单极放大电路静态工作点和放大倍数

合集下载

单级放大电路实验

单级放大电路实验

单级共射放大电路实验报告一、实验目的1.熟悉常用电子仪器的使用方法。

2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。

3.掌握放大器动态性能参数的测试方法。

4.进一步掌握单级放大电路的工作原理。

二、实验仪器1.示波器2.信号发生器3.数字万用表4.交流毫伏表5.直流稳压源三、预习要求1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的正确使用方法。

2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。

3.估算电路的最大不失真输出电压幅值。

4.计算实验电路的输入电阻Ri和输出电阻Ro。

5.根据实验内容设计实验数据记录表格。

四、实验原理及测量方法实验测试电路如下图1-1所示:1.电路参数变化对静态工作点的影响:放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。

放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E极的直流电压UBEQ。

图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。

其工作原理如下。

○1用RB和RB2的分压作用固定基极电压UB。

由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。

○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。

具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓2.静态工作点的理论计算:图5-2-1电路的静态工作点可由以下几个关系式确定U B=R B2·V CC/(R B+R B2)I C≈I E=(U B-U BE)/R EU CE=V CC-I C(R C+R E)由以上式子可知,,当管子确定后,改变VCC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。

电路参数变化对静态工作点和电压放大倍数的影响

电路参数变化对静态工作点和电压放大倍数的影响

电路参数变化对静态工作点和电压放大倍数的影响1. 电路参数的基本概念哎呀,大家好,今天咱们来聊聊电路参数那些事儿。

先别急着打哈欠,听我慢慢说。

电路里的“静态工作点”和“电压放大倍数”就像电路的两个小伙伴,一个是打基础的,另一个是显身手的。

咱们的静态工作点就像你早上出门前的心情,得摆正位置才行。

电压放大倍数呢,就像你上班时的那股劲儿,能把小小的信号放大到能吓一跳的地步。

好了,咱们现在就来瞧瞧这些电路参数咋变化的。

2. 静态工作点的变化2.1 电阻的变化首先咱们谈谈电阻对静态工作点的影响。

就像你走路的时候,穿着高跟鞋和运动鞋的感觉完全不同。

电阻的变化就像是鞋子的改变。

如果电阻增加了,就像你在走泥泞的路,一步一滑,工作点可能会偏移,电流就会变得比较小。

相反,如果电阻减少了,仿佛你换上了跑鞋,电流变大了,静态工作点的位置也会随之移动。

电阻变化可是电路里的大事儿,对静态工作点的影响不容小觑。

2.2 电压源的变化接着,咱们来说说电压源的变化。

电压源就像是你喝的水,水多了你能跑得更快,水少了你就容易累。

电压源增加了,电路里的电流也会跟着增加,静态工作点的位置就会往上移;而电压源减少了,电流减少,工作点的位置就会往下移。

换句话说,电压源就像是你运动的加油站,能直接影响到你跑步的状态。

3. 电压放大倍数的变化3.1 晶体管参数的变化接下来,咱们聊聊电压放大倍数。

电压放大倍数就像你调节音响的音量,越调越大,声音就越响。

晶体管的参数对放大倍数影响巨大。

晶体管的增益就像是你调节音量的旋钮,参数高了,放大倍数自然也就大了。

晶体管的工作状态变化,就像你喝了不同的饮料一样,能直接影响到最终的放大效果。

3.2 负载阻抗的变化最后,再来看看负载阻抗的变化。

负载阻抗就像你给音响接的音响线,不同的线材会有不同的效果。

负载阻抗高了,电压放大倍数可能会下降,感觉就像音响线不够好,声音的放大效果受限;负载阻抗低了,放大倍数会提升,就像你换了优质的线材,声音效果好得不得了。

单级放大电路静态工作点

单级放大电路静态工作点

单级放大电路静态工作点是指在没有输入信号的情况下,放大电路的输出电压和输出电流的稳定值。

在单级放大电路中,静态工作点的确定需要考虑晶体管的工作状态和工作参数,包括:
1.饱和区、截止区和放大区的划分:晶体管的工作状态会影响静
态工作点的位置和稳定性。

在饱和区,晶体管的电流已经最大,此时静态工作点在输出特性曲线的左下角;在截止区,晶体管的电流几乎为零,此时静态工作点在输出特性曲线的右上角;
在放大区,晶体管的电流随着输入信号的变化而变化,此时静态工作点在输出特性曲线的中间。

