高中数学 第5章 推理与证明 5.2 直接证明与间接证明 5.2.1 直接证明:分析法与综合法讲义(

合集下载

数学证明中的直接证明与间接证明

数学证明中的直接证明与间接证明

数学是一门严谨的学科,其核心在于推理与证明。

在进行数学证明时,有直接证明和间接证明两种方法。

直接证明是通过逻辑推理直接得出结论,而间接证明则是通过反证法或者归谬法,通过推翻事实的否定来得出结论。

本文将分别介绍直接证明和间接证明,并分析它们在数学证明中的应用。

首先,我们来讨论直接证明。

直接证明是最常见、最直接的证明方法。

其核心思想是根据已知条件和数学定理,一步一步地推导出结论。

直接证明通常包括假设、推理和结论三个步骤。

首先,我们根据题目给出的条件假设一些前提条件,然后利用已知的定理和公理进行推理,最后根据这些推理得出结论。

直接证明的优点是逻辑性强、直观明了,容易让读者明白推理的过程。

此外,对于一些简单的数学问题,直接证明能够很快得出结论,省去了许多繁琐的步骤。

然而,直接证明的弊端是有时难以找到合适的定理进行推理,或者推导过程中的中间步骤比较复杂。

在遇到这种情况时,我们就需要采用间接证明的方法。

其次,我们来讨论间接证明。

间接证明有两种形式,一种是反证法,另一种是归谬法。

反证法的基本思想是通过假设反命题的真假进行推导,如果得出一个恒真的结论,则原命题成立。

归谬法则是通过假设原命题为真进行推导,最后得出一个恒假的结论,从而推翻了原命题。

间接证明的优点是可以处理一些复杂的数学问题,特别是那些直接证明困难的问题。

间接证明可以通过假设反命题的真假或者假设原命题的真假,利用反证法或归谬法的推导过程将问题的复杂性降低,从而得出结论。

然而,间接证明的过程通常较为繁琐,需要较高的抽象思维能力和逻辑推理能力。

在实际的数学证明中,常常需要根据题目的要求和限制条件选择合适的证明方法。

有时,我们可以通过观察和归纳总结出一些数量关系或性质,然后用直接证明进行推导。

而对于一些性质复杂的数学问题,我们可能需要采用间接证明的方法。

因此,掌握直接证明和间接证明的技巧对于解决数学问题至关重要。

总之,数学证明中的直接证明和间接证明是两种常用的推理方法。

直接证明与间接证明

直接证明与间接证明

直接证明与间接证明直接证明和间接证明是数学中常用的两种证明方法。

直接证明是通过逻辑推理和已知的真实前提,以直接的方式推出所要证明的结论。

间接证明则是采用反证法或者假设推理的方式,通过说明对立假设或者逻辑矛盾来推出所要证明的结论。

直接证明的思路是从已知条件出发,逐步运用数学定义、性质、定理等等,直接推导到所要证明的结论。

这种证明方法通常比较直观,步骤清晰,容易理解。

下面来看一个简单的例子。

假设我们要证明:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。

直接证明的思路是从正整数是3的倍数这个已知条件出发,即假设正整数n可以写为3k,其中k为整数。

那么正整数n的平方可以写为(3k)^2=9k^2,即n^2=9k^2、由此可知,正整数n^2也可以写为3的倍数,因为9k^2可以写为3的倍数。

因此,根据直接证明的逻辑推理,我们得出结论:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。

间接证明的思路是通过反证法或者假设推理的方式,假设所要证明的结论不成立,然后通过推理说明这个假设是不可能的或者导致矛盾的。

下面来看一个简单的例子。

假设我们要证明:不存在两个整数的和等于3的倍数,且差等于5的倍数。

间接证明的思路是先假设存在这样的两个整数,分别为a和b。

那么根据条件,我们可以得到以下两个等式:a+b=3k,其中k为整数;a-b=5m,其中m为整数。

然后我们将这两个等式相加,得到:2a=3k+5m。

由于3k+5m是整数,所以2a也是整数。

但是,由于2是偶数,所以2a是偶数,而3k+5m是奇数。

因此,2a和3k+5m不能同时成立,即假设不成立。

因此,不存在两个整数的和等于3的倍数,且差等于5的倍数。

以上是直接证明和间接证明的简单例子,实际的证明可能需要更多的推理和步骤。

两种证明方法各有优点和适用范围。

直接证明通常通过展示清晰的推理过程来达到证明目的,适合于结论的证明比较明显和直观的情况。

而间接证明则通过反证法或者假设推理来达到证明目的,适合于结论的证明比较困难或者复杂的情况。

直接证明与间接证明

直接证明与间接证明

第4讲直接证明与间接证明讲义讲义一、导入【教学建议】我们知道,合情推理所得结论的正确性是需要证明的,这正是数学区别于其他学科的显著特点,数学结论的正确性必须通过逻辑推理的方式加以证明.综合法和分析法是直接证明中最基本的两种方法,反证法是间接证明的一种直接方法.C先生上了公交车却发现没带钱包,售票员不由分说让他下车,一位小伙子微笑着递过一块钱,C 先生很感激.车上的人开始小声议论C 先生是骗钱的,就在C先生生气准备甩票下车的时候,借钱给他的小伙子大声问:“能不能借一下您的手机?”C先生递过手机,小伙子拨了个号码,说了两三分钟的话,C先生想这下可以证明我的清白了.下车后C先生打开手机愣住了,原来小伙子根本没有拨通电话,但是直接证明了他的清白.二、知识讲解知识点1 综合法1.用综合法证明数学问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹,并且综合法的推理过程属于演绎推理,它的每一步推理得出的结论都是正确的,不同于合情推理.使用综合法证明问题,有时从条件可得出几个结论,哪个结论才可作为下一步的条件是分析的要点,所以如何找到“切入点”和有效的推理途径是有效利用综合法证明数学问题的关键.2. 综合法证明数学命题的步骤第一步:分析条件,选择方向.认真发掘题目的已知条件,特别是隐含条件,分析已知与结论之间的联系,选择相关的公理、定理、公式、结论,确定恰当的解题方法.第二步:转化条件,组织过程.把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.知识点2 分析法1.分析法的推理过程也属于演绎推理,每一步推理都是严密的逻辑推理.2.分析法证明不等式的依据、方法与技巧.(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.知识点3 反证法1.反证法证明数学命题的一般步骤第一步:分清命题“p→q”的条件和结论;第二步:作出与命题结论q相矛盾的假定⌝q(反设);第三步:由p和⌝q出发,应用正确的推理方法,推出矛盾结果(归谬);第四步:断定产生矛盾结果的原因,在于开始所作的假定⌝q不真,于是原结论q成立,从而间接地证明了命题p→q为真.第三步中所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知条件矛盾,与临时假定矛盾以及自相矛盾等各种情况.2.反证法的适用对象作为一种间接证明方法,反证法尤其适合证明以下几类数学问题:(1)直接证明需分多种情况的;(2)结论本身是以否定形式出现的一类命题——否定性命题;(3)关于唯一性、存在性的命题;(4)结论以“至多”、“至少”等形式出现的命题;(5)条件与结论联系不够明显,直接由条件推结论的线索不够清晰,结论的反面是比原结论更具体、更容易研究的命题.三、例题精析【教学建议】分析法和综合法是对立统一的两种方法.一个命题用何种方法证明,要能针对具体问题进行分析,灵活地运用各种证法.当不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目更是行之有效的方法.用反证法证题时,必须把结论的否定作为条件使用,否则就不是反证法.【题干】(1)设A =12a +12b ,B =2a +b(a >0,b >0),则A 、B 的大小关系为________. 【答案】A ≥B【解析】A -B =a +b 2ab -2a +b =)(24)(2b a ab ab b a +-+≥0. 【题干】(2)若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定【答案】 A【解析】 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .【题干】(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【答案】 1和3【解析】 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.【题干】(4)设数列{a n }的前n 项和为S n .若对任意正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是 例题1“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.【解析】(1)由已知,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m .所以{a n }是“H 数列”.(2)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *).令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下面证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 【题干】(1)欲证2−√5<√6−√7成立,只需证( )A .(2−√5)2<(√6−√7)2B .(2−√6)2<(√5−√7)2C .(2+√7)2<(√5+√6)2D .(2−√5−√6)2<(−√7)2【答案】C【解析】由分析法知,欲证2−√5<√6−√7,只需证2+√7<√6+√5,即证(2+√7)2<(√6+√5)2,故选C .【题干】(2)分析法又称执果索因法,已知x >0,用分析法证明1+x <1+x 2时,索的因是( ) A .x 2>1B .x 2>4C .x 2>0D .x 2>1【答案】 C【解析】 因为x >0,所以要证1+x <1+x 2,只需证(1+x )2<⎝⎛⎭⎫1+x 22, 即证0<x 24,即证x 2>0,因为x >0,所以x 2>0成立,故原不等式成立. 【题干】(3)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .【求证】1a +b +1b +c =3a +b +c . 例题2证明:要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立. 【题干】(1)用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________.【答案】 x ≠-1且x ≠1【解析】 “x =-1或x =1”的否定是“x ≠-1且x ≠1”.【题干】(2)设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤【答案】 C【解析】 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出; 若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.【题干】(3)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不可能成等差数列.【解析】假设1a ,1b ,1c 成等差数列,则2b =1a +1c ,所以2ac=bc+ab.① 因为a ,b ,c 成等差数列,所以2b=a+c.②把②代入①,得2ac=b (a+c )=b ·2b.所以b 2=ac.③由②平方,得4b 2=(a+c )2.④把③代入④,得4ac=(a+c )2,所以(a-c )2=0.所以a=c.例题3代入②,得b=a,故a=b=c,所以数列a,b,c的公差为0.这与已知矛盾,因此假设错误.故1a ,1b,1c不可能成等差数列.。

