圆的周长和面积必背知识点
六年级数学上册期中必背知识点
3.14×8=25.12 3.14×9=28.26 3.14×10=31.4
3.14×3 =28.26 3.14×4 =50.24 3.14×5 =78.5 3.14×8 =200.96
2
2
2
2
3.14×7 =153.86 3.14×10 =314
2
22.当一个圆的半径增加a厘米时,它的周长就增加2 a厘米;
2
16、 (第四单元比的认识知识点)两个圆的半径比等于直径比等于周长比,而面积比
等于以上比的平方。 例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3, 而面积比是4:9。 圆周长和直径的比是 :1,比值是 圆周长和半径的比是 2 :1,比值是 2
17、一个圆的半径扩大(缩小)几倍,直径就扩大(缩小)几倍,周长也扩大(缩小)几倍, 面积就扩大(缩小)几的平方倍,但圆周率永远不变。 18、几个公式: C 圆=π d =2π r S 圆=π r
2、45 立方厘米的水结成冰后,体积增加了 5 立方厘米,冰的体积比原来水的体积 增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位 1,先确定单位 1 是水, 已经知道是 45:增加的部分是 5 立方厘米;最后用增加的部分 5÷单位 1 水的 45 就等于增加百分之几。 计算步骤:第一步:单位 1:水:45 立方厘米 第二步:增加的部分: 5 立方厘米 第三步:增加百分之几:5÷45=11.1%
前面的数 ×100% 即 是字后面的数
前面的数 100% 单位"1"
③ 谁比谁多百分之几?
比字前面的数-后面的数 ×100% 比字后面的数
即
(比字前面的数-比字后面的数) 单位“1” =
高三必背数学知识点公式
高三必背数学知识点公式一、代数运算1. 加法公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22. 幂的性质:a^m * a^n = a^(m + n)(a^m)^n = a^(mn)a^(-m) = 1 / a^m3. 根式的性质:√(a * b) = √a * √b√(a / b) = √a / √b(√a)^2 = a4. 二次根式的展开和收集:√(a + b) ≠ √a + √b(√a + √b)(√a - √b) = a - b5. 平方差公式:a^2 - b^2 = (a + b)(a - b)6. 二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / 2a7. 余弦定理:c^2 = a^2 + b^2 - 2abcosC8. 正弦定理:a / sinA =b / sinB =c / sinC二、几何图形相关公式1. 长方形的面积和周长:面积 S = 长 a * 宽 b周长 P = 2a + 2b2. 正方形的面积和周长:面积 S = a^2周长 P = 4a3. 圆的面积和周长:面积S = πr^2周长C = 2πr4. 圆柱体的体积和表面积:体积V = πr^2h表面积A = 2πrh + 2πr^25. 直角三角形特殊关系:勾股定理:a^2 + b^2 = c^26. 同位角与内错角关系:同位角相等,内错角互补:∠A = ∠B ⇒∠C = ∠D, ∠E = 180° - ∠B7. 圆锥的体积和表面积:体积V = (1/3)πr^2h表面积A = πrl + πr^2三、三角函数和三角恒等式1. 三角函数的基本关系:sinθ = 对边 / 斜边cosθ = 临边 / 斜边tanθ = 对边 / 临边2. 三角函数的正负:第一象限:sinθ > 0, cosθ > 0, tanθ > 0第二象限:sinθ > 0, cosθ < 0, tanθ < 0第三象限:sinθ < 0, cosθ < 0, tanθ > 0第四象限:sinθ < 0, cosθ > 0, tanθ < 03. 三角函数的周期性:sin(θ + 2πn) = sinθcos(θ + 2πn) = cosθtan(θ + πn) = tanθ4. 三角函数的和差化积:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)5. 三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ) / (1 - tan^2θ)四、概率和统计相关公式1. 排列公式:A(n, m) = n! / (n - m)!2. 组合公式:C(n, m) = n! / (m!(n - m)!)3. 互斥事件的概率公式:P(A ∪ B) = P(A) + P(B)4. 独立事件的概率公式:P(A ∩ B) = P(A) * P(B)5. 条件概率公式:P(A | B) = P(A ∩ B) / P(B)总结:以上是高三数学知识点公式的概要,掌握这些公式对于成功备战高考至关重要。
小六数学必背知识点
17、几个公式: C 圆=π d =2π r S 圆=π r
2
d = r =
C π C 2π
2
d = 2r r = d 2
