生物法处理有机废气

合集下载

有机废气(VOCs)处理生物分解法

有机废气(VOCs)处理生物分解法

A167-有机废气(VOCs)处理生物分解法生物分解法是在已成熟的采用微生物处理废水基础上发展起来的处理有机废气的方法。

通过附着在多孔、潮湿介质上的活性微生物,用大气中低浓度的有机废气为其生命活动的能源或养分,将其转化为简单的无机物(CO2、H2O)或细胞组成物质。

按照荷兰学者Ottengraf提出的生物膜理论,生化法处理有机废气主要经历3个步骤:①废气中的有机污染物首先同水接触并溶解于水中(即由气膜扩散进入液膜);②溶解于液膜中的有机物成分在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;③进入微生物体内的有机污染物在其自身的代谢过程中作为能源和营养物质被分解,经生物化学反应最终转化成为无害的化合物。

近些年来国外研究者对生物分解法处理VOCs在动力学模型、微生物菌种的培养及工艺设备方面进行了大量的研究工作。

通过对生物废气处理过程数学模型的建立与计算,预测在给定条件下生物净化法的处理效果,为设计和过程优化提供依据。

Tang研究了生物过滤器的吸附、微动力学、质量传递和气体流线谱之间的相互作用,用开发出的数学模型描述了生物过滤器的瞬间特性,实验研究和模型分析结果均表明,过滤器的瞬间特性主要受过滤材料的性质和运行条件影响。

Okkerse等研究了生物滴滤池处理废气中生物量累积和阻塞的问题,并利用二氯甲烷作为模拟污染物质,获得了动力学模型。

Hwang等研究了甲苯生物过滤法的动力学行为,由于甲苯是不溶于水的气体污染物,所以可作为模型化合物选用,有效性因素分析结果表明,生物过滤非水溶性化合物(如甲苯)时,受系统质量传递影响,不宜在气体流动速度较高的条件下操作。

Abumaizar用提出的稳态数学模型描述(VOCs)在生物过滤池中的去除动力学,在稳态条件下处理苯、甲苯、乙苯和二甲苯,实验数据与模型预测比较结果表明,粒状活性炭存在可提高堆肥生物过滤池对苯系污染物的去除效率。

郭静对反应器中微生物的生长状况进行了分析,发现被处理污染物的成分以及微环境条件不同,将繁殖出不同的微生物种群。

生物法处理有机废气(超详细)

生物法处理有机废气(超详细)

生物法处理废气废气的生物处理是利用微生物的生命过程把废气中的气态污染物分解转化成少或甚至无害物质。

自然界中存在各种各样的微生物,几乎所有无机的和有机的污染物都能转化。

生物处理不需要再生和其他高级处理过程,与其他净化法相比,具有设备简单、能耗低、安全可靠、无二次污染等优点,但不能回收利用污染物质。

1.2.3.1基本原理在适宜的环境条件下,微生物不断吸收营养物质,并按照自己的代谢方式进行新陈代谢活动。

废气中生物处理正是利用微生物新陈代谢过程中需要营养物质这一特点,把废气中的有害物质转化成简单的无机物如二氧化碳、水,以及细胞物质等。

1.2.3.2微生物降解污染物的过程由于微生物将废气中的有害物质进行转化的过程在气相中难以进行,所以废气中气态污染物首先要经气相转移到液相或固体表面的液膜中的传质过程,然后污染物才在液相或固体表面被微生物吸附降解。

按照Ottengraf提出的生物膜理论,生物法净化处理工业废气一般要经历以下四个步骤(图1-1)。

1)废气中的污染物首先同水接触并溶解于水中(由气膜扩散进入液膜);2)溶解于液膜中的污染物在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;3)微生物将污染物转化为生物量、新陈代谢副产品或者C02、水等;4)生化反应产物002从生物膜表面脱附并反扩散进入气相本体,而1120则被保持在生物膜内。

气态污染物的生物处理过程也是人类对自然过程的强化和工程控制,其过程的速率取决于:①气相向液固相的传质速率(与污染物的理化性质和反应器的结构等因素有关);②能起降解作用的活性生物质量;③生物降解速率(与污染物的种类、生物生长环境条件、控制作用有关)。

表1-1列出了各种气态污染物的生物降解效果。

填料固液混合层图1-1生物法净化工业废气的传质降解模型表1-1微生物对各种气态污染物的生物降解效果1.2.3.3废气生物处理的微生物浩成环保——提供海量废气处理资料下载按照获取营养的方式不同,用于污染物生物降解的微生物有两大类:自养菌和异养菌。

生物法处理有机废气(超详细)

生物法处理有机废气(超详细)

生物法处理废气废气的生物处理是利用微生物的生命过程把废气中的气态污染物分解转化成少或甚至无害物质。

自然界中存在各种各样的微生物,几乎所有无机的和有机的污染物都能转化。

生物处理不需要再生和其他高级处理过程,与其他净化法相比,具有设备简单、能耗低、安全可靠、无二次污染等优点,但不能回收利用污染物质。

1.2.3.1 基本原理在适宜的环境条件下,微生物不断吸收营养物质,并按照自己的代谢方式进行新陈代谢活动。

废气中生物处理正是利用微生物新陈代谢过程中需要营养物质这一特点,把废气中的有害物质转化成简单的无机物如二氧化碳、水,以及细胞物质等。

1.2.3.2 微生物降解污染物的过程由于微生物将废气中的有害物质进行转化的过程在气相中难以进行,所以废气中气态污染物首先要经气相转移到液相或固体表面的液膜中的传质过程,然后污染物才在液相或固体表面被微生物吸附降解。