高中数学第2章推理与证明2.2直接证明与间接证明2.2.1直接证明知识导航学案苏教版选修1-2

高中数学第2章推理与证明2.2直接证明与间接证明2.2.1直接证明知识导航学案苏教版选修1-2

2.2.1 直接证明知识梳理1.直接从原命题的条件逐步推得命题成立的,这种证明称为___________________(direct proof).2.从已知条件出发,以已知的________________________________ 为依据,逐步下推,直到推出要证明的结论为止,这种证明方法称为综合法.3.从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件与已知条件吻合为止.这种证明方法称为___________________.知识导学综合法的基本思路是“由因导果”即从已知看可知,再逐步推向未知的方法.若用P表示已知条件,已有的定义、定理、公理等,Q表示所要证明的结论,则综合法可用框图表示为:分析法的基本思路是:从未知看需知,再逐步靠近已知,若用P表示已知条件,Q表示所要证明的结论,则分析法的框图可以表示为疑难突破1.综合法与分析法的异同点:综合法与分析法是两种不同的证明方法,但它们都是直接证法,都属于演绎推理,几何学中的定理和数学问题中的证明,大部分都采用综合法和分析法.综合法与分析法的不同之处是:综合法是“由因导果”,而分析法则是“执果索因”.分析法便于我们去找思路,而综合法便于过程的叙述.2.证明与推理之间的联系和区别.(1)联系:证明过程其实就是推理的过程.就是把论据作为推理的前提,应用正确的推理形式,推出论题的过程.一个论证可以只含一个推理,也可以包含一系列的推理;可以只是用演绎推理,或只用归纳推理,也可以综合运用演绎推理和归纳推理,所以证明就是推理,是一种特殊形式的推理.(2)区别:(ⅰ)从结构上看,推理包含前提和结论两部分,前提是已知的,结论,是根据前提推出来的;而证明是由论题、论据、论证三部分组成的.论题相当于推理的结论,是已知的,论据相当于推论的前提.(ⅱ)从作用上看,推理只解决形式问题,对于前提和结论的真实性是管不了的.而证明却要求论据必须是真实的,论题经过证明后其真实性是确信无疑的.典题精讲【例1】已知a、b、c∈R+,且a+b+c=1,求证:(-1)(-1)(-1)≥8.思路分析:这是一个条件不等式的证明问题,要注意观察不等式的结构特点和条件a+b+c=1的合理应用.可用综合法和分析法两种方法证明.证明:(方法1 综合法)(-1)(-1)(-1)=()(-1)(-1)===8当且仅当a=b=c时取等号,所以不等式成立.(方法 2 分析法):要证(-1)(-1)(-1)≥8成立只需证≥8成立因为a+b+c=1,所以只需证≥8成立即:≥8只需证≥8成立而≥8显然成立.∴(-1)(-1)(-1)≥8成立.绿色通道:综合法是从已知条件出发,经过逐步推理,最后达到特征的结论;而在分析法中,从结论出发的每一步骤所得到的判断都是使结论成立的充分条件,最后一步归结到已被证明了的事实.黑色陷阱:在证明不等式时要注意应用重要不等式和不等式的性质,要注意基本不等式应用的条件及等号成立的条件.【变式训练】已知a、b、c∈R+,求证:(ab+a+b+1)×(ab+bc+bc+c2)≥16abc.证明:综合法:方法1∵ab+a+b+1=(a+1)(b+1).ab+ac+bc+c2=(a+c)(b+c)又∵a>0,b>0,c>0,∴a+1≥>0,b+1≥>0,a+c≥>0,b+c≥.∴(a+c)(b+c)≥,(a+1)(b+1)≥>0.因此当a,b,c∈R+时,有(ab+a+b+1)(ab+ac+bc+c2)≥16abc,结论得证方法2分析法:要证(ab+a+b+1)(ab+ac+bc+c2)≥16abc成立,只需证:(a+1)(b+1)(a+c)(b+c)≥16ab成立.由于a>0,b>0,c>0.∴a+1≥,b+1≥.a+c≥b+c≥∴(a+1)(b+1)(a+c)(b+c)≥···=16abc.即:(ab+a+b+1)(ab+ac+bc+c2)≥16abc成立.【例2】在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列,求证:△ABC为等边三角形.思路分析:将A、B、C成等差数列,转化为符号语言就是2B=A+C;a、b、c成等比数列,转化为符号语言就是b2=ac.A、B、C为△ABC的内角,这是一个隐含条件,明确表示出来是A+B+C=π,此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状.余弦定理正好满足要求,于是可以用余弦定理为工具进行证明.证明:由A、B、C成等差数列,所以有2B=A+C,因为A、B、C为△ABC的内角,所以A+B+C=π,所以B=.由a、b、c成等比数列,有b2=ac.由余弦定理及b2=ac,可得:b2=a2+c2-2accosB=a2+c2-ac.∴a2+c2-ac=ac 即(a-c)2=0,因此a=c,从而有A=C.∴A=B=C=,所以△ABC为正三角形.【变式训练】如图2-2-1所示,设在四面体P-ABC中,∠ABC=90°,PA=PB=PC,D是AC的中点,求证:PD垂直于△ABC所在的平面.图2-2-1证明:因为BD是Rt△ABC斜边上的中线,所以DA=DC=DB,又因为PA=PB=PC,而PD是△PAD,△PBD,△PCD的公共边,所以△PAD≌△PBD≌△PCD.于是,∠PAD=∠PBD=∠PCD,而∠PDA=∠PDC=90°,因此,∠PDB=90°.可见PD⊥AC和PD⊥BD.由此可知PD垂直于△ABC所在平面.【例3】设a、b、c为一个三角形的三边,s=(a+b+c)且s2=2ab,试证:s<2a.思路分析:题目中条件与结论之间的关系不明显,因此可以先结合条件把结论适当的转化.结合条件s=(a+b+c),可把结论s<2a转化为(a+b+c)<2a,即证b+c<3a,我们结合条件s2=2ab,把结论s<2a转化为s<,即b<s.再结合条件s=(a+b+c),把结论进一步转化为2b<a+b+c,即b<a+c从而得到证明.证明:要证s<2a,由于s2=2ab,所以只需证s<,即b<s,因为s=(a+b+c),所以只需证2b<a+b+c,即b<a+c.由于a、b、c为一个三角形的三边,所以上式显然成立.于是原命题成立.绿色通道:利用分析法证明本题要注意挖掘其中的隐含条件,由结论适当转化.在分析法证明中,从结论出发的每一步骤所得到的判断都是使结论成立的充分条件,最后一步归结到已被证明了的事实.