3
18、永远记住要带单位,周长是(cm),面积是平方(cm ),体积是立方(cm )。 19、圆的周长: 3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×10=313.14×6 =113.04 3.14×9 =254.34
1÷单位时间能完成的几分之几=工作时间。 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流 速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
三、图形的变换 1、图形的变换方法有平移、旋转、画轴对称图形。旋转三要素:旋转点,旋转角度和旋转方向 2、找规律:看差看商、看某数的平方或立方、隔开看、分组法等等。
六年级数学圆公式大全表必背
六年级数学圆公式大全表必背
圆公式是数学中的一个重要概念,在研究和使用它的过程中,掌握和掌握圆的公式对于研究数学有着重要的作用,所以六年级学生必须背诵圆公式大全表。
一、圆的方程圆的方程是表示圆的一种简便方法,其形式为:(x-a)²+(y-b)²=r²。
其中,(a,b)是圆心的坐标,r是圆的半径。
二、圆的面积圆的面积可以用以下公式表示:S=πr²。
其中,S是圆的面积,π是圆周率,r是圆的半径。
三、圆的周长圆的周长可以用以下公式表示:C=2πr。
其中,C是圆的周长,π是圆周率,r是圆的半径。
四、圆的切线圆的切线可以用以下公式表示:l=2rπ。
其中,l是圆的切线长度,r是圆的半径,π是圆周率。
五、圆的切点圆的切点可以用以下公式表示:d=2√(r²-a²)。
其中,d是圆的切点距离,r是圆的半径,a是圆心距离。
六、圆的垂线圆的垂线可以用以下公式表示:h=2r-b。
其中,h是圆的垂线长度,r是圆的半径,b是圆心距离。
以上就是六年级学生必须背诵的圆公式大全表,学好这些公式可以帮助六年级学生更好地理解数学中的圆的概念,也可以帮助他们更好地解决数学上的问题。
所以,学生们一定要认
真记住这些圆公式大全表,以便在研究和使用的过程中更好地理解和掌握数学知识。
六年级上册数学必背知识点
六年级上册数学必背知识点
一、有关圆的计算公式
1、已知圆的直径,求圆的半径:r=d÷2 ;
已知圆的周长,求圆的半径:r=C÷3.14÷2
2、已知圆的半径,求圆直径:d=2r ;
已知圆的周长,求圆的直径:d=C÷3.14
3、已知圆的半径,求圆的周长:C=2πr;
已知圆的直径,求圆的周长: C=πd
=πr+d
4、已知圆的半径,求半圆的周长:C
半圆
=πd÷2+d
已知圆的直径,求半圆的周长:C
半圆
5、已知圆的半径,求圆的面积:S=πr²(半径未知,先求半径)
6、圆环的面积:S
=大圆面积-小圆面积(先求大圆的半径和小圆的半径)圆环
7、其他平面图形的面积公式
(1)平行四边形面积=底×高
(2)三角形面积=底×高÷2
(3)梯形面积=(上底+下底)×高÷2
(4)长方形面积=长×宽
(5)正方形面积=边长×边长
二、有关百分数和分数的问题
1、求一个数是另一个数的百分之几,用除法:前面的数÷后面的数=百分之几
2、求百分率:什么率的数量÷总数量=什么率。
3、求一个数的百分之几是多少,用乘法:单位“1”的量×对应的百分数
4、已知一个数的百分之几是多少,求这个数。
用除法
部分量÷部分量所对应的百分数=单位“1”的量。
九年级上册数学第24章《圆》知识点梳理完整版
【学习目标】九年级数学上册第24 章《圆》知识点梳理1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段 OA 绕着它的一个端点 O 旋转一周,另一个端点 A 所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心1 2n是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2) 轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3. 两圆的性质(1) 两个圆是一个轴对称图形,对称轴是两圆连心线.(2) 相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1. 判定一个点 P 是否在⊙O 上设⊙O 的半径为 ,OP= ,则有点 P 在⊙O 外;点 P 在⊙O 上; 点 P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2. 判定几个点A 、A 、 A 在同一个圆上的方法 当时, 在⊙O 上.3. 直线和圆的位置关系设⊙O 半径为 R ,点 O 到直线 的距离为 .