按照Ottengraf 提出的生物膜理论,生物法净化处理工业废气一般要经历以下四个步骤(图1-1)。

1)废气中的污染物首先同水接触并溶解于水中(由气膜扩散进入液膜);2)溶解于液膜中的污染物在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;3)微生物将污染物转化为生物量、新陈代谢副产品或者C02、水等;4)生化反应产物0 0 2从生物膜表面脱附并反扩散进入气相本体,而1120 则被保持在生物膜内。

气态污染物的生物处理过程也是人类对自然过程的强化和工程控制,其过程的速率取决于:①气相向液固相的传质速率(与污染物的理化性质和反应器的结构等因素有关);②能起降解作用的活性生物质量;③生物降解速率(与污染物的种类、生物生长环境条件、控制作用有关)。

表1-1 列出了各种气态污染物的生物降解效果。

填料固液混合层图1-1生物法净化工业废气的传质降解模型按照获取营养的方式不同,用于污染物生物降解的微生物有两大类:自养菌和异养菌。

自养菌可以在无有机碳和氧的条件下,以光和氨、硫化氢、硫和铁离子等的氧化获得必要的能量,而生长所需的碳则由二氧化碳通过卡尔文循环提供,因此它特别适合于无机物的转化。

生物池处理废气的原理是

生物池处理废气的原理是

生物池处理废气的原理是
生物池处理废气的原理是利用微生物(如细菌、真菌等)降解废气中的有机物质,将其转化为无害的物质或将其吸附并固定在生物体内,从而净化废气。

具体原理如下:
1. 吸附: 废气经过生物池时,其中的有机物质可以被微生物吸附在其表面。

2. 降解: 吸附的有机物质被微生物降解,微生物利用有机物质作为能源和营养源,通过代谢作用分解为无害的物质,如二氧化碳和水。

3. 含集: 部分废气中的有机物质可能无法被微生物降解,但仍能被微生物生长和繁殖。

微生物生长繁殖时会吸附废气中的有机物质并将其固定在生物体内,减少其释放到大气中。

4. 氧化: 一些废气中的有机物质可能需要在氧化条件下才能被降解,生物池中的微生物会提供足够的氧气以促进有机物质的降解。

通过上述过程,生物池可以有效地净化废气中的有机污染物,达到环境保护和空气治理的目的。

这种生物处理废气的方法相对于化学和物理方法更为环保和经济。

对生物法处理VOCs有机恶臭气体的分析

对生物法处理VOCs有机恶臭气体的分析

对生物法处理 VOCs有机恶臭气体的分析摘要:随着人们生活水平的显著提高,工业生产水平也实现了进步,但是不容忽视的是在工业发展进程中,环境污染问题日趋严重,特别是VOCs废气治理方面始终是重要难点。

基于此,本文深入分析生物法处理VOCs有机恶臭气体的路径,希望能够对当前我国生物废气生物处理法的水平提升提供必要的参考和依据。

关键词:VOCs;有机恶臭气体;生物法引言:挥发性有机恶臭气体(VOCs)如果直接排放到空气中,则会引发更为严重的环境污染问题,如雾霾、化学烟雾等,造成大气环境臭氧层的破坏,致使全球变暖程度加深。

因此在经济发展过程中,既要保证工业生产水平,同样也要针对各类废气和有机恶臭气体进行切实有效的处理,避免造成二次污染,提高废气处理水平,因此本文对生物法处理VOCs有机恶臭气体开展分析有重要的实践应用价值。

1 应用生物法处理VOCs有机恶臭气体的主要优势在针对VOCs有机恶臭气体进行处理时,传统的工艺主要为物理处理法、化学处理法等。

其中物理处理法主要有洗涤和活性炭吸附等处理手段,虽然应用传统的处理工艺,能够对有机恶臭废气中的污染物质进行去除,但是其去除效率十分有限,甚至能够直接引发废气的二次污染。

在应用活性炭吸附处理法时,如果吸附饱和,则需要对其进行脱附或焚烧处理,这样的物理法处理方式会造成VOCs 废气处理成本增加。

除此之外,应用化学处理法中会用到多种类型的化学试剂,而这些试剂也大多会对自然生态环境造成影响,无法直接排入到环境之中,期间需要应用其他类型的处理方式进行二次处理,确保废气相关指标达标,因此应用化学法处理有机恶臭气体,则难免会造成工艺复杂的问题。

除了物理法和化学法之外也有一些处理方式,如燃烧以及膜分离法等,虽然处理效率较高,但是该处理方式更加适用于浓度较高的废气,而对于低浓度废气,其应用优势和效果并不明显且投入成本和运营成本过高。

由此可见,应用生物法对VOCs有机恶臭气体进行有效处理,能够进一步提高微生物的氧化代谢作用,并且应用生物法综合成本较低,除臭效果和废气处理效果更好,也避免了对环境的二次污染。

生物法处理挥发性有机废气(VOCs)的研究

生物法处理挥发性有机废气(VOCs)的研究

生物法处理挥发性有机废气(VOCs)的研究发表时间:2019-09-16T16:43:09.680Z 来源:《基层建设》2019年第17期作者:周相宙代玮马立科[导读] 摘要:文中介绍了生物法处理挥发气体的技术,详细介绍了生物滴滤塔、生物滤池以及生物洗涤器的优点和缺点,阐述了生物法处理挥发性有机废气存在的问题和未来的研究方向,为废气处理技术的提升提供一定的意见。

青岛市环境监测中心站山东青岛 266003摘要:文中介绍了生物法处理挥发气体的技术,详细介绍了生物滴滤塔、生物滤池以及生物洗涤器的优点和缺点,阐述了生物法处理挥发性有机废气存在的问题和未来的研究方向,为废气处理技术的提升提供一定的意见。