2.直流偏置电压的确定:直流偏置电压是指在没有输入信号的情
况下,基极和发射极之间的电压值。

直流偏置电压的大小直接影响静态工作点的位置和稳定性。

3.放大电路的负载:放大电路的负载会影响静态工作点的位置和
稳定性。

负载电阻越小,静态工作点越靠近截止区;负载电阻越大,静态工作点越靠近饱和区。

同时,负载电阻的变化也会导致静态工作点的偏移和稳定性的变化。

综上所述,单级放大电路的静态工作点需要根据晶体管的工作状态和工作参数来确定,以保证输出信号的稳定性和准确性。

单管交流放大电路

单管交流放大电路

单管交流放大电路单管交流放大电路一、 实验目的实验目的(一)熟悉实验板上的元器件和电路布线。

(二)观察并测量电路参数的变化对电路的静态工作点(Q)、电压放大倍数(V A )及输出波形的影响。

二、知识要点(一)放大器静态工作点的设置与调整是十分重要的,静态工作点的合理设置能使放大器工作稳定可靠,为获得最大不失真电压,静态工作点应选在交流负载线的中点。

为使工作点稳定,必须满足以下条件 BQ >> I I ≈ I 21 (二)静态工作点可由下式计算CB B B BQ E +R R R =U 211E BEQ BQ EQ CQ R U U =≈I I -,或CCQC CQ R -U E =I)(E C CQ C RE ER C CEQ +R R -I =E -U -U =E UβI =I CQBQ (三)动态参数计算 电压放大倍数和输入输出电阻计算beL i o u r βR =u u =A '-,L c L //R =R R ' be B B i //r //R =R R 21,通常由于21B B be R <<R r 、,所以有be i r R ≈)()(26)1(mV I mV +β+=r r EQ 'bb be ,Ω=r 'bb 300c R R =0(四)输入电阻与输出电阻的测量方法输入电阻为 s i s ii R -u u u =R ×输出电阻为 L 'R u u R )1-(00=式中0u 为空载时的输出电压,'u 0为带负载时的输出电压。

注意!静态工作点用MF-47型指针万用表测量,输入输出电压用交流毫伏表测量或双踪示波器测量。

图2-2 输入、输出电阻测量电路三、实验电路原理图图2—1 单管交流放大电路*四、实验内容及步骤(一)检查实验板或实验装置接线无误后,方可接通电源。

(二)静态工作点和电压放大倍数测量及输出波形的观察。

电子技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

电子技术实验报告实验名称:单级放大电路系别:班号:实验者:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验仪器 (3)三、实验原理 (3)(一)单级低频放大器的模型和性能 (3)(二)放大器参数及其测量方法 (4)四、实验容 (5)1、搭接实验电路 (5)2、静态工作点的测量和调试 (6)3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (6)4、放大器上限、下限频率的测量 (7)5、电流串联负反馈放大器参数测量 (8)五、思考题 (8)六、实验总结 (8)一、实验目的1.学会在面包板上搭接电路的方法;2.学习放大电路的调试方法;3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法;4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能;5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。

二、实验仪器1.示波器 1台2.函数信号发生器 1台3. 直流稳压电源 1台4.数字万用表 1台5.多功能电路实验箱 1台6.交流毫伏表 1台三、实验原理(一)单级低频放大器的模型和性能1. 单级低频放大器的模型单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。

从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。

若反馈信号的极性与原输入信号的极性相反,则为负反馈。

根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。

负反馈是改变房卡器及其他电子系统特性的一种重要手段。

负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。

实验二放大器静态工作点和放大倍数的测量

实验二放大器静态工作点和放大倍数的测量
当静态工作点偏高放大器在加入交流电路以后易产生饱和失真此时输出电压波形u半周期将被缩顶一般截止失真不如饱和失真明显
实验二 放大器静态工作点 和放大倍数的测量
一、实验目的
1.了解晶体管放大器静态工作点变动 对其性能的影响。 2.掌握放大器电压放大倍数Av的测量 方法。 3.了解电路参数的变化对Av的影响。
理论
AV
测量
误差 (%)
3K 5.1K
注意:电压放大倍数的测量方法
①调整放大器到合适的静态工作点, ②加入输入信号(f=1KHZ,VI有效值 =10mV ) ③用示波器观察放大器的输入输出信号的 波形 ④在输出电压的波形不失真的情况下,测 量输入电压和输出电压的有效值Ui和U0
双踪示波器
仿真图
放大器 输出波形



实验结束时,请将与实验板的连线拆 除,但不要拆除连接仪器上的连线! 老师检查完实验原始数据并签字后, 实验电路方可拆掉。 实验仪器收拾好后,必须经老师检 查后才能离开。