【变式训练】求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大. 证明:设圆和正方形的周长即为L,依题意,圆的面积为π,正方形的面积为因此只需证明.两边同乘以得:,因此只需有π<4,因为π<4显然成立.所以,π>,即问题得证.【例4】(2006年全国高考卷Ⅱ,20)如图2-2-2所示,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1,AC1的中点.(1)证明:ED为异面直线BB1与AC1的公垂线;(2)设AA1=AC=AB,图2-2-2求:二面角A1-AD-C1的大小.思路分析:本题以直三棱柱为载体,考查异面直线的公垂线的定义及二面角的求法.充分考查了证明的几种方法,在问题中的综合运用能力,会用综合法和分析法来解决问题.解法1:(1)设O为AC中点,连结EO,BO,则EO C1C,又C1C B1B∴EO DB.EOBD为平行四边形,ED∥OB.∵AB=BC,∴BO⊥AC,又平面ABC⊥平面ACC1A1,BO面ABC,故BO⊥面ACC1A1∴ED⊥平面ACC1A1,ED⊥AC1,ED⊥CC1.∴ED⊥BB1∴ED为异面直线AC1与BB1的公垂线.(2)连结A1E,由AA1=AC=AB可知,A1ACC1为正方形,∴A1E⊥AC1,又由ED⊥面A1ACC1和ED平面ADC1知,平面ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足为F,连结A1F,则A1F⊥AD,∠A1FE为二面角A1-AD-C1的平面角.则AC=2,AB=,ED=OB=1,EF=,tan∠A1FE=.∴∠A1FE=60°.所以二面角A1-AD-C1为60°.解法2:(1)如图,建立直角坐标系O-xyz,其中O为AC的中点.设A(a,0,0),B(0,b,0),B1(0,b,2c),则C(-a,0,0),C1(-a,0,2c),E(0,0,c),D(0,b,c).=(0,b,0), =(0,0,2c), ·=0,∴ED⊥BB1,同理可证ED⊥AC1所以ED是异面直线BB1与AC1的公垂线.(2)不妨设A(1,0,0),则B(0,1,0),C(-1,0,0),A1(1,0,2),=(-1,-1,0),=(-1,1,0)=(0,0,2),·=0, ·=0,即BC⊥AB,BC⊥AA1,又AB∩AA1=A,BC⊥面A1AD.E(0,0,1),D(0,1,1),C(-1,0,0), =(-1,0,-1), =(-1,0,1), =(0,1,0),·=0, ·=0即EC⊥AE,EC⊥ED,又AE∩ED=E,EC⊥面C1AD.cos〈·〉==即得和的夹角为60°.所以二面角A1-AD-C1为60°.绿色通道:本题主要考查直线与直线的垂直,直线与平面垂直的判定及二面角平面角的求法.方法一为传统解法,方法2为向量解法.两种方法各有千秋,充分体现了思维的灵活性. 黑色陷阱:在解决此类问题时,要注意计算方法的灵活性,特别是向量解法,应注意各点的坐标.【变式训练】(2005年北京高考卷,20)在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,如图2-2-3所示.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.图2-2-3解:解法1∵直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5.∴AC⊥BC.∵BC1在平面ABC内的射影为BC,∴AC⊥BC1,(2)设CB1与C1B的交点为E,连结DE.∵D是AB的中点,E是BC1的中点,∴DE∥AC1,∵DE平面CDB1,AC1平面CDB1,∴AC1∥平面CDB1.(3)∵DE∥AC1,∴∠CED为AC1与B1C所成的角.在△CED中,ED=AC1=,CD=AB=,CE=CB1=.∴cos∠CED=∴异面直线AC1与B1C所成角的余弦值为.解法2:∵直三棱柱ABC—A1B1C1底面三边长AC=3,BC=4,AB=5,∴AC、BC,C1C两两垂直.如图所示,以C为坐标原点,直线CA、CB、CC1分别为x轴、y轴、z轴建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(1)∵=(-3,0,0), =(0,-4,4),∴·=0,∴AC⊥BC1.(2)设CB1与C1B的交点为E,连结DE,则E(0,2,2)∵=(-,0,2),=(-3,0,4),∴=,∴DE∥AC1.∵DE平面CDB1,AC1平面CDB1,∴AC1∥平面CDB1.(3)∵=(-3,0,4),=(0,4,4).∴cos〈,〉=.∴异面直线AC1与B1C所成角的余弦值为.问题探究问题1:设有比例式.由比例性质可得:=,.由此可得=-1.试指出这个推理的错误所在.导思:==是正确的.而得到结论=-1的错误原因是什么呢?探究:由题意令=t,且x、y、z≠0.∴x=t(y+z) y=t(z+x),z=t(x+y)∴x+y+z=t(y+z)+t(z+x)+t(x+y)=t(2x+2y+2z)=2t(x+y+z).∵x+y+z≠0 ∴t=.∴由比例式的性质=是正确的.而x-y=t(y+z)-t(z+x)=t[(y+z)-(z+x)]=t(y-x)若x-y≠0,t=-1.此题错误的关键在于没有考虑x=y的情况.所以这个推理错误的关键是题目中没有告诉x、y、z是否完全相等,若x=y=z,则第二个关系式是错误的.由此题可以看出,在证明问题的过程中,证明要严谨,思考要缜密,做到无懈可击,无可置疑.问题2:在△ABC中,BC、AC边上的中线所在的直线AD与BE相交于点H.求证:AB边上的中线所在的直线也通过点H.证明:因为任何三角形的三条中线所在的直线相交于一点,所以AB边上的中线所在的直线一定通过点H.上述命题的证明正确吗?如果不正确,请说出错误的原因.导思:这里的论据是“三角形的三条中线所在的直线相交于一点,”这个论据实质上就是论题的另一种表达方式.因此,证来证去还是围绕着论题转圈子,结果什么也没有证明,犯了循环论证的逻辑错误.探究:此问题可以用向量的方法来证明.证明:首先令=a, =b,有=a-b, =a-b, =-a+b,再令AD与BE交于点G1并假定=λa+b∴=a+μb,又由于=+=(1)a+(μ-1)b,所以由此可得λ=μ=,所以=.再令AD与CF相交于G2,同理可证=,因此G1、G2重合,即AD、BE、CF交于一点,故三角形三条中线交于一点.。

