关于任意角的三等分问题

合集下载

利用渐开线三等分任意角的方法和证明

利用渐开线三等分任意角的方法和证明

利用渐开线三等分任意角的方法和证明
要求:如果所示,以园心为A,半径为AC的园的渐开线作为辅助线,现在要把∠CAB三等分。

操作:利用渐开线三等分任意角∠CAB的尺规作图步骤:
1、以B点做切线,和渐开线相交于E;
2、在BE线段上做三等分点F,即BF=BE/3;
3、以A点为圆心,AF长为半径,相交渐开线于G;
4、以G点为圆心,BF长为半径,相交基圆于D;
5、连接AD,∠CAD即为∠CAB的三等分角。

证明:
1、先证明△BAF与△DAG全等
根据作图,BE是垂直于AB的圆上点B的切线,所
以∠FBA是直角,BF2=FA2-AB2,DG是垂直于AD的圆上点D的切线,所以∠ADG是直角,DG2=GA2-AD2,其中,AB=AD为园A的半径,且AF=AG,所
以BF=DG,△BAF与△DAG全等。

2、根据渐开线的性质,直线BE的长度=园弧BDC的长度,直线DG的长度 =园弧DC的长度,又因为DG=BF=BE/ 3,所以园弧DC的长度=园弧BDC的长度/3,因
此,∠CAD即为∠CAB的三等分角
总结:
伽罗瓦所证明的是,在不使用任何辅助线或用到除尺规外其他工具的前提下,不能在有限次操作内,使用尺规作图法三等分任意角,也就是说这三个限制只要有一个不成立,那么不能三等分任意角就不成立。

实际上只要引入渐开线,在有限次操作内,使用尺规作图法N等分任意角都是可行的,而且这种方法也同样可以解决化圆为方的问题。

这样,通过引入渐开线就一举解决的三大几何作图问题中的两个“不可能”的难题,并且渐开线在物理上是很容易得到的,它的本质是绕基圆展开的线,或者说大家常用的卷尺,就是渐开线所对应的物理实物。

任意锐角的三等分

任意锐角的三等分

任意锐角的三等分【摘要】:任意角的三等分问题是几何学的三大难题之一,数学家们认为用尺规三等分任意角是不可能的.本文试图用初等几何知识证明任意角是可以三等分的.角有锐角和钝角之分,而钝角都可以等分成锐角,所以锐角的等分问题如果得到解决,则钝角和圆(360°)的等分问题也就会得到解决.所以,本文先从锐角的等分开始进行了研究.【关键词】三等分;圆周角;圆心角;弦切角任意角的三等分问题是几何学的三大难题之一,两千八百年来,数学家们都认为用尺规三等分任意角是不可能的(特殊角除外),认为这是一个“作图不能”的问题.近百年来,数学界的老前辈们还是认为只要是任意角,仅用尺规三等分是不可能的.这些前辈们是用解析几何作解的(即用公式做题).为什么用解析几何作解呢?是因为“惊讶之处是初等几何没能对此问题提供解答” ,所以“我们必须求助于代数和高等分析”(引自:高等教育出版社出版,丘成桐主编《初等几何的著名问题》2005 年版第2 页).实际上,如果用上述数学方法解几何问题,有些问题只能以近似的方式来解决•比如,以a为直径作一个圆,会容易做出来;但如果是计算一下周长S,这时候问题就来了,因为我们要使用n值来计算,所以计算出来的周长S计只能是S~ S计且S z S计,或表示为S=S计土8 , 3可以很小,但是毕竟是个“差”呀.再比如,1 m=3 市尺,那么1尺等于多少厘米呢?计算不出来,只能表示为:1市尺=33 cm,而这是一个近似值.计算不出来,如何分开呢?但用几何的方法就分开了.所以用几何的方法解决几何问题,才是真正的可行之道.本文试图用初等几何知识证明任意角是可以三等分的. 在作图之前,首先要明确一下任意角的概念:任意角是指0° < a < 360 °,不包含负角和超过360 °的角.另外,角有锐角和钝角之分,而钝角都可以等分成锐角,所以锐角的等分问题如果得到解决,则钝角和圆(360°)的等分问题也就会得到解决.所以我先从锐角的等分开始进行了研究.下面即将以初等几何知识以及纯几何的手工操作,通过尺规作图来三等分任意锐角.题给条件:0< a = / xOy<90 °(参照图1).求解:三等分a .一、作图(参照图2)(1 )在Ox 边上任取一点A ,然后在Ox 边上取OA=AA2=A2A3.(2)以O 为圆心,以OA 为半径,作AB ,此时OA=OB同圆半径),以O 为圆心,以OA2 为半径,作A2B2 ,此时OA2=OB2 (同圆半径),以O 为圆心,以OA3 为半径,作A3B3 ,此时OA3=OB3 (同圆半径).(3)作/ a的平分线OP.①以A3 为圆心,以OA3 为半径作弧lA ;②以B3 为圆心,以OA3 为半径作弧lB ,交lA 于P;③连接OP,交AB于C,交A2B2于C2,交A3B3于C3,此时,/ xOP= / POy= / AOC= / COB= / A2OC2= / C2OB2= / A3OC3= / C3OB3.•••同一圆内等角对等弧,••• AC=CB,A2C2=C2B2,A3C3=C3B3.(4)连接弦A2C2,在C3B3上按照取弦A2C2的长度取弦A3W3=V3B3=A2C2 ,连接A3W3 ,V3B3.(5)连接OW3,OV3,此时,OA3=OW3=OC3=OV3=OB3 (同圆半径),贝y OW3 , OV3 三等分/ a ,即/ A3OW3= / W3OV3= /V3OB3.二、证明1.作辅助图(参照图3).( 1)连接A3V3 交OW3 于KW.(2)以OKW为直径作O R.①以OKW 为半径,以O为圆心作弧101 ,102,以OKW 为半径,以KW为圆心作弧IK1交101于M,作弧IK2交102 于N.②连接MN交OKW 于R,则MN是OKW 的垂直平分线,R 是垂足.••• 0W3是OKW 所在的直线段,•••0W3丄MN.③以R为圆心,以RO (=RKW )为半径,作O R,交MN 于m, n,交0A3 于O, a,交0W3 于0, KW,交0V3 于0, E,交0B3 于O, b,交A3V3 于KW , KW 是A3V3 与O R 的唯一公共点.2.证明.(1)根据以上所作辅助图(参照图3)可知:O R交A3V3于KW,即KW 是A3V3与O R的唯一公共点.根据圆的切线定义:如果一条直线与一个圆只有一个公共点,则这条直线叫作这个圆的切线,该公共点叫作切点, 可以得出结论:A3V3是O R的一条切线;另根据圆的切线的性质定理:圆的切线垂直于过切点的半径,可以得出结论:A3V3丄RKW. v 0W3是RKW 所在的直?段,••• A3V3丄0W3 , KW 是垂足.(2)在Rt △ OKWA3 与Rt △ OKWV3 中,•/ A3V3 丄OW3 , •••/ OKWA3= / OKWV3=90 ° ,v 同圆半径,OA3=OV3 , OKW 为共有直角边,根据HL定理,Rt△ OKWA3 ◎ Rt△ OKWV3.〔•对应边相等,. A3KW=KWV3.(3)在Rt△ W3KWA3 与Rt△ W3KWV3 中,T A3V3 丄OW3 ,•••/ W3KWA3= / W3KWV3=90。

