水利水电工程专业英语教材翻译
水利水电英语课文翻译
水利水电英语课文翻译水利水电英语课文翻译课文翻译需要掌握一定的词汇和技巧,当然英语课文翻译可以帮助提高学生的英语水平。
以下是店铺整理的水利水电英语课文翻译,欢迎阅读。
水利水电英语课文翻译1:Lesson 1 importance of water 水的重要性Water is best known and most abundant of all chemical compounds occurring in relatively pure form on the earth‘s surface. Oxygen, the most abundant chemical element, is present in combination with hydrogen to the extent of 89 percent in water. Water covers about three fourths of the earth's surface and permeates cracks of much solid land. The Polar Regions are overlaid with vast quantities of ice, and the atmosphere of the earth carries water vapor in quantities from 0.1 percent to 2 percent by weight. It has been estimated that the amount of water in the atmosphere above a square mile of land on a mild summer day is of the order of 50,000 tons.在地球表面以相对纯的形式存在的一切化合物中,水是人们最熟悉的、最丰富的一种化合物。
水利水电工程专业英语英文词汇
strain meter 应变计set out 放线、放样stake-line temperature sensor 温度传感器测桩线state plane coordinate system 国家平面坐标集线站terminal station其他(Others)系survey point 测点check hole 检查孔theoretical point 灌区理论点compartmenttraverse(polygon) 导线(测dense mix 浓浆量)、横断error of traverse 导线闭合差foundation uplift 基础隆起lattice traverse 网格状导线灌浆孔grout holelong side traverse instrument hole 仪器孔长导线open traverse 非闭合primary/secondary and tertiary grout holes 一导线short side traverse 短导线序、二序、三序灌浆孔traverse closure 导线闭合加密灌浆孔距spilt spacingtraverse station 导线点waste mix 弃浆traverse survey 导线测量Survey◆测量()triangulation 测量方法及术语(Methods and Terms)三角测量triangulation network 三角网调整校正adjust 、triangulation of high order 高等级三角网adjustment 平差triangulation point 容许误差allowance 三角点三边测量backsight point 后视点trilateration程控制网basic point 基础点vertical-control net 高bench mark 水准点木桩wood pile Angular Measure)角度测量(compass 罗盘azimuth 方位角chainage(station number) 桩号象限角bearing 方位三角锁chain of triangulation 、器、水准buddle 、check 校核对照气泡圆盘circle 度盘、控制control point 点器圆水坐标点coordinate point 准circular bubbledatum 基础面轴视准collimation axis点基datum point 准十字丝cross-line(cross-hair)偏差depression angle 俯角deviationeasily identifiable point elevation angle 仰角点容易识别eyepiece(ocular) error 误差目镜量field pole(staff) 标杆一等三角测first order triangulationgeodetic foot-screw 学的大地测量脚螺栓量geodetic surveying 大地测水平角horizontal angle量合联测)mark 标志(明joint survey已知点known point 物镜objective lens面水level surface 准垂线铅垂、plumb(plummet)局local triangulation networks 准、观测sight 瞄部三角网准瞄target 国national coordination system 家坐标网目标、监视观测observe 、纬仪theodolite 经point to be located 待定点横轴tranverse axistripod 三脚架置位、定位position踏勘、选点reconnaissance 竖直角vertical angle参考点reference point vertical axis 竖轴量二等三角测second order triangulation Telescope望远镜()1centering 对中reduced level 归化高差run back 返测盘左face leftrun out 往测face right 盘右three-wire leveling 三丝法水准focus 集中、焦点测量地形测量(Topographic Survey focusing 调焦)boundary 边界、界线index error 指标误差inverted position of telescope(reverse construction stake 施工标桩contour 等高线盘右telescope)倒镜、normal position of telescope(direct telescope)contour interval 等高距contouring 绘等高线、正镜盘右contour-length method 光学垂准器等高线延长法optical plummetcontour line 等高线round 测回control network 控制网set 套、组detail 细部、详图station 测站draw 绘图距离测量(Distance Measure)field 外业气barometer 压计fix 固定、确定base line(basic line/datum line) 基线form line 地形图电battery 池EDM(electromagnetic distance measurement) grid 格网information 注记、资料、情报电磁波测距marginal information 轮廓注记滤波器滤光片filter 、large-scale 大比例尺的laser alignment system 激光准直系统latitude 纬度、范围laser beam 激光束latitude circle 纬圈prism 棱镜latitude line range 纬线距离测程、legend 图例long range 远程location 定线、程medium range 