关键词:生物法;挥发性有机废气;研究1生物法处理挥发气体的技术简介生物净化的过程就是完成氧化分解反应的过程,活性微生物吸附在潮湿、多孔的介质上,将废气中的有机物吸收体内作为维持生命过程的养分和重要能量来源,经过反应后转化成H2O、CO2等简单无机物或者是细胞的重要组成物质等。

在此过程中废气中的有机物的含量经过氧化分解反应后不断降低,废气被净化。

1.1生物法处理有废气的原理生物法处理废气包含3个过程,首先是废气从气相传质到液相的过程;再次是经过对流和扩散过程,污染物从液膜的表面移动到生物膜的内部;微生物经过生物化学反应后转化为生物内部组成、新陈代谢副产物、CO2和H2O。

生物法处理污染物时要具备一定的操作条件和经验[1]。

要有一定的水分、保证VOCs气体从气相顺利转移到液相、PH值、有一定的缓冲量、VOCs气体被生物充分吸收。

虽然生物化学法处理废气的研究工作已经进行了很多年,但是目前仍然没有统一、较权威的理论。

荷兰学者Ottengraf是根据以往的双膜理论而提出的生物膜的相关理论,孙佩石依据吸附理论衍生了生物膜理论。

生物膜就是生物群在固体载体外部形成了具有粘性的膜状结构[2]。

环境比较潮湿微生物从废气中吸收有机物的各种物质,经过一些氧化分解反应,满足微生物日常消耗、生长、繁殖的能源需求,同时增加生物膜的厚度。

生物滴滤法净化挥发性有机废气(VOCs)的研究

生物滴滤法净化挥发性有机废气(VOCs)的研究

生物滴滤法净化挥发性有机废气(VOCs)的研究生物滴滤法净化挥发性有机废气(VOCs)的研究引言:挥发性有机化合物(VOCs)是一类在大气中存在并具有挥发性的废气,由于其具有毒性和臭味,对人体健康和环境造成了严重的影响。

有效地净化和治理VOCs成为了环境保护领域的重要课题。

生物滴滤法作为一种生物处理技术,具有高效、环保和经济的特点,成为了净化VOCs的研究热点之一。

本文将系统地介绍生物滴滤法的原理、应用和进展,以及未来的发展趋势。

一、生物滴滤法的原理生物滴滤法是利用生物膜或活性污泥进行滴滤处理,通过废气与生物膜或活性污泥接触,使废气中的有机污染物通过生物作用转化为无机物或无害物质。

该方法主要依靠生物膜中的微生物,通过附着和代谢作用,将VOCs降解为二氧化碳和水。

生物滴滤法通过高效的生物滤层,实现了高效的挥发性有机废气的净化效果。

二、生物滴滤法的应用生物滴滤法适用于许多领域的VOCs处理,如印刷、涂装、化工等行业。

它不仅可以高效地净化VOCs废气,还可以将VOCs 转化为有用的物质。

例如,在制药行业,生物滴滤法已成功应用于处理含有有机溶剂的废气,并通过生物转化产生有机酸和生物质。

三、生物滴滤法的进展随着对环境保护的要求越来越高,生物滴滤法在净化VOCs方面得到了广泛应用和研究。

目前,研究者们正在致力于改进生物滴滤法的性能和效果,以应对不同类型和浓度的VOCs废气。

例如,引入多种微生物群落,提高废气处理的效率和稳定性;研究膜材料和改进传质装置,减少压降和提高处理能力;优化运行参数,如温度、湿度、流速等,以提高生物滤层的性能。

此外,与其他生物处理技术相结合,如生物膜反应器、生物滤池等,也为生物滴滤法的发展提供了新的途径。

四、生物滴滤法的未来展望虽然生物滴滤法在VOCs废气处理中取得了较好的效果,但仍存在一些挑战和不足。

未来的研究可以侧重于以下几个方面的改进:一是提高生物滤层的稳定性和降解效率,以适应不同的工业废气污染。

生物发酵废气处理方法

生物发酵废气处理方法

生物发酵废气处理方法生物发酵废气是指在微生物发酵过程中产生的一种废气,主要成分是二氧化碳、一氧化碳、硫化物、氨等。

这些废气中的有害物质对于人体和环境都有一定的危害性。

因此,对于生物发酵废气的处理非常重要。

下面介绍几种常见的生物发酵废气处理方法。

1.生物滴滤法生物滴滤法是利用微生物菌群来降解废气中的有害物质。

首先,将废气通过滴滤器进行预处理,去除颗粒物和一些无机气体。

然后,将废气通过滴滤装置,使废气和微生物菌群接触,微生物通过降解废气中的有害物质,将其转化为无害物质。

最后,经过滤网去除微生物,得到净化后的废气。

2.生物吸附法生物吸附法是利用生物材料对废气中的有害物质进行吸附。

常用的生物材料有活性炭、活性白土等。

将这些生物吸附剂放置在吸附装置中,废气通过时,有害物质被生物吸附剂吸附下来,进而实现废气净化。

3.生物氧化法生物氧化法是利用微生物对废气中的有害物质进行氧化降解的方法。

常用的微生物有泡泡藻、硫氧化细菌等。

将这些微生物放置在生物氧化器中,废气经过生物氧化器时,微生物利用废气中的有机物进行代谢,将有害物质转化为无害的氧化产物,从而实现废气净化。

4.生物过滤法生物过滤法利用生物滤料对废气中的有害物质进行吸附和分解。

常用的生物滤料有活性炭、陶粒、葡萄藤丝等。

将这些生物滤料填充在生物过滤器中,废气经过时,有害物质被生物滤料吸附并分解,从而达到净化的效果。

5.生物堆肥法生物堆肥法是将废气中的有机物进行堆肥处理,使其转化为无害物质的方法。

将废气中的有机物与一定比例的菌群和添加剂混合,放置在适宜的条件下进行堆肥处理,经过一段时间的堆肥,废气中的有机物被微生物逐渐分解,转化为稳定的有机肥料,从而实现废气净化和资源化利用。