(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1) 和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2) 和没有公共点,且的每一个点都在内部内含(3) 和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4) 和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的 2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径). (3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外三角形三边中垂线的(1)OA=OB=OC ;(2)外心不一接圆的圆心) 交点定在三角形内部内心(三角形内三角形三条角平分线(1)到三角形三边距离相等;切圆的圆心) 的交点(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为 R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为 R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积 S、扇形半径 R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】13 (1 + 1)2 + (0 - 3)2 OE 2 - EF 2 3 3 类型一、圆的基础知识1.如图所示,△ABC 的三个顶点的坐标分别为 A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .【答案】 ;【解析】由已知得 BC∥x 轴,则 BC 中垂线为 x =-2 + 4 = 12那么,△ABC 外接圆圆心在直线 x=1 上,设外接圆圆心 P(1,a),则由 PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为 P(1,0) 则 r = PA = = 【总结升华】 三角形的外心是三边中垂线的交点,由 B 、C 的坐标知:圆心 P (设△ABC 的外心为 P )必在直线x=1 上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到 P (1,0);连接 PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径 AB 和弦 CD 相交于点 E ,已知 AE =1cm ,EB =5cm ,∠DEB=60°, 求 CD 的长.【答案与解析】作 OF⊥CD 于 F ,连接 OD .∵ AE =1,EB =5,∴ AB =6. ∵ OA =AB = 3 ,∴ OE =OA-AE =3-1=2.2在 Rt△OEF 中,∵ ∠DEB=60°,∴ ∠EOF=30°, ∴ EF = 1OE = 1 ,∴ OF = = .2在 Rt△DFO 中,OF = ,OD =OA =3,13OD 2 - OF 2∵ OF⊥CD,∴ DF =CF ,∴ CD =2DF = 2 cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作 OF⊥CD 于 F ,构造 Rt△OEF,求半径和 OF 的长;连接 OD ,构造 Rt△OFD,求 CD 的长.举一反三:【变式】如图,AB 、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M 、N ,如果 MN =3,那么 BC = .C【答案】由 OM⊥AB,ON⊥AC,得 M 、N 分别为 AB 、AC 的中点(垂径定理),则 MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点 O 为圆心的圆交 x 轴于点 A 、B 两点,交 y 轴的正半轴于点 C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .yCDAOBx(第 3 题)【答案】65°.【解析】连结 OD ,则∠DOB = 40°,设圆交 y 轴负半轴于 E ,得∠DOE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】(2015•黑龙江)如图,⊙O 的半径是 2,AB 是⊙O 的弦,点 P 是弦 AB 上的动点,且 1≤OP ≤2,则弦 AB 所对的圆周角的度数是()A .60°B .120°C .60°或 120°D .30°或 150°【答案】C.【解析】作 OD ⊥AB ,如图,N O AMB∴ DF = = 32 - ( 3)2 = 6 (cm).6∵点P 是弦AB 上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB= ∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB 所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形 ABCD 中,点O 在对角线 AC 上,以OA 的长为半径的圆 O 与AD、AC 分别交于点 E、F,且∠ACB= ∠DCE.请判断直线 CE 与⊙O 的位置关系,并证明你的结论.