数量关系21种题型

合集下载

公务员数量关系方法技巧和主要题型

公务员数量关系方法技巧和主要题型

第一部分:数量关系三大方法一、代入排除法1。

什么时候用?题型:年龄,余数,不定方程,多位数(近年考得少,即如个位数与百位数对调等),题干长、主体多、关系乱的。

如:给出几个人的年龄关系,求其中某人的年龄。

2. 怎么用?尽量先排除,再代入。

注:问最大值,则从选项最大值开始代入;反之,则从选项最小的开始代入。

二、数字特征法1。

奇偶特性:(1)加减法在加减法中,同奇同偶则为偶,一奇一偶则为奇。

实际解题应用:和差同性,即a+b与a-b的奇偶性相同。

【例】共50道题,答对得3分,答错倒扣1分,共得82分。

问答对的题数与答错的题数相差多少题?A。

16 B. 17 C. 31 D.33解:根据奇偶题型,a+b=50,为偶数,则a—b也为偶数,故选A。

(2)乘法在乘法中,一偶则偶,全奇为奇。

(其他不确定)如:4X一定是偶数,5y可能为奇可能为偶,2个奇数相乘一定为奇数.【例】5x+6y=76(x、y都是质数),求x、y。

技巧:逢质必2,即考点有质数,质数2必考。

代入x=2【注:ax+by=c,仅当a、b为一奇一偶时可用奇偶特性,其他情况不能用.如当a=4,b=6时,此时4x和6y均为偶数,无法确定x、y的特征.】2。

倍数特性(1)比例例:男女生比例3:5,则有:男生是3的倍数女生是5的倍数男女生总数是8的倍数男女生差值是3的倍数整除判定方法:一般口诀法:3和9看各位和。

4看末2位,如428,末两位28÷4=7,能被4整除,故428能被4整除。

8看末3位,原理同4.2和5看末位。

没口诀的用拆分法:如7,判断4290能否被7整除,可将4290化成4200+90,90不能被7整除,故该数不能被7整除。

百分数转化技巧:拆分如:62.7%=50%+12.5%=1/2+1/8=5/887.5%=100%-12。

5%=1-1/8=7/8(2)平均分组整除型:总数=ax余数型:总数=ax+b三、不定方程法:即未知数多于方程数ax+by=c(a,b为常数,求x,y)(1)未知数为整数时(如多少场比赛,多少人等)●奇偶法:当a、b恰好一奇一偶时适用.如3x+4y=28。

常见的数量关系

常见的数量关系

常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

数量关系21种题型

数量关系21种题型

数量关系21种题型
数量关系是公务员考试和事业单位考试中的重要科目之一,其中涉及到大量的数学知识和逻辑思维能力。

在数量关系中,一共有 21 种题型,包括:
1. 方程题型
2. 倍数题型
3. 分数题型
4. 和差倍比题型
5. 百分数题型
6. 比例题型
7. 平均数题型
8. 余数题型
9. 质数题型
10. 合数题型
11. 数论题型
12. 图形题型
13. 组合题型
14. 排列组合题型
15. 倍数特性题型
16. 分数特性题型
17. 和差倍比特性题型
18. 百分数特性题型
19. 比例特性题型
20. 平均数特性题型
21. 余数特性题型
每种题型都有其独特的特点和解决方法,熟练掌握这些题型可以帮助我们更好地应对考试,提高得分效率。

同时,数量的 21 种题型也为我们提供了一个思路,我们可以根据不同的题型采用不同的解决方法,从而更好地解决问题。

数量关系八种必考题型讲解

数量关系八种必考题型讲解

数量关系分类型讲解--等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。

题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。

【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C。

这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。

顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,……。

显然,括号内的数字应填13。

在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。

□ 等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A。

这也是一种最基本的排列方式,等比数列。

其特点为相邻两个数字之间的商是一个常数。

该题中后项与前项相除得数均为3,故括号内的数字应填243。

【例题4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为C。

该题难度较大,可以视为等比数列的一个变形。

题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1 5,2,2 5,3,因此括号内的数字应为60×3=180。

这种规律对于没有类似实践经验的应试者往往很难想到。

我们在这里作为例题专门加以强调。

该题是1997年中央国家机关录用大学毕业生考试的原题。

【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B。

这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。

故括号内的数字应为50×2-2=98。

公务员考试之数量关系

公务员考试之数量关系

数量关系一.数字推理一.题型特点(一)数列填空推理(简单数列+多重数列)——注意考虑变式:常数和项数类型特点解题要点质、合数数列(1)质数数列:由只能被1和它本身整除的正整数(质数)组成的数列。

