高中物理模块复习典型题分类-电磁感应(含详细答案)
高三物理电磁感应试题答案及解析
高三物理电磁感应试题答案及解析1.电磁感应现象在生活及生产中的应用非常普遍,下列不属于电磁感应现象及其应用的是【答案】 C【解析】试题分析: 发电机是利用线圈在磁场中做切割磁感线运动从而产生电流---电磁感应现象来工作的,所以A属于电磁感应现象及其应用;动圈式话筒是利用说话时空气柱的振动引起绕在磁铁上的线圈做切割磁感线运动,从而产生随声音变化的电流,利用了电磁感应现象,所以B属于电磁感应现象及其应用;电动机是利用通电线圈在磁场中受力转动的原理来工作的,所以C不属于电磁感应现象及其应用;变压器是利用电磁感应现象的原理来改变交流电压的,所以D属于电磁感应现象及其应用,故选C。
【考点】电磁感应2.在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,如图所示。
一个质量为m、电阻为R、边长也为L的正方形线框在t=0时刻以速度v0进入磁场,恰好做匀速直线运动,若经过时间t,线框ab边到达gg′与ff′中间位置时,线框又恰好做匀速运动,则下列说法正确的是()A.当ab边刚越过ff′时,线框加速度的大小为gsinθB.t时刻线框匀速运动的速度为C.t时间内线框中产生的焦耳热为D.离开磁场的过程中线框将做匀速直线运动【答案】BC【解析】当ab边进入磁场时,有E=Blv0,I=E/R,mgsinθ=BIl,有B2l2v/R=mgsinθ.当ab边刚越过f′时,线框的感应电动势和电流均加倍,则线框做减速运动,有4B2I2v/R=4mgsinθ,加速向上为3gsinθ,A错误;t0时刻线框匀速运动的速度为v,则有4B2I2v/R=mgsinθ,解得v=v/4,B正确;线框从进入磁场到再次做匀速运动过程,沿斜面向下运动距离为3l/2,则由功能关系得线框中产生的焦耳热为Q=3mglsinθ/2+(mv02/2-mv2/2)=3mgls inθ/2+15mv2/32,C正确;线框离开磁场时做加速运动,D错误。
高考物理电磁感应现象压轴题专项复习及答案
高考物理电磁感应现象压轴题专项复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EIR r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+ 计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.3.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=4.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】
第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
(典型题)高中物理选修二第二章《电磁感应》测试卷(含答案解析)
一、选择题1.(0分)[ID :128579]如图,A 、B 是两个完全相同的灯泡,L 是自感线圈,自感系数很大,电阻可以忽略,则以下说法正确的是( )A .当K 闭合时,A 灯先亮,B 灯后亮B .当K 闭合时,B 灯先亮C .当K 闭合时,A 、B 灯同时亮,随后B 灯更亮,A 灯熄灭D .当K 闭合时,A 、B 灯同时亮,随后A 灯更亮,B 灯亮度不变2.(0分)[ID :128575]科学家发现一种新型合金材料N 45Co5n40Sn10i M (),只要略微加热该材料下面的铜片,这种合金就会从非磁性合金变成强磁性合金。
将两个相同的条状新型合金材料竖直放置,在其正上方分别竖直、水平放置两闭合金属线圈,如图甲、乙所示。
现对两条状新型合金材料下面的铜片加热,则( )A .甲图线圈有收缩的趋势B .乙图线圈有收缩的趋势C .甲图线圈中一定产生逆时针方向的感应电流D .乙图线圈中一定产生顺时针方向的感应电流3.(0分)[ID :128569]如图所示,MPQN 是边长为L 和2L 的矩形,由对角线MQ 、NP 与MN 、PQ 所围的两个三角形区域内充满磁感应强度大小相等、方向相反的匀强磁场。
边长为L 的正方形导线框,在外力作用下水平向右匀速运动,右边框始终平行于MN 。
设导线框中感应电流为i 且逆时针流向为正。
若0t =时右边框与MN 重合,1t t =时右边框刚好到G 点,则右边框由MN 运动到PQ 的过程中,下列i t -图像正确的是( )A.B.C.D.4.(0分)[ID:128567]如图所示灯A L,B L完全相同,带铁芯的线圈L的电阻可忽略。
则()A.S闭合瞬间,A L,B L都不立即亮B.S闭合瞬间,A L不亮,B L立即亮C.S闭合的瞬间,A L,B L同时发光,接着A L变暗,B L更亮,最后A L熄灭D.稳定后再断开S的瞬间,B L熄灭,A L比B L(原先亮度)更亮5.(0分)[ID:128557]关于物理学史,正确的是()A.安培根据通电螺线管磁场与条形磁铁磁场极为相似提出分子电流假设,揭示磁现象的本质B.奥斯特发现电流可以使周围的小磁针发生偏转,称为电磁感应C.法拉第通过电磁感应的实验总结出法拉第电磁感应定律D.楞次通过实验研究总结出楞次定律,可以判定通电直导线产生的磁场方向6.(0分)[ID:128534]在空间存在着竖直向上的各处均匀的磁场,将一个不变形的单匝金属圆线圈放入磁场中,规定线圈中感应电流方向如图甲所示的方向为正.当磁场的磁感应强度B随时间t的变化规律如图乙所示时,图丙中能正确表示线圈中感应电流随时间变化的图线是()A.B.C.D.7.(0分)[ID:128530]如图所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略。
高考物理电磁感应现象习题专项复习及答案解析
高考物理电磁感应现象习题专项复习及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小;(2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J .【解析】【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒 012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL x q r r ∆Φ∆== 解得 1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L +∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--= 2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少?(2)金属棒ab 下滑t 秒末的速度是多大?【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L vθ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力.设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 UE BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q 则电路中电流 Q C U CBL v i t t t ∆∆∆===∆∆∆,又v a t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++ 所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+. 考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.3.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。