【答案与解析】直线 CE 与⊙O相切理由:连接 OE∵OE=OA∴∠OEA=∠OAE∵四边形 ABCD 是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线 CE 与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x、y).(1)求与直线相切时点P 的坐标.(2)请直接写出与直线相交、相离时 x 的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,( ,).当与直线相切时,点的坐标为(5,7.5)或( ,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别与BC,AC 交于点D,E,过点D 作⊙O 的切线DF,交AC 于点F.(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF 是⊙O 的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE=4π,S△AOE=8 ,∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图, AB 所在圆的圆心为 O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 π).【答案与解析】连接 OB ,过点 O 作 OE⊥AB,垂足为 E ,交 AB 于点 F ,如图(2). 由垂径定理,可知 E 是 AB 中点,F 是 AB 的中点,∴ AE= 1AB = 2 2,EF =2.设半径为 R 米,则 OE =(R-2)m .在 Rt△AOE 中,由勾股定理,得 R 2 = (R - 2)2 + (2 3)2 . 解得 R =4.∴ OE =2,OE = 1AO ,∴ ∠AOE=60°,∴ ∠AOB=120°.2∴ AB 的长为120 ⨯ 4π = 8π(m). 180 3 ∴ 帆布的面积为 8π⨯ 60 = 160π(m 2).3【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以 AB 为底面的圆柱的侧面积.根据题意,应先求出 AB 所对的圆心角度数以及所在圆的半径,才能求 AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所 示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽 AB=16cm ,水最深的地方的高度为 4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.3②如图所示,过 O 作OC⊥AB于D,交于 C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为 10cm.圆的基本概念和性质【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为 O,半径为 r 的圆是平面内到定点 O 的距离等于定长 r 的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2.弧∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 个B.2 个C.3 个D.4 个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选 C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③× ④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是()A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A 、直径相等的两个圆是等圆,正确,不符合题意;B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C 、圆中最长的弦是直径,正确,不符合题意;D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B .3.直角三角形的三个顶点在⊙O 上,则圆心 O 在 .......................【答案】斜边的中点.【解析】根据圆的定义知圆心 O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等. 4.判断正误:有 AB 、C D , AB 的长度为 3cm, C D 的长度为 3cm ,则 AB 与C D 是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此, 只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣 弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧 AmB ,中的劣弧C D ,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以 O 为圆心的同心圆中,大圆的弦 AB 交小圆于 C,D.