探索尺规三等分任意角

探索尺规三等分任意角

1
2、以A点为圆心,取任意长r为半径画圆,交AB于D点,交AC于E点。

3、作外角∠DAE的角平分线AF。

4、作角∠FAE的角平分线AG。

5、作角∠FAG的角平分线HI,分别交圆⊙A于N点,J点两点。

6、作角∠HAG的角平分线AK,交圆⊙A于L点。

7、连接JL并延长JL至M点。

8、过A点,作HI的垂线OP,交JM于Q点。

9、以A点为圆心,等于AQ长为半径画圆弧,交AH于R点。

10、作角∠HAK的角平分线AU。

11、以N点为圆心,等于NA长为半径画圆弧,交NH于S点。

12、以R点为圆心,等于RS长为半径画圆弧,交AU于T点。

13、连接JT交圆⊙A于V点。

14、以V点为圆心,等于JV长为半径画圆弧,交JM于W点。

15、以A点为圆心,等于AW长为半径画圆,交AB于Y点,交AC于Z点。

16、以W点为圆心,等于WZ长为半径画圆弧,交弧⌒YW于X点。

17、连接AX,连接AW,得角∠YAX=角∠XAW=角∠WAZ=1/3角∠BAC=110°角。

研究员:中国化学工程第七建设有限公司---------泸州分公司---------木工---------王建华
2014.6.25。

论用圆规和直尺能将一个角三等分(续文)

论用圆规和直尺能将一个角三等分(续文)

论用圆规和直尺能将一个角三等分(续文)对于此题的证明,是在通过具体解题过程得出解题结果之后,对于这一具体解题结果的正确与否所进行的证明。

通过本人的不懈努力,在三十多年的证明研究过程中,经过了数百次的反复纠改,终使这一结果得到了严谨的理论证实。

解题步骤:参见图1,以任意角的顶点O为原点,以任意长为单位,分别在角的两个边上连续截取三个相等的单位,令第一个单位上的点分别为E、F,令第三个单位上的点分别为P、Q。

以P点为圆心,以E、F两点距离为半径在角内划弧,再从E、F两点引出切线与该弧相切,两条切线相交于点B,以同样的方法以Q点为圆心,可得另一交点C。

B、C两点就是角的三等分线所经过的点。

以O点为圆心,以OB或OC的长度为半径在角内划弧,分别交角的两边于A、D两点。

连接AB、BC和CD,若能证明出AB=BC,或BC=CD,则说明B、C两点,就是角的三等分线所经过的点。

因为OE=OF,OA=OD,OP=OQ,AB=CD,所以,EF、AD、PQ、BC都是关于角平分线对称的点。

证明过程:参见图2,首先连接P、Q,交EB于点H,交FC于点R。

因为OP=3OE,OQ=3OF,所以,PQ=3EF,所以PH=HR=RQ。

连接AD,便得AD∥BC,且AD ∥EF。

连接ER,交AD于N,再连接FH交AD于M。

因此M、N两点也是关于角平分线对称的点,所以MB=NC,同时便得出一个等腰梯形NMBC,则有BN=MC。

因为EF∥=RQ,所以ND∥=RQ,所以ND∥=BC,所以四边形NBCD是一个平行四边形,若证明出四边形NBCD为菱形,就可以说明BC两点就是角的三等分线所经过的点。

参见图3,以N点为圆心,以BC长为半径画弧,交AM于W点;连接WB 并延长到等于一倍WB长的一点Z,则有WB∥=NC,BZ∥=NC,所以,WB=MB (等量代换)。

过M点作NC的平行线,交BN于K,交BC于G,则有BZ∥=MG,再以B点为圆心,以WB长为半径划弧,交由M点所作的与NC相平行的线于T点,连接BT则有WB=MB=BZ=BT,连接ZT和TC以后,若能证明Z、T、C三点是在同一直线上的点,整个问题就可以应刃而解。

2020年中考数学 任意角三等分图1、图2[1]

2020年中考数学    任意角三等分图1、图2[1]

第一部分:解说原理(如图1)
一,取任意直线L1、L2,相交于A点,取直线L6线为A角的角平分线
二,在直线L6上取任意点O,以点O为圆心,作O圆,要求与直线L1、L2相切,
三,在直线L2上取任意点D(很有意思的点), 过点D,作O圆的切线L3,交直线L1于点H
四,连接点D、点O为L4线并两端延长,交L1线为点E,过点E作O圆的切线L8 ,交直线L3于点F,交直线L6为点K 五,连接点F、点O作直线L5,交直线L1于点G(很有意思的点),过点G作O圆的切线L7,交直线L3于点C,
六,连接点C、点O作直线L9, 交直线L8为点J
第二部分“任意角的三等分的尺规作法”(如图2)
一,取大O圆,取直径分别交大O圆于点A、点B,再任取直径分别交大O圆于点C、点D,角AOC为任意角
二,取直线L1为角AOD的角平分线,直线L2为角DOB的角平分线,交大O圆于点E,
三,连接点E、点C为直线,并交直线AB为点G,过点G作直线L2的平行线,交直线L1为点H,连接点C、点H 为直线并延长交直线L2为点K,交大O圆为点J, 连接点J、点O ,则角CJO=六分之一角AOC,角JCE=12分之一角AOC(图中的黑点)。

青岛版初中数学七年级下册知识拓展:用折纸法三等分任意角

青岛版初中数学七年级下册知识拓展:用折纸法三等分任意角

青岛版初中数学
重点知识精选
掌握知识点,多做练习题,基础知识很重要!青岛版初中数学和你一起共同进步学业有成!
用折纸法三等分任意角
在《三分角问题》一文中,我们已证明过,利用尺规作图是不能三等分任意角的.但是,利用折纸法是可以三等分任意角的.其步骤是:
(1)在一个正方形纸片上折出给出的角∠PBC,将ABCD对折记折痕为EF;再将EBCF对折,折痕为GH(如图(1));
(2)翻折左下角使B重合在GH上记为B′,且使E重合BP上记为E′,点G折后的点记为G′,折痕记为XY(见图(2));
(3)折B、G’和B、B’,则BB’、BG’为∠PBC的三等分线(见下图(3)).
相信自己,就能走向成功的第一步
教师不光要传授知识,还要告诉学生学会生活。

数学思维可以让他们更理性地看待人生。

尺规三等分任意角画法和证明

尺规三等分任意角画法和证明

〈〈用直尺和圆规把一个任意角分成三个相等的小角的画法和证明〉〉(1)在图[1]中,圆心角AOB,圆心是O,边OA=OB是半径,弧AB。

(2)在AB弧上任意截取一段AC弧,再任意截取一段BD弧,令BD弧=2AC 弧,剩余一段CD弧;剩余CD弧=AB弧-AC弧-BD弧=AB弧-3AC弧,(BD弧=2AC弧),请看图[1]。