(典型题)高中物理选修二第二章《电磁感应》测试题(含答案解析)
一、选择题1.(0分)[ID :128582]如图所示,几位同学在学校的操场上做“摇绳发电”实验:把一条较长电线的两端连在一个灵敏电流计上的两个接线柱上,形成闭合回路。
两个同学分别沿东西方向站立,女生站在西侧,男生站在东侧,他们沿竖直方向迅速上下摇动这根电线。
假设图中所在位置地磁场方向与地面平行,由南指向北。
下列说法正确的是( )A .当电线到最低点时,感应电流最大B .当电线向上运动时,B 点电势高于A 点电势C .当电线向上运动时,通过灵敏电流计的电流是从A 经过电流计流向BD .两个同学沿南北方向站立时,电路中能产生更大的感应电流2.(0分)[ID :128573]如图所示,一平行金属轨道平面与水平面成θ角,两轨道宽为L ,上端用一电阻R 相连,该装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于轨道平面向上。
质量为m 的金属杆ab 以初速度v 0从轨道底端向上滑行,达到最大高度h 后保持静止。
若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计。
关于上滑过程,下列说法正确的是( )A .通过电阻R 的电量为sin BLh R θB .金属杆中的电流方向由b 指向aC .金属杆克服安培力做功等于2012mv mgh - D .金属杆损失的机械能等于电阻R 产生的焦耳热3.(0分)[ID :128562]如图所示的电路中,A ,B ,C 是三个完全相同的灯泡,L 是自感系数很大的电感,其直流电阻与定值电阻R 阻值相等,D 是理想二极管.下列判断中正确的是( )A .闭合开关S 的瞬间,灯泡A 和C 同时亮B .闭合开关S 的瞬间,只有灯泡C 亮C .闭合开关S 后,灯泡A ,B ,C 一样亮D .断开开关S 的瞬间,灯泡B ,C 均要闪亮一下再熄灭4.(0分)[ID :128555]如图所示,一根足够长的直导线水平放置,通以向右的恒定电流,在其正上方O 点用细丝线悬挂一铜制圆环。
高中物理题型分类汇总含详细答案--电磁感应
高中物理题型分类汇总含详细答案--电磁感应共:15题共:48分钟一、单选题1.如图所示是等腰直角三棱柱,其中底面abcd为正方形,边长为L,它们按图示位置放置于竖直向下的匀强磁场中,磁感应强度为B,下面说法中正确的是()A.通过abcd平面的磁通量大小为BL2B.通过dcfe平面的磁通量大小为C.通过abfe平面的磁通量大小为D.磁通量有正负,所以是矢量2.一面积为S的线圈,放在磁感应强度为B的匀强磁场中,线圈平面与磁场方向垂直,则穿过线圈的磁通量为()A.0;B.B/S;C.S/B;D.BS3.如图所示,a、b两个线圈,它们的半径之比为1:2,匝数之比为2:1,圆形匀强磁场B 的边缘恰好与a线圈重合,则穿过a、b两线圈的磁通量之比为()A.1:1B.1:2C.2:1D.1:44.如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。
圆环初始时静止。
将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到()A.拨至M端或N端,圆环都向左运动B.拨至M端或N端,圆环都向右运动C.拨至M端时圆环向左运动,拨至N端时向右运动D.拨至M端时圆环向右运动,拨至N端时向左运动5.如图所示,两匀强磁场的磁感应强度和大小相等、方向相反。
金属圆环的直径与两磁场的边界重合。
下列变化会在环中产生顺时针方向感应电流的是()A.同时增大减小B.同时减小增大C.同时以相同的变化率增大和D.同时以相同的变化率减小和6.关于磁通量,下列说法正确的是()A.穿过某个面的磁通量为零,该处的磁感应强度也为零B.穿过任一平面的磁通量越大,该处的磁感应强度也一定越大C.穿过某一线圈平面的磁通量越大,该线圈平面的面积一定越大D.当闭合线圈平面跟磁场方向平行时,穿过这个线圈平面的磁通量一定为零7.如图甲所示,绝缘的水平桌面上放置一金属圆环,在圆环的正上方放置一个螺线管,在螺线管中通入如图乙所示的电流,电流从螺线管a端流入为正.以下说法正确的是()A.0~1s内圆环面积有扩张的趋势B.1s末圆环对桌面的压力小于圆环的重力C.1~2s内和2~3s内圆环中的感应电流方向相反D.从上往下看,0~2s内圆环中的感应电流先沿顺时针方向、后沿逆时针方向8.竖直放置的直角三角形金属框abc,以水平速度v匀速通过有界匀强磁场,磁场方向水平,如图所示,线框电阻为R。
高中物理电磁感应现象压轴题专项复习含答案
高中物理电磁感应现象压轴题专项复习含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。
一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。
现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。
不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。
(1)求ab棒沿斜面向上运动的最大速度;(2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q;(3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。
【答案】(1) (2)q=40C (3)【解析】【分析】(1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。
据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。
(2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。
(3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。