求证:AC=BD.【答案与解析】证明:过 O 点作OM⊥AB于M,交大圆与 E、F 两点.如图,则EF 所在的直线是两圆的对称轴,所以 AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.垂径定理【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(2)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OD 2 + AD 2 42 + 32 (4) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB =6 cm ,OD =4 cm ,则 DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求 CD 的长,只要求出⊙O 的半径 r 即可,可以连结 OA ,在 Rt△AOD 中,由勾股定理求出 OA.【答案】D ;【解析】连 OA ,由垂径定理知 AD = 1AB = 3cm , 2所以在 Rt△AOD 中, AO = = = 5 (cm ).所以 DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。
圆形的周长与面积的公式_概述说明
圆形的周长与面积的公式概述说明1. 引言1.1 概述本篇文章旨在探讨圆形的周长与面积公式,并且深入了解它们之间的关系。
圆形作为一种基本几何形状,在数学和实际生活中都有广泛的应用。
它具有独特的性质和特点,其周长和面积的计算公式是我们初学者必须了解和掌握的基础知识。
1.2 文章结构本文分为五个主要部分进行论述。
首先是引言部分,概述了整篇文章的内容和目标。
接下来,第二部分将介绍圆形的定义与性质,并详细说明周长和面积的计算公式。
第三部分将探讨周长和面积之间的关系,包括圆心角、弧度制度以及弧长与弧度之间的关系,以及面积与半径之间的关系。
第四部分则从应用举例与实际意义两个方面探讨了圆形在建筑、设计、数学和工程领域中的重要性,并通过具体案例进行解析。
最后,我们将在第五部分总结全文并对圆形周长与面积公式做出评价并展望未来可能的发展方向。
1.3 目的本篇文章旨在以清晰和简明的方式阐述圆形的周长与面积公式,并帮助读者全面理解它们的计算方法和意义。
通过探讨周长与面积之间的关系以及举例说明它们在实际应用中的重要性,我们希望读者能够更加深入地理解和应用这些知识。
同时,为了使文章内容更具可读性和可操作性,将提供一些具体问题来帮助读者加深对相关概念和原理的理解。
通过阅读本文,相信读者将对圆形的周长与面积公式有更清晰的认识,并能更好地运用于实际生活和学习中。
2. 圆形的周长与面积公式简介2.1 圆的定义与性质圆是一个平面上所有点到一个固定点(圆心)的距离都相等的闭合曲线。
其中,距离圆心最远的点到圆心的距离被称为半径。
圆具有以下性质:(可根据需要展开描述)2.2 周长的计算公式圆形的周长是指围绕整个圆形曲线所需的长度。
根据圆周率π的定义,在数学中,我们可以使用下述公式计算圆形的周长:C = 2πr其中,C表示周长,r表示半径。
2.3 面积的计算公式圆形的面积是指整个圆内部所包含区域的大小。
根据数学定义,我们可以使用下述公式计算圆形的面积:A = πr²其中,A表示面积,r表示半径。
数学必背公式大全
数学必背公式大全1.代数公式:- 二次方程的根公式:对于ax² + bx + c = 0,其中a ≠ 0,方程的根可以通过公式 x = (-b ± √(b² - 4ac))/(2a) 来求解。
- 一元二次不等式:对于ax² + bx + c > 0,其中 a > 0,可以通过求解二次方程ax² + bx + c = 0 的根,然后确定其在数轴上的位置,从而确定其解。
- 平方差公式:(a ± b)² = a² ± 2ab + b²。
- 和差化积公式:sin(A ± B) = sin A cos B ± cos A sin B,cos(A ± B) = cos A cos B ∓ sin A sin B。
-高斯消元法:通过初等变换将线性方程组化为上三角矩阵以便求解。
-等差数列求和公式:Sn=(a₁+aₙ)n/2,其中a₁是首项,aₙ是末项,n是项数,Sₙ是和。
2.几何公式:-三角形面积公式:对于已知三角形的底和高,面积可以通过S=1/2×底×高来计算。
-直角三角形的勾股定理:对于直角三角形,两条直角边的平方和等于斜边的平方,即a²+b²=c²。
- 正弦定理:对于三角形 ABC,边长分别为 a, b, c,对应的角度为A, B, C,则有 a/sin A = b/sin B = c/sin C。
- 余弦定理:对于三角形 ABC,边长分别为 a, b, c,对应的角度为A, B, C,则有c² = a² + b² - 2ab cos C。