中定位longitude 经short range 短程度longitude line 测距仪经线range findermap signal 地图、制图信号mapping 制图、测spring balance 弹簧称图、地质素描match line 拼接线卷尺tapemonument 标石invar tape 铟瓦钢卷尺、石柱object 高程测量(Height Measurement地物、目标)plan 程、高海拔平面图、略图altitude/elevationplot 近似approximate leveling 置绘图粗平平、profile 断面(图)、纵剖图准自动定平水automatic level 仪difference in altitude(difference of record 记录、资料setup 定置elevation ,height difference) 高差仪器site location error of closure in leveling 差合闭准定位水stake out 放样、定线平置、精平exact leveling 确、立桩symbol 仪(测点)准水level 符号、记号topographic detail 水level circuit 地形细部环合准闭topographic map 地形图尺垫准水level shoe◆原形观测观测仪器和设施线路准水line of level {Instrumentationand Facilities)国national geodetic vertical datum 家大地高air-entraining meter 面准基程掺气剂2Carlson-type piezometer 卡尔逊式渗压计component 零部件coordinator 坐标仪concrete strain meter 砼应变计damping box 阻尼角convergent point 收敛测点differential resistance direct plumb line 正垂线差动电阻double layer rubber sleeve earth pressure cell 土压力盒双层保护forced centering plate 强制embankment piezometer 坝体渗压计对中盘instrument lead 仪器电堤应变计缆embankment strain meterinvar wire 铟瓦丝extended wire 引张线metal ring 计金属环foundation piezometer 基础渗压plumb coordinate meter horizontal inclinometer 水平测斜仪垂线坐标仪pulley 滑轮hydraulic instrument 水力学仪器regulator 调节器水听器hydrophoneriser 立管inclinometer casing 测斜管sensor interface joint meter 界面变位传感器计spool inverted plumb line 倒垂线绕轴steel socket 钢micro piezometer 微压计底座tablet 多点位移计药片multiple position extensometertensioning weight 张拉重锤observation point 观测标点thermistor 热敏电observation well 观测井阻tip 测头视optical alignment line 准线安装过程(Procession of Installation)plate strain meter 钢板计assemble 组装pneumatic piezometer 气压式渗压计couple 连接脉动压力pressure fluctuation meter 计prestressed tendon anchorage 埋设embed安装install 索dynamometer 预应力锚测力计绝缘insulate rock bolt extensometer 锚杆测力计维护计single point extensometer 单点位移maintenancespiral sensor 测扭仪监测monitor测压standpipe 管仪器保护protection of instrumentation归纳reduce 强震仪strong-motion seismograghsurface monument 表密封seal 面标点拼接temperature sensor 温度传感器splice提供终端房terminal house supplyterminal station 终端站测试testInformation资料(倾角tilt meter 计)简图计时均压力time average pressure cell assemble schematic 装配合格证书总压力盒total pressure cell certificate书说计velometer 流速使用明descriptionvertical inclinometer 垂直测斜仪维护指南maintenace guideline书震旋式渗压vibrating wire piezometer 计manual 说明振旋式沉降vibrating wire settlement sensor 理工作原operating principle作仪范围operating restraint 操序procedure 水堰量的带微压weir with micro piezometer 计程程基点工作working base point 序分trouble shooting procedure 鼓掌析zerostress-strain meter 其他(Others)计砼无应力间)Acessories and Spare Parts附件及配件(行annular space 环空coil data acquisition 盘绕数据采集 3cement mark(strength of cement /cement 数据记录data recordinggrade) 水泥标号leas drilling hole 引线孔consumptive use of water normal consistance 永久记录permanent record标准稠度用水readout device 读数设备量degree of mobilization 流动性saturated 饱和的dissolution heat ( solution heat ) 溶解热seepage isolation dike 截渗堤final set trapezoidal 梯形终凝flexural strength 抗弯强度◆水工常规试验flyash 粉煤灰砼原材料试验(Test of Raw and Processedhydration heat 水化热Material of Concrete)initial set Aggregate)初凝骨料(abrasion volume by Los Angeles rattler loss on ignition(ignition loss) 烧矢量setting time 凝结时量间洛杉机磨耗silica fume 计accumulated retained percentage 累筛余百硅粉soundness 水泥的安定性分率specific surface area 比表acicular and flaky grain in aggregate 针状与面积specific heat 量片状颗粒含比热water demand ratio 吸水alkali-aggregate reaction 碱骨料反应量比外加剂(Admixture)视密度apparent densitybubble stability 泡沫稳定性bulk density (unity weight) 容重clay lumps and friable particles