氨基酸分析
关于氨基酸的定量分析
![关于氨基酸的定量分析](https://img.taocdn.com/s3/m/df6ffc33102de2bd9705883f.png)
• 再在冰浴中冷却3 min 以上,加碘化钾5mL , 立即用硫代硫酸钠标准滴定溶液滴定至淡 黄色,加入淀粉溶液2 mL ,继续滴定至蓝色 消失为终点,同时做空白试验。
x(v1 v2)c0.02403100 m 25 100
有吸收的衍生试剂。该方法的基本原理是 经阳离子交换柱分离出的氨基酸与茚三酮 混合,经加热反应后,一级胺与之生成蓝紫 色化合物,二级胺与之生成黄色化合物。两 种衍生物使用双通道紫外检测器同步检测, 检测波长分别为570nm 和436nm。
C OH
C
C
OH
O
茚三酮
O
C OH
C
C
OH
O
COOH
H 3N
C
关于氨基酸的定量分析
氨基酸的分析方法
化学分析法——甲醛滴定法 甲醛滴定法用于氨基氮的
测定, 可以测出样品中总氨基酸 的含量,其原理是在中性或弱碱 性水溶液中,氨基酸的α—氨基与醛类反应生成
Schiff碱:α—氨基酸与甲醛反应生成亚 甲基亚氨基衍生物
H
R C C O O
N H 3
H C H O
O H
H
பைடு நூலகம்
R
O
C OH
C
C
H
NH3
CO2
O
O
C OH C
C OH
O
O C
C C O
O
C
NC
H
C
O
紫色化合物
RCHO
H
O C
CN C O
亮黄色化合物
18种氨基酸分析方法
![18种氨基酸分析方法](https://img.taocdn.com/s3/m/ecddaea28bd63186bcebbc85.png)
1) 天平一台(精度0.1mg)2) 恒温水浴锅一台3) 容量瓶4) 试管(1.5×15cm或1.5×10cm)5) 微量进样器(5μL或10μL)一支6) 微量可调移液枪(1000μL,200μL)一支、吸头多个。
7) 旋涡混匀器一台8) HPLC系统及氨基酸分析专用柱(4.6×250mm 5μm)一. 仪器及试剂二. 流动相的配制三. 衍生化反应1. 对照品溶液浓度值18种氨基酸分析方法仪 器:流动相 A:0.1mol/L醋酸钠溶液(pH 6.5):乙睛=93.0:7.0流动相 B:水:乙腈=20.0:80.0配制方法:准确量取水200mL和乙腈800mL,混合均匀,抽滤过0.22µm滤膜1) 超纯水(≥18MΩ·cm)2) 乙腈(HPLC级)3) 三水合醋酸钠(分析纯)4) 冰醋酸(分析纯)5) 衍生试剂A和衍生试剂B溶液,至于冰箱保存(衍生试剂包对身体有害,用时请做好防护措施)6) 正己烷(HPLC级)7) 0.1mol/L盐酸溶液:量取9.0mL浓盐酸,加去离子水稀释至1000mL。
8) 正亮氨酸内标溶液:称取正亮氨酸约10mg,加0.1mol/L 盐酸溶液 10mL溶解,混匀。
试 剂:配制方法:准确称取三水合醋酸钠13.6g于1000mL水中,搅拌均匀,使之溶解,用冰醋酸或氢氧化钠溶液调pH值至6.50;准确量取配制好的三 水合醋酸钠溶液930mL和乙腈70mL,混合均匀,抽滤过0.22µm滤膜。
月旭科技(上海)股份有限公司公司官网:服务热线:400-808-67602. 注意事项:1)进样分析:先进对照品溶液,后进供试品溶液;2)缓冲溶液,隔天需重新配制;3)防止缓冲盐析出。
5)运行一次空白梯度; 6)进样分析;7) 分析完成后:I)用乙腈:水=20:80代替流动相A ,进水样(清洗自动进样器), 进行梯度洗脱;II)换90%乙腈冲洗色谱柱40min以上。
生物化学第3章 氨基酸分析
![生物化学第3章 氨基酸分析](https://img.taocdn.com/s3/m/e7b69f4648d7c1c708a145f7.png)
180多种天然氨基酸; 20种蛋白质氨基酸
二、氨基酸的分类、性质
各种氨基酸的区别在于侧链R基的不同 20种蛋白质氨基酸按R的极性可分为非极性氨基酸、不带电荷极性氨基酸、 带正电R基氨基酸和带负电R基氨基酸
按R基的结构可分为脂肪族氨基酸、芳香族氨基酸及杂环氨基酸3大类
脂肪族氨基酸:一氨基一羧基(中性氨基酸):含有硫
Cysteine Methionine (Cys,C) (Met,M)
(1) 两个半胱氨酸的巯基氧化生成二硫键,生成胱氨酸,Cys-S-SCys
(2) 蛋氨酸的甲硫基的硫原子有亲核性,容易发生极化,在生物合成
中是重要的甲基供体
脂肪族氨基酸:一氨基二羧基(酸性氨基酸)
水中心)
极性氨基酸侧链能与水形成氢键,易溶于水 带电荷和极性氨基酸一般位于蛋白表面 蛋白的活性中心:His,Ser,Cys
2.3氨基酸的分类——不常见蛋白质氨基酸
2.4氨基酸的分类——非蛋白质氨基酸
150 多种,不是蛋白质组成,但是有特定生理功能
(1)大多是L型α氨基酸衍生物
(2)有D型氨基酸 (3)还有β-、γ-、δ-氨基酸
四、氨基酸的化学反应
ɑ-氨基参与的反应: 亚硝酸、酰化试剂、烃基、 醛基氧化酶 氨基酸的 化学反应
茚三酮、肽键形成!