(2)合数数列:由除了1和它本身外还有其他约数的正整数(合数)组成的数列。

其中,1既不是质数,也不是合数;2是最小的质数,4是最小的合数。

(3)非质数数列:由1和合数组成的数列。

(4)非合数数列:由1和质数组成的数列。

1)质数数列:2,3,5,7,11,13,17,19,23,29,312)合数数列:4,6,8,9,10,12,14,15,16,3)非质数数列1,4,6,8,9,10,12,4)非合数数列1,2,3,5,7,11,13,间接考察:25,49,121,169,289,361(质数5,7,11,13,17,19的平方)二次做差后2 3 5 7 接下来注意是11,不是9,注意区分质数和奇数列:奇数列没有2等差数列相邻两项之差相等,等于一个常数逐差法(得到新数列)。

适用情况:多级等差数列及其变式。

整体变化幅度较小(有单调性)等比数列相邻两项之比相等,等于一个常数逐商法。

适用情况:数列满足等比数列特点,且无其他明显规律。

整体变化幅度较大(公比为正数时有单调性,公比为负数时,无单调性,呈现一正一负)注意:公比分数化,公比负数化。

多次方数列数列各项均为某项的多次方。

平方立方是特殊的多次方数列。

适用情况:有明显的平方项或立方项及变式。

整体变化幅度很大(有单调性)递推数列(递推和,递推差,递推积,递推平方,立方)递推考虑常数和项数某一项都是它的前两项或三项通过一定的运算法则得到的(一般是圈三法)观察趋势,尝试:1.整体递增:考虑和,倍,积,乘方增长较慢:先和,后倍,再积增长较快:积增长很快:乘方2整体递减:差,倍,商,开方减少较慢:先差,后倍,再商减少较块:商减少很快:开方根式数列数列中含根式的数列1根次之间存在关系2根次相同时,可以把根号外面的数化到根号里面去(或把根号里面的数化到外面去),看底数关系3根式的底数存在关系4.根次,底数分别存在一定的关系。