(3)连C点和D点,CD线段为剩余弧CD的弦;因为剩余弧CD很短与CD 弦重合成一段线段,所以,我们只要把CD弦三等分,剩余弧CD也就被三等分了,请看图[1]。

(4)大家知道CD弦是一段线段,我们用“平行线等分线段定理”把CD弦等分成三段:CH=HK=KD,因为,剩余弧CD很短与CD弦重合成一段线段,所以,CD弧也被同时三等分为:CH弧=HK弧=KD弧,请看图[1],H点和K点便是CD 弦上的两个三等分点同时也是剩余弧CD上的两个三等分点,所以,剩余弧CD=3CH 弧(CH弧=HK弧=KD弧),请看图[1]。

(5)因为,AB弧=AC弧+BD弧+CD弧=3AC弧+3CH弧(BD弧=2AC弧,剩余弧CD=3CH弧),所以,AB弧=3(AC弧+CH弧)=3AH弧,请看图[1]。

所以,1/3AB弧=AH弧,请看图[1],所以,H点是AB弧上的一个三等分点,请看图[1]。

(6)以H点为原点、以HA弧长为标准长在BH弧上截取一段弧HM,截点为M,则M点和H点便是AB弧上的两个三等分点,所以,AH弧=HM弧=MB弧=1/3AB弧,请看图[1]。

(7)连OH和OM,OH和OM把圆心角AOB分成三个小圆心角:小圆心角AOH、小圆心角HOM和小圆心角MOB,请看图[1]。

(8)在圆心角AOB中,依据圆心角、弧、弦的关系定理:因为:小圆心角AOH对应AH弧,小圆心角HOM对应HM弧,小圆心角MOB对应MB弧,AH弧=HM弧=MB弧=1/3AB弧,所以:小圆心角AOH=小圆心角HOM=小圆心角MOB=1/3圆心角AOB(依据圆心角、弧、弦的关系定理,等弧对等角),请看图[1],所以,任意角AOB被尺规三等分了。

三等分角的问题

三等分角的问题

三等分角的问题一、研究动机:古代数学几何作图有三大难题,一是化圆为方,一是倍立方体,另一个则是三等分角,其中又以三等分角看起来最为容易。

可是这三大难题难倒了数学家好几个世纪,现代数学证明了用几何原本所规定的标尺作图法,是无法解出这三道难题,但是如果不限于标尺作图的话,是否可以把这三道问题解决呢?于是便开始了我们的研究路程。

二、研究目的:在这三道问题中,我们选择三等分角来进行研究。

三等分角顾名思义是把一个任意角分成三个相等的角,虽然有些特殊角很容易,比如直角,但其他的角度就无法适用。

现在我们利用所有可以采用的工具来作图,以便把我们想要的角分成三个等分,其中包括我们常用可以量刻度的直尺和圆规。

三、研究设备器材:直尺、圆规、三角板、木板、雕刻刀四、研究过程或方法:我们分三个方向来进行:1.拜近来科技的发达,透过因特网,寻找所有别人已经发现三等分角的方法,再重新整理一遍。

2.利用学校及附近的图书馆,找寻有关于三等分角的几何书籍,以资参考。

3.将国中所教到的几何观念以及所找到的数据,做出三等分角的方法。

最后将所有找到以及做出的八种方法详细整理与证明。

五、研究结果:这次研究总共找出了八种将一个角分成三分之一的方法,兹将这八种方法详列如后:∫是任意數1.标度尺(一)在一根直尺上,标出P、R两点,两点间距离是2∫,在∠AOB的一边上截取一点B,使OB =2∫,再从OB的中点C做两条直线,一线垂直OA,另一线则平行OA,移动尺使O 点在尺的边上,而P 、R 两点分别在所做的垂直及并行线上,沿着尺画线,就可把角AOB 三等分。

证明:以M 表PR 的中点,则∵∠PCR 为直角 ∴OC MC MR PM ====∫ ∵CR 平行OA∴∠AOR =∠MRC = ∠MCR = 21∠PMC =21∠MOC ∴∠AOR =31∠AOB2.标度尺(二)做一半圆,圆心O ,A 、B 在圆周上,使得∠AOB 为圆心角,在直尺上标记P 、R 两点,距离与半径等长,现移动直尺,让P 、R 分别落在BO 及圆周上,而A 在直尺边上,则∠RPO =31∠AOB证明:A BOC PRMBAPRO∠RPO = ∠ROP =21∠ARO = 21∠RAO 又∠AOB = ∠RAO + ∠RPO∴ ∠RPO =31∠AOB3.三连器利用上面的方法可做出种简单的三等分角的工具,如下图:OE 、OF 、CD 代表三根木条,OE = OF ,F 可沿着CD 中的沟槽移动。

论尺规三等分角、任意等分任意角及其扩展

论尺规三等分角、任意等分任意角及其扩展

论尺规三等分角、任意等分任意角及其扩展各位网友大家好!首先祝大家身体健康!生活幸福!万事如意!在此我来发表一下自己的观点,这就是关于三等分任意角的问题,前不久我在山风工作室网络上发布了两篇关于分角的原创论文,即(论尺规三等分、任意等分任意角及其扩展)、(论尺规三等分、多等分任意角及其扩展)修改稿;由于本人学历有限,所写论文格式和语言可能不很规范,请大家理解,只看摘要、作图、证明正确与否即可;以下附上二文摘要(根据摘要即可很快作出图来):1.【论尺规三等分、任意等分任意角及其扩展】摘要:对于三等分及任意等分任意角来说,必须转变思维观念,不为分角而分角,而是寻求弧的等分,弧等分则角等分;该论证从三、五、七等分到模拟作a等分任意角,皆采用a+1等分弧的方法;首先运用二等分角原理,将a等分待分角作a+1等分,在其对应弧两端各取一等分点,根据平行线定义,从该点作角边平行线与另一角边相交,左右二交点分别与弧中点及其左右一等份弧点相连,再从圆心引四条线段与之分别平行,平分从圆心所作左右各两条线间弧段,得两关键点,此两点间弧段即所求的a等分弧;弧段关系用代数式表达,运用分析法推理,代数式运算求证,从而获取等分弧,解决了角的任意等分问题;分角范围明确,作图清晰、明了,且方便、快捷,圆弧内只需作十条平行线即可满足从作图到论证之全过程,若只作角等分而不加证明,圆弧内只需作五条平行线即可;扩展即可作一些形体的面积、体积、表面积任意等分;运用该等分角原理,可制作出无误差的分角器具,以便应用于实际工作中。