ɑ-羧基参与的反应: 成盐、成酯、成酰氯、脱 羧、叠氮
侧链R基参与的反应: 取决于R侧链的官能团
ɑ-氨基参与的反应:
与亚硝酸反应:
通过测定N2的量而计算氨基酸的量,可衡量蛋白质的水解程度 与酰化试剂反应: X=Cl, OH, -OCOR; 可多肽合成中保护氨基;丹磺酰氯可以与肽的N-端氨基 酸反应,生成丹磺酰-肽,水解得到有强烈荧光的丹磺酰-氨基酸,用电泳法 或层析法分析即可得知N-端是何种氨基酸,被广泛用于蛋白质N端测定。 烃基化反应:
氨基酸分析
![氨基酸分析](https://img.taocdn.com/s3/m/8d29cc9051e79b896802266d.png)
1.试剂:
(1)衍生液:
异硫氰酸苯:甲醇:三乙胺:水(V/V)=1:7:1:1
(2)正己烷
(3)氨基酸标样
(4)乙腈、乙酸、乙酸钠
以上试剂中乙腈为色谱醇,水为二次蒸馏水,其它为分析醇。
2.柱前衍生步骤:
(1)将200ul衍生液加入200ul氨基酸标样或样品中,震荡使混合均匀,室温放置1小时。
(2)反应液中加入400ul正己烷,充分震荡后放置使分层。
(3)取下层溶液用一次性滤膜过滤器(0.45ul)过滤。
(4)取滤液5ul注入HPLC。
3.分离条件:
(1)色谱柱:Shim-pack VP-ODS 4.6mm x 15cm
保护柱:Shim-pack GVP-ODS4.6 mm x 1cm
(2)流动相:
A液:0.1M乙酸钠pH6.50(用乙酸调整,500ml乙酸钠中约加2滴乙酸)。
B液:乙腈/水=4/1
(3)流量:1ml/min
(5)柱温:36C
(6)检测波长:254nm
(7)梯度洗脱程序:
进样量可在pmol级别。
为取得较高的重现性,建议在nmol级别进样,由于氨基酸分子量在130左右,故通常进样浓度为100-1000ppm,对几个umol/ml的样品可直接进行柱前衍生,太高浓度的样品最好稀释10-100倍再分析。
有机化学氨基酸分析
![有机化学氨基酸分析](https://img.taocdn.com/s3/m/fc62b228571252d380eb6294dd88d0d233d43c9c.png)
有机化学氨基酸分析氨基酸是生物体中重要的有机化合物之一,它具有结构多样性和功能多样性,广泛参与生物体内的代谢过程和各种生物学功能。
因此,研究和分析氨基酸在生物体内的存在和含量是生物化学和生物医学领域的重要课题之一氨基酸普遍具有两个基团:氨基基团和羧基基团。
氨基基团(-NH2)能够与酸性物质发生酸碱反应,而羧基基团(-COOH)可以与碱性物质反应。
因此,氨基酸可以在不同的pH环境下呈现出不同的离子化状态。
氨基酸分析的方法有很多种,其中最常用的方法是色谱法。
色谱法是基于物质在固定相和流动相之间相互分配过程的一种分离和测定方法。
氨基酸分析常用的色谱法有气相色谱法(GC)和高效液相色谱法(HPLC)。
气相色谱法是通过将氨基酸样品蒸发成气体态后,通过柱子分离各个氨基酸,并通过检测器进行定量测定。
GC法的优点是分离效果好、分析速度快,但需要样品具有较好的挥发性。
对于挥发性较低的氨基酸,通常需要先进行酸水解或酶解处理。
高效液相色谱法是通过将氨基酸溶解在流动相中,通过柱子分离各个氨基酸,并通过检测器进行定量测定。
HPLC法与GC法相比,对样品要求较低,适用范围更广。
HPLC法可以在较低的温度下进行分析,避免了氨基酸的热解和挥发损失。
除了色谱法外,还可以使用质谱法进行氨基酸分析。
质谱法是通过将氨基酸样品蒸发成气体态后,通过质谱仪进行分析。
质谱法的优点是分辨率高、灵敏度高,可以分析低浓度的氨基酸。
质谱法可以通过离子反应进行定量测定。
此外,还可以使用光谱法进行氨基酸分析。
光谱法是利用物质吸收、发射或散射光的特性进行分析的一种方法。
氨基酸中苯环的吸收或蛋白质中色氨酸的荧光可以用于氨基酸的分析。
在氨基酸分析中,常常需要先进行衍生化反应,将氨基酸转化为稳定的衍生物,提高其检测灵敏度和分离效果。
常用的衍生反应有酸衍生、酯化、取代反应等。
总结起来,氨基酸的分析方法有色谱法、质谱法和光谱法等。
这些方法各有特点,可以选择合适的方法根据不同的需要进行分析。
氨基酸的分析方法
![氨基酸的分析方法](https://img.taocdn.com/s3/m/4d59ea0df6ec4afe04a1b0717fd5360cba1a8d8e.png)
氨基酸的分析方法
氨基酸的分析方法主要有以下几种:
1. 比色法:利用氨基酸中的吸收光谱特性进行定量分析。
对于有色氨基酸,可以直接用此方法进行分析,如色氨酸、酪氨酸等。
对于无色氨基酸,需事先进行衍生化反应,如二羧基二氨基联苯胺(DTNB)法,测定半胱氨酸含量。
2. 氨基酸自动分析仪:常用的分析方法是自动氨基酸分析仪,其原理是利用离子交换色谱技术对氨基酸进行分离和检测。
该方法操作简便,自动化程度高,可同时分析多种氨基酸,用于生化实验和质量检测。
3. 氨基酸序列测定法:利用氨基酸测定仪测定氨基酸的相对分子质量,进而测定氨基酸的分子序列,通常用于蛋白质结构分析和生物活性研究。