数量关系题型

数量关系题型

数理推断1、一次差后出现的往往都是等差等比,规律易寻23 25 28 33 40 ——51(注意一次差中出现质数数列)2 3 5 72、二次差,一次差的一次差,有时候一次差无果,莫放弃,再试,二次差的数已经是很简单了(二次差至少要三个数,除非二次差是两个相同的数,如例一,也就是说题干至少是5个数)39 62 91 126 149 178——21323 29 35 236 61 9 35 91 189——3418 26 56 9818 30 4212 14 19 29 46 ——722 5 10 173 5 76 8 ()27 442 ??17???——此三个问号相加为15,每个就是5括号在中间,先猜然后验3、倍数法,就是数之间没有明显的倍数关系和幂级关系,如数之间有明显的关系,则转而用其他方法,而不是次差100 20 2 2/15 1/150——1/37505倍10 15 20也有不明显的情况2 23 6 151倍 1.5 2 2.54、一次和法,次差和倍数差要么渐渐变大,要么渐渐变小,要么上下规律变动,若看到类似以下题型,很明显不符合次差和倍数差的规律1 2 3 4 7 6(注意划线部分为一次和标志)3 5 7 11 1382 98 102 118 62 138180 200 220 180但也会存在渐大题(一次和的最高境界了)3 5 22 42 83(思路:无倍数关系,用次差,一次无果、二次无果、一次和可行)5、,一次积法,明显的分数,而且出现前数的分母等于后数的分子,也就是两者乘积可以化简或化整 32 23 34 3 38 1 2 4 86、交叉/分组数,上述所有题型与交叉/分组数区别在于,题中给的项数,交叉/分组数多达8项以上(含括号项),其他的在5到7项之间,因为分组数两两组合后起码要三项才能显现规律,还要一项引出答案,8项一般是两两组合,9项一般是三三组合,另外一种就是出现两个括号,一定是交叉分组题,奇数项是交叉,偶数的两种都有可能 2 15 8 11 14 7 20 ()2、8、14、20为以6为等差的偶数数列15、11、7为以4为等差的奇数数列有时候能用交叉做的,分组不一定能做1 4 6 13 36 22 216 ()5 19 58 所以首要看交叉项7、上题也可以做分组数列解2 15 8 11 14 7 20 ()17 19 21也有5 46 97 14 () ()9 15 21但是,分组数中,并完全是组合的和,还可能是组合之间的加减乘除3 4 7 9 13 16 22 ()差1 2 3 41 1 8 16 7 21 4 162 ()乘1 2 3 4 52 4 8 24 9 36 7 35 6 ()除2 3 4 5 6九项一定是交叉1 4 3 52 6 4 7 ( )——3A.1B.2C.3D.48、分数数列,特点:出现分数项,但不是所有的有分数项都是(1)递推型:注意分子分母分别递推型和整个分数递推型的区别,但都有次差特征,见P80,例五属于整个分数递推型,分子分母分别递推可能没有答案,因为选项可能不是最简(2)化简法:无次差特征,一定要通过分子或分母进行变形才可以看出规律,至于如何变形,应题而异,本质思路是,化简成递推型来做题A、分组看待B、将分母或分子化成简单或相同,即广义通分C、反约分:即同时扩大,看分母或分子谁不符合历史潮流,扩大之即有规律可循,讲义例7—99、简单幂数列,有明显的幂数字特征,如0、1、4、8、9、16、25、27、32简单幂数列之最高境界(可能与分数混)16 5 ()1/7 1/64化简后:42 51407-18-210、幂修正数列,数列加上或减去一个简单的等差或等比数列可以把数列修正为简单幂数列,即相邻数发散,突破口:最大的已知数修正数列中较难的题型,序数修正数幂三个杂糅-2 -8 0 64 250-2*1^3 -1*2^3 0*3^3 1*4^3 2*5^32 3 10 15 26——35=6^2-11^2+1 2^2-1 3^2+111、整体趋势法,数列整体有变化趋势题型:1、单数推(也就是倍数法)2、两数推a b c d e () 一定是na+b=c或者a+nb=c3、多数推:前三数推出第四数递推的类型:和差积商倍方整体递减:差商整体递增:和方积倍做题方法1、看趋势,判断是用差商还是和方积倍2、看大数,看它适合哪种运算方法,使得前项得最大项3、用圈三数法试,也就是研究前两个数如何得到第三数圈三数法有三个结果,以差商为例1、直接通过加减乘除得到第三数2、差太远:就是商3、差别不大:修正法修正法:1、简单修正法:白痴都能看出来的修正,不解释2、前项相关数列修正法,亦称一格半,标志:相邻数之间有n-n+1倍数即n、n+1都好像可以例子:1 1 3 7 17 41 ()A89 B99 C109 D209思路:趋势——和方积倍——倍——修正——2/3倍数——一格半2 4 6 10 16(前两项)一般是直接相加减乘除1 2 6 16 44——120(前两项相加之和的两倍)6 7 16 51 208(前一项)一般是前项乘以*加上**1+1 *2+20 1 1 2 4 7 13(前三项)相加容易看出,相乘也未必难,往往括号前最后一项跟括号前最后第二项差距很大1 2 5 13 68*5+3整体题最高境界(前一项没什么,最怕的是前两项组合)1 3 2 7 17 121——20642*3+1 2*7+3 7*17+21 2 8 28 1001*2+2*3 2*2+8*33,3+2,5+3,9,(),13+6A.9+5B.10+5D.12+512、对称数列1 32 5 23 ()——113、图形数阵(50%几率会考)观察角度:上下、左右、交叉类型:四格圆、五格圆、九宫格圆图的运算角度1、两个圆里的奇数都是偶数个——加减入手2、一个圆里的奇数是奇数个——乘法入手五图圆中心必是等号右边,一般是交叉运算四图圆要是乘法入手,小的先乘九宫格1、每横每竖等比或等差(不常考)2、每横每竖加起来相等(不常考)3、横递推前两数如何变才成为第三数(第三数一定是最大数)Na+b=c a+nb=c n(a+b)=c am+nb=c特例:13.6/1.7=8——610.8/2.7=4——?=214、其他本数个十百相加为下数与其之差227 238 251 259——27511 13 8在上下波动看不出规律的的情况下,有可能是前两数相加的个位数6 7 3 0 3 3 6 9 5——413 10 3 3 6 9 15 14序数及其乘数之间的关系2,13,40,61,2*6+1=1313*3+1=4040*1.5+1=6161*0.75+1=答案数学公式题(规律比较明显)39-1,38+2,37-3,36+1,35-2,34+3,…求最后一个原题:77492816122加括号:77(4928)(1612)(2 (10))(2,12),(6,30),(25,100,)——96*6 -6 *5 -5 *4 -4(2.7,102,)( 4.2,103,)( 5.7,105,)(7.2,107,)8.7,1011数数数量关系12,1112,3112,211213,312213一个一一个二三个一一个二三个一二个二一个三趣味数列(去最小奇数倒排,数字已经失去计算的作用)637 951,59 736,6 795,976——692,12,121,1121,11211——111211(2的左右依次加1)5项(含括号)又不能一次差,差了3个,二次差就更不用说了。

数量关系题库

数量关系题库

数量关系(一) 数字推理(1)数字性质:奇偶数,质数合数,同余,特定组合表现的特定含义如∏=3.1415926,阶乘数列。

(2)等差、等比数列,间隔差、间隔比数列。

(3)分组及双数列规律(4)移动求运算数列(5)次方数列(1、基于平方立方的数列 2、基于2^n次方数列,3幂的2,3次方交替数列等为主体架构的数列)(6)周期对称数列(7)分数与根号数列(8)裂变数列(9)四则组合运算数列(10)图形数列(二) 数学运算(1)数理性质基础知识。