以上是几种常见的生物发酵废气处理方法,这些方法各有优劣,具体选择哪种方法主要取决于废气的成分和处理要求。

废气处理过程中需要注意适宜的温度、湿度、通气量等参数的控制,以确保处理效果。

同时,不同的废气处理方法可以结合使用,形成综合的废气处理系统,提高废气处理的效率和效果。

废气处理中生物法的原理

废气处理中生物法的原理

废气处理中生物法的原理废气处理中的生物法是指利用生物体代谢活动来降解和转化废气中的有害气体成分,以达到净化废气的目的。

生物法处理废气主要是利用微生物的生长和代谢特性,通过生物转化、吸附和副产物转化等过程将废气中的污染物转化为无害物质。

生物法废气处理的原理主要包括生物吸附、生物脱除和生物降解三个过程。

1. 生物吸附:利用微生物细胞表面的菌体或菌丝结构,对废气中的有害气体分子进行吸附。

通过微生物的细胞壁和附着物来吸附废气中的污染物,使其分子附着在生物体表面上,从而实现对有害气体的去除。

生物吸附主要适用于有机废气中的低浓度有机物和某些无机物质。

2. 生物脱除:利用微生物细胞内特异的酶系统,对废气中的有害气体进行转化和脱除。

通过微生物体内的酶系统,将废气中的有害气体经过代谢转化为无害物质,并释放为代谢产物或溶解于细胞内外,从而达到废气净化的目的。

生物脱除主要适用于高浓度有机废气、硫化氢、氨气等。

3. 生物降解:利用微生物体内的生物化学反应,将废气中的有机物分子分解为无害物质。

通过微生物体内酶的作用,有机物分子被分解为无害物质,例如二氧化碳和水,这些无害物质可以释放到废气中或通过生物体代谢排出。

生物降解适用于含有可生物降解有机物的废气治理。

生物法废气处理的工艺流程一般包括废气收集、生物反应器、废气处理和废气排放四个主要环节。

首先,废气收集是指通过管道、风机等设备将废气从生产源处收集起来,集中到废气处理系统中。

废气收集主要是为了提高废气处理系统对废气的利用率,确保废气处理效果。

然后,废气进入生物反应器,在生物反应器中进行生物转化和净化。

生物反应器一般分为厌氧反应器和好氧反应器两种。

厌氧反应器适用于处理含有硫化氢、氨气等有机废气,而好氧反应器适用于处理含有甲醛、苯、甲苯等有机废气。

接下来,经过生物反应器处理后的废气,进入废气处理设备进行后处理。

后处理主要包括废气的分离、过滤、清洗和脱湿等步骤,以进一步降低废气中有害气体的浓度,确保废气净化的效果。

废气处理 生物法

废气处理 生物法

废气处理生物法
废气处理是指将产生的废气进行处理,去除污染物,以减少对环境的影响。

其中,生物法是一种利用微生物和生物化学反应来净化废气的处理方法。

生物法的原理是通过使用特定的微生物,将废气中的有机污染物转化为无害的物质。

这些微生物可以是自然界存在的,也可以是经过改良和选育的菌群。

在生物法中,废气首先经过预处理,去除其中的颗粒物、气态污染物等。

然后,废气会进入一个生物反应器,这个反应器内会有适宜生物生长和活动的环境。

微生物会利用废气中的有机污染物作为能源和营养源,通过酵解、氧化等过程将其转化为二氧化碳、水和其他无害物质。

最后,经过处理后的废气会被释放到大气中或经进一步处理后达到排放标准。

生物法相比于传统的物理或化学处理方法具有许多优点。

首先,它是一种相对低成本的处理方法,可以利用自然界中已经存在的微生物资源。

其次,生物法能够高效地去除有机污染物,处理效果稳定可靠。

此外,生物法还具有可持续性和环保性,不会产生二次污染物。

值得一提的是,生物法在处理某些特定的有机废气中表现出很高的选择性,能够实现高效的处理效果。

总之,生物法是一种有效的废气处理方法,通过利用微生物和生物化学反应将废气中的有机污染物转化为无害物质。

它具有低成本、高效、环保等诸多优点,应用广泛。

有机废气生物法净化技术

有机废气生物法净化技术
典型案例: 1、北京酒仙桥再生水厂污水站异味治理工程 2、济南市水质净化一厂/三厂异味治理项目 3、湖南湘潭宾之郎食品科技有限公司生产废气治理项目 4、
技术应用
工程名称:北京酒仙桥再生水厂污水站异味治理工程 工艺流程:集气+喷淋加湿+生物过滤+活性炭吸附 废气成分:氨、硫化氢、甲硫醇、甲硫醚等 处理规模: 15500 m3/h 工程地点:北京
技术应用
工程名称:湖南湘潭宾之郎食品科技有限公司生产废气治理项目 工艺流程:集气+预处理+生物过滤 废气成分:氨、硫化氢、甲硫醇、甲硫醚等 处理规模: 10000 m3/h 工程地点:湖南湘潭
用低等
占地面积大
工艺介绍
应用范围:石化、医药、焦化、轻工等行业生产车间及污水处理站废气治理。
废气特征: 1. 甲硫醇、甲硫醚等有机物为主,含有H2S、NH3等无机异味气体; 2. 废气气量大,污染物浓度低。
治理工艺:集气+预处理(调温、调湿、除尘)+生物处理+深度处理 1、预处理:针对废气特征(含尘量、pH、温度、湿度等)选择合适的预 处理装置,保证进入生物处理系统的废气的pH、温度、湿度等条件; 2、生物处理:根据废气风量、污染物成分选择合适的生物处理技术; 3、深度处理:根据需要采取活性炭吸附、光催化氧化等技术作为深度处 理保证废气达标排放。
技术应用
工程名称:济南市水质净化一厂污水池异味治理项目 工艺流程:集气+土壤除臭装置 废气成分:氨、硫化氢、甲硫醇、甲硫醚等 处理规模: 54000 m3/h 工程地点:济南
技术应用
工程名称:济南市水质净化三厂异味治理项目 工艺流程:集气+生物土壤除臭装置 废气成分:氨、硫化氢、甲硫醇、甲硫醚等 处理规模: 21500 m3/h 工程地点:济南

