数形结合的几个经典题
数形结合找规律试题集锦
4=1+3 9=3+616=6+10图7 … 数形结合找规律试题集锦1 如图所示,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n 的等式表示第n 个正方形点阵中的规律____________________。
2古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图7中可以发现,任何一个大于1 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符 合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+313 如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.4 (08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90 ,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右第(4)题图5-1图5-2图5-3 …5 如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.6把长方形的纸条对折一次可得1条折痕,对折两次可得3条折痕,那么对折6次可得条折痕。
对折n次可得条折痕。
7如图第二个三角形是由第一个三角形连接三边的中点而得到的,猜想第四个图形中有个三角形,………,第n个图形共有个三角形(1 )( 2 )( 3 )这n个图形共有个三角形。
数形结合的题目
数形结合的题目1. 已知一个圆的面积为 $\pi$,求它的周长。
解:圆的面积为$\pi r^2$,所以$r=1$。
周长为$2\pi r=2\pi$。
2. 在一个边长为 $1$ 的正方形中,一只苍蝇从一个角爬到另一个角,求苍蝇爬行的最短距离。
解:由于正方形的两条对角线相等,所以苍蝇从一个角到另一个角的最短距离为对角线的长度,即 $\sqrt{2}$。
3. 已知一个等边三角形的周长为 $6$,求其面积。
解:设该三角形的边长为 $a$,则 $a\times 3=6$,即 $a=2$。
由于该三角形是等边三角形,所以它的高等于边长的一半,即$\frac{\sqrt{3}}{2}\times 2=\sqrt{3}$。
所以该三角形的面积为$\frac{1}{2}\times 2\times\sqrt{3}=\sqrt{3}$。
4. 在一个正方形中,一条对角线被分成两段,比为 $3:4$。
求正方形的边长。
解:设正方形的边长为 $a$,则对角线的长度为 $\sqrt{2}a$。
由于对角线被分成的两段比为 $3:4$,所以两段分别为$\frac{3}{7}\sqrt{2}a$ 和 $\frac{4}{7}\sqrt{2}a$。
根据勾股定理,我们得到$(\frac{3}{7}\sqrt{2}a)^2+(\frac{4}{7}\sqrt{2}a)^2=(\sqrt{2}a)^2$,化简得 $a=7$。
5. 已知半径相等的两个圆相切,其中一个圆的面积为$16\pi$,求另一个圆的面积。
解:由于两个圆相切,所以它们的切点处连线的长度等于两个圆的半径之和,即 $r+r=2r$。
设另一个圆的面积为 $S$,则$S=\pi(2r)^2-\pi r^2=3\pi r^2$。
设第一个圆的面积为 $16\pi$,则 $\pi r^2 = 16\pi$,即 $r=4$。
所以另一个圆的面积为 $3\pir^2=3\times 16\pi=48\pi$。
数形结合初中数学题
数形结合初中数学题
数形结合是初中数学中一个重要的概念,是指将数与形结合起来进行思考和推理。
以下是一些数形结合的初中数学题:
1. 一个圆的半径是2,它的面积是多少?
2. 一根长度为6cm的棒,它的周长是多少?
3. 一张桌子上有n个苹果,它们的重量之和是20千克,每个苹果的重量是多少?
4. 一个矩形的长和宽相等,高是4cm,它的面积是多少?
5. 一个三角形的三个底之和等于12,求这个三角形的高的值。
6. 一根长度为10cm的棒,它的重心在它的5cm直径的截面的中心,那么这个棒的质量是多少?
7. 一个正方形的边长是5cm,它的周长是多少?
8. 一个圆的半径是3cm,它在平面上的位置是A,它在立体空间的坐标是多少?