(2)保持输入信号幅度不变,改变 电路参数使RC=3K,RL=5.1 K,测量 RL改变时的Vo值,计算AV。
(3)调节RP,使ICQ≈2mA,或ICQ ≈ 0, 改变输入信号幅度,用示波器观察并绘 下放大器输出波形的变化,分析失真的 原因。(选做)
记录数据表2
RC 3K RL Vi(v) Vo(v) AV 1K
放大器 输入波形
三、注意事项:
1、正确识别三极管的管脚 2、直流稳压电源输出端不能短路,以免损 坏电源(固定12V电压) 3、示波器双踪测量 4、检查导线及探头
四、实验设备
1.示波器 2.信号发生器 3.交流毫伏表 4.直流稳压电源 5.万用表 6.实验箱 一台 一台 一台 一台 一只 一台

静态工作点对放大器_性能的影响

静态工作点对放大器_性能的影响
RL 的输出电压 Uo 、Uo。
Uo

Uo RL Ro RL
Ro (UUoo 1)RL
输出电阻愈小,带载能力愈强。
六、通频带
Aum 1 2 Aum
BW
fL:下限频率 fH:上限频率
图 2.3.2
fL
fH
七、最大输出功率与效率
输出不产生明显失真的最大输出功率。用符号 Pom
Q
UCEQ
uCE/V uCE/V
uo = uce
2.
iC
Q 点过高,引起 iC、uCE的波形失真—饱和失真
iC / mA
ib(不失真)
ICQ
Q
NPN 管 uo波形
O
tO
UCEQ
O
uo波形底部失真
IB = 0
uCE/V
uCE/V
t
uo = uce
(二)用图解法估算最大输出幅度
输出波形没有 明显失真时能够输 出最大电压。即输 出特性的 A、B 所 限定的范围。
c b
IBQ e
ICQ UCEQ
ICQ IBQ
UCEQ = VCC – ICQ RC
图 2.4.1(a)
【例】图示单管共射放大电路中,VCC = 12 V,
Rc = 3 k,Rb = 280 k,NPN 硅管的 = 50,试估算静
态工作点。
解:设 UBEQ = 0.7 V
IBQ

VCC
iC
Q3 Q1
IB
Q2
O
uCE
图 2.4.9(a)
Rb 增大, Q 点下移; Rb 减小, Q 点上移;
Q2 IB
Q1
O
图 2.4.9(b)

放大电路 静态工作点

放大电路 静态工作点

放大电路静态工作点放大电路是电子电路中的一种重要类型,通过放大输入信号的幅度来产生输出信号。

放大电路通常包括一个静态工作点,在这个工作点上,电路的特定参数处于稳定状态,以确保电路的正常工作。

本文将介绍放大电路的静态工作点,包括其定义、影响因素、稳定性分析以及常见的静态工作点调节方法。

一、静态工作点的定义放大电路的静态工作点通常指的是输出特性曲线上的一个固定工作点,也称为直流工作点。

在这个工作点上,放大电路的输出处于稳定状态,以确保输入信号能够得到有效的放大。

静态工作点的确定需要考虑电路中的元件参数以及电源电压等因素,以确保电路在运行时处于合适的工作状态。

二、静态工作点的影响因素1. 电源电压:电源电压是决定静态工作点位置的重要因素,较高的电源电压可以使得电路的工作点偏离中心,而较低的电源电压则可能使得工作点进入饱和或者切断状态。