生物法在挥发性有机废气处理中的应用李冬梅

生物法在挥发性有机废气处理中的应用李冬梅

生物法在挥发性有机废气处理中的应用李冬梅发布时间:2022-05-10T10:08:42.887Z 来源:《探索科学》2022年1月下作者:李冬梅[导读] 随着我国经济和科技的快速发展,个别区域空气重污染现象逐渐加剧。

江苏新睿境界环保科技有限公司李冬梅摘要:随着我国经济和科技的快速发展,个别区域空气重污染现象逐渐加剧,制约经济与环境的协调发展挥发性有机物是细颗粒物和臭氧协同控制的核心污染物之一,但目前我国挥发性有机物污染控制仍处于摸索阶段,其控制措施的有效性有待总结研究。

为了进一步推动挥发性有机物管控的有效性和科学性,本文分析了近年来我国挥发性有机物的主要来源,概述了挥发性有机废气处理中的应用,以供参考。

关键词:生物法,有机废气处理;应用引言我国的工业发展速度也逐步加快,伴随产生的环境破坏问题也日益突出。

在各种影响因素中,有机废气的影响尤为突出,特别是印刷、涂装、石化、化工等行业。

有机废气的大量排放对我国的社会环境、人民生活质量都造成了非常恶劣的影响,为了改善人民群众的生活环境,提升生活质量,有必要对复杂的工业有机废气进行专业治理,以避免有机废气排放对建设我国清洁社会的影响,并从源头上解决空气污染问题,实现各行各业的长效、绿色以及可持续发展。

1挥发性有机废气的主要来源近年来,我国的化工行业得到了有效的发展,尽管给人们的生产生活带来了极大的便利,但由于化工生产往往会涉及大量的较为复杂的化学反应,这就使得诸多具备毒、不易溶解、易燃易爆等特点的化学废气产生。

1.1石油裂解现阶段,化工生产过程中应用的诸如醇、烃、醛、酸等物质,所用的原料大多是通过石油裂解所得到的,在石油裂解过程中往往会产生大量的废气,比方说,原油在裂解炉、催化重整炉等设备内进行反应时,热解、裂化过程中会产生一定的有机废气,同时,在原料及产品储存、运输过程中,由于有机物闪点低,可挥发性强,如果未采取相应的处理措施,必然会导致空气污染问题的出现。