这些题目通过将数形结合,提供了更多的思考方法和解决问题的思路。
学生可以通过理解这些题目,掌握数形结合的概念和技巧,提高自己的数学思维能力。
小学数学数形结合练习题
小学数学数形结合练习题题目一:数形结合的认知训练1. 看图填空:(a) 在图中,将所有的三角形标记一下。
(b) 将你周围的物体,如书桌、椅子等尽可能多地找出正方形、长方形和圆形,并分别写下它们的名称。
2. 计算下列各图形的周长和面积:(a) 根据提供的边长,计算正方形的周长和面积。
(b) 根据提供的长和宽,计算长方形的周长和面积。
(c) 根据提供的半径,计算圆形的周长和面积。
(d) 尝试设计一个你认为面积最大的正方形,画出它的示意图,并计算周长和面积。
3. 图形转换:(a) 请将以下图形按照标号进行旋转,并写出每个旋转后的图形名称。
图1:正方形图2:长方形图3:三角形图4:圆形(b) 请将以下图形按照标号进行翻转,并写出每个翻转后的图形名称。
图1:正方形图2:长方形图3:三角形图4:圆形4. 找规律:(a) 请观察以下数字序列,找出其规律,并写出下一个数字:1, 4, 9, 16, ...(b) 请观察以下形状序列,找出其规律,并画出下一个形状:△, □, ○, ▽, ...5. 图形拼凑:(a) 使用提供的拼图块,组合成一个正方形。
(b) 使用提供的拼图块,组合成一个长方形。
(c) 使用提供的拼图块,组合成一个圆形。
6. 图形推理:给出以下图形的排列顺序,请写出图形编号,并解释其排列规律。
图1:▽图2:□ 图3:○ 图4:△题目二:数形结合的实际应用1. 实际问题运用:(a) 小明家花园的形状是长方形,长为8米,宽为5米,他要在花园的四周围上一圈砖。
砖的规格是2米长、1米宽,请问他需要多少块砖?如果砖的价格是每块20元,他需要多少钱?(b) 小红的家有一个圆形的花坛,直径是3米。
她想在花坛周围种植一圈花草,每株花草之间的间距是20厘米。
她需要多少株花草?题目三:数形结合的解决问题能力训练1. 智力题:(a) 小明手上有12枚硬币,其中有一个是假币,假币的重量比真币轻。
小明有一个天平,最多能使用3次天平,能否找出假币?如果能,请写出解决方法;如果不能,请解释原因。
高考数学数形结合问题
第五十二讲数形联合A组一、选择题1. 已知函数 f(x)= x2+ e x-1(x<0) 与 g(x)= x2+ ln( x+ a)的图象上存在对于y 轴对称的点,则 a 2的取值范围是 ()A.-∞,1-∞,e) C.-1, eD.- e,1e B.(e e答案: B分析:由题意可得,当x>0 时, y= f(- x)与 y= g(x)的图象有交点,即g(x)= f(- x)有正解,即 x2+ln( x+ a) = (-x)2+ e-x-12有正解,即 e-x- ln(x+ a)-12= 0 有正解,令 F(x)= e-x- ln(x1-x-1-x1+a)-,则 F′(x)=- e<0,故函数 F(x)= e- ln(x+ a)-在 (0,+∞)上是单一递减2x+ a2的,要使方程g(x)= f(- x)有正解,则存在正数 x 使得 F(x) ≥0,即 e-x-ln( x+ a)-1≥0,所以2e x1 e x1x 在(0,+∞)上单一递减,所以e 011a≤e2x ,又y= e2a< e20= e2,选B.2. 函数 f(x)= 1 x 2 (| x |1),假如方程 f(x)=a 有且只有一个实根,那么 a 知足 ( )| x |(| x |1)A. a<0B.0≤ a<1C.a=1D.a>1答案: C分析:由图知 a=1 时,图象只有一个交点,应选 C.3.已知圆 C:( x-3)2+( y-4)2=1和两点 A(-m,0),B( m,0)( m>0),若圆 C上存在点 P,使得∠ APB=90°,则 m的最大值为()A.7B.6C.5D.4答案: B分析 . 依据题意,画出表示图,以下图,则圆心 C 的坐标为 (3,4) ,半径 r = 1,且 | AB | =2m .1因为∠ APB = 90°,连结 OP ,易知 | OP |= 2| AB | =m .要求 m 的最大值,即求圆 C 上的点 P 到原点 O 的最大距离 .22因为 | OC | = 3 + 4 = 5,所以 | OP |max = | OC | + r = 6,1224. 