4. 纸层析法:利用氨基酸的亲水性和疏水性差异进行分离,通常用于初步鉴定氨基酸的含量和组成。
该方法简便易行,但准确性较低,仅可作为定性或半定量分析方法。
5. 高效液相色谱法:利用高效液相色谱技术对氨基酸进行分离和检测。
该方法灵敏度高、重复性好、分辨率高,可用于生化分析和质量检测。
有机化学氨基酸分析
![有机化学氨基酸分析](https://img.taocdn.com/s3/m/b1ff34217f21af45b307e87101f69e314232fa50.png)
有机化学氨基酸分析1.色谱法色谱法是一种广泛使用的氨基酸分析方法,主要包括气相色谱法(GC)和液相色谱法(LC)。
气相色谱法:气相色谱法主要适用于描绘和鉴定原料氨基酸的种类、含量和结构等信息。
在该方法中,氨基酸样品首先通过酸水解生成对应的酸,然后酸再经甲醇酯化生成甲酯化酸。
最后通过气相色谱分离并检测酸甲酯化物。
液相色谱法:液相色谱法主要适用于定量分析氨基酸含量。
液相色谱法将氨基酸样品进行衍生化反应,如酰氯化反应或酸酐酯化反应,生成稳定的色氨酸酰胺衍生物,然后分离并检测各个衍生物。
2.光谱法主要包括紫外-可见吸收光谱法、红外光谱法和核磁共振光谱法等。
这些方法可以用于研究和确定氨基酸的结构和功能。
紫外-可见吸收光谱法:氨基酸溶液在特定波长范围内对紫外或可见光的吸收程度可以用来定量分析氨基酸的含量。
红外光谱法:红外光谱法可以用来研究氨基酸分子中的官能团和结构信息。
核磁共振光谱法:核磁共振光谱法可以提供关于氨基酸分子中原子的化学位移和耦合常数等信息。
3.电化学法电化学法主要包括电位滴定法和电化学发光法。
电位滴定法:通过测定氨基酸溶液的电化学行为,如氧化还原电位的变化,可以定量分析氨基酸的含量和测定其在酸碱条件下的酸解离常数。
电化学发光法:氨基酸在特定条件下通过电化学反应发光,凭借发光的强度可以定量分析氨基酸的浓度。
4.质谱法质谱法主要包括质子化时间飞行质谱法(PIT-TOFMS)和质子化辅助激光解吸电离质谱法(PALDIMS)等。
质子化时间飞行质谱法:PIT-TOFMS可以在非常短的时间内通过氨基酸分析样品中的氨基酸类型和含量。
该方法的优势在于可以同时测定样品中的多种氨基酸。
质子化辅助激光解吸电离质谱法:PALDIMS利用激光对氨基酸样品进行解离和电离,然后通过质谱仪进行质量分析。
该方法可以提供对氨基酸的结构、组成和含量等信息。
综上所述,有机化学氨基酸分析方法包括色谱法、光谱法、电化学法和质谱法等。
这些方法可以用于氨基酸的种类、含量、结构和功能的研究和分析。
氨基酸分析
![氨基酸分析](https://img.taocdn.com/s3/m/5d69637f7fd5360cba1adbd2.png)
2.2.56氨基酸分析(1)(见注解)氨基酸分析是指利用方法对蛋白质,多肽和其他药物制剂进行氨基酸组成或含量的分析。
蛋白质和多肽一般是氨基酸残基以共价键的形式组成的线性大分子。
蛋白质或多肽中氨基酸的序列决定了其分子的性质。
蛋白质普遍是由大分子以折叠的方式形成的特定构象,而多肽则比较小,可能只有几个氨基酸组成。
氨基酸分析方法可以用于对蛋白质和多肽的量化,基于氨基酸的组成来确定蛋白质或多肽的类型,支撑蛋白质和多肽的结构分析,评估碎片肽段,并检测可能存在于蛋白质或多肽中的不规则氨基酸。
并且在氨基酸分析之前必须进行将蛋白质或多肽水解为个别氨基酸。
伴随着蛋白质或多肽的水解,氨基酸分析的过程和其他药物制剂中氨基酸的游离是一致的。
通常我们采用易于分析的方法来测定样品中的氨基酸成分。
设备用于氨基酸分析方法通常是基于色谱分离氨基酸的方法设定的。
当前的方法是利用自动化色谱仪进行分析。
氨基酸分析仪通常是一个能够产生梯度的低压或高压的液相色谱仪,并在色谱柱上分离氨基酸。
除非样品在柱前进行了衍生化,否则这些仪器必须具备柱后衍生化的能力。
检测器使用的是紫外可见光检测器或荧光检测器。
此外,还需具有一个记录仪器(例如,积分仪),用于转化检测到的信号及用于定量测定。
而且,这些仪器是专门用于氨基酸分析使用的。
一般预防策施在氨基酸分析中,分析师关注的一个重点是背景的污染。
高纯度的试剂是必要的(例如,低纯度的盐酸的使用在分析中会产生甘氨酸污染)。
分析试剂通常是每隔几周更换一次,并且仅使用HPLC级别的溶剂。
所用试剂使用之前必须用过滤器将溶剂中可能潜在的微生物和外来材料污染过滤除去,保持溶剂贮存器出于密封状态,并且不可将氨基酸分析仪放置于光照条件下。
实验室的操作规范决定了氨基酸分析的质量。
仪器应放置在实验室的空旷区域。
保持实验室的卫生干净。
根据维修计划,及时清洁和校准移液管,将移液吸头放置在相应的盒子中,分析师不得用手处理移液管。
分析师需要穿戴一次性的乳胶手套或同等质量的其他手套。
氨基酸分析原理与方法
![氨基酸分析原理与方法](https://img.taocdn.com/s3/m/4d66024017fc700abb68a98271fe910ef12daece.png)