(2)代数基础知识。

(3)抛物线及多项式的灵活运用(4)连续自然数求和和及变式运用(5)木桶(短板)效应(6)消去法运用(7)十字交叉法运用(特殊类型)(8)最小公倍数法的运用(与剩余定理的关系)(9)鸡兔同笼运用(10)容斥原理的运用(11)抽屉原理运用(12)排列组合与概率:(重点含特殊元素的排列组合,插板法已经变式,静止概率以及先【后】验概率)(13)年龄问题(14)几何图形求解思路 (求阴影部分面积割补法为主)(15)方阵方体与队列问题(16)植树问题(直线和环形)(17)统筹与优化问题(18)牛吃草问题(19)周期与日期问题(20)页码问题(21)兑换酒瓶的问题(22)青蛙跳井(寻找临界点)问题(23)行程问题(相遇与追击,水流行程,环形追击相遇:变速行程,曲线(折返,高山,缓行)行程,多次相遇行程,多模型行程对比)数学应用题解题方法精讲(1)套用公式法。

适用于计算里程、计算方阵人数、计算工程、排列组合等问题。

【例题】某校学生排成一个方阵,最外层人数是40人,问此方阵共有学生多少人?A.101B.111C.121D.131 【解析】答案为C。

(40÷4+1)2=121(2)运用经验法。

如种树、爬楼梯,计算时间、年月日与星期几等问题,需要具备日常生产、生活的基本知识。

如在道路两旁种树时开始处应先种一棵,所以需加1,然后乘2;计算楼梯台阶时由于一层没楼梯,所以需减1;计算时间需要懂得钟表上秒、分、小时的推算,计算月日需记住公历中的1、3、5、7、8、10、12这七个大月每月为31天,4、6、9、11这四个小月每月为30天。

数量关系120题带解析

数量关系120题带解析

数字运算1.0.9,0.99,0.999,()A.0.9999 B.1 C.9.9 D.0.09解析:本题规律为为a =1-10 (n=1,2,3,……),故应选A。

2.1,2,2,4,3,6,4,8,()A.4 B.10 C.6 D.5解析:间隔组合数列,在奇数位置上是数列1,2,3,4,5,….,在偶数位置上是数列2,4,6,8,10,… .所以这里应选择D。

3.1,0.5,0.25,0.125,()A.0.75 B.0.725 C.0.0625 D.0.05解析:这是典型的等比数列,公比为,只是用小数的形式表示,不容易观察出来,知道这点就很容易算出答案是C。

4.135,246,7911,81012,()A.141618 B.131517 C.131715 D.101214解析:经过观察,可以看出奇数项位置上的数,是由数列{1,3,5,7,9,…}依次取3个数字组成的新数,而偶数项位置上的数,同理,是由数列{2,4,6,8,10,….}依次取3个数字组成的新数。

故答案是B。

6.01,10,11,100,101,110,(),1000A.001 B.011 C.111 D.1001解析:这是一道2进制的题,换算成10进制的就是1,2,3,4,5,6,7,8。

这道题要求的是10进制中7的2进制表示方法,计算可得答案为C。

7.2,3,5,9,17,33,()A.65 B.35 C.39 D.41解析:等差数列的变式。

观察可得:,所以第7项是33+32 =65,选A。

8.0,-1,3,-7,(),-31,63,-127A.9 B.-15 C.15 D.-9解析:本题规律为:a = (n=1,2,3,…),所以第5项a = ,因此答案是C。

9.2,3,5,7,11,13,(),19,…A.15 B.16 C 17 D.18解析:这是由素数组成的一列数列,所以答案是C。

质数又称素数。

指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。

数量关系

数量关系

数量关系[单项选择题]1、小明家有一架时钟,每个半点(即1点半、2点半、3点半……)时,时钟就会发出一声响声,每当到整点时,时钟就会发出当前时针所指的数字次的响声。

那么从某一日的上午6:45到该日下午17:20,这个时钟共发出多少次响声?()A.72B.78C.82D.142参考答案:C参考解析:时钟总共发出的响声次数等于整点时钟发出的响声次数加上每个半点时时钟发出的响声次数,时钟从某一日上午6:45分走到下午17:20,所走过的整点时刻有7、8……12、l、2……5。