设平面点集 A = {( x ,y )|( y - x ) · ( y -x ) ≥ 0} , B = {( x , y )|( x - 1) +( y - 1) ≤1} ,则 A∩B 所表示的平面图形的面积为 ( ) 334πA. 4πB.5πC.7πD.21答案: D 分析:因为对于会合A , ( y - x ) y - x ≥ 0,y - x ≥0,y - x ≤0,所以1或1其表示的平面地区如图 .y -x ≥ 0y - x ≤ 0,对于会合 B , ( x - 1) 2+ ( y -1) 2≤ 1 表示以 (1,1) 为圆心, 1 为半径的圆及其内部地区,其面积为π .12由题意意知 A ∩ B 所表示的平面图形为图中暗影部分,曲线y = x 与直线 y =x 将圆 ( x -1) +( - 1) 2=1 分红1, 2, 3,4四部分 . 因为圆 ( x - 1)2+( y- 1) 2=1 与 y = 1 的图象都对于直ySSSSx线 y = x 对称,进而 S =S , S = S ,而 S + S + S + S =π,所以 S=S +S = π暗影 2.1234123424二、填空题5. 已知函数 y = f ( x )( x ∈ R) ,对函数 y = g ( x )( x ∈ I ) ,定义 g ( x ) 对于 f ( x ) 的“对称函数” 为函数 y= h( x)( x∈ I ),y= h( x)知足:对随意x∈ I ,两个点( x,h( x)),( x,g( x))对于点( x,f ( x))对称.若 h( x)是 g( x)=4-x2对于f ( x) = 3x+b的“对称函数” ,且h( x)> g( x) 恒成立,则实数 b的取值范围是 ________.答案: (210,+∞ )分析由已知得h x+ 4-x2) = 6+ 2- 4-x 2(x)> ()=3+,所以 (.2x b h x x b h g x恒成立,即 6x +2- 4-2> 4-x2,3 +> 4-x2恒成立 .b x x b在同一坐标系内,画出直线y=3x+ b 及半圆 y=2如图所4-x(b示) ,可得>2,即b>2 10,故答案为 (2 10,+∞ ). 10x2y26.椭圆a2+b2= 1( a>b>0) 的左、右极点分别是A,B,左、右焦点分别是 F1,F2,若| AF1|,| F1F2 | , | F1B| 成等比数列,则此椭圆的离心率为________.【分析】1121122∵ | AF| =a-c,|FF|= 2c, | F B| =a+c,且三者成等比数列,则| FF|11222c5=| AF| · | F B| ,即 4c=( a-c) · ( a+c) ,得a= 5c,∴ e=a=5.【答案】5 5三、解答题7. 已知函数f (x) = 2lnx-x2+( ∈R).ax a(1) 当=2时,求f (x) 的图象在x= 1处的切线方程;a(2) 若函数g( x)= f (x)-ax+ m在1, e上有两个零点,务实数m的取值范围.e22解: (1)当 a=2时, f( x) = 2ln x-x+ 2x,f′ ( x) =x- 2x+2,切点坐标为 (1 , 1),切线的斜率k= f ′(1)=2,则切线方程为y-1=2( x-1),即 y=2x-1.(2)g( x)=2ln x- x2+ m,2- 2(x+ 1)(x- 1)则 g′( x)=x-2x=x.1∵ x∈e,e,∴当 g′( x)=0时, x=1.1当 <x<1 时,g′( x)>0 ;e当 1<x<e 时,g′ ( x)<0.故 g ( x ) 在 x = 1 处获得极大值 g (1) = m - 1.112121 1又 g e = m - 2- e 2, g (e) = m + 2- e , g (e) - g e = 4- e + e 2<0,则 g (e)< g e ,1∴ g ( x ) 在 , e 上的最小值是 g (e) . e1g ( x ) 在, e 上有两个零点的条件是eg ( 1)= m - 1>0,11 g e = m - 2-e 2≤ 0,1解得 1<m ≤ 2+e 2 ,1∴实数 m 的取值范围是1,2+ e 2 .8. 已知函数 f(x)的图象是由函数g(x)=cos x 的图象经以下变换获得:先将g(x)图象上全部点π的纵坐标伸长到本来的2 倍 (横坐标不变 ),再将所获得的图象向右平移2个单位长度 .(1) 求函数 f(x)的分析式,并求其图象的对称轴方程;(2) 已知对于 x 的方程 f( x) +g( x)=m 在 [0,2 π)内有两个不一样的解α, β.2m 2 ①务实数m 的取值范围;②证明: cos(α- β)=- 1.5解 法一 (1) 将 g(x)= cos x 的图象上全部点的纵坐标伸长到本来的2 倍(横坐标不变 )获得 y=2cos x 的图象,再将 y =2cos x 的图象向右平移π y = 2cos x -π 个单位长度后获得的图象,22故 f(x)= 2sin x.进而函数 f(x)= 2sin x 图象的对称轴方程为πx = k π+(k ∈ Z ).2(2) ① f(x)+g(x)= 2sin x + cos x = 52sin x + 1cos x = 5sin(x + φ)55此中 sin φ= 1, cos φ=255.依题意, sin(x + φ)= m在 [0,2π)内有两个不一样的解α, β,当且仅当m< 1,故 m 的取值55范围是 (- 5, 5).②证明 因为 α, β是方程5sin( x + φ)=m 在 [0,2π)内的两个不一样的解。