氨基酸分析原理与方法氨基酸是构成蛋白质的基本组成单位,它们的结构包含一个氨基基团(NH2)、一个羧基(COOH)以及一个特定的侧链基团(R)。
氨基酸分析的原理是通过特定的化学反应将氨基酸转化为可检测的化合物,然后利用不同的方法进行测定。
样品的预处理是为了去除样品中可能存在的干扰物质,例如油脂、无机盐以及非氨基酸的有机物。
常用的方法包括浸提、溶解、离心沉淀等。
蛋白质的水解是将蛋白质分解为氨基酸的过程。
水解反应一般使用强酸、强碱或酶类催化剂来进行。
其中,酶法水解是一种常用的方法,特点是反应条件温和,水解效率高。
氨基酸的衍生反应是将氨基酸中的羧基或氨基基团转化为可以检测的化合物。
常用的方法有酸衍生、碱衍生、甲酰化、丙酰化等。
例如,酰化反应可以将氨基酸中的氨基基团转化为酰基氨基酸,它在紫外光下有特征的吸收峰,便于测定。
衍生物的分离和定量测定是通过分析仪器进行的。
常用的方法包括高效液相色谱(HPLC)、气相色谱(GC)、毛细管电泳(CE)等。
其中,HPLC是最常用的方法,它可以根据不同的分离柱和检测器选择,实现对氨基酸的定量测定。
1.离子交换色谱法:利用离子交换树脂将氨基酸与其他离子区分开,然后通过温度梯度或者梯度洗脱的方法进行分离和定量。
2.薄层色谱法:将衍生后的氨基酸样品沿着特定的固定相(通常是硅胶或者聚脱氢乙烯等)的薄层上进行分离。
然后通过显色剂的染色或者紫外检测器检测颜色变化或吸收峰进行定量。
3.毛细管电泳法:利用毛细管内的电泳作用将氨基酸分离。
根据不同氨基酸的电荷、大小、疏水性等理化性质的差异,通过改变电流、电压、电泳缓冲液的pH值和离子强度等条件,实现氨基酸的分离和定量。
4.气相色谱法:首先将氨基酸进行酯化反应,然后通过气相色谱进行分离和定量。
气相色谱法具有高分辨率、灵敏度高等特点,适用于分析含有少量氨基酸的样品。
综上所述,氨基酸分析是通过将氨基酸转化为可检测的化合物,然后利用不同的方法进行分离和定量的过程。
氨基酸的分析方法
![氨基酸的分析方法](https://img.taocdn.com/s3/m/9eb3d479366baf1ffc4ffe4733687e21af45ff91.png)
氨基酸的分析方法
氨基酸的分析方法主要包括色谱分析、电泳分析和光谱分析。
1. 色谱分析:氨基酸的色谱分析主要包括气相色谱(GC)和高效液相色谱(HPLC)。
气相色谱通常使用气相色谱质谱联用技术(GC-MS)来鉴定和定量氨基酸。
高效液相色谱可以应用于复杂样品的分离和定量分析。
2. 电泳分析:氨基酸的电泳分析包括毛细管电泳(CE)和聚丙烯酰胺凝胶电泳(PAGE)。
毛细管电泳是一种高效、快速的氨基酸分析方法,常用于药物、食品等领域的检测。
聚丙烯酰胺凝胶电泳可用于分析氨基酸的线性序列。
3. 光谱分析:氨基酸的光谱分析主要包括紫外-可见光谱(UV-Vis)、红外光谱(IR)和核磁共振光谱(NMR)。
紫外-可见光谱用于测定氨基酸的吸收特性,红外光谱可用于检测氨基酸的官能团,核磁共振光谱可提供氨基酸的结构信息。
这些方法可以单独应用或联合使用,以提供对氨基酸的定性和定量分析。
氨基酸分析原理和色谱条件
![氨基酸分析原理和色谱条件](https://img.taocdn.com/s3/m/ba185a24f4335a8102d276a20029bd64783e6228.png)
氨基酸分析原理和色谱条件氨基酸分析是一种常用的生物化学分析方法,用于确定样品中各种氨基酸的含量和种类。
氨基酸是构成蛋白质的基本单位,对于研究蛋白质的结构和功能具有重要意义。
氨基酸分析的原理是通过分离、定量和鉴定各种氨基酸,从而获得样品中氨基酸的信息。
在样品前处理中,首先需要将蛋白质样品水解为氨基酸。
水解反应可以通过酸、碱或酶的作用来实现。
其中,最常用的水解试剂是6M盐酸和6M氢氧化钠。
将样品加入到水解试剂中,通常在110°C下加热8-24小时,使蛋白质完全水解为氨基酸。
水解反应后,通常使用酸或碱中和水解液,保证pH值在中性附近。
在分析测定中,最常用的方法是色谱法。
色谱法根据氨基酸的化学性质,将其分离并定量。
常用的色谱方法有两种,分别是离子交换色谱和手性色谱。
离子交换色谱是氨基酸分析的传统方法之一,其基本原理是利用氨基酸的带电性质,在离子交换树脂上发生吸附和洗脱。
在离子交换色谱中,通常使用强阳离子交换树脂和弱酸模式进行分析。
样品在酸性条件下通过样品加载装置,然后在逐渐提高pH值的梯度条件下进行洗脱。
各种氨基酸根据其酸碱性质的不同,以不同的速率洗脱出来,从而实现氨基酸的分离和定量。
手性色谱是分析氨基酸的另一种方法,其基本原理是利用氨基酸的手性性质进行分离。
氨基酸是手性分子,大部分氨基酸都有两种手性异构体,即L-型和D-型。
手性色谱使用手性固定相,如手性萃取剂、手性离子对等,可以将L-型和D-型氨基酸分离开来,并进行定量。
色谱条件对氨基酸分析的结果具有重要影响。
在离子交换色谱中,选择合适的离子交换树脂和洗脱缓冲液的pH值,以及合适的梯度条件,都对结果产生影响。