2.【论尺规三等分、多等分任意角及其扩展】(修改稿)摘要: 对三等分及多等分任意角来说,转变思维方式,从圆弧着手,寻求弧的等分,弧等分则角等分;该文从三、五等分及模拟作k等分任意角,皆采用2的a次方等分弧法,2的a次方等于kb+1,k即分角数、为大等于3之任意奇数、b为大于1之奇数、a为趋于最小值之整数;首先运用二分角原理,作出需用的kb+1等分弧;待分角对应弧两端各取一等分点,根据平行线定义,分别作角边平行线交另边于一点,左、右二交点分别与弧中点左右b+1/2、b-1/2及b-1/2、b+1/2等分点相连,得四条线段,再从圆心作四条线段与之分别平行,平分从圆心作出的左右各两条线之间弧段,得两关键点,此两点间弧段即所求的k 等分弧段;弧段关系用代数式表达,运用分析法推理,代数式运算求证,从而获取等分弧,理论上解决了角的任意等分问题,而从作图来说,则适用于多等分任意角;分角范围明确,方法简便、快捷,扩展开来即可多等分一些形体的面积、体积、表面积等.此二文分角方式不一,因此结果不一,但基本方法一致,采用几何与代数结合,力求几何问题在几何范围中解决;文中不涉及高等数学,完全是中学阶段所学的几何、代数知识,因此不难理解;客观的讲,该分角问题,并不是大家传说的那么高深莫测,只不过是两三千年来,没人发现它罢了,以至于变成了人们心目中,一个不可逾越的雷区。

角的三等分

角的三等分

“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN,设∠α=∠MAN.(Ⅰ)当∠MAN=69°时,∠α的大小为________(度);(Ⅱ)如图,将∠MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5c m.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明做法(不要求证明)如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α。

答案解:(Ⅰ)×69°=23°;(Ⅱ)如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.题目(2012•天津)“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN,设∠α=13∠MAN.(Ⅰ)当∠MAN=69°时,∠α的大小为______(度);(Ⅱ)如图,将∠MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5cm.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明做法(不要求证明)______.优质解答(Ⅰ)13×69°=23°;(Ⅱ)如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.二货亥 2014-10-01为您推荐:问题解析(Ⅰ)根据题意,用69°乘以13,计算即可得解;(Ⅱ)利用网格结构,作以点B为直角顶点的直角三角形,并且使斜边所在的直线过点A,且斜边的长度为5,根据直角三角形斜边上的中线等于斜边的一半可得斜边上的中线等于A B的长度,再结合三角形的外角性质可知,∠BAD=2∠BDC,再根据两直线平行,内错角相等可得∠BDC=∠MAD,从而得到∠MAD=13∠MAN.名师点评本题考点:作图—应用与设计作图.考点点评:本题考查了应用与设计作图,主要利用了直角三角形斜边上的中线等于斜边的一半的性质,使作出的直角三角形斜边上的中线恰好把三角形分成两个等腰三角形是解题的关键.。

三等分任意角浅思

三等分任意角浅思

三等分任意角浅思光中______概述:三等分任意角是古希腊三大作图名题(1.作一立方体,其体积为所知立方体体积的两倍;2.画圆为方,即作一正方形使其面积为已知圆的面积;3.尺规三等分任意角)之一。

众所周知,二等分任意给定角用尺规很容易就能解决。

而充满探索与挑战精神的人们又会想到用尺规如何三等分任意给定角,此后,许多数学家纷投入这一问题的解决。

直到十九世纪,人们才严格证明了三等分任意角仅凭尺规不可能实现。

到此,这一问题才告一段落。

期间,有许多超越了尺规限制的作图方法:比如:希皮阿斯发明的割圆曲线,阿基米德螺线和尼科梅德斯蚌线等。

人们万万也不会想到但他们在潜心研究一些未解决的问题的时候,许多新的发现也会应运而生……科学需要大胆的想象,或许引入数学公式可以实现超越尺规而三等分角,于是我想到了倍角的相关公式,引发了以下一系列的思考: 一:n倍角的正切值展开通式:A通过观察下列式子:tan1﹫=t……有如下特征:①分子分母各项均是“+,-”交替出现,且分子上为t的奇次幂,分母上为t的偶次幂。

②我们将分子分母上相同序项对齐,则分子上的次数比分母上依次高一,且其系数有如下关系:即:对正相加分别作为下式相应项的分子系数;由下往上左偏相减作为下式相应项的分母系数。

③分子以“nt”开头,分母以“1”;若从第一项开始每两项为一对,分子上:奇数对的基数项(简称奇对奇项)以"t的n次方"结尾,奇对偶项以“n 倍的t的n-1次方”结尾;偶对奇项以"负的t的n次方"结尾,偶对偶项以“-n 倍t的n-1次方”结尾;分母上:奇对奇项以“n 倍的t的n-1次方”结尾,奇对偶项以“- t的n 次方”结尾;偶对奇项以"n 倍的t的n-1次方"结尾;偶对偶项以"t的n次方"结尾。

注意:奇数项中分子.分母的项数相同,偶数项中分母项数比分子项数多一项。

综合以上特征和八个式子的系数关系,我们不难发现:B下面我们用数学归纳法来验证上式的正确:二:“T”型架三等分任意角原理:如图设AOB是要等分的任意角,O-MN“T”型架(MOp=NOp,MN┷OOp),作OB的平行线a(如图虚线),使OB与a 的距离d=MOp=NOp.然后让“T”型架绕点O转动,当M点N点恰好分别落在OA与a上时,则得到的夹角 COB为其三等分角。

尺规三等分任意角

尺规三等分任意角

数学学科2016学年论文“尺规三等分任意角”作法及其论证山东省聊城市茌平县振兴中学初二.15班田美辰尺规三等分任意角”,这曾是令无数数学家为难而又兴奋的难题。

阿基米德曾证明过,虽然表面上是证明了,但他犯了一个致命的错误,就是他所用的条件超出了题给条件。

几何学发展至今,虽为完备,但仍有缺憾,尺规三分角就是其一。

除一些特殊角(直角、平角和圆周角)外,至今还没有一种严格的几何方法能将任意一个角三等分。

而我们现在的教材上,只有用到直角拐尺才可完成对一个任意角的三等分。

数学先哲们曾断言定论,尺规三分角是尺规不能问题。

不才无学,但也相信科学和尊重客观事实。

在闲暇之际,偶生兴趣,突发灵感,得一妙法,可将任意角一分为三。

后附详细作法和证明。

经过长期的探究,本人发现这种方法可以对一个角进行多等分。

一、作图步骤(1)做一个任意角COD(2)用圆规截取任意长度r为半径,以O为圆心画弧。

交射线OC、OD分别与点A点B。

CAOB D(3)以A、B为圆心,在以r为半径画弧,分别交OC、OD与A'B'CA'AOB B' D(4)以A为圆心,以2r为半径画弧,再以B'为圆心,以r为半径画弧,二弧线相交于点C';同理,得到点D'。

CA 'D'A C'O B B'(5)连接OD'、OC',即可得到这个角的三等分。

CA' D'A C'O B B' D二、理论论证证明:将此图补充完整﹝以B为圆心,以2r为半径画圆,以C为圆心,以r为半径画圆,2圆共同交于点F;同理,得到点E;⊙A与⊙B交于点O'⊙D与⊙B交于点G。