专题复习数形结合(含答案)
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
高中数学数形结合思想经典例题(含解析)
高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。
高中数学数形结合思想经典例题(含解析)
高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。
关于数形结合的高考题
1. 题目:一个正方形的边长为2cm,一条与其边平行的线段将该正方形分成两个小正方形和两个等边三角形。
求线段的长度。
答案:线段的长度为2√2 cm。
2. 题目:一个圆的半径为3cm,在圆的内部画一个正方形,且正方形的四个顶点分别位于圆的四个切点上。
求正方形的面积。
答案:正方形的面积为18 cm²。
3. 题目:一个长方体的长、宽、高分别为3cm、4cm和5cm,将它剖开后得到的截面是一个等腰梯形,底边长度为6cm,顶边长度为2cm。
求截面的高度。
答案:截面的高度为3cm。
4. 题目:一个球的体积为36πcm³,将其剖开后得到的截面是一个等边三角形。
求球的半径。
答案:球的半径为3 cm。
5. 题目:一个正方体的表面积为96 cm²,将其剖开后得到的截面是一个正方形。
求正方体的边长。
答案:正方体的边长为4 cm。
6. 题目:一个圆柱的底面积为16πcm²,高度为10 cm。
将它剖开后得到的截面是一个等腰梯形,底边长度为8cm,顶边长度为2cm。
求圆柱的半径。
答案:圆柱的半径为2 cm。
7. 题目:一个圆锥的底面积为9πcm²,高度为12 cm。
将它剖开后得到的截面是一个等边三角形。
求圆锥的半径。
答案:圆锥的半径为3 cm。
8. 题目:一个正方体的表面积为150 cm²,将其剖开后得到的截面是一个等边三角形。
求正方体的边长。
答案:正方体的边长为5 cm。
9. 题目:一个圆柱的底面积为25πcm²,高度为8 cm。
将它剖开后得到的截面是一个正方形。
求圆柱的半径。
答案:圆柱的半径为2 cm。
10. 题目:一个圆锥的底面积为16πcm²,高度为6 cm。
将它剖开后得到的截面是一个正方形。
求圆锥的半径。
答案:圆锥的半径为2 cm。
数形结合十大经典题型
数形结合十大经典题型
数形结合是一种常见的解题方法,特别适用于一些几何问题。
以下是十大经典的数形结合题型:
1. 长方形面积问题:已知长方形的周长或宽度,求最大面积。
2. 圆的问题:已知圆的周长或半径,求其面积或直面积。
3. 直角三角形问题:已知直角三角形的两条边,求第三条边的长度。
4. 正方形问题:已知正方形的对角线长度,求其边长。
5. 圆环问题:已知两个同心圆的半径,求其面积差。
6. 多边形问题:已知多边形的边长和内角个数,求其周长或面积。
7. 体积问题:已知几何体的表面积和一个尺寸,求其体积。
8. 圆柱问题:已知圆柱的底面半径或高度,求其体积或表面积。
9. 三角形面积问题:已知三角形的底边和高,求其面积。
10. 平行四边形问题:已知平行四边形的两个邻边和夹角,求其面积。
中考数学复习专题 数形结合思想(含答案)
数形结合思想一、选择题1、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是( )(A )a>-2 (B)-2<a<1 (C)a<-2 (D)a>1 2、在频率分布直方图中,小长方形的面积等于( )(A )相应各组的频数 (B )组数 (C )相应各组的频率 (D )组距 3、已知一次函数y kx b =+的图象如图所示,当y <0时,x 的取值范围是( )A .x >0B .x <0C .-2<x <0D .x <1 4、过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm . 则OM 的长为( )A.3cmB .5cmC .2cmD .3cm5、一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图(扇形)的圆心角的度数为( ) A .600B .1800C .300D .9006、若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序。