在手性色谱中,选择合适的手性固定相,以及优化洗脱条件和检测方法,也对结果产生重要影响。
总之,氨基酸分析是一种重要的生物化学分析方法,可以对样品中的氨基酸进行分离、定量和鉴定。
通过合适的样品前处理和选择适当的色谱方法和条件,可以获得准确和可靠的氨基酸分析结果。
食品中18种氨基酸检验方法
![食品中18种氨基酸检验方法](https://img.taocdn.com/s3/m/7943a9d14bfe04a1b0717fd5360cba1aa8118c1c.png)
食品中18种氨基酸检验方法食品中氨基酸是构成蛋白质的重要成分之一。
氨基酸的检验方法能够帮助我们了解食品中氨基酸的含量和种类,对于食品的营养价值评估和质量控制具有重要意义。
本文将介绍18种常见氨基酸的检验方法。
1. 色谱法:色谱法是检测氨基酸含量的常用方法之一。
通过将样品中的氨基酸分离出来,并利用色谱柱分离各个氨基酸,再利用紫外检测器检测各个氨基酸的含量。
2. 毛细管电泳法:毛细管电泳法是一种高效、快速的氨基酸分析方法。
通过将样品中的氨基酸在电场作用下在毛细管中迁移,再利用紫外检测器检测各个氨基酸的含量。
3. 高效液相色谱法:高效液相色谱法是一种常用的氨基酸分析方法。
通过将样品中的氨基酸在液相中分离,并利用紫外检测器检测各个氨基酸的含量。
4. 离子交换色谱法:离子交换色谱法是一种常用的氨基酸分离和检测方法。
通过将样品中的氨基酸在离子交换柱上分离,并利用紫外检测器检测各个氨基酸的含量。
5. 高温液相色谱法:高温液相色谱法是一种适用于疏水性氨基酸检测的方法。
通过将样品中的氨基酸在高温条件下分离,并利用紫外检测器检测各个氨基酸的含量。
6. 酶法:酶法是一种常用的氨基酸分析方法。
通过将样品中的氨基酸与特定的酶反应,生成可测定的产物,并利用酶活性的变化来测定各个氨基酸的含量。
7. 比色法:比色法是一种简单、快速的氨基酸分析方法。
通过将样品中的氨基酸与特定的试剂反应,生成具有特定颜色的产物,并利用比色计测定各个氨基酸的含量。
8. 紫外分光光度法:紫外分光光度法是一种常用的氨基酸检测方法。
通过测量各个氨基酸在紫外光波长下的吸光度,来测定各个氨基酸的含量。
9. 荧光分析法:荧光分析法是一种敏感、高效的氨基酸检测方法。
通过测量各个氨基酸在激发光波长下的荧光强度,来测定各个氨基酸的含量。
10. 质谱法:质谱法是一种高灵敏度的氨基酸分析方法。
通过将样品中的氨基酸转化为气相离子,并利用质谱仪测定各个氨基酸的含量。
11. 核磁共振法:核磁共振法是一种非破坏性的氨基酸分析方法。
氨基酸组成分析的原理
![氨基酸组成分析的原理](https://img.taocdn.com/s3/m/07aeaad5dbef5ef7ba0d4a7302768e9951e76ef5.png)
氨基酸组成分析的原理
氨基酸组成分析主要基于两种方法:氨基酸序列测定和氨基酸定量测定。
1. 氨基酸序列测定:
氨基酸序列测定是通过测定蛋白质中每个氨基酸的具体类型和顺序来确定氨基酸组成。
主要方法有Sanger法和Edman降解法。
- Sanger法:该方法是利用二氟苯基异硫氰酸酯(DNP)标记氨基酸,然后进行酸性水解,生成带有DNP标记的N-末端氨基酸。
通过反复处理和分离,可以逐步测定整个氨基酸序列。
- Edman降解法:该方法使用苯异硫氰酸酯(PITC)或“丙酮酸试剂”将N-末端氨基酸转化为易于检测的衍生物,然后通过逐步反应和分离,测定每个氨基酸的顺序。
2. 氨基酸定量测定:
氨基酸定量测定是测定给定样品中各种氨基酸的相对数量。
常用的方法有色谱法和光度法。
- 色谱法:此方法利用高效液相色谱法或气相色谱法分离和定量氨基酸。
高效液相色谱法基于氨基酸在固定相上的不同亲水性,利用不同的梯度洗脱溶剂来分离氨基酸。
气相色谱法则是利用气相色谱仪将氨基酸分离并通过检测器进行定量。
- 光度法:光度法是利用氨基酸与特定试剂(如二氯脲和乙酰丙酮试剂)反应产生显色化合物,测定其吸光度从而间接测定氨基酸的浓度。
这些方法在实验室中被广泛应用于氨基酸组成分析,为了得到准确的结果,通常需要经过多次重复测定和验证。
氨基酸分析法培训讲义
![氨基酸分析法培训讲义](https://img.taocdn.com/s3/m/8d33a349b42acfc789eb172ded630b1c58ee9b6c.png)
氨基酸分析法培训讲义一、引言氨基酸是构成蛋白质的基本组成单元,也是构建生物大分子结构的重要组成部分。
氨基酸分析是对生物样品中氨基酸的种类、数量和结构进行定性和定量分析的方法。
本次培训将介绍常用的氨基酸分析技术和实验操作,以及分析结果的解读。
二、常用的氨基酸分析技术1.色谱分析法色谱分析法是一种常用的氨基酸分析技术,目前主要有气相色谱法和液相色谱法两种。
气相色谱法适用于分析挥发性氨基酸,液相色谱法适用于非挥发性氨基酸。
这两种方法通过分离氨基酸混合物,再结合检测器对氨基酸进行定性和定量分析。