【详解】(1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知对物体,有;对ab棒,有又、联立解得:(2) 感应电荷量据闭合电路的欧姆定律据法拉第电磁感应定律在ab 棒开始运动到匀速运动的这段时间内,回路中的磁通量变化联立解得:(3)对物体和ab棒组成的系统,根据能量守恒定律有:又解得:电阻R 上产生的焦耳热2.某同学在学习电磁感应后,认为电磁阻尼能够承担电梯减速时大部分制动的负荷,从而减小传统制动器的磨损.如图所示,是该同学设计的电磁阻尼制动器的原理图.电梯箱与配重质量都为M,通过高强度绳子套在半径1r的承重转盘上,且绳子与转盘之间不打滑.承重转盘通过固定转轴与制动转盘相连.制动转盘上固定了半径为2r和3r的内外两个金属圈,金属圈内阻不计.两金属圈之间用三根互成120︒的辐向导体棒连接,每根导体棒电阻均为R.制动转盘放置在一对励磁线圈之间,励磁线圈产生垂直于制动转盘的匀强磁场(磁感应强度为B),磁场区域限制在120︒辐向角内,如图阴影区所示.若电梯箱内放置质量为m的货物一起以速度v竖直上升,电梯箱离终点(图中未画出)高度为h时关闭动力系统,仅开启电磁制动,一段时间后,电梯箱恰好到达终点.(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E为多少?此时a与b之间的电势差有多大?(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?(3)若要提高制动的效果,试对上述设计做出二处改进.【答案】(1)22321()2Bv r rEr-=,22321()6Bv r rUr-= (2)21()2Q M m v mgh=+-(3) 若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r3或减小内金属圈的半径r2【解析】【分析】 【详解】(1)在开启电磁制动瞬间,承重转盘的线速度为v ,所以,角速度1v r ω=所以,制动转盘的角速度1vr ω=,三根金属棒的位置刚好在图2所示位置,则fe 切割磁感线产生电动势22321()2Bv r r B S E t t r -∆Φ⋅∆===∆∆所以干路中的电流223E EI R R R R R==++ 那么此时a 与b 之间的电势差即为路端电压22321()6Bv r r U E IR r -=-=(2)电梯箱与配重用绳子连接,速度相同;由能量守恒可得21(2)()2m M v m M gh Mgh Q +=+-+ 解得:21()2Q M m v mgh =+- (3)若要提高制动的效果,那么在相同速度下,要使h 减小,则要使制动转盘产生的热量增加,即在相同速度下电功率增大,,速度为v 时的电功率222223221()362B v r r E P Rr R-== 所以,若要提高制动的效果,可增加外金属圈的半径r 3或减小内金属圈的半径r 2或减小金属棒的电阻或减小承重盘的半径r 1.3.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。
电磁感应典型题目(含答案)
电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
高考物理专题电磁学知识点之电磁感应经典测试题附答案解析
高考物理专题电磁学知识点之电磁感应经典测试题附答案解析一、选择题1.在图中,EF 、GH 为平行的金属导轨,其电阻不计,R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB( )A .匀速滑动时,I 1=0,I 2=0B .匀速滑动时,I 1≠0,I 2≠0C .加速滑动时,I 1=0,I 2=0D .加速滑动时,I 1≠0,I 2≠02.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是A .磁感应强度B 竖直向上且正增强,tφ∆=dmg nq B .磁感应强度B 竖直向下且正增强,tφ∆=dmg nq C .磁感应强度B 竖直向上且正减弱,tφ∆=()dmg R r nqR + D .磁感应强度B 竖直向下且正减弱,tφ∆=()dmgr R r nqR + 3.如图所示,用粗细均匀的铜导线制成半径为r 、电阻为4R 的圆环,PQ 为圆环的直径,在PQ 的左右两侧均存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B ,但方向相反,一根长为2r 、电阻为R 的金属棒MN 绕着圆心O 以角速度ω顺时针匀速转动,金属棒与圆环紧密接触。
下列说法正确的是( )A .金属棒MN 两端的电压大小为2B r ωB .金属棒MN 中的电流大小为22B r Rω C .图示位置金属棒中电流方向为从N 到MD .金属棒MN 转动一周的过程中,其电流方向不变4.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。
半径A B 2R R =,内有以B 线圈作为理想边界的匀强磁场。
若磁场均匀减小,则A 、B 环中感应电动势A B :E E 与产生的感应电流A B :I I 分别是( )A .AB :2:1E E =;A B :1:2I I =B .A B :2:1E E =;A B :1:1I I =C .A B :1:1E E =;A B :2:1I I =D .A B :1:1E E =;A B :1:2I I =5.如图所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在0t =时刻闭合开关S ,经过一段时间后,在1t t =时刻断开S ,下列表示灯D 中的电流(规定电流方向A B →为正)随时间t 变化的图像中,正确的是( )A .B .C .D .6.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中。
高中物理电磁感应现象习题专项复习及答案
高中物理电磁感应现象习题专项复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。
高中物理电磁感应基础练习题(含答案)
高中物理电磁感应基础练习题(含答案)一、单选题1.如图所示,导体ab是金属线框的一个可动边,ab边长L=0.4m,磁场的磁感应强度B=0.1T,当ab边以速度v=5m/s向右匀速移动时,下列判断正确的是()A.感应电流的方向由a到b,感应电动势的大小为0.2VB.感应电流的方向由a到b,感应电动势的大小为0.4VC.感应电流的方向由b到a,感应电动势的大小为0.2VD.感应电流的方向由b到a,感应电动势的大小为0.4V2.某同学用粗细均匀的金属丝弯成如图所示的图形,两个正方形的边长均为L,A、B t∆223.如图所示,在水平桌面上有一金属圆环,在它圆心正上方有一条形磁铁(极性不明),当条形磁铁下落时,可以判定()A.环中将产生俯视顺时针的感应电流B.环对桌面的压力将增大C.环有面积增大的趋势D.磁铁将受到竖直向下的电磁作用力4.如图所示,闭合线圈abcd 在磁场中运动到如图所示位置时,bc 边的电流方向由b →c ,此线圈的运动情况是( )A .向右进入磁场B .向左移出磁场C .向上移动D .向下移动5.如图所示,通电导线旁边同一平面有矩形线圈abcd ,则( )A .当线圈向导线靠近时,其中感应电流方向是a →b →c →dB .若线圈竖直向下平动,有感应电流产生C .若线圈向右平动,其中感应电流方向是a →b →c →dD .当线圈以导线边为轴转动时,其中感应电流方向是a →b →c →d6.如图所示,在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中,长为L 的金属杆MN 在平行金属导轨上以速度v 向右匀速滑动。
金属导轨电阻不计,金属杆与导轨的夹角为θ,电阻为2R ,ab 间电阻为R ,M 、N 两点间电势差为U ,则M 、N 两点电势BLv7.如图所示,先后以速度1v 和2v 匀速把一矩形线圈水平拉出有界匀强磁场区域,122v v =,则在先后两种情况下( )A .线圈中的感应电动势之比为21:1:2E E =B .线圈中的感应电流之比为12:1:2I I =C .线圈中产生的焦耳热之比12:2:1Q Q =D .通过线圈某截面的电荷量之比122:1q q =:8.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。