in aggregate bubbling ability 起泡能力chloride content 氯化物含量块及易碎颗粒含土量黏compressive strength rate 抗压强度比软化系数coefficient of softeningcontract with dry rate crush index 压碎指标干缩率dispersing coefficient 干燥状态dry state 分散系数dispersing ability of waterexceeding and inferior grain in-reducing agent 减水剂aggregate 超逊径颗粒含量分散能力loss of slump 塌落度损失细度模数fineness modulussulphate content 硫酸盐含空隙率量gaping place ratesolid content 分计grader retained percentage 筛余百固体含分率量surface tension 颗粒级grain composition 配表面张力water-reducing rate 减水率粒径grain size水(Water)量lightweight matter in aggregate 轻物质含alkalinity 碱度量云母含mica contentcalcion 含水率钙离子moisture content(water rate)carbonic acid mud content 钙酸含泥量chlorion 有机质含organic content 量氯离子equivalent concentration 骨料潜在活性potential reactivity of aggregate 当量浓度oxygen consumption saturation 饱和的耗氧量normal solution (standard 曲线筛sieving curve 分solution) 量soft grain in aggregate 软弱骨料含标准溶液PH value PH坚固性值soundnesswater analysis 水值面含水率表surface moisture content 分析砼(水溶性硫化物water-soluble sulphide Concrete)砼拌和物(水硬性胶凝材料Mixture(Hydraulicity cementitious )material) assurance strength of concrete 砼保证强度bleeding rate age 泌水率龄期4cement-sand ration 灰砂比砂浆(Cement)cement lime mortar 标号水泥石灰砂浆design strength of concrete 砼设计cement mortar 水泥砂浆flowability of concrete 砼的流动性cement-clay mortar 水泥黏土mix proportion (proportion of mixture) 砼配合砂浆epoxy mortar 环氧砂浆比lime mortar 石灰砂浆mixture uniformity 拌和物的均匀性plastering mortar 抹面砂浆penetration-obstruction method 贯入阻力法pointing joint mortar probability of ensuring strength of concrete 砼勾缝砂浆土(Soil强度保证率)accumulation curve (cumulative curve) 累砂率sand rate 计曲线单位用水量unit consumption of wateractivity index 活性指标water retention (water retentiveness) 保水性angle of frictionwater-cement ratio 摩擦角水灰比Atterberg limits(water content as limit) Hardened concrete 阿)硬化砼(太堡界限(界限含水量axial tensile strength 轴向抗拉强度)California bearing ratio 导热系数载重比coefficient of thermal conductivitycoarse-grained soil cooling rate 冷却率粗粒土coefficient of compressibility 压缩系数砼芯样core of concretecoefficient of cubical徐变变creep deformation (time deformation )compressibility 体积压缩系数形coefficient of curvature 曲率系数form coefficient(form factor) 形状系数compression 压缩freezing -melting circulation 冻融循环compression index frost-resistance mark 抗冻标号压缩指数compression modulus 压缩模数砼热学性能heat property of concreteconsolidated-undrained (quick) shear test height-diameter ration 高径比固结不排水剪(固结快剪)试验linear expansion coefficient 线膨胀系数consolidated-drained (slow) shear test loss of weight 重量损失固结不排水剪(慢剪)试验自振频率natural frequencyconsolidation 固结permeate 渗透consolidation coefficient 透permeated height 渗高度固结系数consolidation settlement 固结沉降permeated-resisting mark 抗渗标号consolidation stress 系固结应力透relative coefficient of permeability 相对渗continuous grading/gradation 连接级配数contraction test(shrinkage test) 收缩试验振频率共resonance frequencycore cutter method sample 试环刀法件creep curve self-grown volume deformation(砼)蠕变曲线自生体积critical slope 变形逸出坡降(临界坡降)Darcy's law 达西定律劈裂抗拉强度splitting tensile strengthdegree of consolidation 固结度static compressive modulus of elasticity 静力degree of free swelling 自由膨胀率抗压弹数direct shear test 导温系数直接剪切试验temperature conductivitydirect shear test of reiteration 反复直剪强度试抗拉弹性模tensile modulus of elasticity 量验绝热温升thermal insulation warmingdistribution curve 分极限拉应变ultimate tensile strain 布曲线drift soil (shifting soil/mass flow) 极限抗拉强度ultimate tensile strength 流土effective angle of inner friction 有效内摩擦角磨损率wear rateeffective strength envelope 有效强度抗冲磨强度wear-resisting strength 包线5expansion force 