生物法有机废气处理的工艺及设计

生物法有机废气处理的工艺及设计

生物法有机废气处理的工艺及设计生物法有机废气处理是一种利用生物技术处理有机废气的方法,广泛应用于化工、制药、食品加工、冶金等产业中。

其工艺包括生物氧化和生物吸附两种主要方式,设计时需要考虑废气成分、浓度、温度、湿度等因素。

下面将详细介绍生物法有机废气处理的工艺及设计。

生物氧化是将有机废气中的有机物通过微生物代谢氧化成无害的无机物的过程。

生物氧化反应需要提供合适的基质、温度、pH值和氧气等条件。

常见的生物氧化反应有好氧生物氧化和厌氧生物氧化。

好氧生物氧化是利用好氧微生物将有机物氧化成CO2和H2O的过程。

该过程需要提供充足的氧气,通常通过喷淋式、曝气式或百叶窗式氧气供给设备实现。

为了提高反应效率,常规反应器可采用活性污泥法、固定膜生物反应器或曝气沟反应器等工艺。

厌氧生物氧化是利用厌氧微生物在缺氧的环境下将有机物转化为甲烷和CO2的过程。

通常采用厌氧反应器进行反应,如厌氧污泥床反应器、厌氧滤池反应器等。

为了保持缺氧环境,反应器内可设计适当的封闭系统,并提供适量的供给碳源和营养物质。

生物吸附是利用生物颗粒或生物膜表面的活性微生物吸附有机气体分子的工艺。

生物吸附通常包括干法吸附和湿法吸附两种方式。

干法吸附是将有机气体在生物颗粒表面吸附后进行降解,适用于有机气体浓度较低的情况。

常用的干法吸附包括生物填料层、生物滤床和生物棉等,其中生物填料层是将生物颗粒填充在填料层中,通过填料层内的空隙和微生物颗粒表面的吸附作用实现废气处理。

湿法吸附是将废气通过湿润的微生物颗粒或生物膜表面,通过微生物的吸附和生物膜的生物降解作用将有机物转化成无害物质。

常用的湿法吸附包括湿式生物过滤器、生物湿润床和生物液滴沉滤塔等。

在设计生物法有机废气处理系统时,首先需要了解废气的成分、浓度、温度、湿度等参数。

根据不同的有机物特性选择合适的生物处理方式,同时考虑处理效率、设备可靠性、运行成本和维护成本等因素。

设备的设计要合理布置反应器、吸附剂和辅助设备,确保废气与生物颗粒或生物膜充分接触,同时提供充足的氧气、碳源和营养物质。

生物法处理挥发性有机废气(VOCs)的研究

生物法处理挥发性有机废气(VOCs)的研究

18工业技术 常温下,饱和蒸气压大于70pa,沸点在260摄氏度以内的有机化合物称为挥发性有机物。

挥发性有机物包括氨气、碳氢化合物、苯以及苯的衍生物等。

一般情况,挥发性有机物气体会对人的身体健康和环境造成巨大的影响。

部分挥发性有机物具有致癌的风险,包括氯乙烯、苯等。

目前,会采用生物法、燃烧法、吸附法的方式对挥发性有机物进行处理,挥发性有机气体利用生物法进行处理时,其运营成本低、效果显著、不会对环境造成污染,在处理气量大、浓度低且生物降解性较好的废气时,优点会更显著一些。

1 生物法处理挥发性有机气体的工艺 微生物能够在适合其生存条件下,将挥发性有机物中的能源作为自己的营养物质,将有机物分解为二氧化碳和水,这就是生物法。

利用生物法对挥发性有机物进行处理,已经有很多年的发展时间,但是目前国际上还是没有一个统一的理论。

荷兰学者Ottengraf S P提出的生物膜理论在国际上比较受欢迎,而国内则是由孙配石提出的吸附生物酶理论。

生物法处理挥发性有机气体采用的设备为生物过滤池、生物虑滴塔和生物洗涤器三大部分,这些也是活性污泥处理工艺。

其工艺大致为增湿器对挥发性气体进行润湿,有机废气通过附有生物膜的填料层时,有机废气里的污染物就能被生物膜上的微生物所分解。

需要注意的是,生物过滤池中的液体是相对静止或流速很慢的,并且容器也要根据实际情况对过滤池中的液体进行补充、调节PH。

生物虑滴塔和生物过滤池的构造基本相同,区别是生物虑滴塔的液体是从上方的喷头喷洒出,降解功能很强。

当挥发性有机气体进入生物虑滴塔时,已经和滤膜上的微生物接触并发生反应,达到净化气体的效果,气体流动过程中,通过塔顶来排除处理后的气体。

表1 生物法处理挥发性有机气体的性能比较工艺优点缺点适用条件生物过滤池操作简便,十分简单,运营成本和维修成本低,对环境无污染,具有高效的处理能力占地面积较大,废气流量低,无法对高浓度有机废气进行处理,无法对处理过程进行控制。

生物法处理有机废气(超详细)

生物法处理有机废气(超详细)

生物法处理有机废气(超详细)生物法处理废气废气的生物处理是利用微生物的生命过程把废气中的气态污染物分解转化成少或甚至无害物质。

自然界中存在各种各样的微生物,几乎所有无机的和有机的污染物都能转化。

生物处理不需要再生和其他高级处理过程,与其他净化法相比,具有设备简单、能耗低、安全可靠、无二次污染等优点,但不能回收利用污染物质。

1.2.3.1基本原理在适宜的环境条件下,微生物不断吸收营养物质,并按照自己的代谢方式进行新陈代谢活动。

废气中生物处理正是利用微生物新陈代谢过程中需要营养物质这一特点,把废气中的有害物质转化成简单的无机物如二氧化碳、水,以及细胞物质等。

1.2.3.2微生物降解污染物的过程由于微生物将废气中的有害物质进行转化的过程在气相中难以进行,所以废气中气态污染物首先要经气相转移到液相或固体表面的液膜中的传质过程,然后污染物才在液相或固体表面被微生物吸附降解。

按照Ottengraf提出的生物膜理论,生物法净化处理工业废气一般要经历以下四个步骤(图1-1)。

1)废气中的污染物首先同水接触并溶解于水中(由气膜扩散进入液膜);2)溶解于液膜中的污染物在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;3)微生物将污染物转化为生物量、新陈代谢副产品或者C02、水等;4)生化反应产物002从生物膜表面脱附并反扩散进入气相本体,而1120则被保持在生物膜内。

气态污染物的生物处理过程也是人类对自然过程的强化和工程控制,其过程的速率取决于:①气相向液固相的传质速率(与污染物的理化性质和反应器的结构等因素有关);②能起降解作用的活性生物质量;③生物降解速率(与污染物的种类、生物生长环境条件、控制作用有关)。

表1-1列出了各种气态污染物的生物降解效果。

按照获取营养的方式不同,用于污染物生物降解的微生物有两大类:自养菌和异养菌。

自养菌可以在无有机碳和氧的条件下,以光和氨、硫化氢、硫和铁离子等的氧化获得必要的能量,而生长所需的碳则由二氧化碳通过卡尔文循环提供,因此它特别适合于无机物的转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在塑料、橡胶加工、油漆生产、汽车喷漆和涂料生产等诸多工业领域中,工业品的生产和加工过程产生了大量含有挥发性有机化合物(Volatile Organic Compounds,VOC)的废气(VOC废气)。

这些废气未经处理排入大气,在一定条件下会形成光化学污染,影响大气质量,影响动植物生长和人类的健康。

某些有毒VOC废气有致残、致畸、致癌作用,对长期暴露其中的人体造成严重伤害。

为此,各国颁布了相应的法令,限制该类气体的排放,我国于1997年颁布并实施的《大气污染综合排放标准》,限定33种污染物的排放限值,其中包括苯、甲苯、二甲苯等挥发性有机物。