⊙A、⊙C交于点H﹞连接EF,发现E、G、H、F在同一直线上。

连接AO'、 BO'、OO',分别交于点J、I'P.∵⊙A=⊙B,AO'和BO'分别为圆中任意半径,∴AO'=BO'=2r.又∵OA=OB=r∴在△AOO'和△BOO'中{∴△AOO'≌△BOO'∴∠AOO'=∠BOO'即∠4+∠1=∠2+∠3又∵△AOO'和△BOO'是同底三角形,△AOO'≌△BOO'∴S△AOO'=S△BOO'又∵S四边形OJID公共∴S△OBI=S△OAL做BB'⊥OI,AA'⊥OJ∵S△OBI=S△OAL,OA=OB∴½×OA×AA'=½×OB×BB'AA'=BB'在Rt△OAA'和Rt△OBB'中{∴Rt△OAA'≌Rt△OBB'∴∠3=∠4∴∠1=∠2以G为圆心,以GP为半径向EG画弧,并将EG二等分,发现都与EG交于点M∴PE∶PG=3又∵OE=OF,∠1+∠4=∠2+∠3∴OP⊥EF在Rt△OPG、Rt△OPE∵tan∠1=GP∶OP tan∠EOP=PE∶OP∴OP=PG∶tan∠1 OP=PE∶tan∠EOP∴PG∶tan∠1=PE∶tan∠EOP∴tan∠EOP∶tan∠1=PE∶PG=3即∠EOP∶∠1=3∴∠EOP=3∠1∵∠EOP=∠1+∠4∴∠4+∠1=3∠1∴∠4=2∠1又∵∠1=∠2,∠4=∠3∴∠4=∠3=∠1+∠2即∠4=∠3=∠5.小结:自古以来,不小数学爱好者对三等分角作了大胆的尝试,但论证的途径多局限于证明其所在的三角形全等或其所在的三角形相似这两个方面。

有关三等分角的综述

有关三等分角的综述

有关三等分角的综述作者:孙兴波来源:《中学教学参考·理科版》2010年第06期三等分角是历史最为长久、流传最为广泛的一个几何作图问题.所谓三等分角问题,就是说任意给定一个角,作图工具仅限于直尺和圆规,问能不能将这个角三等分.一、简单说明三等分角是不可能的下面我们给出三等分角问题的代数方程:设已知角的三分之一为α,则已知角的为3α,我们取它的余弦(或正弦).根据平面三角学的三倍角公式有cos3α=4cos3α-3cosα.令2cos3α=m,2cosα=x,我们得到:x2-3x-m=0.容易看到,这就是三等分角问题的代数方程,这个方程的根x,一旦能用尺规作图作出来,则∠α的大小就可以用尺规作出来.然而,这个代数方程对于任意给定的已知角,它的根x并不能表示成“可作图几何量”,因此三等分角问题用尺规作图法是不能解决的.二、解决方法正是因为这个用平面解析几何无法解决,但又看似“简单”的问题,就使得许多数学家和业余数学爱好者不断地研究它,希望能够解决它.而对这个问题的研究只能沿如下两个方面进行:求近似的作图方法和借助其他的作图工具.(一)求近似的作图方法(这就要求有较高的精确度)1952年,德国画家杜勒(Albrecht.Durer)提出“三等分角”的一个近似解法:给定∠AOB,以O为圆心,OA为半径作弧得扇形OAB;在AB上取点C,使AC∶BC=2∶1;取点E,使BE=BD;点F为EC的三等分点,EF∶FC=1∶2;在圆弧上取点G,使BG=BF,则∠BOG≈13∠AOB.以∠BOG作为∠AOB的三等分角近似程度有多大呢?不妨设OA=1,∠AOB=3α,则AB=2sin32α,AC=23AB,BC=13AB.故AC•BC=29AB2=89sin232α.延长DC交圆O于D′,则CD′=CD+2cos32α.由圆幂定理得CD•CD′=AC•BC,即CD(CD+2cos32α)=89sin232α.CD=cos232α+89sin232α-cos32α.=43sin232α+2cos232α-2cos32αcos232α+89sin232α.BG=BF=BC+23CE=BC+23(BE-BC)=13BC+23BE.设∠BOG=β,则sinβ2=BG/2=BC/6+BE/3-23sin232a-2cos3a21-三等分中的误差随着∠AOB的增大而增大.但是,对于60度角大约只差1″,对于90度角大约只差18″.(二)突破作图工具的限制,借助其他的作图工具1.用新的思想方法(1)尼科梅德斯的蚌线构造一条蚌线要从一条直线L和一点P开始.过P画射线与L相交.在每条这样的射线上,以L为界向外截出一段固定的长度a并取点.那么这些点的轨迹便形成蚌线.蚌线的极坐标方程是:r=a+bsecθ.三等分已知角P可采用如下办法:取∠P为直角三角形△QPR的一个锐角.以P为极点,QR 为固定线L画一条蚌线,使得它由L向外截出的固定长度等于斜边长PQ的两倍2h.过R点作RS⊥QR并交蚌线于S点.现∠QPT即为∠QPR的三分之一(T为PS与QR的交点).证明:令M为TS的中点,则RM=h,这是因为△SRT为直角三角形,其斜边中点到各顶点等距离.现因MS=MR=h,所以∠1=∠2=k°.而∠3是△SMR的一个外角,从而∠3=2k°.又因MR=PR=h,又有∠3=∠4=2k°.∵PQ与RS共面,且同垂直于QR,∴PQ∥RS.∴∠2=∠5=k°.这样一来,∠QPR=3k°,而13∠QPR=k°=∠5.由此,∠QPR被三等分.(2)希皮亚斯(Hippias,约公元前5世纪)的割圆曲线设ABCD是正方形,弧BED是以A为圆心的四分之一圆弧,如果圆的半径从AB位置,同时以匀速绕A转动到AD,同时直线BC也以匀速向AD位置作平行移动,转动的半径和作平行移动的直线最终都同时和AD相重合.它们的交点的轨迹(如图中的曲线BFNG)就称为割圆曲线.它显然有以下性质:∠BAD∠EAD=它的极坐标方程为:r=2θa/(πsinθ)(a为正方形的边长).设已知角为∠DAX,以顶角A为圆心,在正方形ABCD内作圆弧BD,并在圆弧内作割圆曲线BFG,设AX交割圆曲线于F.将FH三等分,使PH=13FH,作PN∥AD,交割圆曲线于N,过A点作直线AN,交圆弧BD于M.又作NK垂直AD于K.因为所以即∠DAM=13∠DAX.除这两种以外还其他的很多方法.但值得注意的是希腊数学家都是从运动的观点来认识这两条曲线的.2.改变机械工具阿基米德的滑动传杆装置:假设我们要三等分的角为∠AOB,如图,延长∠AOB的边AO,令AO表示以∠AOB的顶点O 为圆心的圆的半径.∵∠AOB是△OBD的外角,∴z=y+x.同理,∠BCO是△COD的外角,∴x=y+y,即z=3y.由此,y是∠AOB大小的13,从而∠AOB已被三等分.值得注意的是,无论是新的想法,还是新的工具,他们都有一个非常重要的共同点:都是从运动的观点来考虑问题、分析问题、解决问题.这一点思想正是笛卡尔《解析几何学》的主要思想(方程与几何图形相结合起来,从运动的观点看).参考文献[1](美)T.帕帕斯著,张远南,张昶译.数学趣闻集锦[M].上海:上海教育出版社,1998.[2]张卿.妙趣横生的数学难题[M].天津:天津人民出版社,1980.11.[3]王志雄.数学美食城[M].北京:民主与建设出版社,2000.1.[4]袁小明,胡炳生,周焕山.数学思想发展简史[M].上海:上海出版社,1991.[5](美)H.伊夫斯著,欧阳绛译.数学史概论[M].太原:山西人民出版社,1986.3.(责任编辑金铃)。