2.电泳分析法电泳分析法是利用氨基酸在电场中的迁移速度差异来分离和分析氨基酸的方法。
常用的电泳技术有薄层电泳、毛细管电泳和凝胶电泳等。
这些技术能够高效分离氨基酸,并通过各种标记方法进行定量分析。
3.质谱分析法质谱分析法是通过测量氨基酸分子的质量和电荷来分析氨基酸的方法。
常用的质谱技术有质谱仪联用气相色谱、质谱仪联用液相色谱和质谱成像等方法。
这些方法能够对氨基酸进行高灵敏度的定性和定量分析。
三、实验操作1.气相色谱法操作步骤(1)样品制备:将待分析样品溶解在适量的溶剂中,通常使用的是酸性的甲醇或氯仿溶液。
(2)样品预处理:使用胍气处理样品,以去除杂质和蛋白质。
(3)制备试样:将处理好的样品转移至气相色谱进样瓶中。
(4)进样和分析:使用气相色谱仪进行进样和分析,设置好分析条件,并记录分析结果。
2.液相色谱法操作步骤(1)样品制备:将待分析样品溶解在适量的溶剂中,一般使用酸性的甲醇或水溶液。
(2)样品预处理:使用钠盐处理样品,以去除杂质和蛋白质。
(3)制备试样:将处理好的样品转移至液相色谱进样瓶中。
(4)进样和分析:使用液相色谱仪进行进样和分析,设置好分析条件,并记录分析结果。
3.电泳法操作步骤(1)样品制备:将待分析样品溶解在适量的缓冲液中,它可以保持样品的稳定性。
(2)样品预处理:使用电解质调节样品的离子浓度和pH值。
氨基酸分析
![氨基酸分析](https://img.taocdn.com/s3/m/cf362f30fe00bed5b9f3f90f76c66137ef064f46.png)
氨基酸分析氨基酸分析是分子生物学研究中非常重要的技术,其用途十分广泛。
它可以用来分析氨基酸含量,蛋白质组成,序列分析以及氨基酸结构特征等,且在许多领域中都有应用。
本文将介绍氨基酸分析的概念,基本原理,主要技术手段和应用,以及未来发展的可能性。
氨基酸分析是解析蛋白质中氨基酸的分析方法,它分为几种形式,包括氨基酸分析、氨基酸提取分析、体外氨基酸合成、蛋白质组成分析和氨基酸排列分析等。
氨基酸分析的主要原理是通过改变氨基酸的电荷,使其可以用表面活性剂萃取;检测它们的电荷;提取它们的氨基酸序列;以及使用质谱仪器测量它们的分子质量等。
氨基酸分析的主要技术手段包括光度法、电泳法、化学分析法、色谱法、质谱法和聚合物链式反应法。
光度法可以识别含某种氨基酸的蛋白质;电泳法可以实现蛋白质单功能模块的筛选,减少假阳性;化学分析法可以确定蛋白质中某种氨基酸的种类和含量;色谱法可以检测蛋白质中某种氨基酸的含量;而质谱法则可以检测蛋白质中某种氨基酸的定位。
聚合物链式反应法是最新的技术,它可以同时检测蛋白质中多种氨基酸的结构特征,并能够更快更准确地完成氨基酸分析。
氨基酸分析的应用也十分广泛,它可以用来确定蛋白质的组成和定位,以及揭示其三维结构,探究蛋白质的生物功能。
例如,氨基酸分析可以帮助鉴定蛋白质与特定疾病之间的关系;探究蛋白质表达环境的影响;发现新的药效位点;以及识别药物抗性基因等等。
此外,氨基酸分析还可以用来检测蛋白质的毒性,推断它的生物活性,发展新的生物技术,以及为医疗诊断和治疗提供有价值的信息等。
未来,氨基酸分析将得益于现代生物科技的发展,包括生物信息学和化学计算学。
新兴科技可以更快更准确地检测氨基酸,对蛋白质的三维结构进行定位,确定蛋白质的生物功能,并推断其与某种疾病之间的联系。
此外,随着芯片技术的发展,氨基酸分析技术将应用于早期的检测,例如癌症的早期筛查,以及传染病的诊断等,进一步改善人们的健康状况。
总之,氨基酸分析是一种非常重要的技术,它可以帮助我们了解蛋白质的三维结构、活性、组成和定位,促进我们对蛋白质的分析和生物学研究,并且在许多领域中都有应用。
氨基酸分析
![氨基酸分析](https://img.taocdn.com/s3/m/9566dc1c52d380eb62946d1f.png)
氨基酸是蛋白质的基本结构单位和生物代谢过程中的重要物质,氨基酸分析技术对蛋白质化学、生物化学和整个生命科学研究以及产品开发、质量控制和生产管理等具有重要意义,广泛地应用于化工、轻工、食品加工、医药卫生行业的医药、食品、保健品等的分析,并且用于皮革化学鞣革机理的研究中[1,2,3]。
氨基酸分析,按分离方法分可分为纸色谱法、离子交换色谱法、反相高效液相色谱法、毛细管电泳法、薄层色谱法、气相色谱法等;按检测方法分
可分为化学分析法、电化学方法(包括电导检测、安
培检测)、分光光度法(包括可见光分光光度法,紫外光分光光度法和荧光分光光度法)等;按衍生反应的先后,可分为柱前衍生和柱后衍生法。
由于氨基酸是一类化学性质相似的生物活性物质,在分析过程中,检测方法的灵敏度对分析的准确性起非常重要的作用。
本文对氨基酸分析的检测方法进行综述,以期提高氨基酸分析的灵敏度、准确度,为快速、高效的氨基酸分析及其方法的建立提供参考。
中国科学院广州分析中心----189********。
蛋白组织质谱分析氨基酸
![蛋白组织质谱分析氨基酸](https://img.taocdn.com/s3/m/ec6c0b0af6ec4afe04a1b0717fd5360cba1a8dbe.png)