高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】
第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
高中物理题型分类汇总含详细答案-磁场
高中物理题型分类汇总含详细答案-磁场共:15题时间:50分钟一、单选题1.如图所示,M、N、P和Q是以MN为直径的半圆弧上的四点,O为半圆弧的圆心,∠MOQ =60°,∠NOP=60°,在N、Q处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1,若将Q处长直导线移至P 处,则O点的磁感应强度大小为B2,那么B1与B2之比为()A.1:1B.1:2C.D.2.有一小段通电导线,长为1cm,电流强度为5A,把它置入某磁场中某点,受到的磁场力为0.05N,则该点的磁感应强度B一定是()A.B=1TB.B≥1TC.B≤1TD.以上情况都有可能3.如图,固定在光滑半圆轨道上的导体棒M通有垂直纸面向里的电流(较大),导体棒N通有垂直纸面向外的电流,M在N处产生的磁场磁感应强度为B1,N刚好静止,此时M、N关于过O点的竖直轴对称,且∠MON=60°;若调整M的电流大小和位置并固定,当N再次平衡时,∠MON=120°,且M、N仍关于过O点的竖直轴对称,则调整后M在N处产生的磁场磁感应强度B2与B1的比值为()A.0.5B.2C.3D.4.如图所示,在带负电荷的橡胶圆盘附近悬挂一个小磁针。
现驱动圆盘绕中心轴高速旋转,小磁针发生偏转。
下列说法正确的是()A.偏转原因是圆盘周围存在电场B.偏转原因是圆盘周围产生了磁场C.仅改变圆盘的转动方向,偏转方向不变D.仅改变圆盘所带电荷的电性,偏转方向不变5.如图甲所示,线圈abcd固定于匀强磁场中,磁场方向垂直纸面向外,磁感应强度随时间的变化情况如图乙所示。
下列所示关于ab边所受安培力随时间变化的F-t图象中(规定安培力方向向左为正),可能正确的是()A. B. C. D.6.如图甲所示,间距为L的光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度为B,轨道左侧连接一定值电阻R。
水平外力F平行于导轨,随时间t按图乙所示变化,导体棒在F作用下沿导轨运动,始终垂直于导轨,在0~t0时间内,从静止开始做匀加速直线运动。
高中物理 第09章 电磁感应 典型例题(含答案)【经典】
第九章电磁感应知识点一:磁通量、感应电流产生条件、电流方向(楞次定律)1.(单选)如图所示,ab是水平面上一个圆的直径,在过ab的竖直面内有一根通电直导线ef,且ef平行于ab,当ef竖直向上平移时,穿过圆面积的磁通量将().答案 CA.逐渐变大B.逐渐减小C.始终为零D.不为零,但始终保持不变2.(单选)现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及电键如图所示连接.下列说法中正确的是().答案AA.电键闭合后,线圈A插入或拔出都会引起电流计指针偏转B.线圈A插入线圈B中后,电键闭合和断开的瞬间电流计指针均不会偏转C.电键闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.电键闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转3.(单选)某实验小组用如图所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是().答案DA.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b4.(单选)如图,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd边翻转到Ⅱ,设先后两次通过金属框的磁通量变化量大小分别为ΔΦ1和ΔΦ2,则().答案CA.ΔΦ1>ΔΦ2,两次运动中线框中均有沿adcba方向电流出现B.ΔΦ1=ΔΦ2,两次运动中线框中均有沿abcda方向电流出现C.ΔΦ1<ΔΦ2,两次运动中线框中均有沿adcba方向电流出现D.ΔΦ1<ΔΦ2,两次运动中线框中均有沿abcda方向电流出现5.(单选)如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B 的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是().答案AA.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)6.(单选)如图所示,一根条形磁铁从左向右靠近闭合金属环的过程中,环中的感应电流(自左向右看)().A.沿顺时针方向答案CB.先沿顺时针方向后沿逆时针方向C.沿逆时针方向D.先沿逆时针方向后沿顺时针方向7.(单选)如图所示,一圆形金属线圈放置在水平桌面上,匀强磁场垂直桌面竖直向下,过线圈上A点做切线OO′,OO′与线圈在同一平面上.在线圈以OO′为轴翻转180°的过程中,线圈中电流流向().A.始终由A→B→C→A 答案AB.始终由A→C→B→AC.先由A→C→B→A再由A→B→C→AD.先由A→B→C→A再由A→C→B→A知识点二:楞次定律的推广1.(单选)如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时().答案AA.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为g D.磁铁的加速度大于g2.(单选)如图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动过程中,线圈ab将().答案CA.静止不动B.逆时针转动C.顺时针转动D.发生转动,但因电源的极性不明,无法确定转动的方向3.(多选)如图所示,在条形磁铁的中央位置的正上方水平固定一铜质圆环.以下判断中正确的是().A.释放圆环,环下落时产生感应电流答案BCB.释放圆环,环下落时无感应电流C.释放圆环,环下落时环的机械能守恒D.释放圆环,环下落时环的机械能不守恒4.(单选)如图所示,通电螺线管左侧和内部分别静止吊一导体环a和b,当滑动变阻器R的滑动触头c向左滑动时().答案CA.a向左摆,b向右摆B.a向右摆,b向左摆C.a向左摆,b不动D.a向右摆,b不动5.(单选)如图所示,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则().答案AA.T1>mg,T2>mg B.T1<mg,T2<mgC.T1>mg,T2<mg D.T1<mg,T2>mg6.(单选)如图,圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成闭合回路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是().A.线圈a中将产生俯视顺时针方向的感应电流答案DB.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力F N将增大7.