剖析角三等分及解

剖析角三等分及解

剖析角三等分及解和平前言一百多年来,国内外数学界一致认为用尺规(这里用的尺是不带刻度的直尺,规是圆规,简称为尺规)作图将一任意角三等分已被证明了这是一个“作图不能问题”的结论是完全正确的。

其实这个结论肯定是错误的,我就能,肯定能推翻这个错误的结论,我在角三等分题解中无论从理论上还是从实际尺规作图上都证明了角三等分确实有解。

下面我用第二种方法即剖析角三等分及解来证明用尺规作图可将一任意角三等分,並对大小各不相等的角进行剖析角三等分及解四种混合尺规作图达1670多次,装订成册16本,验证了这个理论是完全正确的,让角三等分无解的结论彻底破灭,並用剖析角三等分及解理论来验证角三等分理论的正确性。

剖析角三等分及解也为角的其他等分的解决打下基础,也是角尺规等分法中的一部分。

剖析角三等分及解共有四种题解,下面介绍的是其中一种。

由于本人水平有限,如有错误和缺欠,恳请给以指正。

2011 4-22 和平二剖析角三等分及解(一)在角三等分题解中已证明了用尺规作图可将一任意角三等分,现在换一种思维方式将一任意角的一半已经分成三等分中的某个角进行解剖和分析,那么这个角的三个点用尺规作图能否证明可以找到吗﹖如果能证明可以找到的话,就用已被证明找到的三个点所构成的角将其任意角的一半三等分。

来验证角三等分理论的正确性。

以O点为圆心,以任意长为半径画圆为A圆(图中只画圆的一部分),见图3析-1-1。

在A圆上作一任意圆心角为∠γ,把∠γ扩大六倍的圆心角为∠α,即:∠AOQ=∠QOI=∠IOH=∠HOW=∠WOG3=∠G3OB=1/6∠AOB=1/6∠α=∠γ.在A 圆上作∠AOD=∠AOB=∠BOC=1/3∠DOC=∠α=6∠γ,设∠OCD=∠β,2∠β+3∠α=180°,这里应指出的是3∠α一定要小于平角,如果3∠α大于或等于平角时,必须将∠γ缩小偶数倍的角再扩大18倍的角小于平角为止。

连接CD交OB线上K点,交OA线上G点,连接BD交OH线上H1点。

关于三等分任意角的方法探究

关于三等分任意角的方法探究

三等分任意角的方法探究西工大附中孙开锋三等分任意角的方法探究摘要:三等分角是古希腊几何三大作图问题之一,本文关键词:只准用直角和圆规,你能将一个任意的角进行两等分吗?这可太简单了,几千前的数学家们就会做。

纸上任意画一个角,以其顶点O为圆心,任意选一个长度为半径画弧,找出弧与角的两边的交点,分别命名为A和B。

然后分别以A点和B点为圆心,以同一个半径画弧,这个半径要大于A、B之间距离的一半。

找出两段弧的相交点C,用直尺把O和C连接起来,那么直线OC就将角AOB平分成了两部分。

用同样的方法,我们可以把一个角任意分成4等分、8等分、16等分……,也就是说,只要你有耐心,可以把任意一个角等分为2的任意次方。

但是,如果只用直尺和圆规,并且,这直尺还不能有刻度,你能将任意一个角三等分吗?早在公元前5世纪,古希腊的巧辩学派就提出了在只用直尺画直线、圆规画弧的限定下,将任意给定的角三等分的命题。

很多伟大的数学家如阿基米德、笛卡儿、牛顿等都试图拿起直尺和圆规挑战自己的智力,但终于都以失败告终。

直至公元1837年,法国数学家闻脱兹尔宣布:“只准使用直尺与圆规,想三等分一个任意角是不可能的!”, 才暂时了结了这宗长达几千年的数学悬案。

但是,如果没有几何作图法的限制,任意角三等分问题当然可以解决,不妨举几个例子以共享。

一、利用工具三等分任意角如图1所示,叫做“三等分仪”吧 ,CE=EG=DG,ME ⊥CD,弧ED 是以G 为圆心的半圆,故ME 与半圆G 相切于点E.具体操作:将该仪器置于 ∠AOB 的内部,使得点C 落在OA 上,ME 经过点O,半圆G 与OB 相切于点F,则OE,OG 为∠AOB 的三等分线。

数理证明:分别连接OG,GF,故GF ⊥OB,而EG ⊥OE,所以易证:△GOE ≌△GOF;同理可证△GOE ≌△COE;故可得到:∠COE=∠GOE=∠FOG.所以,OE 、OG 为∠AOB 的三等分线。

二、中考中的三等分角题目:(广东佛山市)三等分一任意角是数学史上一个著名的问题,用尺规不可能“三等分一任意角”。

三等分角

三等分角

三等分角第一种方法一,做任意角O二,以OA长为半径,做弧AB,交角O的两边于A,B两点三,连接AB,并做角AOB的角分线OP,连接OP,取OP与AB的交点为L,取弧AB与OP的交点为E四,以LA为半径,以点L为原点,做圆取与射线OP的两个交点为Z,X五,将半圆弧AXB三等分,取两个三等分点分别为M,N六,以点Z为原点,以ZA为长做弧AFB,取弧AFB与OP的交点为F注:弧AEB为原弧,弧AFB为变弧以向量OP方向为正方向(1)当角O小于90°时EF为正(2)当角O等于90°时EF为零(3)当角O大于90°时EF为负七,以EF长为长,以点Z点为一个端点,在向量ZP方向上取另一点Q八,连接QM,QN取QM,QN与弧AEB的交点分别为H,I九,连接OH,OI,则射线OH,OI即为角AOB的两个三等分线。

十,大于180°小于360°角的三等分角解法1,利用解决小于180°角的三等分角的方法将小于180°的那部分角进行三等分2,然后以OA长为长,以点H为圆心点做弧与圆O交于C点,再以C点为圆心点做弧与圆O交于点S3,同理,以OB长为长,以点I为圆心点做弧与圆O交于D点,再以D点为圆心点做弧与圆O交于点T4,连接OS,OT第二种方法:一,180°的三等分角的解法A:做法1,作一个平角O2,以点O为圆点,以OA长为半径作弧,设其与平角O的两个交点为A,B两点3,以OA长为长,分别以点A,B两点为圆点作弧,设其与这个半圆的两个交点为C,D 4,分别连接OC,OD,则射线OC,OD即为平角的两条三等分线。