高中数学目录

高中数学目录

第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数I2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂.指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与-元二次方程用二分法求方程的近似解2.6函数模型及其应用数学2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离数学3第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归访程.第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式数学5.第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式题13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修系列11-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1保数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算第4章框图4.1流程图5.2结构图选修系列22-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用2-2第1章导数及其应用1.导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义2-3第1章计数原理1.1两个基本原理. 1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布.第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析3.4聚类分析。

直接证明与间接证明_分析法

直接证明与间接证明_分析法

直接证明与间接证明_分析法直接证明和间接证明是逻辑学中的两种证明方法。

直接证明是通过事实和逻辑推理直接得出结论的方法,而间接证明则是通过反证法来达到证明的目的。

下面将从分析法的角度来探讨直接证明和间接证明的特点和应用。

首先,直接证明是一种简洁明确的证明方法。

它通过逐步展示事实和推理过程,直接地得出结论。

直接证明要求每一步的推理都是严谨和合乎逻辑的,不允许出现漏洞和错误。

直接证明的优点在于它的证明过程清晰明了,逻辑性强,容易理解和接受。

对于一些简单的问题,直接证明是最常见和最有效的证明方法。

其次,直接证明适用于一些直观的、已知的情况。

例如,要证明一个三角形的三个内角之和等于180度,可以通过直接证明来达到目的。

我们可以利用平行线和同位角的性质,逐步推导出对应角相等,从而得出结论。

这种情况下,我们有直观的几何图形和一些已知的性质,通过推理和演绎可以直接得出结论。

然而,直接证明也有一定的局限性。

对于一些复杂的问题,直接证明可能会变得更加困难和繁琐。

有时候,问题本身的复杂性以及需要证明的结论的复杂性会导致直接证明的推理过程变得更加难以理解和掌握。

在这种情况下,间接证明就可以派上用场。

间接证明是一种通过反证法推导出结论的方法。

它假设待证命题的否定是成立的,然后通过推理和推导得出矛盾的结论,从而证明了原命题的正确性。

间接证明的优点在于它能够化复杂的问题为简单的矛盾,通过推理和演绎来证明原命题的正确性。

它可以避免直接证明中的复杂推理和繁琐的计算。

间接证明适用于一些复杂、难以直接证明的问题。

例如,欧几里得几何中的数学定理费马大定理就是一个典型的间接证明的例子。

费马大定理认为不存在任何正整数n大于2的整数解(x,y,z),使得x^n+y^n=z^n成立。

然而,这个定理的直接证明非常困难。

数学家费马通过间接证明的方法证明了该定理的正确性,从而为数学界做出了重大贡献。

总结起来,直接证明和间接证明是逻辑学中两种常见的证明方法。

〖高中数学必修苏教版目录〗

〖高中数学必修苏教版目录〗

高中数学新课标苏教版教材目录数学1第1章集合§1.1集合的含义及其表示§1.2子集、全集、补集§1.3交集、并集第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象§函数的概念和图象§函数的表示方法§函数的简单性质§映射的概念§2.2指数函数§分数指数幂§指数函数§2.3对数函数§对数§对数函数§2.4幂函数§2.5函数与方程§二次函数与一元二次方程§用二分法求方程的近似解§2.6函数模型及其应用数学2第3章立体几何初步§3.1空间几何体§棱柱、棱锥和棱台§圆柱、圆锥、圆台和球§中心投影和平行投影§直观图画法§空间图形的展开图§柱、锥、台、球的体积§3.2点、线、面之间的位置关系§平面的基本性质§空间两条直线的位置关系§直线与平面的位置关系§平面与平面的位置关系第4章平面解析几何初步§4.1直线与方程§直线的斜率§直线的方程§两条直线的平行与垂直§两条直线的交点§平面上两点间的距离§点到直线的距离§4.2圆与方程§圆的方程§直线与圆的位置关系§圆与圆的位置关系§4.3空间直角坐标系§空间直角坐标系§空间两点间的距离数学3第5章算法初步§5.1算法的意义§5.2流程图§5.3基本算法语句§5.4算法案例第6章统计§6.1抽样方法§6.2总体分布的估计§6.3总体特征数的估计§6.4线性回归方程第7章概率§7.1随机事件及其概率§7.2古典概型§7.3几何概型§7.4互斥事件及其发生的概率数学4第8章三角函数§8.1任意角、弧度§8.2任意角的三角函数§8.3三角函数的图象和性质第9章平面向量§9.1向量的概念及表示§9.2向量的线性运算§9.3向量的坐标表示§9.4向量的数量积§9.5向量的应用第10章三角恒等变换§10.1两角和与差的三角函数§10.2二倍角的三角函数§10.3几个三角恒等式数学5第11章解三角形§11.1正弦定理§11.2余弦定理§11.3正弦定理、余弦定理的应用第12章数列§12.1等差数列§12.2等比数列§12.3数列的进一步认识第13章不等式§13.1不等关系§13.2一元二次不等式§13.3二元一次不等式组与简单的线性规划问题§13.4基本不等式选修系列11-1第1章常用逻辑用语§1.1命题及其关系§1.2简单的逻辑联结词§1.3全称量词与存在量词第2章圆锥曲线与方程§2.1圆锥曲线§2.2椭圆§2.3双曲线§2.4抛物线§2.5圆锥曲线的共同性质第3章导数及其应用§3.1导数的概念§3.2导数的运算§3.3导数在研究函数中的应用§3.4导数在实际生活中的应用1-2第1章统计案例§1.1独立性检验§1.2线性回归分析第2章推理与证明§2.1合情推理与演绎推理§2.2直接证明与间接证明第3章数系的扩充与复数的引入§3.1数系的扩充§3.2复数的四则运算§3.3复数的几何意义第4章框图§4.1流程图§4.2结构图选修系列22-1第1章常用逻辑用语§1.1命题及其关系§1.2简单的逻辑连接词§1.3全称量词与存在量词第2章圆锥曲线与方程§2.1圆锥曲线§2.2椭圆§2.3双曲线§2.4抛物线§2.5圆锥曲线的统一定义§2.6曲线与方程第3章空间向量与立体几何§3.1空间向量及其运算§3.2空间向量的应用2-2第1章导数及其应用§1.1导数的概念§1.2导数的运算§1.3导数在研究函数中的应用§1.4导数在实际生活中的应用§1.5定积分第2章推理与证明§2.1合情推理与演绎推理§2.2直接证明与间接证明§2.3数学归纳法第3章数系的扩充与复数的引入§3.1数系的扩充§3.2复数的四则运算§3.3复数的几何意义2-3第1章计数原理§1.1两个基本原理§1.2排列§1.3组合§1.4计数应用题§1.5二项式定理第2章概率§2.1随机变量及其概率分布§2.2超几何分布§2.3独立性§2.4二项分布§2.5离散型随机变量的均值与方差§2.6正态分布第3章统计案例§3.1独立性检验§3.2线性回归分析主要编写人员情况主编单墫副主编李善良陈永高主要编写人员数学与应用数学方面:单墫陈永高苏维宜蒋声丁德成洪再吉许道云孙智伟李跃文王晓谦尤建功秦厚荣唐忠明钱定边傅珏生葛福生夏建国孙智伟汪任观数学教育与数学史方面:李善良赵振威葛军徐稼红周焕山朱家生高中数学教师与教研员:仇炳生冯惠愚张乃达祁建新樊亚东石志群董林伟张松年陈光立陆云泉孙旭东于明寇恒清王红兵卫刚单墫 1943年生,南京师范大学数学系教授,博士生导师,享受政府特殊津贴。

高中数学中的数学证明方法详细总结与演绎

高中数学中的数学证明方法详细总结与演绎

高中数学中的数学证明方法详细总结与演绎数学作为一门精密的科学,其证明方法的运用和掌握是学习数学的核心能力之一。

在高中数学中,学生们常常需要运用不同的证明方法来解决问题,这不仅帮助他们深入理解数学概念和定理,还培养了他们的逻辑思维和推理能力。

本文将详细总结和演绎高中数学中常见的数学证明方法,帮助读者更好地掌握这些方法并应用于数学问题的解决。

一、直接证明法直接证明法是最常见的证明方法之一,它通过逻辑推理直接证明一个命题。

该方法通常分为两步:首先是列出前提条件,然后根据这些前提条件推导出结论。

例如,要证明直角三角形中斜边的平方等于两直角边的平方和,可以假设直角三角形的两个直角边分别为a和b,斜边为c,在此基础上利用勾股定理进行推导,最终得出c²=a²+b²,从而证明了所要证明的结论。