2. 元件参数:对于晶体管放大电路来说,晶体管的基极电压、发射极电流等参数会对静态工作点产生影响,必须通过设计和选型来确保其稳定。

3. 温度:温度的变化会导致电路中元件参数的变化,从而影响静态工作点的位置,因此需要考虑温度对放大电路的影响。

三、静态工作点的稳定性分析放大电路的静态工作点稳定性分析是确定电路稳定工作状态的关键。

通过稳定性分析可以了解电路静态工作点的可靠性,判断其在不同工作条件下的稳定性,从而对电路进行合理设计。

1. 直流负载线:直流负载线是指在输出特性曲线上的直流特性曲线,通过分析直流负载线可以了解电路的工作状态,以及在不同工作条件下工作点的变化情况。

2. 静态稳定区域:通过绘制静态稳定区域图,可以清晰地了解电路在不同工作条件下的稳定性,从而确定静态工作点的合适位置。

3. 偏置电路设计:偏置电路的设计对静态工作点的稳定性具有重要影响,通过合理设计偏置电路可以确保静态工作点的稳定。

四、常见的静态工作点调节方法1. 变压器调节法:通过变压器调节输入电源电压或输出电路供电的电压,以调整静态工作点的位置。

模电实验_单极共射放大器静态工作点

模电实验_单极共射放大器静态工作点

实验一——单极共射放大器的静态工作点实验报告一、实验目的(1)掌握用Multisim 13仿真软件分析单极放大电路主要性能指标的方法。

(2)熟悉常用电子仪器的使用方法,熟悉基本电子元器件的使用。

(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。

(4)分析静态工作点对放大器性能的影响。

二、实验原理基本电路;晶体管单极放大电路是常见的低频小信号放大电路,用于实现利用小信号来控制大信号。

其电路如图3.1.1所示:电路在接通直流电源而未加输入信号时,电路中产生的电流,电压为直流量,记为V BEQ,V CEQ,I BQ,I CQ,由它们确定了电路的一个工作点,称为静态工作点Q。

三极管的静态工作点可由下士近似估算:V BEQ=(0.6~0.7)V硅管;(0.2~0.3)V锗管V CEQ=V CC-I CQ(R c+R e)V BQ=R2V CC/(R P+R1+R2)I CQ≈I EQ=(V BQ-V BEQ)/R eI BQ=I CQ/β(2)最佳静态工作点的调整和测量;放大器静态工作点的选择是指对三极管集电极电流I C或V CE的调整与测试。

实际工作中往往通过调节基极偏置电阻的大小,观察输出波形的变化,来调节静态工作点。

当输入电压逐渐增大时,若输出波形正负同时出现削波现象,即表明此时放大电路的静态工作点选择合适,此时放大电路动态范围最大。

如图 3.1.2所示:三、实验内容最佳静态工作点的调整和测量;四、实验仪表及元器件(1)双路直流稳压电源一台;(2)函数信号发生器一台;(3)示波器一台;(4)毫伏表一台;(5)万用表一台;(6)三极管一个;(7)电阻1kΩ一个,2kΩ两个,5.1kΩ两个,47kΩ电位器一个;(8)电解电容10μF两个,100μF一个;(9)模拟电路试验箱一台。

五、实验过程最佳静态工作点的调整和测量;1按照实验原理图3.1.1在Multisim仿真软件面板上连接电路,检查无误后接通12V直流电源。

综合性实验报告-单级放大电路静态工作点和放大倍数

综合性实验报告-单级放大电路静态工作点和放大倍数
保持其他条件不变,将 换成 ,重复上述步骤,可测出相应动态范围,将值填入表3-2内。
2
5.1
(3)适量减小输入 值,输出 值也相应减小,电压放大倍数不变。用毫伏表分别测出 、 值,则电压放大倍数可计算求得:
5.观察负载电阻 (或 )的改变,对电路输出信号的影响
(1)取 =2 kΩ,保持输入 值及其它条件不变,观察改变电路负载电阻 ,即 =2kΩ、5.1 k、∞时的输出信号波形情况,将值填入表3-3内。
所谓工作点是指放大电路无输入信号工作时,三极管各极直流电流和电压在特性曲线上所决定的点。如图3-2所示Q点。一般用基极电流()、电压()和集电极电流()、电压()表示。静态工作点的位置变化对输出信号波形影响很大,若点选取在线性区中部,运用范围又未超过线性区,则输出电流和电压的波形都不失真。
饱和区的部分信号得不到放大,则输出电流正半周和输出电压负半周的波形产生饱和失真。若点选取在靠近截止区,处在截止区的部分信号得不到放大,则输出电流的负半周和输出电压的正半周产生截止失真。故电路静态工作时,要求其工作点调整选取在曲线线性区中点。
电路原理如图3-1所示。图中,组成直流分压偏置电路,是稳定工作点发射极电阻,是发射极旁路电容,可以使两端交流短路,减少电路输出电压值损失,是集电极直流负载电阻,与并联为交流负载电阻,是传递交流信号电容,且起到电路级与级之间静态工作时的隔直作用。
放大电路静态工作时,工作点的设置合理与否很重要,它关系到放大电路能否正常工作。
由上述知,电路一旦设计连接完后,必须进行静态工作点的调整和检测。
1.工作点的调整
电路静态工作时,电源电压的变动,负载的改变,基极电流的变化都会影响工作点。图3-2中,若和不变,改变会使整个负载线平行移动,工作点Q沿移到Q1点。若和不变,改变会使负载线的斜率随之改变,工作点Q沿移到Q2点。若与不变,工作点Q随的增大沿负载线移到Q3点。同理,减小工作点则下移。

