
因此可得到关系式: E E0 E 2 E02 E E0 E E0 , (4)
(4)式只有在 E0 0 时才成立,即 m0c2 0 ,而电子不可能具有非零的静质量,所 有光子与自由电子相碰,不可能发生光电效应。
6.15.If the electronic state of palladium(Z=45) is
(a)确定它的基态态项(谱项)符号;
(b)用它的 K -X 射线作康普顿散射实验,当光子的散射角为 60 时,求反冲电 子的能量(已知 K 的屏蔽系数为 b 0.9 );
(c)在实验装置中用厚为 0.30cm 的铅屏蔽该射线。如果改用铝代替铅,为达到
同样的屏蔽效果,需要用厚度多少的铝?( Pb 52.5cm1, Al 0.765cm1)
钕原子(Z=60)的 L 吸收限为 0.19nm,从钕原子中电离一个 K 电子需作多少功?
解:L 吸收限指的是在 L 层产生一个空穴需要能量,即电离一个 L 电子的能量:
EL
E
EL
hvL
hc L
, (1)
K 吸收限是指在 K 层产生一个空穴需要能量,即电离一个 K 电子的能量:
EK
E
Ek
hvK
hc K
1s2 2s2 2 p6 3s2 3 p6 3d10 4s2 4 p6 4d 85s1
(a)Determine the atomic term of its ground state. (b)Use the Pd K x-ray for Compton scattering.When the scattered angle of the photon is 60 ,what is the energy of the recoiling electron(given that the shielding coefficient b of K is b 0.9 )? (c)In an experiment,lead with a thickness of 0.3cm is used to shield this x-ray.If we substitute aluminum for the lead,what thickness of aluminum is needed to achieve the same shielding effect? ( Pb 52.5cm1, Al 0.765cm1.) 已知铑(Z=45)的电子组态为1s2 2s2 2 p63s23 p63d10 4s2 4 p6 4d 85s1 ,
产生 K 辐射,M 层电子填充空位时产生 K 辐射。
第1页共6页
I K1 : I K 2 2 :1
6.7.A beam of monochromatic light with a wavelength of 5.4 A is incident upon a set of crystal planes.At an angle of 120 with respect to the
hv2 10hv 5m0e2 0 hv 56 keV
6.13.Show that the collision of a photon with a free electron can never
lead to a photo-electric effect because of the violation of conservation laws.证明:光子与自由电子相碰,不可能发生光电效应。
photon?
在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为 10keV,试求 入射光子的能量。
解:反冲电子的动能为: Ek
hv
hv
hv
1
1 cos 1 cos
,
hv m0c 2
Ek hv
1
180时, 1
1 cos
最小,
Ek最大
1 cos
EKmax
hv
2 1 2
10keV
由关系式
p
h
,
p
h
,式(2)改写成:
h
2
h