二、间接证明法间接证明法是通过假设命题不成立,推导出矛盾的结果来证明一个命题。

该方法通常有两个步骤:第一步是假设所要证明的结论不成立,第二步则是根据这个假设推导出一个矛盾的结果。

例如,要证明无理数根号2是一个无理数,可以采用间接证明法。

假设根号2是一个有理数,即可以表示为两个整数的比值。

然后利用有理数的定义进行推导,将根号2表示为两个整数的比值,并得出一个矛盾的结果,即根号2不是一个有理数,从而间接证明了根号2是一个无理数。

三、归纳法归纳法通常用于证明关于正整数的命题,在高中数学中应用较为广泛。

归纳法分为两个步骤:首先证明当n=1时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题仍然成立。

例如,要证明等差数列的通项公式,可以使用归纳法。

首先证明当n=1时等差数列的通项公式成立,即a₁=a₁。

然后假设当n=k时等差数列的通项公式成立,即aₖ=a₁+(k-1)d。

再证明当n=k+1时等差数列的通项公式仍然成立,即aₖ₊₁=a₁+kd。

通过归纳法就可以证明等差数列的通项公式对于任意正整数n都成立。

数学证明中的直接证明与反证法

数学证明中的直接证明与反证法

数学证明中的直接证明与反证法数学证明是数学领域中非常重要的一部分,通过证明可以使我们对于数学定理和命题的正确性有一个明确的了解。

在数学证明的过程中,直接证明和反证法是常用的两种方法。

本文将对直接证明和反证法进行详细讨论,并分析它们在数学证明中的应用。

一、直接证明直接证明是通过一连串逻辑推理来展示一个定理或命题的正确性。

直接证明的基本思想是从已知的前提出发,逐步推导出结论。

下面通过一个具体的例子来说明直接证明的过程。

【例】定理:任意两个偶数之和是偶数。

证明:设偶数a和b,我们要证明a+b是偶数。

由于a是偶数,所以存在整数k1,使得a=2k1。

同理,b也是偶数,存在整数k2,使得b=2k2。

那么a+b=2k1+2k2=2(k1+k2)。

设整数k=k1+k2,则a+b=2k。

由此可见,a+b也是偶数。

证毕。

从上面的例子中可以看出,直接证明通过逻辑推理的方式,从已知的条件出发,逐步推导出结论。

这种证明方法直接、简明,一般思路清晰,容易理解和接受。

二、反证法反证法,也称为间接证明法,是通过假设反命题的真假性来证明一个定理或命题的正确性。

反证法的基本思想是通过推导可得到一个矛盾,从而推出原命题的真实性。

下面通过一个例子来说明反证法的过程。

【例】定理:对于任意正整数n,如果n^2是偶数,则n也是偶数。

证明:假设反命题成立,即存在一个正整数n,使得n^2是偶数,但n是奇数。

根据奇数的定义,可以将n写为2k+1,其中k是一个正整数。

那么n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1。

由此可见,n^2是奇数,这与假设的反命题相矛盾。

因此,原命题成立,即对于任意正整数n,如果n^2是偶数,则n也是偶数。

证毕。

从上述例子中可以看出,反证法通过假设反命题的真假性,推导出与已知条件矛盾的结果,从而证明原命题的正确性。

反证法的推理过程相对于直接证明来说更为间接复杂,但是在某些情况下更为有效。

三、直接证明与反证法的应用直接证明和反证法在数学证明中都有广泛的应用。

高中数学知识点精讲精析 直接证明与间接证明

高中数学知识点精讲精析 直接证明与间接证明

2.2 直接证明与间接证明1.直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。

综合法 一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。

分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

2.间接证明是相对于直接证明说的,反证法是间接证明常用的方法。

3.反证法假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

1.用直接证法和反证法分别证明:如果a >b >0,那么;【解析】 (1)假设不大于,则或者<,或者=.∵a >0,b>0,∴<<,<, a <b ;=a =b .这些都同已知条件a > b >0矛盾,∴.证法二(直接证法),∵a >b>0,∴a - b >0 即,∴,∴.2.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,…. (Ⅰ)求a 1,a 2;(Ⅱ)猜想{a n }的通项公式. 【解析】(Ⅰ)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是(a 2-12)2-a 2(a 2-12)-a 2=0,解得a 1=16.(Ⅱ)由题设(S n -1)2-a n (S n -1)-a n =0,S n 2-2S n +1-a n S n =0.当n ≥2时,a n =S n -S n-1,代入上式得S n -1S n -2S n +1=0 ,①由(Ⅰ)知S 1=a 1=12,S 2=a 1+a 2=12+16=23.3. 已知0,,≠∈b a R b a 且,则在①ab b a ≥+222;②2≥+b aa b ; ③2)2(b a ab +≤;④2)2(222b a b a +≤+ 这四个式子中,恒成立的个数是 ( )A 1个B 2个C 3个D 4个 答案:C 。

高考数学《直接证明与间接证明、数学归纳法》PPT课堂知识整理

高考数学《直接证明与间接证明、数学归纳法》PPT课堂知识整理
23
(2)利用数学归纳法可以探索与正整数n有关的未知问题、存在性 问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现 结论,然后经逻辑推理论证结论的正确性.
24
(2019·浙江高考)设等差数列{an}的前n项和为Sn,a3= 4,a4=S3.数列{bn}满足:对每个n∈N*,Sn+bn,Sn+1+bn,Sn+2+bn 成等比数列.
4
(2)因为a,b,c均为正数, ab2+b≥2a,bc2+c≥2b,ca2+a≥2c, 故ab2+bc2+ca2+(a+b+c)≥2(a+b+c), 即ab2+bc2+ca2≥a+b+c, 所以ab2+bc2+ca2≥1.