-圆的周长公式:C=2πr,其中C是周长,r是半径。
-圆的面积公式:A=πr²,其中A是面积,r是半径。
-球的表面积公式:A=4πr²,其中A是表面积,r是半径。
高一数学考试必背知识点
高一数学考试必背知识点一、平面直角坐标系平面直角坐标系由横坐标轴和纵坐标轴组成。
横坐标轴为x轴,纵坐标轴为y轴。
原点记作O,横坐标记作x,纵坐标记作y。
二、点、线、面的表示方法1. 点:用大写字母表示,如A、B、C等。
2. 线段:用两个点表示,如AB表示由点A和点B组成的线段。
3. 直线:用一条上面有两个箭头的线来表示,如l。
4. 射线:用一条上面有一个箭头的线来表示,如→l。
三、角1. 角的定义:角是由两条射线的共同起点和其中一个端点所围成的图形。
2. 角的度量:用角度来表示,一个圆周共分为360°,每度为1/360。
3. 角的分类:a. 零角:角的两条射线重合。
b. 直角:角的两条射线互相垂直,度数为90°。
c. 锐角:角的度数小于90°。
d. 钝角:角的度数大于90°。
四、三角函数1. 正弦函数(sin):在直角三角形中,对于某个角,在该角的对边上的长度与斜边的比值。
2. 余弦函数(cos):在直角三角形中,对于某个角,在该角的邻边上的长度与斜边的比值。
3. 正切函数(tan):在直角三角形中,对于某个角,在该角的对边上的长度与邻边的比值。
五、圆的性质1. 圆心和半径:一个圆由圆心和半径确定,圆心记作O,半径记作r。
2. 圆的直径:通过圆心,且两个端点都在圆上的线段称为圆的直径,直径的长度为半径的两倍。
3. 圆的周长:圆的周长等于2πr,其中π≈3.14。
4. 圆的面积:圆的面积等于πr²。
六、平移、旋转、对称1. 平移:图形的位置沿着某个方向,保持大小和形状不变地移动。
2. 旋转:围绕某个点将图形转动一定的角度。
3. 对称:通过某个中心线将图形中的点与对应的位置进行镜像。
七、立体图形1. 直线与平面的关系:a. 直线与平面相交于一点,但不在平面内。
b. 直线与平面平行,直线在平面之外。
c. 直线在平面内部,但不与平面相交。
d. 直线在平面内部,且与平面相交于一点。
数学初中必背知识点公式
数学初中必背知识点公式数学是一门基础学科,对于初中生来说,学好数学非常重要。
在数学学习中,理解并掌握一些必备的知识点和公式可以帮助我们更好地解题和应用数学知识。
以下是数学初中必背知识点公式的一些例子。
一、代数运算1.加减乘除法则•加法法则:a + b = b + a•减法法则:a - b ≠ b - a•乘法法则:a × b = b × a•除法法则:a ÷ b ≠ b ÷ a2.分配律•左分配律:a × (b + c) = a × b + a × c•右分配律:(b + c) × a = b × a + c × a3.同底数幂相乘除•相乘法则:a^m × a^n = a^(m+n)•相除法则:a^m ÷ a^n = a^(m-n)4.指数运算•指数乘法:(a m)n = a^(m×n)•指数除法:a^m ÷ a^n = a^(m-n)5.分数运算•相加法则:a/b + c/d = (a×d + b×c)/(b×d)•相减法则:a/b - c/d = (a×d - b×c)/(b×d)•相乘法则:a/b × c/d = (a×c)/(b×d)•相除法则:(a/b) ÷ (c/d) = (a×d)/(b×c)二、几何图形1.三角形•三角形内角和公式:三角形的三个内角和等于180度•直角三角形勾股定理:直角三角形的两个直角边的平方和等于斜边的平方•三角形面积公式:三角形的面积等于底边乘以高的一半2.矩形和正方形•矩形的周长公式:矩形的周长等于长乘以宽的两倍•矩形的面积公式:矩形的面积等于长乘以宽3.圆•圆的周长公式:圆的周长等于直径乘以π(π约等于3.14)•圆的面积公式:圆的面积等于半径的平方乘以π三、代数方程1.一元一次方程•一元一次方程的一般形式:ax + b = 0•一元一次方程的解法:将方程等式两边同时加上(或减去)相同的数,并符合方程的等价变形,得到方程的解2.一元二次方程•一元二次方程的一般形式:ax^2 + bx + c = 0•一元二次方程的解法:利用求根公式,即x = (-b ± √(b^2-4ac))/(2a),求出方程的解四、概率与统计1.概率公式•事件发生的概率:事件A发生的概率等于事件A的有利结果数目除以总的可能结果数目•互斥事件的概率:互斥事件A和事件B同时发生的概率等于事件A 和事件B发生的概率之和2.统计公式•平均值公式:一组数据的平均值等于所有数据之和除以数据的个数•中位数公式:一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则中位数为中间的那个数;如果数据的个数为偶数,则中位数为中间两个数的平均值以上是数学初中必背知识点公式的一些例子,这些公式在数学学习和解题过程中非常重要。
小学数学必背公式全集四年级
小学数学必背公式全集四年级在小学数学学习中,掌握和运用一些基础的数学公式是非常重要的。
这些公式可以帮助我们更好地理解和解决数学问题,提高数学运算的效率。
在四年级数学学习中,我们将学习一些新的数学公式,同时也需要巩固之前学过的公式知识。