① 小车从光滑的斜面上滑下(小车的速度与时间的关系)② 一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) ③ 运动员推出去的铅球(铅球的高度与时间的关系)④ 小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系) 正确的顺序是A .③④②①B .①②③④C .②③①④D .④①③②7、小圆圈是网络的结点,结点之间的边线表示它们之间的网线相联,边线标注的数字表示该网线单位时间内可以通过的最大信息量,现在的结O 1-2点A向结点B传递信息,可以分开沿不同的路线同时传递,单位时间内传递的最大信息量为:A.19B.20C.24D.268、如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( )9、如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD面积为()(A)98 (B)196 (C)280 (D) 28410、如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相等的平行四边形有()(A)0对(B)1对(C)2对(D)3对二、填空题:1、把正方形ABCD沿着对角线AC的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=2,则正方形移动的距离AA'是2、如图,在直角坐标系中,矩形ABCD的顶点B的坐标为(4,2),直线12y x b=+恰好将矩形OACB分成面积相等的两部分,则b= 。
“数形结合”巧解小学数学思维题
9(a+b+c)<70
a+b+c<70÷9
a+b+c< 8
a+b+c大于6小于8,所以a+b+c=7
例4: 计算:
我们用一个大正方形 表示整数1,依次表示出 、 、 ……
从图中可以 ,所以:
=1-
=
例5:计算:6²+8²+14²+22²+36²+58²
6、8、14、22、35、58这个数列是斐波那契数列,6²可以看作是边长为6的正方形,依次类推。
不难看出:6²+8²+14²+22²+36²+58²
=(36+58)×58-(8-6)×6
=5452-12
=5440
例6:甲、乙两站相距610千米,两站之间有丙站。快车从甲站开往丙站,已经行驶了90千米,慢车从乙站开往丙站,已经行驶了它全部路程的 ,这时丙站正好处在快慢两车中间的位置上,求甲站到丙站的距离。
例2:(16+△)÷(20-△)=3
根据题意有(16+△)是(20-△)的3倍,把(20-△)看作一份,(16+△)有这样的3份。由此画出线段图:
20- △:
16+△:
一份(20-△)就是36÷(1+3)=9 △=20-9=11
例3:9a+10b+11c=70(五年级思维题)
(a,b,c是非0的自然数)
求a+b+c=
先画长9、宽a的长方形,再画长10、宽b的长方形,最后画长11、宽c的长方形。
把这个图形补成一条边长11、一条边长(a+b+c)的长方形。由图可知,这个长方形的面积一定小于70,即:
四年级数学数形结合经典题
数形结合是一种重要的数学思想,通过将抽象的数学语言与直观的图形相结合,可以帮助学生更好地理解数学概念和解决问题。
以下是一些适合四年级学生的数形结合经典题目:
1.小明用棋子摆成一个正方形实心方阵,最外边的一层共用96个棋子。
小明摆这个方
阵共用了多少个棋子?
2.小军用棋子摆成了一个空心方阵,最外边的一层共用棋子80个。
最里边的一层共用
棋子48个。
这个空心方阵共有几层?
3.小丽用棋子摆成了一个三角形实心方阵,最外边的一层共用72个棋子。
小丽摆这个
方阵共用了多少个棋子?
4.小华用棋子摆成一个空心三角形,最外边的一层共用96个棋子。
最里边的一层共用
24个棋子。
这个空心三角形共有几层?
5.小明用棋子摆成一个长方形实心方阵,最外边的一层共用88个棋子。
如果最外边一
边有n个棋子,那么这个长方形方阵共有多少个棋子?
这些题目需要学生通过观察图形,理解数形结合的思想,并运用数学公式和推理方法来解决问题。
小学数形结合练习题
小学数形结合练习题
1. 数轴上表示1和2的点的距离是多少?表示-1和2的点的距离是多少?
2. 在一条直线上,有两个点A和B,点A在点B的左边。
现在有4个单位长度的棒,如何用这些棒把A和B连接起来?
3. 将一根绳子绕成一个圆形,然后从圆心处将绳子剪断,拉直后得到的直线长度是多少?