B,论证1,连接AC,CD,BD2,由作法部分知AC=AO=CO,所以知三角形AOC是等边三角形,知角AOC=60°3,同理,知三角形BOD为等边三角形,所以知角BOD=60°4,∠AOC=∠BOD=60°,所以知∠COD=60°5,综上,OC,OD为平角AOB的两条三等分线二,90°角的三等分角作法A,作法:1,作一个直角O2,以OA长为半径,以点O为圆点作弧,取其与∠O的两边的交点分别为A,B两点3,作∠ AOB的角分线OP, 连接AB,取AB与OP的交点为L4,以LA长为半径,以点L为圆点作圆,取这个圆与OP的另一个交点为Q5,以LA长为长,分别以点A,B为圆点作弧,取其与半圆AQB的两个交点分别为C,D 6,连接OC,OD则OC,OD为∠AOB的两条三等分线B,论证1,连接AC,CD,BD,LC,LD2,由上文论证180°角三等分角的部分知∠ALC=∠CLD=∠BLD=60°,所以知弧AC=弧CD=弧BD3,由圆周角定理知∠ AOC=∠COD=∠BOD,所以知OC,OD为∠AOB的两条三等分线三,90°-----180°角的三等分角的作法A,作法1,作∠AOB2,以点O为圆点,以OA长为半径作弧,交∠O两边于A,B两点3,作∠AOB的角分线OP,并将OP反向延长,连接AB,取AB与OP的交点为L4,以点L为圆点,以LA长为半径作圆,分别以点A,B为圆点以LA长为半径作弧取其与弧APB的两个交点为C,D.5,连接OC,OD则OC,OD即为∠AOB的两条三等分线。

三分任意角

三分任意角

三分任意角三等分任意角是数学史上著名的几何三大问题。

从表面上看,这个问题似乎很简单,但自从公元前五世纪提出以来,长时间未能解决。

古希腊学者曽经研究出了各种画法,但最终都发现,他们费尽心机找出的作图方法,不是有错,就是出界。

此后两千年间,这“三大几何难题”一直困扰着数学家。

直到1637年,善于哲学思考的笛卡儿创立了解析几何学,将尺规作图的几何条件翻译为代数式,通过代数方法的研究,终于得到一个关于尺规作图可能性的准则:在一个尺规作图问题中,一个必须求出的未知量,如果能够由若干已知量经过有限次有理运算及开平方而得出时,并且只有这时,这个作图题才可以仅用尺规完成。

一旦题中需求出的未知量的表达式所用到的运算法则超出了所说的范围,那么这个作图题就不能仅用尺规作出。

在这个判断法则的指引下,人们证明了:仅用圆规与直尺三等分任意角是不可能的。

可是时至今日,仍然不时有人宣布自己用尺规解决了三分角的作图问题,笔者当年编辑《湖南数学通讯》时,就收到过好几篇这类稿件,有的还是地方科学技术协会推荐来的。

我国数学家余介石先生曽经出版过一本书,书名叫做《我国的三分角家及方圆家》,其中收录了许多宣称解决了三分任意角的事例,其中的当事人都因为当年一些媒体报道他们解决了三分任意角的问题而轰动一时,当然,那些所谓三分任意角的方法,毫无例外都是错误的。

著名数学家华罗庚教授曾于1952年专门写了一篇科普文章谈“三分角问题”,对这个不可能问题作了通俗而详尽的解释,并郑重指出:“此项研究的发展,会使聪明才智白白地浪费了。