5
[母题探究] 本例的条件不变,证明a2+b2+c2≥13. [证明] 因为a+b+c=1, 所以1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac, 因为2ab≤a2+b2,2bc≤b2+c2,2ac≤a2+c2, 所以2ab+2bc+2ac≤2(a2+b2+c2), 所以1≤a2+b2+c2+2(a2+b2+c2), 即a2+b2+c2≥13.
21
即(q+ 2)2=(p+ 2)(r+ 2), 所以(q2-pr)+ 2(2q-p-r)=0, 因为p,q,r∈N*,所以q22q--ppr-=r0=,0, 所以p+2 r2=pr,(p-r)2=0, 所以p=r,与p≠r矛盾, 所以数列{bn}中任意不同的三项都不可能成等比数列.
22
考点4 数学归纳法的应用
(1)求数列{an},{bn}的通项公式; (2)记cn= 2abnn,n∈N*,证明:c1+c2+…+cn<2 n,n∈N*.
25
[解] (1)设数列{an}的公差为d, 由题意得aa11++32dd==34a,1+3d,解得a1=0,d=2, ∴an=2n-2,n∈N*. ∴Sn=n2-n,n∈N*. ∵数列{bn}满足:对每个n∈N*,Sn+bn,Sn+1+bn,Sn+2+bn成 等比数列, ∴(Sn+1+bn)2=(Sn+bn)(Sn+2+bn),

形式推理的直接证明与间接证明方法

形式推理的直接证明与间接证明方法

形式推理的直接证明与间接证明方法形式推理作为数理逻辑的重要分支,通过严密的推理方法,可以从已知的前提推导出合理的结论。

在形式推理中,直接证明和间接证明是两种常见的证明方法。

本文将就这两种方法进行详细探讨,并分析其适用场景和特点。

一、直接证明方法直接证明方法是一种简单直接的推理方式,通过从已知的前提出发,逐步推导到目标结论,以达到证明的目的。

下面以一个具体的例子来说明直接证明的思路和步骤。

假设要证明一个命题P蕴含命题Q,即P→Q。

首先,我们可以从已知P的前提出发,通过逻辑推理得到Q的结论,即推导出Q。

在直接证明中,推导过程中的每一步都必须建立在已知的前提和已证明的结论之上,每一步都要经过严格的逻辑推导,确保推导过程的准确性和有效性。

直接证明方法的优点是简单直观,容易理解和掌握,推理过程清晰明了。

然而,直接证明适用于简单明了的命题,对于复杂或者繁琐的命题,推导过程可能会非常冗长和复杂,不利于推理的简化和提高效率。

二、间接证明方法间接证明方法是一种通过反证法来证明命题的推理方式。

当我们希望证明一个命题P时,可以先假设P不成立,即假设非P为真,然后从这一假设出发,推导出矛盾的结论,再通过排除法得出非P为假,即P成立的结论。

反证法的基本思想是,通过假设命题的反面来推导出矛盾,从而可以得出命题成立。

这种方法在一些特定的证明中非常有效,特别是当直接证明非常困难或者不可行时。

与直接证明方法相比,间接证明方法的优点在于,可以简化复杂的推理过程,通过将问题转化为矛盾的形式,更容易找到解决方案。

然而,间接证明的缺点是需要注意推导步骤的准确性,避免出现漏洞或者错误的推理过程。

三、直接证明与间接证明的比较分析直接证明和间接证明是形式推理中常用的两种方法,它们各有优劣,适用于不同的推理场景。

直接证明方法适用于简单清晰的命题,推导过程相对直接明了,容易理解和掌握。

对于直接证明适用的命题,我们可以通过逐步推导的方式来得到结论。

高中数学详细目录章节

高中数学详细目录章节

高中数学目录数学必修1第1章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集第2章函数概念与基本初等函数Ⅰ2.1 函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2 指数函数分数指数幂指数函数2.3 对数函数对数对数函数2.4 幂函数2.5 函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6 函数模型及其应用数学必修2第3章立体几何初步3.1 空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2 点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1 直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2 圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3 空间直角坐标系空间直角坐标系空间两点间的距离数学必修3第5章算法初步5.1 算法的意义5.2 流程图5.3 基本算法语句5.4 算法案例第6章统计6.1 抽样方法6.2 总体分布的估计6.3 总体特征数的估计6.4 线性回归方程第7章概率7.1随机事件及其概率7.2 古典概型7.3 几何概型7.4 互斥事件及其发生的概率数学必修4第8章三角函数8.1 任意角、弧度8.2 任意角的三角函数8.3 三角函数的图象和性质第9章平面向量9.1 向量的概念及表示9.2 向量的线性运算9.3 向量的坐标表示9.4 向量的数量积9.5 向量的应用第10章三角恒等变换10.1 两角和与差的三角函数10.2 二倍角的三角函数10.3 几个三角恒等式数学必修5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修 1-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用选修 1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图选修 2-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用选修 2-2第1章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义选修 2-3第1章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析4.4聚类分析。