4. 用3个边长为2cm的正方形,拼成一个长方形,这个长方形的周长是多少cm?
5. 一个长方形的长是宽的3倍。
如果长和宽各增加2cm,那么新的长方形的周长是原来的多少倍?
答案:
1. 在数轴上表示1和2的点的距离是1,表示-1和2的点的距离是3。
2. 在一条直线上,有两个点A和B,点A在点B的左边。
现在有4个单位长度的棒,可以这样连接A和B:将第一个棒放在点A右边一个单位长度处,第二个棒放在点B左边一个单位长度处,第三个棒放在点B右边一个单位长度处,第四个棒放在点A左边一个单位长度处。
这样就能将A和B连接起来。
3. 将一根绳子绕成一个圆形,从圆心处将绳子剪断后拉直得到的直线长度等于圆的周长。
4. 用3个边长为2cm的正方形拼成的长方形周长是16cm。
5. 一个长方形的长是宽的3倍。
如果长和宽各增加2cm,那么新的长方形的周长是原来的多少倍?
原来的长方形周长为: 2 × (3 + 1) = 8cm
新的长方形周长为: 2 × (3 + 3) = 12cm
所以新的周长是原来的 12/8 = 1.5倍。
五年级数形结合法练习题
五年级数形结合法练习题一、填空题1. 在数轴上,点A表示的数是3,点B表示的数是5,那么点A和点B之间的距离是______。
2. 一个正方形的边长是4厘米,那么它的面积是______平方厘米。
3. 一个长方形的长是8厘米,宽是4厘米,那么它的周长是______厘米。
4. 小华有10个苹果,小丽有8个苹果,小华比小丽多______个苹果。
5. 在直角三角形中,若一个锐角的度数是30°,那么另一个锐角的度数是______°。
二、选择题A. 边长为3厘米的正方形B. 长为6厘米,宽为2厘米的长方形C. 半径为4厘米的圆A. 边长为5厘米的正方形B. 长为8厘米,宽为4厘米的长方形C. 直径为10厘米的圆A. 3 + 5B. 4 6C. 7 × (2)三、判断题1. 一个等边三角形的周长是15厘米,那么它的边长是5厘米。
()2. 一个圆的直径是10厘米,那么它的半径是5厘米。
()3. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是50平方厘米。
()4. 两个负数相乘,结果是正数。
()四、应用题1. 小明家的花园是一个长方形,长是12米,宽是8米,求花园的面积。
2. 一个圆形游泳池的直径是20米,求游泳池的周长。
3. 小红和小刚同时从学校出发,小红向东走了200米,小刚向西走了300米,求两人之间的距离。
4. 一个正方形的边长增加了2厘米,原来的面积是16平方厘米,求现在的面积。
5. 一个等腰三角形的底边长是10厘米,高是6厘米,求这个三角形的面积。
五、作图题1. 画出边长为4厘米的正方形,并标出它的对角线。
2. 画出长为6厘米,宽为3厘米的长方形,并标出它的对角线。
4. 画出一个直径为8厘米的圆,并在圆内画一个最大的正方形。
5. 画出一个等腰三角形,底边长为8厘米,高为4厘米,并标出高所在的线段。
六、解答题1. 一个梯形的上底是4厘米,下底是6厘米,高是5厘米,求梯形的面积。
五年级数形结合练习题
五年级数形结合练习题一、选择题1. 在以下各个形状中,哪个是一个等边三角形?A. △ABCB. △DEFC. △GHID. △JKL2. 以下哪个数是奇数?A. 24B. 39C. 52D. 683. 以下哪个图形是一个四边形?A. △MNOB. ○PQRC. □STUD. ◇VWX4. 如果一个长方形的长是12cm,宽是5cm,它的周长是多少?B. 34cmC. 40cmD. 24cm5. 4/5 + 3/10 = ?A. 7/10B. 8/10C. 2/5D. 1/26. 以下哪个数是质数?A. 15B. 16C. 17D. 207. 小明有一条长20cm的绳子,他要把它剪成两段,其中一段是8cm,那另一段有多长?A. 12cmB. 10cmC. 6cm8. 下图中的阴影部分代表哪个数的一半?□ □ □ □ □□ □ ■ □ □□ ■ ■ ■ □□ □ ■ □ □□ □ □ □ □A. 10B. 12C. 15D. 18二、填空题1. 已知一个长方形的长是34cm,宽是19cm,它的面积是 _______ 平方厘米。
2. 3/4 + 1/8 = _______3. 请用科学记数法表示以下数:0.0000074. 计算:37 × 4 - 15 = _______5. 已知一条直线上有一个点A,再根据这条直线的方向向前走17步,那么你会到达哪个点?1. 请计算:18 ÷ 3 + 5 - 2 × 4 = _______2. 以下各个数字哪些是质数?将它们写出来。