”但愿至今还迷恋解决三分角问题的朋友,结束这种已经毫无意义的“雄心状志”吧!他山代数解玄机,一角三分事不期。

限设尺规人自缚,愚公枉欲太行移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于任意角的三等问题数学与计算机科学学院数学与应用数学专业105012007016 张成娇【摘要】本文立足于对高中数学《课标》选修系列3的《三等分角与数域扩充》中三等分角的探究,分别从三等分角的发展历史、证明、可三等分的特殊角及在数学教学中的课题研究等四个主要方面进行探究.【关键词】三等分角;数域;特殊角;课题研究;一、前言《三等分角与数域扩充》是高中数学新增加的内容,它所处的是《课标》中选修系列3,选修系列3的专题,主要是以通俗易懂的语言,深入浅出地介绍各专题的基本数学内容及其基本思想,用以开阔学生视野.三等分角、倍立方积、化圆为方、等分圆周等尺规作图问题,都是古希腊著名的作图问题,经过了长达几千年的时间才得以解决.解决这类问题的思想方法不仅在数学上,而且在人类思想史上都具有重大意义.本文从三等分角的发展历史、证明、可三等分的特殊角及在教学中的研究性学习与数学实验等四个主要方面进行说明.二、关于任意三等分角的历史在欧洲巴尔干半岛的南端,有一个濒临地中海的文明古国——希腊,古希腊人在几何学的形成和发展上作出了巨大的贡献,人们习惯上把希腊称为几何学的故乡.古希腊人鄙视任何不明确或模棱两可的东西.他们认为,没有任何东西能够像直线和圆那样,明确得使人无可挑剔!况且这两者的获得又最为容易:用一个边缘平直的工具,便能随心所欲的画出一条直线;而用一端固定,另一端旋转的工具,便能得到一个圆.所以古希腊人认为,几何作图只许用直尺和圆规,这是天经地义的.大约在公元前六至四世纪,古希腊人,仍然热衷于三个貌似简单的作图题:给你一把圆规和直尺(无标记),经过有限次的步骤,能否:①将一个给定角三等分?②作一个立方体使它的体积是已知立方体体积的两倍?③作一个正方形使它的面积等于已知圆的面积?以上三个问题分别称为三等分角问题、倍立方积问题和化圆为方问题,这就是几何作图的三大问题.其实这三个问题,于19世纪就被严格证明为不可能用直尺、圆规,经有限次的作图步骤来解决的问题. 自1637年笛卡尔(Rene Descartes ,1596 - 1650 )创立了解析几何学之后,尺规作图的可能性就有了判定准则. 1837 年万泽尔( Pierre hanrent Wantzel ,1814 - 1848)首先证明了“立方倍积”和“三等分任意角”不可能尺规作图. 1873 年埃尔米特(Charles Hennite ,1822 - 1901)证明了e 是超越数.1882年林德曼(Lindeman ,1852 - 1939) 证明了π也是超越数. 从而“变圆为方”的不可能性也得以确立.1895年克莱因( Felix Klein ,1849- 1925) 总结了前人的研究成果,给出三大几何问题不可能用尺规作图的简明证法,从而彻底地解决了这三个古老的问题.三、用数域扩充的方法证明对于任意角不能三等分证明有许多的方法,如:1801年数学家高斯的证明方法:作圆的n 等分,当n 满足如下特征j1k km 1jn=2p p 其中,m 为非负整数,1p 、2p 、j p 为互不相同的费马素数(前5个费马素数为3,5,17,257,65537),i k 01i j = 或(=1、2、、)才可三等分角360n︒.在此主要是考虑到中学生的数学知识水平以及课程标准中对数域的要求,因而用采用数域扩充的方法来证明.1.预备知识(1)尺规作图的公法:①从任意一点到另一点,可作一直线;②任意有限长的线段,可顺着延长;③ 由一已知点及定距离,可作一个圆(说明的是圆规的用法).(2)可构作的概念: 经过平面上的两点,用直尺可以画一直线;经过一点用圆规可以画一个半径等于给定线段的圆,直线与直线、直线与圆和圆与圆都可能相交,这样的交点称为是用尺规可以构作的点,若交点在数轴上,也称对应的长度(实数)是可以构作的. (3)相关定理、概念定理1 设F 是R 的一个子域,则实数a 可由F 构作的充要条件是存在R 的子域链,使得0F F =,a F ∈ 且i i+1[F :F ]=2, i=12n 、、、. 推论2 设F 是R 的一个子域, a R ∈,如果a 可由F 构作,则必存在整数r ≥0,使得[F(a):F]=2r.定理3 设θ是一个角,另cos a θ=,则角θ可用尺规三等分的充要条件是多项式3()32()[]f x x x a Q a x =--∈,在()[]Q a x 中是可约的.2.证明证: 设θ是一个经过原点以x 轴为一条边的角,过原点作一半径为1的圆,圆与角的另一条边的交点的横坐标为cos θ∴ 角θ可构作的充要条件是实数cos θ可构作令3θϕ=,cos a θ=,2cos b ϕ=,则问题化为能否由()Q a 构作b有三倍角公式: 3cos 4cos 3cos θϕϕ=-∴ b 是多项式3()32()[]f x x x a Q a x =--∈的一个根假设()f x 在()[]Q a x 中可约,则由于b 是()f x 的根,而()f x 是3次的,所以()b Q a ∈或是()Q a 上的一个二次不可约多项式的根.若是前者,显然b 可以由()Q a 构作;若是后者, 则有[()():()]2Q a b Q a =,于是b 是可以由()Q a 构作的∴ 当()f x 在()[]Q a x 中可约时, b 可以由()Q a 构作的,从而θ可构作假设()f x 在()[]Q a x 中不可约,则()f x 就是b 在()Q a 上的极小多项式,从而有[()():()]3Q a b Q a =∴ b 不可由()Q a 构作,即θ不可构作 ∴ 三等分任意角是不可能的3.举例说明例如,角3π是不能用尺规三等分的,因为此时12a =,3()31f x x x =--在[]Q x 中不可约四、可三等分的特殊角用尺规将三等分一个任意角是不可能的, 但对于一些特殊角则可以利用尺规三等分,例说如下:1. 180︒可以三等分简析:根据上述的证明过程,因为此时cos 1a θ==-,32()32(1)(2)f x x x x x x =-+=-+-在[]Q x 中可约,从而可三等分.这时把一平角三等分,每一份的度数是60︒而等边三角形的每一内角是60︒,故可以利用作等边三角形的方法把平角三等分.作法:(1)如图1,A O B ∠为平角,分别在角的两边O A 、O B 上取两点C D 、. (2)分别以O O C D 、为边,作两个等边三角形(E C O FD O ∆∆、).则O E O F 、为平角A O B ∠的三等分线,即O E O F 、把平角A O B ∠三等分.2. 45︒角三等分简析: 因为把一个45︒的角三等分,每一份是15︒,而15︒恰好是30︒的一半,或者是604515︒-︒=︒,故仍可采用先作等边三角形的方法把45︒的角三等分.作法:(1)如图2, 45A O B ∠=︒.在O A 上任取一点C,以O C 为边,在A O B ∠内部作等边三角形O C D ∆.(2)作D A O ∠的平分线OE. (3)作E A O ∠的平分线OF. 则OE 、OF 把45︒的A O B ∠三等分3. 90︒角三等分简析: 根据上述的证明过程,因为此时cos 0a θ==, 32()3(3)f x x x x x =-=-在[]Q x 中可约,从而可三等分.此时把一直角三等分,每一份的度数是30︒,而906030︒-︒=︒,可用作等边三角形的方法把直角三等分.4. 还有135︒、36︒等可转化为形如180n ︒(n不为3的倍数, *n N∈)的角都可以三等分.此为俄国数学家罗巴切夫斯基经过多年努力得到的结论.因此根据这个结论也可以得到60︒、120︒等是不可三等分的.五、在高中数学教学中的研究课题现今的教育要求丰富学生的学习方式,改进学生的学习方法是高中数学追求的基本理念.独立自主、自主探索、动手实践、合作交流等都是学习数学的重要方式.随着三等分角这部分内容进入高中数学课程,这使得三等分角成为一个很好的研究课题.下面简述两个.1. 在已有的数学知识水平上开展研究性学习比如参考文献[5]中对三等分角的研究,该文中作者在学生学了二倍角公式并逆用二倍角公式推得半角公式后,让学生推导三倍角公式.利用三倍角公式,从特殊的60︒角的三等分角20︒的可作性来尝试三等分角的问题.作者将课题分为4步:探索1 能否用尺规三等分60︒角?探索2 在0︒~180︒的几个特殊角中有哪些是可三等分?哪些是不可三等分?探索3 探索0︒~180︒的几个特殊角中可三等分角与不可三等分角的特点,能得出什么结论?探索4 证明形如180()kk N︒∈形式的角中,若k是3的倍数,则不可以三等分;否则就可以三等分.通过对三等分角的研究,让学生体会了其中蕴含的数学思想方法,从一般到特殊,再从特殊到一般,提高了分析问题和解决问题的能力.同时通过以上四个探索,可使同学们感到“三等分角”问题不再是那么的神秘、高不可攀,更不会再在三等分任意角的问题上作徒劳的努力.2. 将“三等分角问题”与数学实验相结合参考文献[6]一文中,作者试着从三等分角问题出发,在前人研究的基础上,结合自己的想法,设计了一个三等分角演示仪. 作者通过五个步骤:步骤1 研读课标,确定研究题目;步骤2搜寻课题的有关资料和研究现状;步骤3 确定研究题目的基本原理;步骤4 认真分析并解决遇到的问题;步骤5 动手操作设计三等分角演示仪;在进行实验的过程中,不仅了解了三等分角的相关知识,并将三等分角应用于数学实验中,激发了学生的学习兴趣和强烈的动手制作愿望,而且能使学生在学会知识的同时,掌握分析问题,解决问题的方法.既促进了学生自身的发展,也带动了数学实验的发展.六、结束语任意角的三等分问题是几何作图三大问题之一,并且在课改中,《三等分角与数域扩充》成为了高中数学选修系列3的一部分内容.选修系列3的内容相对新颖前沿,反映了某些重要的数学思想,并且具有一定的挑战性.可见对该问题的学习有利于扩展学生的数学视野,提高学生对数学的科学价值,文化价值,应用价值的认识,并且在培养学生的思维能力,数学素养等方面有着重要作用.参考文献[1]王忠华.用尺规作图不可能三等分任意角[J].数学通讯,2001年第19期[2]曹亮吉.三等分任意角可能吗?[J].科学月刊,1978年第4期[3王美香.高中《三等分角与属于扩充》的数学探讨[J].中学数学杂志,2009年第7期[4]侯国兴.尺规作图三等分角[J].今日中学生,上旬版,2007年第12期[5]楼许静.我把嫦娥请下凡——一堂三等分角的研究课[J].高中数学教与学,2008年第6期[6]田晓娟.从“三等分角问题”浅谈数学实验[J].科学教育,2008年第3期[7]郭熙汉.数学知识探源[M].武汉:湖北教育出版社,1999[8]唐忠明.抽象代数基础[M].北京:高等教育出版社,2005。

相关文档
最新文档