(多选)如图所示,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内,在金属框接通逆时针方向电流的瞬间().A.两小线圈会有相互靠拢的趋势答案BCB.两小线圈会有相互远离的趋势C.两小线圈中感应电流都沿顺时针方向D.左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向8.(单选)如图所示,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内.当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,下列有关圆环的说法正确的是().答案CA.圆环内产生变大的感应电流,圆环有收缩的趋势B.圆环内产生变大的感应电流,圆环有扩张的趋势C.圆环内产生变小的感应电流,圆环有收缩的趋势D.圆环内产生变小的感应电流,圆环有扩张的趋势知识点三:楞次定律与安培定则的综合应用,二次感应问题(注意因果关系,结果推原因或者带答案推)1.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动.则PQ所做的运动可能是().A.向右加速运动B.向左加速运动C.向右减速运动答案BCD.向左减速运动2.(多选)如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引().答案BCA.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动3.(单选)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a().答案BA.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转4.(单选)如图所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是().答案A5.(多选)如图是某电磁冲击钻的原理图,若突然发现钻头M向右运动,则可能是().答案ACA.开关S闭合瞬间B.开关S由闭合到断开的瞬间C.开关S已经是闭合的,滑动变阻器滑片P向左迅速滑动D.开关S已经是闭合的,滑动变阻器滑片P向右迅速滑动6.(多选)如图所示,在匀强磁场中放有平行金属导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在金属导轨上的金属棒ab的运动情况是(两线圈共面放置)().答案BC A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动7.(多选)如图所示,一电子以初速度v沿与金属板平行的方向飞入MN极板间,突然发现电子向M板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是()A.开关S闭合瞬间B.开关S由闭合后断开瞬间C.开关S是闭合的,变阻器滑片P向右迅速滑动D.开关S是闭合的,变阻器滑片P向左迅速滑动答案AD知识点四:感应电流大小(法拉第电磁感应定律E =n ΔΦΔt ,E =Blv )1.(多选)如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,磁场的磁感应强度的大小随时间变化而变化.下列说法中正确的是( ). 答案 ADA .当磁感应强度增大时,线框中的感应电流可能减小B .当磁感应强度增大时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变2.(单选)A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面,如图所示.当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( ).答案 DA.I A I B =1B.I A I B =2C.I A I B =14D.I A I B=12 3.(多选)某学习小组在探究线圈中感应电流的影响因素时,设计如图所示的实验装置,让一个闭合圆线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度随时间均匀变化,则( ).答案 ADA .若把线圈的匝数增加一倍,线圈内感应电流大小不变B .若把线圈的面积增加一倍,线圈内感应电流大小变为原来的2倍C .改变线圈轴线与磁场方向的夹角大小,线圈内感应电流大小可能变为原来的2倍D .把线圈的半径增加一倍,线圈内感应电流大小变为原来的2倍4.(多选)用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图所示,在ab 的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,磁感应强度大小随时间的变化率ΔB Δt =k (k <0).则( ).答案 BDA .圆环中产生逆时针方向的感应电流B .圆环具有扩张的趋势C .圆环中感应电流的大小为⎪⎪⎪⎪krS 2ρD .图中a 、b 两点间的电势差U ab =⎪⎪⎪⎪14k πr 2 5、(单选)粗细均匀的电阻丝围成图所示的线框,置于正方形有界匀强磁场中,磁感强度为B ,方向垂直于线框平面,图中ab =bc =2cd =2de =2ef =2fa =2L .现使线框以同样大小的速度v 匀速沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则线框在通过如图所示位置时,下列说法中正确的是( ).A .ab 两点间的电势差图①中最大 答案 AB .ab 两点间的电势差图②中最大C .回路电流图③中最大D .回路电流图④中最小6.(单选)如图所示,虚线框内存在均匀变化的匀强磁场,三个电阻的阻值之比R1∶R 2∶R 3=1∶2∶3,电路中导线的电阻不计.当S 1、S 2闭合,S 3断开时,闭合回路中感应电流为I ;当S 2、S 3闭合,S 1断开时,闭合回路时感应电流为5I ;当S 1、S 3闭合,S 2断开时,闭合回路中感应电流为( ).A .0B .3IC .6ID .7I 答案 D7.(多选)如图所示,两根足够长的光滑金属导轨水平平行放置,间距为L =1 m ,cd 间、de 间、cf 间分别接着阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B =0.5 T ,方向竖直向下的匀强磁场.下列说法中正确的是( ). 答案 BDA .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1 VC .de 两端的电压为1 VD .fe 两端的电压为1 V8.(单选)如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB Δt 的大小应为( ).答案 CA.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π9.(单选)如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,在环的最高点A 用铰链连接长度为2a 、电阻为R2的导体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( ).