单级晶体管放大电路实验报告

单级晶体管放大电路实验报告

竭诚为您提供优质文档/双击可除单级晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一.试验目的(1)掌握multisium11.0仿真软件分析单级放大器主要性能指标的方法。

(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。

(3)测量放大器的放大倍数,输入电阻和输出电阻。

二.试验原理及电路VbQ=Rb2Vcc/(Rb1+Rb2)IcQ=IeQ=(VbQ-VbeQ)/ReIbQ=IcQ/β;VceQ=Vcc-IcQ(Rc+Re)晶体管单级放大器1.静态工作点的选择和测量放大器的基本任务是不失真的放大信号。

为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。

若工作点选的太高会饱和失真;选的太低会截止失真。

静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流IcQ和管压降VceQ。

本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。

当搭接好电路,在输入端引入正弦信号,用示波器输出。

静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。

当加大输入信号,两种失真同时出现,减小输入信号,两种失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。

去点信号源,测量此时的VcQ,就得到了静态工作点。

2.电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。

放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。

在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)oVo-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。

通常取与Ri为同一数量级比较合适。

单极管放大电路实验报告.doc

单极管放大电路实验报告.doc

实验三 晶体管单管共射放大电路实验报告一、 实验目的:1.学习电子线路安装、焊接技术。

2.学会放大器静态工作点的测量和调试方法,分析静态工作点对放大器性能的影响。

3.掌握放大器交流参数:电压放大倍数、输入电阻、输出电阻、最大不失真输出电压和频率特性的测试方法。

4.进一步熟悉常用电子仪器及模拟电路设备的使用方法和晶体管β值测试方法。

二、实验原理:(一)实验电路图3.1中为单管共射基本放大电路。

(二)理论计算公式: ① 直流参数计算:CCQ CEQ BQ EQ CQ BEQ BBEQBQ R I VCC V I I I V7.0V ;R V VCC I -=β⋅=≈≈-≈式中:② 交流参数计算:图2-1 共射极单管放大器实验电路()CO be B i ViS iVS LC L be'L V'bb EQ 'bb be R R r //R R A R R R A R R R ;r R A 300r (mA)I (mV)26β1r r ≈=*+=='*β-=++≈∥Ω的默认值可取式中:(三)放大电路参数测试方法由于半导体元件的参数具有一定的离散性,即便是同一型号的元件,其参数往往也有较大差异。

设计和制作电路前,必须对使用的元器件参数有全面深入的了解。

有些参数可以通过查阅元器件手册获得;而有些参数,如晶体管的各项有关参数(最重要的是β值),常常需要通过测试获取,为电路设计提供依据。

另一方面,即便是经过精心设计和安装的放大电路,在制作完成后,也必须对静态工作点和一些交流参数进行测试和调节,才能使电路工作在最佳状态。

一个优质的电子电路必定是理论设计和实验调试相结合的产物。

因此,我们不但要学习电子电路的分析和设计方法,还应认真学习电子调节和测试的方法。

1. 放大器静态工作点的调试和测量:晶体管的静态工作点对放大电路能否正常工作起着重要的作用。

对安装好的晶体管放大电路必须进行静态工作点的测量和调试。

静态工作点的调试实验报告

静态工作点的调试实验报告

竭诚为您提供优质文档/双击可除静态工作点的调试实验报告篇一:单级放大电路静态参数测试实验报告单级放大电路静态参数测试一、实验目的1、熟悉模拟电子技术实验箱的结构,学习电子线路的搭接方法。

2、学习测量和调整放大电路的静态工作点,观察静态工作点设置对输出波形的影响。

二、实验说明图6-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用Rb1和Rb2组成的分压电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。

图6-1共射极单管放大器实验电路在图6-1电路中,旁路电容ce是使Re对交流短路,而不致于影响放大倍数,耦合电容c1和c2起隔直和传递交流的作用。

当流过偏置电阻Rb1和Rb2的电流远大于晶体管T的基极电流Ib时(一般5~10倍),则它的静态工作点可用下式估算:Rb1uccub?Rb1?Rb2u?ubeIe?b?IcReuce?ucc?Ic(Rc?Re)R//RL电压放大倍数AV??βcrbe输入电阻Ri?Rb1//Rb2//rbe输出电阻Ro?Rc由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

放大器静态工作点的测量与调试1)静态工作点的测量测量放大器的静态工作点,应在输入信号ui?0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流Ic以及各电极对地的电位ub、uc和ue。