因此发出的整点响声次数=1+2+3+…+12-6=72(次)。

再加上每个半点时发出的响声次数,包括7:30、8:30……16:30,共l6-7+1=l0(次)。

此时钟总共发出82次响声。

[单项选择题]2、早晨九点整,小东、小明和小红三个人同向而行,小明在小东前200米,小红在小明前300米。

小东的速度是80米每分钟,小明的速度是50米每分钟,小红的速度是40米每分钟。

在什么时刻时,三人互不并行且小东与小明、小红之间的距离是相同的()A.9︰10B.9︰l4C.9︰24D.9︰32参考答案:A参考解析:假设过了1分钟,小东与小明、小红之间的距离相同。

简单分析可知,三人互不并行且当小东与小明、小红的距离相同时,小东的位置在小明和小红之间,根据题意可列出方程80x-50x-200=40x+500-80x,解得x=10,因此答案为A。

[单项选择题]3、某班级选拔6人参加某学科竞赛,试卷满分为100分,60分及格,6人的平均分为92.5分。

已知所有人得分均为整数且互不相等,那么第三名的成绩最低为()分。

A.91B.93C.95D.97参考答案:A参考解析:要使第三名的成绩最低,那么第一、二名的成绩要尽可能高,第四、五、六名的成绩与第三名应该尽可能的接近,则第一名为100分,第二名为99分。

6人的平均分为92.5分,即6人总成绩为92.5×6=555(分),除第一名、第二名外,剩下的四人总成绩为555-100-99=356(分),该四人的平均成绩为356÷4=89(分),此时这四人的成绩可能为91、90、88、87或91、90、89、86。

小学奥数:经典21道题型(数学思维)

小学奥数:经典21道题型(数学思维)

小学奥数:经典21道题型(数学思维)题型一:归一问题【含义】在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

【数量关系】总量÷份数=单一量单一量×所占份数=所求几份的数量或总量A÷(总量B÷份数B)=份数A【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。

【例】买5支铅笔需要0.6元钱,买同的铅笔16支,需要多少钱?解:先求出一支铅笔多少钱—0.6÷5=0.12(元)再求买16支铅笔需要多少钱——0.12×16=1.92(元)综合算式:0.6÷5×16=0.12×16=1.92(元)题型二:归总问题【含义】解题时先找出“总数量”,再根据已知条件解决问题的题型。

所谓“总数量”可以指货物总价、几天的工作量、几亩地的总产量、几小时的总路程等。

【数量关系】1份数量×份数=总量总量÷一份数量=份数【解题思路】先求出总数量,再解决问题。

【例】服装厂原来做一套衣服用布3.2米,改进剪裁方法后,每套衣服用布2.8米。

问原来做791套衣服的布,现在可以做多少套衣服?解:先求这批布总共多少米——3.2×791=2531.2(米)再求现在可以做多少套——2531.2÷2.8=904(套)综合算式:3.2×791÷2.8=904(套)题型三:和差问题【含义】已知两个数量的和与差,求这两个数量各是多少。

【数量关系】大数=(和+差)÷2小数=(和一差)÷2【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。

【例】甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:直接套用公式一—甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)题型四:和倍问题【含义】已知两个数的和及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。

小学数学应用题21种类型总结(附例题、解题思路)

小学数学应用题21种类型总结(附例题、解题思路)

小学数学应用题21种类型总结(附例题、解题思路) 1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2、归总问题【含义】解题时,常常先找出"总数量",然后再根据其它条件算出所求的问题,叫归总问题。

所谓"总数量"是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

数量关系之数学运算讲义 (4)

数量关系之数学运算讲义 (4)

数量关系之数学运算讲义第一部分--题型综述:一、数字运算趋势:综合、分析、生活化二、数字运算分类:1、数字运算2、多位数3、页码问题4、循环问题5、整除问题6、方阵问题7、端点问题8、青蛙跳井9、方程10、比例问题11、浓度问题(增加平均数)12、百分比13、利润问题14、工程问题15、行程问题16、相对行程17、时钟问题18、鸡兔同笼19、牛吃草问题20、年龄问题21、等差数列(增加等比数列)22、排列组合23、概率问题24、抽屉问题25、集合问题26、分段计算问题27、几何问题四、复习技巧:紧抓基本、反复练习五、解题思路:1、把握特点 2、精巧思维 3、小心陷井六、解题方法:插值法基准数法尾数计算法乘方尾数估算法弃九直接代入列方程整除比例公倍数数字特性(凑整、奇偶)十字交叉精巧思维例题1:某校初一年级共3个班,一班与二班人数之和为98,一班与三班人数之和为106,二班与三班人数之和为108,则二班人数为多少人? A.48 B.60 C.50 D.58例题2:某学生语文、数学、英语三科的平均成绩是93分,其中语文、数学平均成绩90分,语文、英语平均成绩93.5分,则该生语文成绩是多少? A.92 B.95 C.88 D.99例题3:排成一排的13个皮包的平均价格为130元,前8个皮包的平均价格为140元,后8个皮包的平均价格为90元,问中间3个皮包的平均价格是多少元? A.100 B.120 C.50 D.80例题4:飞行员前4分钟用半速飞行,后4分钟用全速飞行,在8分钟内一共飞行了72千米,则飞机全速飞行的时速是()千米/小时。