5直接证明与间接证明

5直接证明与间接证明

龙源期刊网
5直接证明与间接证明
作者:
来源:《数学金刊·高考版》2014年第03期
直接证明与间接证明贯穿在整张高考卷的始终,解题过程中处处离不开分析与综合. 近年高考解答题的证明,主要考查直接证明,难度多为中档或中偏高档;有时以解答题的压轴题的形式呈现,此时难度为高档,分值约为4~8分. 对于间接证明的考查,主要考查反证法,只在个别地区的高考卷中出现,难度一般为中档或中偏高档,分值约为4~6分.
以数列、函数与导数、立体几何、解析几何等知识为背景的证明.
(1)综合法解决问题的关键是从“已知”看“可知”,逐步逼近“未知”. 其逐步推理,实质上是寻找已知的必要条件. 分析法解决问题的关键是从未知看需知,逐步靠拢已知,其逐步推理,实际上是寻找结论的充分条件. 因此,在实际解题时,通常以分析法为主寻求解题思路,再用综合法有条理地表述过程,相得益彰.
(2)对于某些看来明显成立而又不便知道根据什么去推导(综合法),甚至难于寻求到使之成立的充分条件(分析法)的“疑难”证明题,常考虑用反证法来证明. 一般地,可在假设原命题不成立的前提下,经过正确的逻辑推理,最后得出矛盾,从而说明假设错误,从反面证明原命题成立.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2.1 直接证明:分析法与综合法[读教材·填要点]综合法和分析法综合法分析法定义 从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求的问题,称为综合法从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件,称为分析法特点从“已知”看“可知”,由因导果,寻找必要条件从“未知”看“需知”,执果索因,寻找充分条件[小问题·大思维]1.综合法与分析法的推理过程是合情推理还是演绎推理?提示:综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?提示:综合法是从已知条件出发,逐步推向未知,每步寻找的是必要条件;分析法是从待求结论出发,逐步靠拢已知,每步寻找的是充分条件.综合法的应用已知a ,b 是正数,且a +b =1,求证:1a +1b≥4.[自主解答] 法一:∵a ,b ∈R +且a +b =1, ∴a +b ≥2ab . ∴ab ≤12.∴1a +1b =a +b ab =1ab≥4.当且仅当a =b =12时,取“=”号.法二:∵a ,b ∈R +, ∴a +b ≥2ab >0,1a +1b ≥21ab>0.∴(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4.又因为a +b =1, ∴1a +1b≥4.当且仅当a =b =12时,取“=”号.法三:∵a ,b ∈R +,且a +b =1, ∴1a +1b =a +b a +a +b b=1+b a +ab +1≥2+2a b ·ba=4. 当且仅当a =b =12时,取“=”号.保持例题条件不变,求证:4a +1b≥9.证明:法一:∵a >0,b >0,且a +b =1. ∴4a +1b=4a +b a +a +b b =4+4b a +ab+1 ≥5+24b a ·ab=5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.法二:∵a >0,b >0,且a +b =1. ∴4a +1b=(a +b )·⎝ ⎛⎭⎪⎫4a +1b =4+4b a +a b+1≥5+24b a ·ab=5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.综合法证明问题的步骤(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等. (2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程. 特别地,根据题目特点选取合适的证法可以简化解题过程.1.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a 2=b (b +c ),求证:A =2B . 证明:∵a 2=b (b +c ),∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+bc 2bc =c -b 2b,cos 2B =2cos 2B -1=2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2-1=2⎝ ⎛⎭⎪⎫b +c 2a 2-1=b +c 2-2b b +c 2b b +c =c -b 2b , ∴cos A =cos 2B .又A ,B 是三角形的内角,∴A =2B .分析法的应用当a +b >0时,求证:a 2+b 2≥22(a +b ). [自主解答] 要证 a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎢⎡⎦⎥⎤22a +b 2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .因为a 2+b 2≥2ab 对一切实数恒成立, 所以a 2+b 2≥22(a +b )成立.综上所述,不等式得证.分析法的证明过程及书写形式(1)证明过程:确定结论与已知条件间的联系,合理选择相关定义、定理对结论进行转化,直到获得一个显而易见的命题即可.(2)书写形式:要证…,只需证…,即证…,然后得到一个明显成立的条件,所以结论成立.2.已知a>6,求证:a-3-a-4<a-5-a-6.证明:法一:要证a-3-a-4<a-5-a-6,只需证a-3+a-6<a-5+a-4⇐(a-3+a-6)2<(a-5+a-4)2⇐2a-9+2a-3a-6<2a-9+2a-5a-4⇐a-3a-6<a-5a-4⇐(a-3)(a-6)<(a-5)(a-4)⇐18<20,因为18<20显然成立,所以原不等式a-3-a-4<a-5-a-6成立.法二:要证a-3-a-4<a-5-a-6,只需证1a-3+a-4<1a-5+a-6,只需证a-3+a-4>a-5+a-6.∵a>6,∴a-3>0,a-4>0,a-5>0,a-6>0.又∵a-3>a-5,∴a-3>a-5,同理有a-4>a-6,则a-3+a-4>a-5+a-6.∴a-3-a-4<a-5-a-6.综合法与分析法的综合应用已知△ABC的三个内角A,B,C为等差数列,且a,b,c分别为角A,B,C的对边,求证:(a+b)-1+(b+c)-1=3(a+b+c)-1.[自主解答] 法一:要证(a+b)-1+(b+c)-1=3(a +b +c )-1, 只需证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +cb +c=3, 化简,得c a +b +ab +c=1,即c (b +c )+(a +b )a =(a +b )(b +c ). 所以只需证c 2+a 2=b 2+ac .因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°,所以cos B =a 2+c 2-b 22ac =12.所以a 2+c 2-b 2=ac ,所以原式成立.法二:因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°.由余弦定理,有b 2=c 2+a 2-2ac cos 60°, 所以c 2+a 2=ac +b 2. 两边加ab +bc ,得c (b +c )+a (a +b )=(a +b )(b +c ),两边同时除以(a +b )(b +c ),得ca +b +ab +c=1,所以⎝ ⎛⎭⎪⎫c a +b +1+⎝ ⎛⎭⎪⎫a b +c +1=3. 即1a +b +1b +c =3a +b +c. 所以(a +b )-1+(b +c )-1=3(a +b +c )-1.综合法与分析法的适用X 围 (1)综合法适用的X 围:①定义明确的题型,如证明函数的单调性、奇偶性,求证无条件的等式或不等式问题等; ②已知条件明确,且容易通过找已知条件的必要条件逼近欲得结论的题型.(2)分析法适用的X围:已知条件不明确,或已知条件简便而结论式子较复杂的问题.3.(1)设x≥1,y≥1,证明:x+y+1xy ≤1x+1y+xy;(2)设1<a≤b≤c,证明:log a b+log b c+log c a≤log b a+log c b+log a c. 证明:(1)由于x≥1,y≥1,所以x+y+1xy≤1x+1y+xy⇔xy(x+y)+1≤y+x+(xy)2.将上式中的右式减左式,得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).又x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设log a b=x,log b c=y,由对数的换底公式得log c a=1xy ,log b a=1x,log c b=1y,log a c=xy.于是,所要证明的不等式即为x+y+1xy≤1x+1y+xy,其中x=log a b≥1,y=log b c≥1.