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

一、实验目的1. 理解单极晶体管放大电路的工作原理。

2. 掌握单极晶体管放大电路的静态工作点调试方法。

3. 学习放大电路电压放大倍数、输入电阻、输出电阻的测量方法。

4. 熟悉常用电子仪器的使用。

二、实验原理单极晶体管放大电路是一种常用的模拟电路,它利用晶体管的电流放大作用,将微弱的输入信号放大到所需的幅度。

本实验采用共射极接法,其电路结构简单,放大效果较好。

实验电路原理如下:1. 静态工作点:静态工作点是指晶体管在没有输入信号时,处于稳定工作状态下的电压和电流值。

本实验采用电阻分压式偏置电路,通过调节偏置电阻RB1和RB2,使晶体管工作在合适的静态工作点。

2. 电压放大倍数:放大电路的电压放大倍数是指输出电压与输入电压之比。

在本实验中,电压放大倍数由晶体管的电流放大倍数β和电路中的电阻比值决定。

3. 输入电阻:输入电阻是指放大电路输入端对信号源的等效电阻。

在本实验中,输入电阻由输入信号源和晶体管输入端之间的电阻决定。

4. 输出电阻:输出电阻是指放大电路输出端对负载的等效电阻。

在本实验中,输出电阻由晶体管输出端和负载之间的电阻决定。

三、实验仪器与设备1. 单极晶体管(例如:3DG6)2. 电阻(1kΩ、10kΩ、100Ω、1000Ω)3. 信号发生器4. 直流稳压电源5. 示波器6. 万用表7. 测试电路板四、实验步骤1. 按照实验电路图搭建电路,连接好各个元件。

2. 调节偏置电阻RB1和RB2,使晶体管工作在合适的静态工作点。

使用万用表测量晶体管的集电极电流IC和发射极电压UE,确保IC在1mA左右,UE在1V左右。

3. 接通信号发生器,调节输出信号频率和幅度,使输入信号ui0在1kHz、10mV左右。

4. 使用示波器观察输入信号ui0和输出信号uo的波形,记录下波形特征。

5. 使用万用表测量放大电路的输入电压ui、输出电压uo、输入电流ii和输出电流io。

6. 计算放大电路的电压放大倍数、输入电阻和输出电阻。

单级交流放大器实训报告

单级交流放大器实训报告

一、实验目的1. 理解单级交流放大器的基本原理和组成。

2. 掌握单级交流放大器的静态工作点调试方法。

3. 学习测量放大电路的电压放大倍数、输入电阻和输出电阻。

4. 分析静态工作点对放大电路性能的影响。

二、实验原理单级交流放大器是一种常见的电子电路,主要由晶体管、直流偏置电路和耦合电容组成。

晶体管作为放大器的核心部件,能够放大输入信号的电压或电流。

直流偏置电路为晶体管提供稳定的工作电压,确保输出信号的正常工作。

耦合电容将输入信号和输出信号隔离开,使交流信号得以传输。

三、实验仪器与设备1. 晶体管万用表2. 晶体管稳压电源(WYT—30V,2A)3. 低频信号发生器4. BS—601双线示波器5. ZH12通用电学实验台四、实验步骤1. 按照实验电路图连接实验线路,经指导老师检查同意后,方可接通电源。

2. 测量静态工作点:(1)输入Vi=5mV,f=1kHz的交流信号,观察输出波形。

(2)调整电位器Rp1,使输出波形不出现失真。

(3)逐渐增大Vi,同时调节Rp1,直到同时出现饱和与截止失真为止。

(4)此时静态工作点已调整好,放大电路处于最大不失真工作状态。

(5)撤去交流信号,用万用表测量静态工作点值VB、VC和RB(VB、VC均为对地电位,测RB时要关掉电源,去掉连线)。

3. 观察RB变化对静态工作点、电压放大倍数和输出波形的影响:(1)将RB减小,观察静态工作点、电压放大倍数和输出波形的变化。

(2)将RB增大,观察静态工作点、电压放大倍数和输出波形的变化。

4. 测量放大电路的电压放大倍数、输入电阻和输出电阻:(1)输入Vi=5mV,f=1kHz的交流信号,观察输出波形。

(2)用示波器测量输出电压Uo。

(3)根据电压放大倍数公式Aυ=Uo/Vi,计算电压放大倍数。

(4)测量放大电路的输入电阻和输出电阻。

五、实验结果与分析1. 静态工作点对放大电路性能的影响:通过实验观察发现,静态工作点的调整对放大电路的性能有重要影响。

静态工作点对放大电路性能指标的影响

静态工作点对放大电路性能指标的影响

www�ele169�com | 61电子基础引言目前是集成电路的应用占主导的时代,但是由于集成放大器是多级放大电路,其中使用的三极管器件太多、芯片体积小,导致其带宽很窄、散热效果较差,在高频信号发生电路、大功率输出等场合仍然不能完成取代分立元件构成的放大电路。