A.360 B.540 C.720 D.840例题5:某月刊杂志,定价2.5元,幸福村有些户订了全年,其余户订了半年,共需5100元,如果订全年的改订半年,订半年的改订全年,则共需3000元,幸福村共有多少户?A.190B.170C.200D.180例题6:三位采购员定期去某市场采购,小王每隔9天去一次,大刘每隔6天去一次,老杨每隔7天去一次,三人星期二第一次在这里碰面,下次相会将在星期几?A.星期一B.星期四C.星期二D.星期五例题7:从装满100克浓度为80%的糖水杯中倒出40克糖水,再倒入清水把杯子倒满。

小学数学应用题的21种类型

小学数学应用题的21种类型

1【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。

3【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

【免费】小学五年级数学下册应用题21种类型解析(全)

【免费】小学五年级数学下册应用题21种类型解析(全)

1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。

3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

数量关系式

数量关系式

数量关系单价×数量=总价单产量×面积=总产量速度×时间=路程总价÷数量=单价总产量÷面积=单产量路程÷速度=时间总价÷单价=数量总产量÷单产量=面积路程÷时间=速度效率×时间=工作总量图上距离÷实际距离=比例尺工作总量÷工作时间=工作效率实际距离×比例尺=图上距离工作总量÷工作效率=工作时间图上距离÷比例尺=实际距离本金×利率×时间=利息成活率=成活棵数/总棵数合格率=合格/总每份数×份数=总数总数÷每份数=份数总数÷份数=每份数加数+加数=和和-一个加数=另一个加数被减数-减数=差被减数-差=减数差+减数=被减数因数×因数=积积÷一个因数=另一个因数被除数÷除数=商被除数÷商=除数商×除数=被除数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间运算定律加法交换律a+b=b+a加法结合律a+b+c=(a+b)+c=a+(b+c)=(a+c)+b乘法交换律ab=ba 乘法结合律abc=(ab)c=a(bc)=(ac)b乘法分配律a(b+c)=ab+ac减法的运算性质a-b-c=a-(b+c)除法的运算性质a÷b÷c=a÷(b×c)商不变的性质a÷b=(a×x)÷(b×x)=(a÷x)÷(b÷x)(x≠0)分数的基本性质比的基本性质a:b=(a×x):(b×x)=(a÷x):(b÷x)(x≠0)比例的基本性质:因为a:b=c:d所以ad=bc计算公式长方形的周长C=(a+b)×2 长方形的面积S=ab正方形的周长C=4a 正方形的面积S=a2平行四边形的面积S=ah 三角形的面积S=ah÷2梯形的面积S=(a+b)×h÷2圆的周长C=2πr或C=πd 圆的面积S=πr2或S=π(d÷2)2长方体的表面积S=(ab+ah+bh)×2 长方体的体积V=abh正方体的表面积S=6a2 正方体的体积V=a3圆柱体的表面积S=2πrh+πr2×2 圆柱体的体积V=Sh 或V=πr2圆锥体的体积V=Sh÷3或V=πr2h÷3小学单位换算表【长度单位】1千米=1000米1米=10分米1厘米=10毫米1分米=10厘米【面积单位】1平方千米=100公顷1公顷=10000平方米1平方千米=1000000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米【体积单位】1立方千米=1000000立方米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米【容积单位】1升=1000毫升1立方分米=1升1立方厘米=1毫升【重量单位】1吨=1000千克1千克=1000克【人民币单位换算】1元=10角1角=10分【时间换算】1世纪=100年1年=12月1日=24小时1时=60分1分=60秒注意:大月(31天)有:1、3、5、7、8、10、12等七个月;小月(30天)有:4、6、9、11等四个月;在平年时2月有28天,在闰年2月有29天。