对VOC废气的治理,有多种处理技术可供使用。

但对于VOC浓度低、风量大的废气,传统工艺存在投资运行费用高、处理效率低和处理后存在二次污染等问题。

近年来,逐渐发展的废气生物处理技术作为一种新型的空气污染控制技术,得到日益广泛的应用。

该项技术与传统的燃烧法、催化氧化法、吸收法、吸附法相比,对VOC低含量废气的处理有明显的优势。

本文主要介绍现行的德国废气生物处理技术,以期对我国相应技术的推广应用起到借鉴作用。

1 废气生物处理工艺1.1 生物处理原理废气的生物处理技术首先应用于农业生产过程中异味气体的处理,例如养殖业中动植物加工产生的臭气、堆肥发酵和生物污泥废气处理等。

随着工业生产中产生的挥发性有机气体的污染日益严重,这项技术逐步应用到工业废气净化领域。

其净化的基本原理是:有机废气或异味气体流经带有液体吸收剂的处理器;在处理器中,由于废气中的污染物在气、液相之间存在浓度梯度,浓度差使其从气相转移到液相,被生存其中的微生物吸附;通过微生物的代谢作用,有机物被分解、转化为生物质和无机物。

1.2 反应处理工艺分类生物处理技术的基本工艺流程以生物过滤为例,如图1所示,废气经过一定的除尘、温度和湿度调节,进入生物处理单元,经过微生物的处理,气体可以达标排放。

图1 有机废气的生物处理工艺流程图根据处理运行方式不同,处理工艺主要分为生物滤床工艺和生物洗提工艺两种。

生物滤床废气流经生物滤床(见图2)中的活性滤层,有机物被滤料上的湿润水膜吸收,通过滤料上生活的微生物的代谢作用而降解。

(a)生物滤床示意图(b)多层布置的生物滤床图2 生物滤床生物滤床主要由进气系统、布气承托层、生物滤层和维护装置组成。

在生物滤床处理废气过程中,微生物的活性和数量对处理效果具有决定意义,它们取决于如下因素:进气流量、温度和湿度;废气中物质组成;浓度的稳定性和水溶性;氧气和营养物的供给;滤床的布置和温度、湿度保持;滤料的选择;滤床中的pH控制等。

滤料影响微生物的生长,从而直接影响净化效果。

滤料选择必须考虑滤料的孔隙率、孔径分布、比表面积、亲水性、自身气味、pH等参数。

在工程实践中,一般可选择有机滤料或无机滤料。

无机滤料选择比表面积大,有一定强度的无机填料,如加气混凝土、多孔陶粒、熔岩颗粒或矿渣等。

有机滤料主要有腐殖树皮、植物根须、枝杈、锯末、泥炭等及其混合物。

由于有机滤料廉价易得,获得广泛的应用。

有机滤料滤层一般高度在0.5~1.2 m。

运行3~5年后,由于密实度增大造成阻力增大,应进行更换;更换滤料时,宜分次进行,以保持滤料中微生物种群的稳定。

生物洗提工艺生物洗提工艺采用了污染物的液体吸收和生物处理的联合作用。

废气首先被液体(吸收剂)有选择地吸收形成混合污水,再通过微生物的作用将其中的污染物降解。

根据污水处理的方式(吸收剂再生方式)不同,可分为活性污泥法和生物膜法(生物滴滤池),构筑物示意图如图3、图4所示。

图3 生物洗提—活性污泥法示意图图4 生物滴滤池示意图从图3中可以看出,生物洗提-活性污泥法是将吸收剂(水和微生物的混合液)和废气在吸收塔内采用通过喷淋、填料填充或曝气等方式进行混合,溶解于水的有机物被微生物吸附,排入活性污泥反应器后进一步被降解,吸收剂得到净化再生和重复使用。

因为吸收剂的再生速度不受处理负荷和吸收速度的影响,所以这种方法适用于处理生物降解速度较慢的有机物。

图4所示滴滤池中的填料上生长有大量生物膜,当废气通过其间,有机物被生物膜表面的水层吸收后被微生物吸附和降解,得到净化再生的水被重复使用。

在生物洗滤过程中,吸收剂的再生效率影响废气的吸收、净化效果和系统的能耗高低,这主要取决于污水处理效率的高低。

而影响生物洗提工艺处理效果的因素有:废气中有机物水溶性和生物降解难易程度;进气温度、粉尘和有毒物质含量;对微生物的曝气和营养物质供给(如N、P等);水的温度、pH、含盐量和新鲜淡水的补充情况。

2 生物反应器的应用和经济技术比较2.1 应用范围与设计参数确定废气生物处理的主要适用范围是:去除异味气体和含VOC废气浓度较低的废气,废气中TOC(总有机碳)<1000 mg/m3;气体流量≤50000 m3/h,气流均匀且连续;废气的温度一般≤40 ℃,生物滤床工艺同时要求进气湿度>95%;废气组分易溶于水,易生物降解。

对废气中各种组分的降解情况如表1所示,可作为工艺设计的选择依据。

工程设计中,需要同时考虑废气中气体组分的种类、浓度,反应器中有效接触时间。

反应器的尺寸由面积负荷:m3气体/(m2过滤面积·h);接触时间:s;体积负荷:gTOC/ (m3过滤体积·h);或:气味单位GE/(m3过滤体积·h);或:m3气体/(m3过滤体积·h)等参数确定。

实际工程中,反应器尺寸可参考同类生产企业的经验值估算,并应进行中试实验,以优化设备尺寸,降低投资。

表2、表3分别给出不同种类企业应用生物滤床和生物洗提工艺的情况。

从两种工艺的应用可以看出,生物滤床工艺对气味和易溶性有机气体去除效率较高,而生物洗提能够用于生物降解性较差的VOC 废气处理。

2.2 与其他工艺的经济技术比较在对含VOC废气处理工艺的选择中,在技术领域应考虑如下因素:VOC 的去除效率;废气性质(废气中有机物的组成、VOC含量、废气流量、气味指标);可用建设面积;技术经济使用期;必要的附属设施建设(如:水蒸气生产设施);与原有治污设备的配套;有机溶剂的回收等。