答案 AA.Bav 3B.Bav 6C.2Bav 3 D .Bav10. (多选)如图所示是圆盘发电机的示意图;铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘接触.若铜盘半径为L ,匀强磁场的磁感应强度为B ,回路的总电阻为R ,从左往右看,铜盘以角速度ω沿顺时针方向匀速转动.则( ).答案 BCA .由于穿过铜盘的磁通量不变,故回路中无感应电流B .回路中感应电流大小不变,为BL 2ω2RC .回路中感应电流方向不变,为C →D →R →CD .回路中有周期性变化的感应电流11.(多选)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着垂直纸面向里的匀强磁场,磁感应强度为B .直杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,直杆始终有两点与圆环良好接触,从圆环中心O 开始,直杆的位置由θ确定,则().A .θ=0时,直杆产生的电动势为2Bav 答案 ADB .θ=π3时,直杆产生的电动势为3BavC .θ=0时,直杆受的安培力大小为2B 2av +R 0 D .θ=π3时,直杆受的安培力大小为3B 2av +R 012. (多选)如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=R 02.闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势,则( ).答案 ACA .R 2两端的电压为U 7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2知识点五:自感1.(多选)在如图所示的电路中,A1和A2是两个相同的灯泡,线圈L的自感系数足够大,电阻可以忽略不计.下列说法中正确的是().答案ABA.合上开关S时,A2先亮,A1后亮,最后一样亮B.断开开关S时,A1和A2都要过一会儿才熄灭C.断开开关S时,A2闪亮一下再熄灭D.断开开关S时,流过A2的电流方向向右2、(单选)如图所示,线圈L的自感系数很大,且其电阻可以忽略不计,L1、L2是两个完全相同的小灯泡,随着开关S闭合和断开的过程中,L1、L2的亮度变化情况是(灯丝不会断)().答案D亮度不变,L2亮度逐渐变亮,最后两灯一样亮;S断开,L2立即不亮,A.S闭合,LL1逐渐变亮B.S闭合,L1亮度不变,L2很亮;S断开,L1、L2立即不亮C.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2亮度不变;S断开,L2立即不亮,L1亮一下才灭D.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮;S断开,L2立即熄灭,L1亮一下才灭3.(单选)如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡时刻断开S.下列表D的阻值.在t=0时刻闭合开关S,经过一段时间后,在t=t示A、B两点间电压U AB随时间t变化的图象中,正确的是().答案B4.(单选)如图所示,A、B、C是3个完全相同的灯泡,L是一个自感系数较大的线圈(直流电阻可忽略不计).则() 答案AA.S闭合时,A灯立即亮,然后逐渐熄灭B.S闭合时,B灯立即亮,然后逐渐熄灭C.电路接通稳定后,三个灯亮度相同D.电路接通稳定后,S断开时,C灯立即熄灭5.(多选)如图是研究通电自感实验的电路图,A1、A2是两个规格相同的小灯泡,闭合电键调节电阻R,使两个灯泡的亮度相同,调节可变电阻R1,使它们都正常发光,然后断开电键S.重新闭合电键S,则().A.闭合瞬间,A1立刻变亮,A2逐渐变亮答案BCB.闭合瞬间,A2立刻变亮,A1逐渐变亮C.稳定后,L和R两端电势差一定相同D.稳定后,A1和A2两端电势差不相同6.(多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2中的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是().答案AC知识点六:电磁感应图像问题1、(单选)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是().答案A2、(单选)如图所示,垂直纸面向里的匀强磁场的区域宽度为2a,磁感应强度的大小为B.一边长为a、电阻为4R的正方形均匀导线框ABCD从图示位置开始沿水平向右方向以速度v匀速穿过磁场区域,在图中线框A、B两端电压U AB与线框移动距离x的关系图象正确的是().答案D3、(单选)将一段导线绕成图5甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反应F随时间t变化的图象是().答案B4、(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流以顺时针方向为正、竖直边cd所受安培力的方向以水平向左为正.则下面关于感应电流i和cd边所受安培力F随时间t变化的图象正确的是().答案AC5.(单选)如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化.规定内圆环a端电势高于b端时,a、b间的电压u为正,下列u ab---t图象可能正确的是() 答案C6.(单选)如图所示,一导体圆环位于纸面内,O 为圆心.环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直.导体杆OM 可绕O 转动,M 端通过滑动触点与圆环良好接触.在圆心和圆环间连有电阻R .杆OM 以匀角速度ω逆时针转动,t =0时恰好在图示位置.规定从a 到b 流经电阻R 的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从t =0开始转动一周的过程中,电流随ωt 变化的图象是( ).答案 C7.(单选)边长为a 的闭合金属正三角形框架,左边竖直且与磁场右边界平行,完全处于垂直于框架平面向里的匀强磁场中.现把框架匀速水平向右拉出磁场,如图所示,则下列图象与这一过程相符合的是( ).答案 B8. (单选)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t 1、t 2分别表示线框ab 边和cd 边刚进入磁场的时刻.线框下落过程形状不变,ab 边始终保持与磁场水平边界线OO ′平行,线框平面与磁场方向垂直.设OO ′下方磁场区域足够大,不计空气的影响,则下列哪一个图象不可能反映线框下落过程中速度v 随时间t 变化的规律( ).答案 A9.(多选)一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示.t =0时刻对线框施加一水平向右的外力F ,让线框从静止开始做匀加速直线运动穿过磁场,外力F 随时间t 变化的图象如图乙所示.已知线框质量m =1 kg 、电阻R =1 Ω,以下说法正确的是( ).A .线框做匀加速直线运动的加速度为1 m/s 2 答案 ABCB .匀强磁场的磁感应强度为2 2 TC .线框穿过磁场的过程中,通过线框的电荷量为22 CD .线框边长为1 m10、如图甲所示,空间存在一宽度为2L 的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L 的正方形金属线框,其质量m =1 kg 、电阻R =4 Ω,在水平向左的外力F 作用下,以初速度v 0=4 m/s 匀减速进入磁场,线框平面与磁场垂直,外力F 大小随时间t 变化的图线如图乙所示.以线框右边刚进入磁场时开始计时.(1)求匀强磁场的磁感应强度B ;(2)求线框进入磁场的过程中,通过线框的电荷量q ;(3)判断线框能否从右侧离开磁场?说明理由.答案 (1)0.33 T (2)0.75 C (3)不能;x =4 m<2L。