行测专项题库数量关系

行测专项题库数量关系

数量关系(1-20)及参考答案(共20题,参考时限15分钟)本部分包括两种类型的试题,均为单项选择题。

一、数字推理:共5题。

给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个选项中选出你认为最合理的一项来填补空缺项。

【例题】2,9,16,23,30,( )。

A.35B.37C.39D.41解答:这一数列的排列规律是前一个数加7等于后一个数,故空缺项应为37,正确答案为B。

请开始答题:1.4,5,7,11,19,( )。

A.27B.31C.35D.412.3,4,7,16,( )。

A.23B.27C.39D.433.32,27,23,20,18,( )。

A.14B.15C.16D.174.25,15,10,5,5,( )。

A.10B.5C.0D.-55.-2,1,7,16,( ),43。

A.25B.28C.31D.35二、数学运算:共15题。

你可以在草稿纸上运算,遇到难题,你可以跳过不做,待你有时间返回来做。

【例题】84.78元、59.50元、121.61元、12.43元以及66.50元的总和是( )。

A.343.73 B.343.83 C.344.73 D.344.82解答:正确答案为D。

实际上你只要把最后一位小数加一下,就会发现和的最后一位数是2,只有D符合要求。

就是说你应当动脑筋想出解题的捷径。

请开始答题:6.甲、乙、丙三人买书共花费96元钱,已知丙比甲多花16元,乙比甲多花8元,则甲、乙、丙三人花的钱的比是( )。

A.3∶5∶4B.4∶5∶6C.2∶3∶4 D.3∶4∶57.把一个边长为4厘米的正方形铁丝框制成两个等周长的圆形铁丝框,铁丝的总长不变,则每个圆铁丝框的面积为( )。

A.16πcm2B.8πcm2C.8/πcm2D.16/πcm28.若干学生住若干房间,如果每间住4人,则有20人没地方住,如果每间房住8人,则有一间只有4人住,问共有多少学生?( )。

A.30人B.34人C.40人D.44人9. 12.5×0.76×0.4×8×2.5的值是( )。

20道数量关系题目

20道数量关系题目

(101). 1,3,4,13,29,()A.57B.67C.188D.198---------------------------------------这个题目,如果不能一眼看出是组合运算,那么你们可以采用等差方法,然后对号原数列再找规律3-1=24-3=113-4=929-13=16我们发现除了第一个2,其他三个数字,1,9,16 刚好是1,2,3项的平方数,所以我们即可以推断出规律为A^2+B=C 也就是C-B=A^2(102).21,19,26,40,45,66,()A.105B.100C.93D.85-------------------------------------------项数达到6项且要求计算第七项多半是以下这样几种可能:1、两两分组,2、奇数偶数双数列,3、三级等差或间隔数列, 4 隔项移动求和。

少许观察一下,最容易排除的就是1,和2,两种类型那就就在间隔数列和间隔移动运算数列中找规律了。

21+19=4019+26=4526+40=6640+45=85A+B=D(103). 1/2, 1/3, 2/5, 3/8, 5/13, ( )A.8/21B.1/3C.7/24D.6/19-------------------------------------------------关于分数数列,我们无非从一下几个方面来看分数问题,主要是设计到通分约分的问题,当其中一项经过通分以后才能看出其中的规律。

分子,分母各成数列行成双数列λ分数当中λ分子分母之间等差,或求和分子分母构成长数列λ分子分母差值、求和数列λ分子分母次方数列。

λ显然这个题目是分子分母各成数列分子:1,1,2,3,5分母:2,3,5,8,13这就是我们习惯的裴波纳契数列(移动求和数列)A+B=C(104). 0, 15, 48, 99, 168, ( )A.215B.255C.293D.343--------------------------------------------------------这个题目可以用等差数列在来做,但最好的方式还是次方,因为此题已经很明显的看出数字都是次方数接近的我曾经在一个帖子中对数字推理的训练提出这样一个要求,1~10以内的3次方,1~20以内的2次方都要记住。

小学数学常考应用题21种类型总结(附例题、解题思路)

小学数学常考应用题21种类型总结(附例题、解题思路)

小学数学常考应用题21种类型总结归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学奥数最常见的21个模块知识

小学奥数最常见的21个模块知识

小学奥数最常见的21个模块知识题型一:归一问题【含义】在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

【数量关系】总量÷份数=单一量单一量×所占份数=所求几份的数量或总量A÷(总量B÷份数B)=份数A【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。

【例】买5支铅笔需要0.6元钱,买同样的铅笔16支,需要多少钱?解:先求出一支铅笔多少钱——0.6÷5=0.12(元)再求买16支铅笔需要多少钱——0.12×16=1.92(元)综合算式:0.6÷5×16=0.12×16=1.92(元)题型二:归总问题【含义】解题时先找出“总数量”,再根据已知条件解决问题的题型。

所谓“总数量”可以指货物总价、几天的工作量、几亩地的总产量、几小时的总路程等。

【数量关系】1份数量×份数=总量总量÷一份数量=份数【解题思路】先求出总数量,再解决问题。

【例】服装厂原来做一套衣服用布3.2米,改进剪裁方法后,每套衣服用布2.8米。

问原来做791套衣服的布,现在可以做多少套衣服?解:先求这批布总共多少米——3.2×791=2531.2(米)再求现在可以做多少套——2531.2÷2.8=904(套)综合算式:3.2×791÷2.8=904(套)题型三:和差问题【含义】已知两个数量的和与差,求这两个数量各是多少。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。