而且基本放大电路是集成放大器的基础,研究基本放大电路的性能影响因素仍然有必要和实用价值。

由BJT 构成的放大电路有共射、共基和共集三种不同接法,接法不同其性能指标差异很大,应用场合也不同。

而共射放大电路既有电压放大作用也有电流放大作用,是最为常用的一种放大电路。

本文以基本共射放大电路为例,研究静态工作点的位置不同对BJT 的直流模型和低频小信号模型中主要参数的影响、对放大电路的最大不失真输出电压和谐波失真度的影响。

进行基本共射放大电路的设计,主要是四个选择:选择耦合电容、选择三极管元件、选择基极偏置电阻和集电极负载电阻。

选择耦合电容。

耦合电容的作用是“隔直通交”,对于音频信号放大电路,可以选择几十微法的电容,这里取10μF。

选择三极管元件。

根据负载电流的最大值选择三极管集电极电流的最大值I CM ;根据输入信号的频率范围选择三极管的最高工作频率f M ;根据最大不失真输出电压选择放大电路的供电电压V CC ;由供电电压值确定三极管的最大反向击穿电压取值U BR (CEO )。

三极管的电流放大系数β直接影响共射放大电路的电压放大倍数,在满足需要的情况下,β不宜选得太大,否则容易使三极管出现饱和失真。

在主要参数和性能指标差不多的情况下,选择NPN 或是PNP 管都可以完成任务。

在此选用两只特性参数比较接近的管子NPN-2N2924和PNP-2N4291,分别构成基本共射放大电路。

两只管子的主要参数可以从Multisim 的元件属性Detail Report 中查到,图1是这两只三极管的部分主要参数。

集电极负载电阻R c 的取值,会影响静态管压降U CE 和电压放大倍数A u ,一般在几千欧姆范围。

实验报告一 单极放大电路的设计与仿真

实验报告一 单极放大电路的设计与仿真

实验报告一单极放大电路的设计与仿真1.实验目的(1)使用Multisim软件进行原理图仿真。

(2)掌握仿真软件调整和测量基本放大电路静态工作点的方法。

(3)掌握仿真软件观察静态工作点对输出波形的影响。

(4)掌握利用特性曲线测量三极管小信号模型参数的方法。

(5)掌握放大电路动态参数的测量方法。

2.实验内容1. 设计一个分压偏置的单管共射放大电路,要求信号源频率5kHz(峰值10mV),负载电阻5.1kΩ,电压增益大于50。

2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3.调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。

在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和β、rbe、rce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和fL、fH值。

3.实验步骤单管共射放大电路示意图图1.1(1)非线性失真分析放大器要求输出信号和输入信号之间是线性关系,不能产生失真。

由于三极管存在非线性,使输出信号产生了非线性失真。

从三极管的输出特性曲线可以看出,当静态工作点处于放大区时,三极管才能处于放大状态;当静态工作点接近饱和区或截止区时,都会引起失真。

放大电路的静态工作点因接近三极管的饱和区而引起的非线性失真称为饱和失真,对于NPN管,输出电压表现为顶部失真。

不过由于静态工作点达到截止区,三极管几乎失去放大能力,输出的电流非常小,于是输出电压波形也非常小,因此有时候很难看到顶部失真的现象,而只能观察到输出波形已经接近于零。

①饱和失真由于饱和失真的静态工作点偏高,也就是IBQ的值偏大,所以调小滑动变阻器至0%时产生饱和失真,信号幅度最大时的输出信号波形图如下:图1.32.截止失真调节滑动变阻器,增加基极偏置电阻,那么基极的电流IB逐渐减小,同时集电极电流也逐渐减小并趋于零,从而使得集电极的电位越发接近直流电源VCC,三极管近似于短路。

模电实验二 单管共射放大电路和放大电路静态工作点及电压放大倍数的测试

模电实验二 单管共射放大电路和放大电路静态工作点及电压放大倍数的测试

物联网工程学院模拟电子技术实验报告班级:学号:姓名:时间:实验一:实验名称:利用“直流扫描分析”测试基本共射放大电路电压传输特性实验内容:利用仿真软件作出仿真电路,所谓电压传输特性,是指一个电路输出电压u0与输入电压u1之间的函数关系,通常用曲线表示。