9, 13, 22, 29, 323. 画一个直角三角形,使它的两条直角边长度分别为7cm和24cm。
4. 在一个正方形的四个角上,分别有四只蚂蚁,它们同时向着正方形的中心移动,最终它们会相遇吗?为什么?5. 小明有一张长方形的纸片,长是12cm,宽不知道,他将纸片剪成两半,其中一半的宽是5cm,另一半的宽是多少?参考答案:一、选择题1. A2. B3. C4. A5. A6. C7. A8. B1. 6462. 7/83. 7 × 10^-64. 1335. B三、解答题1. 102. 质数:13, 293. 略4. 是的,因为它们互相靠近的路径是一样的。
三年级数形结合的典型例题
三年级数形结合的典型例题
一、例题
1. 用小棒摆正方形,摆1个正方形需要4根小棒,摆2个正方形需要7根小棒,摆3个正方形需要10根小棒,按照这样的规律,摆n个正方形需要多少根小棒?
二、题目解析
1. 首先我们来分析小棒数量与正方形个数之间的关系:
摆1个正方形时,需要4根小棒,可表示为公式。
摆2个正方形时,我们可以看作第一个正方形用4根小棒,第二个正方形与第一个正方形共用1根小棒,所以只需要再用3根小棒,总共需要公式根小棒,也可表示为公式。
摆3个正方形时,第一个正方形4根小棒,后面两个正方形每个都与前面的正方形共用1根小棒,也就是每个只需3根小棒,总共公式根小棒,同样可表示为公式。
2. 然后我们可以总结出规律:
摆n个正方形时,除了第一个正方形用4根小棒,后面公式个正方形每个都只需3根小棒。
所以总共需要的小棒数量就是公式,化简这个式子:公式。
所以摆n个正方形需要公式根小棒。
运用数形结合思想巧解高中数学题例析
运用数形结合思想巧解高中数学题例析例题1:已知直角三角形ABC中,\angle B=90^\circ, AB=3, BC=4.过点B画高BD交AC于点D,求\bigtriangleup ABD的面积。
解析:在解决这个问题时,我们可以通过数形结合的思想来进行分析。
我们可以通过勾股定理知道AC=5。
然后我们可以通过计算直角三角形ABC的面积,S_{\bigtriangleup ABC}=\frac{1}{2}\times 3\times 4=6。
接着,我们可以通过计算直角三角形ABC在AC上的高BD,可以用\frac{1}{2}AB\times BC=6可以得到BD=1.5。
接下来,我们可以计算\bigtriangleup ABD的面积,S_{\bigtriangleup ABD}=\frac{1}{2}\times 3\times 1.5=2.25。
\bigtriangleup ABD的面积为2.25。
通过这个例题我们可以看到,通过数形结合的思想,我们可以用较为简洁的步骤来解决这个问题,使得我们更清晰地理解题目,找到更加直观的解法。
例题2:已知f(x)=x^2+bx+c是一个以x为自变量的二次函数,且f(2)+f(3)=26,f(4)=19,求b,c的值。
解析:对于这个问题,我们可以通过数形结合的思想来进行分析。
我们可以通过函数值的计算得到f(2)=4+2b+c,f(3)=9+3b+c,f(4)=16+4b+c。
由f(2)+f(3)=26可得13+5b+2c=26,所以5b+2c=13。
由f(4)=19可得16+4b+c=19,所以4b+c=3。
通过解这个方程组可以得到b=5,c=3。
例题3:已知椭圆的离心率为\frac{1}{2},长轴的长为8,求其短轴的长。
解析:对于这个问题,我们可以通过数形结合的思想来进行分析。
椭圆的离心率定义为e=\frac{\sqrt{a^2-b^2}}{a},其中a为长轴的长,b为短轴的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合
1.如图1,大长方形的面积从整体看为S=m(a+b+c),
同时这个大长方形的面积也可以从局部表示成:S=S1+S2+S3=ma+mb+mc;
于是有m(a+b+c)=ma+mb+mc。
2.如图2,大长方形的面积从整体可以表示成(a+b)(m+n),
同时这个大长方形的面积也可以从局部表示成S=S1+S2+S3+S4=ma+mb+na+nb;
于是有(a+b)(m+n)=ma+mb+na+nb.。
3.如图3,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;
若把小长方形S4旋转到小长方形S3的位置,
则此时的阴影部分的面积又可以看成S1+S2+ S3=(a+b)(a-b)。