【例】甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:直接套用公式——甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)题型四:和倍问题【含义】已知两个数的和及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。

数量关系推理

数量关系推理

数量关系推理第一种题型:数字推理。

每道题给出一个数列,但其中缺少一项,要求报考者仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从四个供选择的答案中选出最合适、最合理的一个来填补空缺项,使之符合原数列的排列规律。

例题:5 12 21 34 53 80 ( )A.121B.115C.119D.117(答案:D。

本题的数字规律是:从左到右,相邻两项的后项减前项,可以得到一个新数列7,9,13,19,27,即:12-5=7,21-12=9,34-21=13,53-34=19,80-53=27这个新的数列,从左到右,相邻两项的后项减前项又可以得到一个公差为2的等差数列2,4,6,8,即:9-7=2,13-9=4,19-13=6,27-19=8,(37)-27=10按照这个规律,填入括号内的应该是D项:80+37=117。

所以,正确选项是D。

)第二种题型:数学运算。

每道题给出一个算术式子或者表达数量关系的一段文字,要求报考者熟练运用加、减、乘、除等基本运算法则,并利用其他基本数学知识,准确迅速地计算或推出结果。

例题:一种溶液,蒸发掉一定量的水后,溶液的浓度变为10%,再蒸发掉同样多的水后,溶液的浓度变为12%,第三次蒸发掉同样多的水后,溶液的浓度将变为多少?A.14%B.17%C.16%D.15%(答案:D。

本题可以估算。

从“第二次蒸发掉同样多的水后,溶液的浓度变为12%”可知,随着水的不断蒸发,溶液的浓度也会逐渐增大。

按照溶液浓度的递增速度,应该略大于14%,因此估计为15%。

)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数量关系21种题型
数量关系是数学中的重要分支,它涉及到数值的比较、加减乘除和大小关系等,是数学学习的重要内容之一。

在各个考试中,数量关系也是常见的考察内容之一。

本文将针对数量关系的
21种题型进行详细分析,以帮助读者更好地掌握数量关系的
应用技巧。

1. 大小关系:常见的大小关系题目包括比较大小、填写大小关系、找规律等。

能够熟练掌握比大小的技巧,可以快速解决这类题目。

2. 增减关系:增减关系题目主要包括百分数和倍数的应用,要求考生能够对数值进行运算和计算。

3. 结论推理:这类题目主要考察考生的逻辑推理能力,需要根据给出的条件,得出结论。

4. 比例关系:比例关系包括比例和比例变化,需要考生掌握相关公式和计算方法。

5. 份额问题:这类问题主要考察考生的应用能力,以现实场景为背景,涉及到分配、合并、分拆等相关问题。

6. 均分问题:均分问题需要考生对平均数的概念有一定的掌握,能够通过平均数、中位数、众数等统计性指标进行计算。

7. 偏移问题:偏移问题主要考察考生的空间想象力和推理能力,
需要计算经过移动后的位置。

8. 推理猜想:推理猜想需要考生对数据进行推测猜想,对未知答案进行分析。

9. 绝对值问题:绝对值问题主要考察考生的绝对值计算能力,需要计算绝对值的大小和正负关系。

10. 逆推问题:逆推问题需要考生从已知结果中推理出前提条件,考察考生的逆推能力。

11. 分组问题:分组问题主要考察考生的分类能力,需要对数据进行分类统计和分组计算。

12. 勾股定理问题:勾股定理问题需要考生掌握勾股定理的基本原理,能够运用勾股定理进行计算。

13. 比重问题:比重问题主要考察考生的密度计算能力,需要计算物质的比重和密度。

14. 分段函数问题:分段函数问题需要考生掌握函数分段的概念和计算方法,以及函数连续性的判断。

15. 面积周长问题:面积周长问题主要考察考生测量和计算面积和周长的能力。

16. 平均数问题:平均数问题需要考生掌握平均数的概念和计算方法,能够对数据进行平均值的计算。

17. 商业应用问题:商业应用问题通过实际商业案例进行模拟计算,需要考生对经济学和管理学有一定的了解。

18. 组合问题:组合问题需要考生掌握组合数学的概念和计算方法,对数据进行组合计算。

19. 根据图表分析问题:根据图表分析问题需要考生对数据图表进行分析和计算,以对问题进行解答。

20. 制表问题:制表问题需要考生掌握表格制作的技巧,能够对数据进行整理和分类。

21. 贡献度问题:贡献度问题考察考生对数据贡献度的分析和计算能力,能够对数据进行综合评估和分析。

以上是常见的21种数量关系题型,每一种题型都有着不同的应用技巧和解题方法。

掌握这些题型的基本知识,有助于考生在应试时能够更加从容地应对各种数量关系题目。

相关文档
最新文档