高中物理题型分类汇总含详细答案-电磁感应
高中物理题型分类汇总含详细答案-电磁感应共:15题共:48分钟一、单选题1.在如图所示的条件下,线圈中能产生感应电流的是()A. B. C. D.2.如图甲所示,在MN、QP间存在一匀强磁场,t=0时,一正方形光滑金属线框在水平向右的外力F作用下紧贴MN从静止开始做匀加速运动,外力F随时间t变化的图线如图乙所示,已知线框质量m=1kg、电阻R=2Ω,则()A.线框的加速度为1m/s2B.磁场宽度为6mC.匀强磁场的磁感应强度为2TD.线框进入磁场过程中,通过线框横截面的电荷量为C3.如图甲,在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧。
导线PQ中通有正弦交流电i,i的变化如图乙所示,规定从Q到P为电流正方向。
导线框R中的感应电流()A.在时为最大B.在时改变方向C.在时最大,且沿顺时针方向D.在时最大,且沿顺时针方向4.麦克斯韦的电磁场理论提出:变化的电场产生磁场。
以平行板电容器为例:圆形平行板电容器在充、放电的过程中,板间电场发生变化,产生的磁场相当于一连接两板的板间直导线通以充、放电电流时所产生的磁场。
如图所示,若某时刻连接电容器的导线具有向上的电流,则下列说法中正确的是()A.电容器正在放电B.两平行板间的电场强度E在减小C.该变化电场产生顺时针方向(俯视)的磁场D.两极板间电场最强时,板间电场产生的磁场却为零5.如甲所示。
蹄形磁铁和铁芯间的磁场是均匀地辐向分布的。
当线圈通以如图乙所示的稳恒电流(b端电流流向垂直纸面向内),下列说法正确的是()A.当线圈在如图乙所示的位置时,b端受到的安培力方向向上B.当线圈在如图乙所示的位置时,该线圈的磁通量一定为0C.线圈通过的电流越大,指针偏转角度越小D.线圈转动的方向,由螺旋弹簧的形变决定6.如图所示,两个线圈a、b的半径分别为r和2r,匝数分别为N1和N2,圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b两线圈的磁通量之比为()A.N1:N2B.N1:4N2C.1:2D.1:17.如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场。
【单元练】(必考题)高中物理选修2第二章【电磁感应】经典练习题(含答案解析)
一、选择题1.如图所示,两根足够长且平行的金属导轨置于磁感应强度为 B = 3 T 的匀强磁场中,磁场的方向垂直于导轨平面,两导轨间距 L =0.1m ,导轨左端连接一个电阻 R =0.5Ω,其余电阻不计,导轨右端连一个电容器C = 2.5 ⨯1010 pF ,有一根长度为 0.2m 的导体棒 ab ,a 端与导轨下端接 触良好,从图中实线位置开始,绕 a 点以角速度ω = 4 rad/s 顺时针匀速 转动 75°,此过程通过电阻 R 的电荷量为( )A .3 ⨯10-2 CB .23⨯10-3C C .(30 + 23) ⨯10-3 CD .(30 - 23) ⨯10-3 C C解析:C 在导体棒ab 绕a 点以角速度ω = 4 rad/s 顺时针匀速转动75°的过程中,由电磁感应所产生的电荷量Q 1=232BL R RΦ==-2310⨯C 同时还会给电容器C 充电,充电后C 对R 放电的电荷量Q 2=2BL 2Cω=-32310⨯C最终通过电阻R 的电荷量为Q =Q 1+Q 2=3(3023)10-+⨯ C故选C 。
2.如图所示,垂直纸面向里的匀强磁场的区域宽度为2a ,磁感应强度的大小为B 。
一边长为a 、电阻为4R 的正方形均匀导线框ABCD 从图示位置沿水平向右方向以速度v 匀速穿过磁场区域,下列图中线框A 、B 两端电压U AB 与线框移动距离x 的关系图象正确的是( )A .B .C .D . D解析:D由楞次定律判断可知,在线框穿过磁场的过程中,A 点的电势始终高于B 的电势,则U AB 始终为正值。
AB 、DC 两边切割磁感线时产生的感应电动势为E Bav =在0−a 内,AB 切割磁感线,AB 两端的电压是路端电压,则AB 3344U E Bav == 在a −2a 内,线框完全在磁场中运动,穿过线框的磁通量没有变化,不产生感应电流,则AB U E Bav ==在2a −3a 内,A 、B 两端的电压等于路端电压的13,则 AB 1144U E Bav == 故D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理模块复习典型题分类-电磁感应(含详细答案)一、单选题1.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W2.如图所示,水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断中正确的是()A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大3.如图所示,A为水平放置的胶木圆盘,在其侧面带有负电荷,在A的正上方用丝线悬挂一个金属圆环B,使B的环面在水平面上且与圆盘面平行,其轴线与胶木盘A的轴线重合。
现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大4.如图所示,AB、CD是一个圆的两条直径且AB、CD夹角为60°,该圆处于匀强电场中,电场强度方向平行该圆所在平面.其中φB=φC=φ,U BA=φ,保持该电场的场强大小和方向不变,让电场以B点为轴在其所在平面内逆时针转过60°.则下列判断中不正确的是()A.转动前U BD=φB.转动后U BD=C.转动后D.转动后5.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。
一根与导轨接触良好、有效阻值为的金属导线ab垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,不计导轨电阻,则()A.通过电阻R的电流方向为P→R→MB.a、b两点间的电压为BLvC.a端电势比b端电势高D.外力F做的功等于电阻R上产生的焦耳热6.如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上。
t=0时,棒ab以初速度v0向右滑动。
运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I 表示。
下列图象中可能正确的是()A. B. C. D.7.一位物理老师制作了一把如图所示的“简易铜丝琴”。
他是这么做的:在一块木板上固定两颗螺丝钉,将一根张紧的铜丝缠绕在两颗螺丝钉之间,扩音器通过导线与两螺丝钉连接,铜丝旁边放置一块磁铁,用手指拨动铜丝,扩音器上就发出了声音。