百泰派克生物科技
蛋白组织质谱分析氨基酸
氨基酸是蛋白质的基本组成单位,不同的氨基酸种类、数量和排列顺序组成了不同的、成千上万的蛋白质。
因此,氨基酸分析是蛋白质组学研究中的重要内容,在蛋白质定性鉴定中扮演着十分关键的作用。
蛋白组织质谱分析氨基酸就是利用质谱技术分析组织中蛋白质的氨基酸组成和排列顺序等,以实现组织中各种蛋白质的定性鉴定。
质谱技术鉴定氨基酸主要是根据其质荷比信号推导出分子质量来实现的,蛋白质经完全水解后产生单个的氨基酸残基,通过质谱分析可以获得其质荷比信息,再与
20种氨基酸残基的理论分子质量相匹配,可以确定氨基酸的种类,这种方法只能
确定该蛋白的氨基酸组成和种类,不能获取各氨基酸的排列顺序信息。
如果想要同时获取氨基酸的排列信息,则不能将蛋白质进行完全水解,而是酶解成小分子肽段进行多级质谱分析,即在一级质谱分析后选取肽段母离子进行进一步碎裂,检测子离子的质谱信号以鉴定肽段的氨基酸组成和排列顺序,再通过肽段之间的拼接即可实现完整蛋白质的氨基酸组成和排列方式鉴定。
百泰派克生物科技采用Thermo公司最新推出的Obitrap Fusion Lumos质谱仪结合Nano-LC纳升色谱技术,提供高效精准的蛋白质氨基酸组成质谱分析服务技术包裹,可对各种样品如氨基酸、氨基酸混合物、肽、多肽、蛋白质抑或是抗体进行氨基酸组成、成分以及含量等分析,欢迎免费咨询。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.分析方法:
毛细管 GC 可用一个色谱柱
其他常规GC,需用两个色谱柱,可分离常见AAs
检测器:电子捕获检测器
火焰离子化检测器,使用较多(通用型检测器)
四、高效液相色谱法
分离分析法
色谱分离 检测
柱前衍生化 柱后衍生化
1.检测问题
HPLC检测器:紫外、荧光、电化学
一种重要荧光衍生化反应
OPA+AAs→→→ 产物
λex=340nm
λem=455nm
4. 与醛反应,形成西佛碱:
R-CHO+NH2-RCH-COOH→R-CH=N-RCH-COOH+H2O
固定化酶,或标记Ag Ab时所用的方法
5.脱氨基反应——酶催化反应
AAs氧化酶
AAs + O2→→→→→→→Oxoacid酮酸+ H2O2+ NH3
产物——有UV吸收
——有荧光λex=340nm
λem=455nm
3.烃基化反应
2,4二硝基氟苯FDNB+AAs→→→→DNP-氨基酸(黄色)
Sanger反应,用于鉴定氨基酸方程式
荧光胺(Fluorescamine)+AAs→→→产物λex=390nm
λem=475nm
邻苯二甲醛(o-phthalaldehyde, OPA)反应
NH CH2
HCCH24-羟脯氨酸Hydroxyproline(Hyp)
COOH
④丹酰氯
(1)一般柱前衍生。但试剂产物对色谱柱寿命有影响
条件:60℃10min
(2)可紫外 可荧光,pmol(10-12)水平灵敏度
⑤FITC异硫氰酸荧光素
⑴过程:
FITC+丙酮+AAs+pH9.2混合,避光放置过夜
⑵特点
3.分析方法:
——一维电泳
——二维电泳-色谱分离
三、气相色谱法 (Gas Liquid Chromatography)
1.试样的衍生化
——问题提出:GC要求 样品可气化,AAs难气化
——衍生化方法:
·试剂:常用三甲基硅烷(Trimethylsilyl TMS对AAs衍生
·方法:
N.O-bis(trimethylsilyl)trifluoroacetamide(BSTFA)
---CH2---C====CH组氨酸Histidine (His)
NHN
CH2
不常见氨基酸
CH2—OH
NH CH2
HCCH24-羟脯氨酸Hydroxyproline(Hyp)
COOH
NH2
HCCH2CH2CH(OH)CH2NH2
COOH
5-羟赖氨酸Hydroxylysine (Hyl)
三、立体异构体
⑶按衍生操作
在线衍生on-line可用于柱前或柱后衍生
脱线衍生off-line多用于柱前衍生
介绍具体衍生化方法及特点
② 茚三酮(ninhydrin)最成熟的方法
(1)过程
茚三酮 汇合 加热100℃570nm测A
(2)特点
成熟常用
可见检测,紫外也可
只能柱后衍生
灵敏度10-9mol 10uL10-4mol/L
茚三酮邻苯二甲醛opafmdc按分离前后顺序柱前衍生precolumn柱后衍生postcolumn20按衍生操作在线衍生online可用于柱前或柱后衍生脱线衍生offline多用于柱前衍生介绍具体衍生化方法及特点茚三酮ninhydrin最成熟的方法1过程茚三酮汇合加热100570nm测a2特点灵敏度109mol10ul104mollopa1过程opaaasph910快速反应12min荧光产物340455nm2特点可柱前衍生可柱后衍生产物不稳定12min后降解只能在线衍生21灵敏度高pmol1012fmol1015只有伯氨氨基酸可衍生羟脯氨酸不可ch2ohnhch2hcch24羟脯氨酸hydroxyprolinehyp1一般柱前衍生