故由(1)可知所要证明的不等式成立.已知a,b,c∈R且不全相等,求证:a2+b2+c2>ab+bc+ca. [证明] 法一:(分析法)要证a2+b2+c2>ab+bc+ca,只需证2(a2+b2+c2)>2(ab+bc+ca),只需证(a2+b2-2ab)+(b2+c2-2bc)+(c2+a2-2ca)>0,只需证(a -b )2+(b -c )2+(c -a )2>0, 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0. 所以原不等式a 2+b 2+c 2>ab +bc +ca 成立. 法二:(综合法) 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0. 所以2(a 2+b 2+c 2)>2(ab +bc +ca ). 所以a 2+b 2+c 2>ab +bc +ca .1.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明过程:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,此过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:结合推理及分析法和综合法的定义可知,B 正确. 答案:B2.在△ABC 中,若sin B sin C =cos 2A2,则下列等式一定成立的是( )A .A =B B .A =C C .B =CD .A =B =C解析:∵sin B sin C =cos 2A 2=1+cos A 2=1-cos B +C 2, ∴cos(B +C )=1-2sin B sin C ,∴cos B cos C -sin B sin C =1-2sin B sin C , ∴cos B cos C +sin B sin C =1,∴cos(B -C )=1.又0<B <π,0<C <π,∴-π<B -C <π,∴B =C . 答案:C3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0. 答案:C4.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:由证明过程可知,该证明方法为综合法. 答案:综合法5.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab ,只需证a 2+b 2≥2ab ,也就是证______,即证________,由于________显然成立,因此原不等式成立.答案:a 2+b 2-2ab ≥0 (a -b )2≥0 (a -b )2≥06.已知x >0,y >0,且x +y =1,试分别用综合法与分析法证明:⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9.证明:法一:(综合法) 左边=⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =4+2⎝⎛⎭⎪⎫y x +xy+1≥5+4=9. 当且仅当x =y =12时等号成立.法二:(分析法)要证⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9成立,∵x ,y ∈R +且x +y =1,∴y =1-x . 只需证明⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+11-x ≥9成立,即证(1+x )(1-x +1)≥9x (1-x ), 即证2+x -x 2≥9x -9x 2,即证4x 2-4x +1≥0,即证(2x -1)2≥0,此式显然成立, 所以原不等式成立.一、选择题1.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a c >b c,则a >b C .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:对于A :若c =0,则A 不成立,故A 错; 对于B :若c <0,则B 不成立,B 错; 对于C :若a 3>b 3且ab <0, 则⎩⎪⎨⎪⎧a >0,b <0,所以1a >1b,故C 对;对于D :若⎩⎪⎨⎪⎧a <0,b <0,则D 不成立.答案:C2.设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .8B .4C .1 D.14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b=3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B3.已知△ABC 中,cos A +cos B >0,则必有( ) A .0<A +B <πB .0<A +B <π2C.π2<A +B <π D.π2≤A +B <π 解析:由cos A +cos B >0,得cos A >-cos B , ∴cos A >cos(π-B ).∵0<A <π,0<B <π,且y =cos x 在x ∈(0,π)上单调递减. ∴A <π-B .∴A +B <π,即0<A +B <π. 答案:A4.已知实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是零D .正、负不能确定解析:∵a +b +c =0,∴(a +b +c )2=0. ∴a 2+b 2+c 2+2(ab +bc +ac )=0. ∴ab +bc +ac =-12(a 2+b 2+c 2)<0.又abc >0,∴1a +1b +1c =ab +bc +acabc<0.答案:B 二、填空题5.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0, 故只需a ≠b 且a ,b 都不小于零即可.答案:a ≥0,b ≥0且a ≠b6.若a =ln 22,b =ln 33,c =ln 55,则a ,b ,c 的大小关系为____________. 解析:利用函数单调性.设f (x )=ln x x ,则f ′(x )=1-ln x x2, ∴0<x <e 时,f ′(x )>0,f (x )单调递增;x >e 时,f ′(x )<0,f (x )单调递减.又a =ln 44,∴b >a >c . 答案:c <a <b7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 与q 的大小关系是________. 解析:p =a -2+1a -2+2≥2a -2·1a -2+2=4,当且仅当a =3时等号成立. -a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p .答案:p >q8.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值X 围是________. 解析:∵a ≥x x 2+3x +1=1x +1x+3对任意x >0恒成立, 设μ=x +1x+3(x >0). ∴只需a ≥1μ恒成立即可. 又∵μ=x +1x+3≥5,当且仅当x =1时“=”成立. ∴0<1μ≤15.∴a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞ 三、解答题9.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *).(1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)①又S n +1=2S n +n +5,②②-①得a n +1=2a n +1(n ≥2),所以a n +1+1a n +1=2a n +1+1a n +1=2a n +1a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5,所以a 2=11,所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.10.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b2+1-2m =0. (1)求证:1a 2+4b 2≥9a 2+b 2; (2)求证:m ≥72. 证明:(1)(分析法)要证1a 2+4b 2≥9a 2+b2成立, 只需证⎝ ⎛⎭⎪⎫1a 2+4b 2(a 2+b 2)≥9, 即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b2≥4. 根据基本不等式,有b 2a 2+4a 2b2≥2 b 2a 2·4a 2b 2=4成立, 所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1, 由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m ≤-1或m ≥72. 因为a 2+b 2=m -2>0,1a 2+4b 2=2m -1>0, 所以m ≥72.。

相关文档
最新文档