经济上主要考虑投资、运行费用和财务风险。

各种工艺的初步选择依据如表4所示。

表4 VOC气体处理技术措施的适用范围及其经济指标++ 很适用,+ 适用,0 不太适用,-不适用高流量负荷下低浓度VOCs废气的生物法处理摘要:高流量负荷下生物膜填料塔净化低浓度甲苯废气的实验结果表明,当气体流量在0.8m3/h,入口气体甲苯浓度为105mg/m3,停留时间18.3s时,甲苯的净化效率可达到61.9%,出口气体甲苯浓度低于国家对现有企业的排放标准(≤60mg/m3)。

适宜的操作温度应控制在20~25℃之间,氮磷营养添加量的配比应控制为C:N:P=200:5:1。

依据实验结果数据,对相关的机理问题进行了分析探讨。

关键词:生物膜填料塔高流量负荷低浓度甲苯废气废气净化低浓度VOCs废气的特点是废气量大、浓度低,按目前工程应用的废气流量负荷运行并达到国家排放标准的要求,工业净化设备体积就显得过于庞大。

从进一步减小设备体积、节省投资的需要出发,开展高流量负荷下低浓度VOCs 废气的生物法净化处理应用条件研究。

本实验以低浓度甲苯废气(VOCs的代表物)为对象,对生物膜填料塔净化处理高流量负荷下低浓度VOCs废气技术的可行性进行了实验研究,考察了入口气体甲苯浓度、温度和营养物添加量等因素对高流量负荷下低浓度甲苯废气去除效果的影响。

1 实验装置与方法实验用生物膜填料塔由内径为72mm的有机玻璃管制成,总高度为1.4m,其中填料分为2层,每层高度为500mm,中间间隔100mm。

依据经济性及前期对填料特性的研究[7],采用轻质陶块作为填料,其直径为10~15mm,比表面积170~ 200m2/m3,堆积密度约为200kg/m3。

实验均在常温下(7~26℃)进行。

生物膜填料塔入口气体甲苯浓度95~320mg/m33/(m3h),气体空塔停留时间18.3s,生物膜填料塔的运行阻力降为58.8~215.6Pa。

实验装置如图1所示。

图1 生物膜填料塔装置流程示意实验中生物膜填料塔采用逆流操作。

低浓度甲苯废气采用动态法配制。

甲苯废气浓度采用甲苯检知管法(检测范围50~1000mg/m3),其精确度已在相关的研究中得到了验证[5]。

生物膜填料塔的运行阻力降采用U型压力计测定。

2 结果与分析2.1 生物膜填料塔的挂膜3/h(比以往实验的高4倍,停留时间缩短3倍)条件下,对生物膜填料塔进行挂膜操作,并同时观察填料表面被生物膜覆盖的情况、运行阻力降以及低浓度甲苯废气净化效率的变化。

定时对进出口气体的甲苯浓度进行取样分析,并计算气体中甲苯的净化效率,结果见图2。

3/(m3h),入口气体甲苯浓度为95~ 320mg/m3时,生物膜填料塔的填料生物挂膜过程历时16d完成。

在挂膜初期的5~8d,由于填料表面上的生物膜覆盖面不大且作用也不太稳定,净化效率在6.7%~35.7%范围内波动。

在随后的6~8d里,随着生物膜的生长逐渐成熟和覆盖范围增加,生物膜填料塔对甲苯的生物净化作用也随之逐步增强,甲苯净化效率迅速上升,最后几天基本稳定在60%左右。

图2 挂膜期间的净化效率与阻力降曲线—□—净化效率,—△—阻力降3/h,入口气体甲苯浓度95-320mg/m3判断生物膜的生长是否成熟,可以从微观和宏观两个方面加以判定。

微观上,当填料表面上的生物膜增长到一定厚度并趋于稳定,从生物膜上脱落和自溶的微生物菌体数量与其附着在生物膜上的菌体数量趋于平衡时,生物膜的生长即已趋向成熟;宏观上,生物膜填料塔在其生物挂膜期间的运行阻力降有一个从上升到逐步趋于稳定的变化,这是生物膜生长趋于成熟的外部表现[9]。

因此,可以由生物塔的运行阻力降的变化来判断生物膜的生长是否成熟。

由图2可见,在挂膜初期,运行阻力降是上升的,约11d后阻力降趋于稳定,基本保持在167Pa左右,这标志着塔内填料表面的生物膜已基本生长成熟。

2.2 气体流量的影响由图3可以看出,随着气体流量的增加,生物膜填料塔对甲苯废气的净化效率是下降的。

造成这一现象有2个原因,一是由于气体流量的增加使甲苯废气在塔内停留时间减少,不能满足生物膜中微生物菌种对废气中甲苯分子的捕捉、吸收和生化降解的时间要求,许多甲苯分子尚未与塔内的生物膜接触即被排出塔外,从而导致净化效率下降。

二是随着气体流量的增加,气相主体对生物膜的切线冲刷力也相应增加,使部分已被生物膜吸附但结合力不是很牢的甲苯分子重新从生物膜上脱附,进入气相主体。

这一结果表明,增加气体流量会对生物膜填料塔的处理运行效果产生不良影响。

因此,要结合实际情况及要求,以企业的废气排放标准为目标确定生物膜填料塔的适宜气体流量。

相关文档
最新文档