下面就让我们来看一些四年级小学数学必备的公式全集吧。
一、四则运算公式1.加法交换律:a + b = b + a2.加法结合律:a + (b + c) = (a + b) + c3.减法的公式:a - b ≠ b - a4.乘法交换律:a × b = b × a5.乘法结合律:a × (b × c) = (a × b) × c6.除法的定义:a ÷ b = c ↔ a = b × c二、计算面积和周长的公式1.矩形面积公式:矩形的面积 = 长 ×宽2.矩形周长公式:矩形的周长 = 2 ×长 + 2 ×宽3.正方形面积公式:正方形的面积 = 边长 ×边长4.正方形周长公式:正方形的周长 = 4 ×边长5.三角形面积公式:三角形的面积 = 底 ×高 ÷ 2三、时钟和时间的公式1.时钟转动公式:每小时钟盘的转动为360°,每分钟钟盘的转动为6°2.时间计算公式:时间差 = 结束时间 - 开始时间四、数列和图形的公式1.等差数列公式:an = a1 + (n - 1) × d2.等比数列公式:an = a1 × q ^ (n - 1)3.正方形对角线长度公式:对角线长度 = 边长× √24.圆的周长公式:圆的周长= 2 × π × 半径5.圆的面积公式:圆的面积= π × 半径的平方通过掌握以上的数学公式,四年级的小学生们可以更好地应对各种数学问题,提高解题效率。
六年级下册必须背熟的-圆单元公式
六年级上册必须背熟的公式1、圆形: S =面积C=周长∏= 圆周率d=直径r=半径(1) 直径=半径×2 d=r×2 (2) 半径=直径÷2 r=d÷22、计算半圆的周长公式;圆周长的一般公式:(1)知道了半径,求半圆的周长=半径×∏+半径×2知道了直径,求半圆的周长=直径×∏÷2+直径(2)知道了半径,求圆周长的一半=半径×∏>知道了直径,求圆周长的一半=直径×∏÷23、计算环形圆的面积公式:(1)方法一:环形圆面积=∏×大圆半径×大圆半径—∏×小圆半径×小圆半径S=∏×R×R—∏×r×r(2) 方法二:环形圆面积=∏×(大圆半径×大圆半径—小圆半径×小圆半径)S=∏×(R×R—r×r)@4、计算圆周长的条件及算法:(1)知道了半径,求圆的周长:周长= 2×∏×半径c=2∏r(2)知道了直径,求圆的周长:周长=直径×∏c=∏×d5、计算圆面积的条件及算法:(1)知道了半径,求圆的面积:面积=∏×半径×半径s=∏×r×r(2)知道了直径,求圆的面积:面积=∏×(直径÷2) ²s=∏×(d÷2)²(3)知道了周长,求圆的面积:先求半径半径=周长÷∏÷2。
R= C÷∏÷2在求面积面积=∏×半径×半径s=∏×r×r。
小学数学基础知识点汇总
必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
初中 图形面积体积公式(必背公式)
图形的面积与体积公式圆形(正圆):S=πr^2圆形(正圆外环):S=πR^2-πr^2圆形(正圆扇形):S=πr^2×n/360长方体表面积:S=2(ab+ac+bc){长方体表面积=(长×宽+长×高+宽×高)×2}正方体表面积:S=6a^2{正方体表面积=棱长×棱长×6}球体(正球)表面积:S=4/3πr^2{球体(正球)表面积=圆周率×半径×半径×4/3}1、平行四边形的面积=底×高 S=ah2、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷23、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr4、圆的面积=圆周率×半径×半径Ѕ=πr5、长方体的表面积=(长×宽+长×高+宽×高)×26、长方体的体积 =长×宽×高 V =abh7、正方体的表面积=棱长×棱长×6 S =6a8、正方体的体积=棱长×棱长×棱长 V=a.a.a= a9、圆柱的侧面积=底面圆的周长×高 S=ch10、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 11、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h12、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷313、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh14.180*弧占圆的百分之几(或几分之几)1。
小学1-6年级数学必背公式大全
几何形体周长、面积、体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2正方形的周长=边长×4 C=4a长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a= a三角形的面积=底×高÷2 S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr圆的面积=圆周率×半径×半径三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