于是有(a+b)(a-b)=a2-b2。
4.如图4:将边长为b的小正方形放到边长为a的正方形的一角,
空白部分的面积从整体计算为a2-b2;
而如果从局部考虑,其面积可以看作为两个梯形S1+S2之和,
其面积为()()()()
)
)(
(
2
2
b
a
b
a
b
a
b
a
b
a
b
a
-
+
=
-
+
+
-
+。
于是有(a+b)(a-b)=a2-b2。
5.如图5,大正方形的面积从整体可以表示为(a+b)2,
从局部可以表示为也可以表示为S=S1+ S2+ S3+S4,
同时S=a2+ab+ab+b2=a2+2ab+b2,
于是有(a+b)2=a2+2ab+b2。
6.如图6,从整体看,这个图形的面积为(a+b)(a+2b),
从局部我们可以看出,它分为6部分,这6部分的面积之和为a2+3ab+2b2,
所以(a+b)(a+2b)= a2+3ab+2b2。
数形结合例题
例1在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2
析解:图1的阴影部分面积等于边长为a的正方形面积与边长为b的正方形的面积差,表示为a2-b2.图2中阴影部分是长方形,其中长为a+b,宽为a-b,其面积为(a+b)(a-b).根据两个图形中阴影部分的面积相等,有a2-b2=(a+b)(a-b).故选C.
例2如图3是四张全等的长方形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式________.
析解:空白部分的面积可看成是一个正方形,它的边长为a-b,所以面积为(a-b)2;空白部分面积又可看成大正方形面积与四个长方形面积的差,大正方形的面积为(a+b)2,
a b
a -b
a
b
a -b
甲
乙
每个长方形的面积为ab ,所以空白部分面积为(a +b )2-4ab .
因此有恒等式(a +b )2-4ab =(a -b )2成立.故填(a +b )2-4ab =(a -b )2.
例3 图4是由一个边长为a 的正方形与两个长、宽分别为a 、b 的小长方形拼接而成的长方形ABCD ,则整个图形可表达出一些等式,请你写出其中任意三个等式______、______、_______.
析解:读懂题意,观察图中数据关系是关键,其次利用面积写出代数式,.根据图形的组合特点,由面积间的相等关系,写出符合要求的等式,如: a 2+2ab =a (a +2b );a (a +b )+ab =a (a +2b ); a (a +2b )-a (a +b )=ab ;a (a +2b )-ab =a (a +b ); a (a +2b )-a 2=2ab ;a (a +2b )-2ab =a 2.
数形结合解题
1.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a 、b 的恒等式为( )
A
()222
b 2ab a b a +-=- B.()2222b ab a b a ++=+
C
()()22b a b -a b a -=+
D.()ab a b a a -=-2
2.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )
A .2
2
()()4m n m n mn +--= B .2
2
2
()()2m n m n mn +-+= C .2
2
2
()2m n mn m n -+=+ D .2
2
()()m n m n m n +-=-
3.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后余部分又剪拼成一个矩
形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )
A .2m +3
B .2m +6
C .m +3
D .m +6
4.七年级学生小明剪出了多张如图⑴中的正方形和长方形的卡片,利用这些卡片他拼成了如图⑵中的大正方形,由此验证了我们学过的公式:2222)(b ab a b a ++=+.现在请你选取图⑴中的卡片(各种卡片的张数不限),并利用它们在图⑶中拼出一个长方形,由此来验证等式:2232)2)((b ab a b a b a ++=++.(请按照图⑴中卡片的形状来画图
5.数形结合是一种重要的数学方法,,你能利用这种方法把算式(2a+b)(a+2b)=2a 2+5ab+2b 2的合理性解释清楚吗?
a
a
b b
⑴
(2)
(3)。