电压传输特性是稳态特性,可用逐点测试的方法获得。

实验步骤:1.选择元件:在Multisim电路图区搭建基本共射放大电路。

在主界面的左侧元器件栏中选择5千欧姆的R1,24千欧姆的R2,1V的直流电压V1,12V的直流电压V2,三极管Q1,并将它们拖至电路图窗口。

连接好电路,如下图所示。

图12.设置直流扫描分析参数,在分析参数栏目中选定V1为自变量输入电压,设定其起始值0、停止值2和步长0.01,在输出栏目中选定节点3作为输出电压,也就是晶体管的管压降,如下图2和3所示。

图2图33.按仿真(Simulate)按钮即得到基本共射放大电路的电压传输特性,如图4所示。

实验数据:如图4所示,图4仿真结果分析:在仿真电路中,应将V1理解为加在输人的交、直流总量。

从图4能够读出使晶体管处于放大区时V1的近似值,当V1 <0.6V时晶体管截止,当V1 >1.0 V晶体管饱和,当0.6 V<V1<1.0 V时晶体管工作在放大区,静态工作点Q应设置在这个区域。

当已知Q在曲线上的位置时,就可得出,电路不出现失真时输人交流信号的峰值。

从另一角度讲,若已知输人交流信号的峰值,则可确定出使电路不失真的Q点的合适位置;当然,也可能Q点没有合适的位置,需要重新选择电路参数。

实验二:实验名称:放大电路静态工作点及电压放大倍数的测试。

实验内容:1.仿真电路2.静态与动态的测试实验步骤:1.选择元件:分别选取晶体管、直流电压源(12V)、6个电阻,3个电容拖到电路图窗口。

2.选择仪器:与示波器,2个万用表和函数发生器一起搭建阻容耦合静态工作点稳定电路,组成仿真电路如图5所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科学生验证性实验报告
学号********* 姓名俞万鑫
学院物电专业、班级13电子信息
实验课程名称模电实验
教师及职称张超实验师
开课学期2013 至2014 学年二学期填报时间2014 年 4 月20 日
云南师范大学教务处编印
实验序号 一 实验名称
单级放大电路静态工作点和放大倍数
实验时间
2014.4.22
实验室 218
1.实验元件(元件型号;引脚结构;逻辑功能;引脚名称)
SAC-MD Ⅱ网络智能模拟电路实验台、泰克示波器、函数信号发生器、交流毫伏表。

NPN 三极管为BC637.
2.实验目的
1.学习理解单级放大电路静态工作点的变动对输出波形影响。

2.学习掌握单级放大电路检查、调整、测试方法。

3.学习掌握单级放大电路电压放大倍数测试方法。

3. 实验电路原理图及接线方法描述采用:
采用单级阻容耦合低频放大电路, 图中,2b b P R R R 组成直流分压偏置电路,e R 是稳定工作点发射极电阻,e C 是发射极旁路电容c R 是集电极直流负载电阻,与L R 并联为交流负载电阻,21C C 是传递交流信号电容,且起到电路级与级之间静态工作时的隔直作用。

4.实验中各种信号的选取及控制(电源为哪些电路供电;输入信号的分布位置;输出
输入信号 ,调节RP 输出最大不失真
输出为
由XMM4测出。

5.逻辑验证与真值表填写
L R (k Ω)
o V (V )
2om V (V ) 2 2.216 6.36 5.1 2.796 7.67
L R (k Ω)
i V (mV )
o V (V)
v A
2 21.212 2.132 102.1 5.1
21.214 2.777 131.0
21.213
3.418
292.2
c R (k Ω)
i V (mV )
o V (V )
v A
2 21.212 2.138 100.7
3 21.212 2.02
4 95.
5 5.1
21.212
1.72
80.5
6.实验总结(安全事注意项,操作要点,实验结果分析)
注意事项:在做仿真电路时,注意时时保存,防止电脑被迫重启造成之前做的电路丢失而重新做。

注意两条线是跳线还是有交点,防止二者错误。

操作要点:调节并判断好最大不失真输出电压。

实验结果:Rc ,及其他条件不变,放大倍数随着负载RL 增大而增大。

当RL 及其他条件不变,放大倍数随着RC 变大而减小。

教师评语及评分:。

相关文档
最新文档