L-丙氨酸D-丙氨酸
3.分布
——蛋白质经温和水解后,其中α-氨基酸都是L型氨基酸
——虽然自然界中,存在有D型氨基酸
——人工合成氨基酸 DL消旋体racemate(DL等mol混合物)
四、氨基酸的酸碱性质
1.基本性质:
——酸-COOH失H+
——碱-NH2得H+, 形成两性离子,两性电解质
两性解离
2.氨基酸得解离过程
以丙氨酸为例,以NaOH的滴定:
PI——iso-ionic pH (PI)
等离子点pH
在某pH,每个氨基酸分子带正负电荷相等,分子表观净电荷为0。
PI——iso-electric point
等电点
在某pH,每个分子呈电中性,在电场中无电泳迁移
五、反应
UV Vis——20种α氨基酸
——可见区 无吸收
——<220nm,有紫外吸收
③OPA
(1)过程
OPA+AAs→pH9-10快速反应1-2min荧光产物 340
455nm
(2)特点
可柱前衍生 可柱后衍生
产物不稳定,1-2min后降解,只能在线衍生
需自动反应装置,否则重现性不好
灵敏度高pmol(10-12)-fmol(10-15)
只有伯氨氨基酸可衍生,(羟)脯氨酸不可
CH2—OH
——流动相
1.固定相
纸色谱-滤纸
薄层色谱-硅胶、氧化铝、纤维素粉——铺板,制板
2.流动相
多元流动相:水、丁醇、HAc,丙酮、酚,NH3……
根据不同要求:流动相具有不同组成,不同配比
3.分析方法
①试样预处理
采用阳离子交换柱、萃取、渗析——沉淀蛋白
去除干扰物:蛋白、盐、碳氢化合物
2选择溶剂系统
多种组合配比
R——不带电荷的极性基团
-H甘氨酸Glycine(Gly)
-CH2OH丝氨酸Serine(Ser)
-CH(OH)CH3苏氨酸Threonine(Thr)
-CH2SH半胱氨酸Cysteine(Cys)
-CH2--OH酪氨酸Tyrosine(Tyr)
-CH2CONH2天冬酰胺Asparagine(Asn)
α-羧基参与的反应,分析化学中应用不多
(二)α-氨基与α-羧基共同参与的反应
1.与茚三酮反应(Ninhydrin)
分析化学最常用氨基酸衍生方法
水合茚三酮+ AAs→→ 还原茚三酮+AAs被分解→→
兰紫色产物 570nm测A.
有紫外吸收
2.成肽反应Peptide
以后详细讲
第二节 氨基酸分析
氨基酸分析――分离分析方法
→ □-SO3AAH++Na+
逐渐提高pH和Na.不同AAH+洗脱下来,梯度洗脱
由此原理生产氨基酸分析仪
检测
采用在线柱后衍生化方法,主要有两种:
⑴茚三酮p374结果见p378
⑵OPA
②分离AAs衍生物,如OPA,
提前衍生,反应1分钟r+甲醇,四氢呋喃,梯度洗脱.
只能柱前脱线衍生
灵敏度较高,比OPA高,激光荧光,amol10-18mol
毛细管电泳中常用
2.色谱分离
按柱前衍生柱后衍生
分离AAs衍生物分离AAs
分离对象不同
1分离AAs
色谱柱-离子交换色谱柱-填充阳离子交换树脂
强酸型-SO3H
洗脱剂-缓冲液+盐(柠檬酸钠)
原理-
□-SO3H→ 碱处理→ □-SO3Na+AAH+pH=2-3
1.α-氨基酸
NH2
HCR
COOH
αC除甘氨酸外,其中αC上四个取代基不同,为手性C,手性异构体(isomers)Stereo立体,
enantiomers对映体
2.氨基酸立体异构体分类
——按绝对构型(absolute configuration)
左旋L型,右旋D型,
与标准物——甘油醛比较而定
L-甘油醛glyceraldehydeD-甘油醛
——原因:氨基酸种类多
结构较相似
不经分离,难以直接分析,
现有直接分析方法,如酶、免疫分析法测定氨基酸选择性不够
——分离方法——高分辨分离技术:色谱、电泳
按分离方法,分为四部分:
——纸、薄层色谱
——电泳
——气相色谱
——高效液相色谱
一、纸色谱,薄层色谱法
色谱——固定相:纸色谱
薄层色谱——平面(板)液相色谱
都是α-氨基酸,除了:
脯氨酸羟脯氨酸
其中20种常见氨基酸,几种不常见氨基酸
二、分类
α-氨基酸通式:–COOH、-NH2在同一个C上。不同氨基酸在于R不同
NH2
HCR
COOH
R——非极性基团
—CH3甲基丙氨酸Alanine (Ala)
—CH2(CH3)2异丙基缬氨酸Valine(Val)
—CH2CH(CH3)2异丁基亮氨酸Leucine (Leu)
其它:
Sanger反应
2,4二硝基氟苯FDNB+AAs→→→→DNP-氨基酸(黄色)
丹酰氯AAs——有荧光λex=340nm
λem=455nm常用于分离前衍生化
⑤应用
定性:利用RF,在三个不同的溶剂系统下,确证
半定量:重现性不好
定量:扫描 挖点
二、电泳法
1.支持物:纸、纤维素膜、硅胶
2.缓冲液体系:常见pH2.0 pH5.3
—CH(CH2CH3)CH3丁基异亮氨酸Isoleucine(Ile)
CH2
NH CH2
HCCH2脯氨酸Proline (Pro)
COOH
—CH2—苯丙氨酸Phenylalanine(Phe)