根据上面所给的信息,下面说法正确的是()A.铜丝的振动引起空气振动而发出声音B.振动的铜丝切割磁感线产生直流电流C.该“简易铜丝琴”将电能转化为机械能D.利用这一装置所揭示的原理可制成发电机8.图中L是绕在铁芯上的线圈,它与电阻R、R0、电键和电池E可构成闭合回路.线圈上的箭头表示线圈中电流的正方向,当电流的流向与箭头所示的方向相同时,该电流为正,否则为负.电键K1和K2都处在断开状态.设在t=0时刻,接通电键K1,经过一段时间,在t=t l时刻,再接通电键K2,则能较正确地表示L中的电流I随时间t变化的图线是下面给出的四个图中的哪个图?()A. B.C. D.9.如图所示,在下列四种情况中穿过线圈的磁通量不发生变化的是()A.导线中的电流I增加B.线圈向下平动C.线圈向右平动D.线圈向左平动10.如图所示,abcd为水平放置的平行“⊂”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的热功率为二、多选题11.如图甲所示,在倾角为θ的光滑斜面上分布着垂直于斜面的匀强磁场,以垂直于斜面向上为磁感应强度正方向,其磁感应强度B随时间t变化的规律如图乙所示。
一质量为m、电阻为R的矩形金属框从t=0时刻由静止释放,t3时刻的速度为v,移动的距离为L,重力加速度为g,线框面积为S,t1=t0、t2=2t0、t3=3t0,在金属框下滑的过程中,下列说法正确的是()A.A.t1~t3时间内金属框中的电流先沿逆时针后顺时针B.0~t3时间内金属框做匀加速直线运动C.0~t3时间内金属框做加速度逐渐减小的直线运动D.0~t3时间内金属框中产生的焦耳热为12.如图所示,abcd为水平放置的平行“U”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。
已知金属杆MN倾斜放置,与导轨成角,单位长度的电阻为r,保持金属杆以速度v沿垂直于MN的方向滑动(金属杆滑动过程中与导轨接触良好),则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的热功率为13.如图所示,在匀强磁场中放有平行铜导轨,它与大导线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在导轨中的裸金属棒的运动情况是(两导线圈共面放置)()A.向右匀速运动B.向右减速运动C.向左加速运动D.向右加速运动14.如图(a),在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧。
导线PQ 中通有正弦交流电流i,i的变化如图(b)所示,规定从Q到P为电流的正方向。
导线框R 中的感应电动势()A.在时为零B.在时改变方向C.在时最大,且沿顺时针方向D.在时最大,且沿顺时针方向15.如图所示,间距为L=1.0m、长为5.0m的光滑导轨固定在水平面上,一电容为C=0.1F的平行板电容器接在导轨的左端.垂直于水平面的磁场沿x轴方向上按B=B0+kx(其中B0=0.4T,k=0.2T/m)分布,垂直x轴方向的磁场均匀分布.现有一导体棒横跨在导体框上,在沿x轴方向的水平拉力F作用下,以v=2.0m/s的速度从x=0处沿x轴方向匀速运动,不计所有电阻,下面说法中正确的是()A.电容器中的电场随时间均匀增大B.电路中的电流随时间均匀增大C.拉力F的功率随时间均匀增大D.导体棒运动至x=3m处时,所受安培力为0.02N16.轻质细线吊着一质量m=1. 28kg、边长1=1.6m、匝数n=10的正方形线圈,总电阻。
边长为的正方形磁场区域对称分布在线圈下边的两侧,如图甲所示。
磁场方向垂直纸面向里,大小随时间变化如图乙所示。
从t=0开始经t0时间细线开始松弛,取g=10m/s2。
则()A.在前t0时间内线圈中产生的电动势E=3. 2VB.在前t0时间内线圈中产生的电动势E=1.6VC.t o=2sD.t o=4s17.如图,线圈L1,铁芯M,线圈L2都可自由移动,S合上后使L2中有感应电流且流过电阻R的电流方向为a→b,可采用的办法是()A.使L2迅速靠近L1B.断开电源开关SC.将铁芯M插入D.将铁芯M抽出18.如图甲所示线圈的匝数n=100匝,横截面积S=50cm2,线圈总电阻r=10Ω,沿轴向有匀强磁场,设图示磁场方向为正,磁场的磁感应强度随时间作如图乙所示变化,则在开始的0.1s内()A.线圈中磁通量的变化量为0.25WbB.线圈中磁通量的变化率为2.5×10﹣2Wb/sC.a、b间电压为0D.在a、b间接一个理想电流表时,电流表的示数为0.25A三、实验探究题19.某学习小组利用如图所示的实验装置探究螺线管线圈中感应电流的方向。
(1)由于粗心该小组完成表格时漏掉了一部分(见表格),发现后又重做了这部分:将磁铁S极向下从螺线管上方竖直插入过程,发现电流计指针向右偏转(已知电流从右接线柱流入电流计时,其指针向右偏转),则①填________,②填________。
(2)由实验可得磁通量变化ΔΦ、原磁场B原方向、感应电流的磁场B感方向三者之间的关系:________。
四、综合题20.情境A:雨滴从高空自由下落,所受的空气阻力f与速度v成正比;情境B:如图所示,质量为m内阻不计的导体棒ab,沿竖直金属导轨由静止开始下滑,两轨间宽为L,导轨与电阻R连接,放在与导轨平面垂直的匀强磁场中,磁感应强度为B;情境C:汽车在水平路面上保持额定功率P0由静止启动,所受阻力不变;请问:(1)若情景A中雨滴下落的距离足够长,试用v-t图像描述雨滴的运动情况;(2)若情景B中金属导轨足够长,试用文字描述ab的运动情况,写出必要的分析过程;(3)若情景A中,f=kv,k是比例系数。
则在情景B中,试推导出与k类似的代数式;(4)若情景C中的水平路面足够长,请从各物体运动情况和受力情况的角度比较情景C与情景A、B的相同点和不同点。
21.在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2 =5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势?(2)闭合S,电路中的电流稳定后,电阻R1的电功率?(3)闭合S,电路中的电流稳定后,求电容器的电量?答案一、单选题1.【答案】B【解答】对导体棒进行受力分析作出截面图,如图所示:由平衡条件得mgsin 37°=F安+F f①F f=μF N②F N=mgcos 37°③而F安=BIL④⑤电动势E=BLv⑥联立①~⑥式,代入数据得v=5 m/s.小灯泡消耗的电功率为P=I2R⑦由⑤⑥⑦式得P=1 W.故选项B正确.故选B【分析】把立体图转为平面图,由平衡条件列出方程是解决此类问题的关键.2.【答案】B【解答】解:根据楞次定律可知:当条形磁铁沿轴线竖直向下迅速移动时,闭合导体环内的磁通量增大,因此线圈做出的反应是面积有收缩的趋势,同时将远离磁铁,故增大了和桌面的挤压程度,从而使导体环对桌面压力增大,选项B正确,ACD错误.故选:B【分析】解本题时应该掌握:楞次定律的理解、应用.在楞次定律中线圈所做出的所有反应都是阻碍其磁通量的变化.如:感应电流磁场的磁通量、面积、速度、受力等.3.【答案】B【解答】木盘加速旋转,电流增大,周围的磁场增强,穿过环面B的磁通量增大,由楞次定律判断,圆环B由收缩的趋势,两圆盘互相排斥,拉力减小,B对.故答案为:B【分析】随着带电圆环转速的增加,电流越来越大故磁场越来越大,根据楞次定律增缩减扩分析即可。