圆、圆柱锥公式
圆、圆柱、圆锥必背公式圆:圆的面积: S=2圆的周长: C=π d 或 C=2πr半圆的周长: C=πr+d 或 C=πr+2r已知周长求直径: d= C÷π已知周长求半径: r= C÷π÷2圆柱:表面积:圆柱的表面积 ==侧面积 +底面积× 2S 表=S 侧+S 底×2圆柱的侧面积 =底面周长×高字母表示:S=ch已知半径求侧面积: 2πr×h已知直径求侧面积:π d× h已知侧面积求直径: d=S侧÷h÷π已知侧面积求半径: r=S侧÷h÷π÷2R2—r2)体积:圆柱的体积 =底面积×高V=Sh已知圆柱体积和底面积求高:h=V÷S已知圆柱体积和高求底面积:S=V÷h已知圆柱半径和高求体积:V=已知圆柱直径和高求体积:V=已知圆柱底面周长和高求体积:V=圆锥:体积 =1/3底面积高V=1/3Sh已知圆锥体积和底面积求高:h=3V已知圆锥体积和高求底面积:S=3V已知圆锥底面半径和高求体积:V=1/3已知圆锥底面直径和高求体积:V=1/3已知圆锥底面周长和高求体积:V=1/3hhh要求圆的面积,必须先求半径,要求的圆周长,必须先求半径或直径要求圆柱的表积,必须先判断是几个面。
必须知道圆的底面周长和高,如题中没有这两类数据,就先根据公式先求。
求圆柱的体积,必须先找到半径求出底面积,再乘高。
求圆锥的体积,切记是等底等高的圆柱的体积乘三分之一,不要忘记乘三分之一。
小学数学1到6年级必背公式
分数的除法则:除以一个数等于乘以这个数的倒数.
二、单位换算
〔1〕1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
〔2〕1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
〔3〕1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
小学数学1到6年级必背公式
一、小学数学几何形体周长 面积 体积计算公式
长方形的周长=〔长+宽〕×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S== a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=〔上底+下底〕×高÷2 S=〔a+b〕h÷2
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
工程问题
〔1〕一般公式:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
〔2〕用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几=工作时间
四、算术方面
1.加法交换律:两数相加交换加数的位置,和不变.
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的周长和面积必背知识点
一、概念:
1、圆中心的一点叫做圆心,用字母O 表示,圆心确定圆的位置。
2、连接圆心和圆上任意一点的线段叫做半径,用字母r 表示,半径确定圆的大小。
在同一个圆里,有无数条半径,并且这些半径的长度都相等。
3、通过圆心并且两端都在圆上的线段叫做直径,用字母d 表示,在同一个圆里,有无数条直径,并且这些直径的长度都相等。
直径是圆内最长的线段。
4、在同圆或等圆中,半径的长度是直径的一半(r=2
d ),或直径是半径的2倍(d=2r )。
5、圆的周长除以直径所得的商总是3倍多一些,我们把这个值叫做圆周率,用字母π表示。
6、围成圆的曲线的长度叫做圆的周长,用字母C 表示。
7、圆所占平面的大小叫做圆的面积,用字母S 表示。
8、内圆半径加环宽等于外圆半径。
外圆半径减环宽等于内圆半径。
9、半径扩大n 倍,直径就扩大n 倍,周长扩大也扩大n 倍,面积扩大n 2倍。
10、周长相等的正方形、长方形、圆,圆的面积>正方形面积>长方形面积
11、在正方形内画一个最大的圆,圆的面积占正方形面积的200
157。
12、在圆里画一个最大的正方形,正方形的面积是圆的直径乘半径。
13、正方形有4条对称轴;长方形有2条对称轴;等腰三角形有1条对称轴;等边三角形有3条对称轴;等腰梯形有1条对称轴;圆、环形有无数条对称轴;半圆有1条对称轴;平行四边形不是轴对称图形。
二、公式:
1、同(等)圆半径和直径的关系:r=
2
d d=2r 2、圆的周长公式: C=πd C=2πr 知道周长求半径或直径: d=C ÷π r=C ÷π÷2
3、圆的面积公式:S=πr 2 =π(d÷2)2 =π(C ÷π÷2)2
4、环形面积公式:S 环形=πR 2-πr 2
=π(R +r )(R -r )
5、C 半圆=πr +2r S 半圆=2
1πr 2 三、必背数值。
1π=3.14 2π=6.28 3π=9.42 4π=12.56
5π=15.7 6π=18.84 7π=21.98 8π=25.12
9π=28.26 10π=31.4 12π=37.68 15π=47.1
16π=50.24 25π=78.5 32π=100.48 64π=200.96。