膨胀力剪(快剪)试验variable head method 变水头法expansion ration(specific expansion) 膨胀率void(pore) ratio 孔隙比渗流filtering flow(seepage flow)water replacement method 灌水法fine-grained soil 细粒土wet density 湿密度flow net(drift net) 流网其它建筑材料hydraulic slope 水力坡降钢筋(steel hydrometer method 比重计法)bending and unbending 反常水头法复弯曲hydrostatic head methodcold bending test 冷弯试验limit equilibrium state 极限平衡状态elongation test 拉伸试验liquefaction 液化nominal diameter 公称直径liquid limit 液限ratio of elongation liquidity index 液化指标伸长率relaxation test maximum dry density 最大干密度松弛试验steel strand 钢绞线method of sieving 筛分法tensile yield strength 拉伸屈服强度Mohr's stress circle 莫力应力圆ultimate tensile strength 极限抗拉强度库伦破坏Mohr-coulomb failure criteria 莫尔-Wood)准则木材(curshing strength paralled to the normal stress 法向应力(正应力)oedometer curve 顺纹抗压强度grain 压缩曲线tensile strength paralled to the 量optimum moisture content 最优含水顺纹抗拉强度涌piping 管graincrushing strength across th e plastic limit 塑限横纹抗压强度grain plasticity index 塑性指标tensile strength across to the 空隙水压力pore water pressure空隙率porosity 横纹抗拉强度grainprincipal stress 主)沥青(应力Asphalt脆化点试验Proctor compaction test 普氏击实试验brittle temperature test相对密度relative density 延伸度试验expansion testsand replacement method 灌砂法针入式试验penetration testsaturability (saturation degree/percent 软化点试验softening point testtest of aging saturation) 饱和度老化试验viscosity test 饱和容重saturated unit weight 粘滞性试验Quality Management透seepage deformation 渗变形)质量管理(average 力渗seepage force(seepage pressure) 透平均值deviation standard(error of mean 透渗seepage line 线均方差squares) 速度渗seepage speed 透deviationcoefficient(dispersion shear stress 切向应力(剪应力)离差系数缩限shrinkage limit coefficient)断级间skip(gap/jump) grading 配相关系数index of correlation土specific gravity of soil particle 粒比重界限management limit 管理steady seepage field 统计数稳定渗流场mathematic statistics 理maximum 应力路径stress path 最大值值minimum 最线包总强度total strength envelope 小布三轴压缩试验triaxial compression test 正态分normal distributionunconfined compression strength 保证量quality assurance 无侧限抗压质量强度检测质quality examinationunconsolidated undrained test regression curve 不固结不排水回归曲线 6relative dampness 相对湿度mud crack 泥痕rain print 雨痕本容量sample capacity 样orientation of bedrock 岩层产状sampling frequency 取样频率strike specimen 样品走向dip 倾向统计分析statistical analysisangle of dip (dip angle ) 倾角technical specification 技术规范fold technical standard 褶皱技术标准anticline testing circumstance 试验环境背斜syncline 向斜testing error 试验误差Monocline (homocline) 单斜testing regulation 试验规程dome 穹隆析variance analysis 方差分soft stratum ◆地质(Geology)软弱岩层zone of fracture(broken zone ) 破碎带地质年代(Geochronology of Geologicaffected zone Ages)影响带platy structure 板状构造Archaeozoic era (erathem) 太古代(界)解理cleavage Proterozoic era (erathem) 元古代(界)fracture(rupture) 断裂古生代(界)Palaeozoic era (erathem)fissure(crack/fracture) 裂隙Mesozoic era (erathem) 中生代(界))岩石类型(Rock typeCenozoic era (erathem) 新生代(界)岩石学petrology Sinian period (system) 震旦纪(系)岩igneous rock 火成寒武纪(系)Cambrian period (system)Ordovician period (system) 奥陶纪(系)岩浆岩magmatic rock火山岩lava(vocanic rock) 志留纪(系)Silurian period (system)侵入岩intrusive (invade) rock Devonian period (system) 泥盘纪(系)成石碳纪(系)Carboniferous period (system) 岩effusive rock 深成岩pypabussal rock 二叠纪(系)Permian period (system) 浅三叠纪(系)acid rock 酸性岩Triassic period (system) 侏罗纪(系)Jurassic period (system) 中性岩inter-mediate rock基性岩basic rock Cretaceous period (system) 白垩纪(系)第Tertiary period (system) 三纪(系)超基性岩ultrabasic rock第Quaternary period (system) 四纪(系)花岗岩granite斑岩Geologic Structural地质构造()porphyryrhyolite 玢岩断层faultsyenite normal fault 正断层流纹岩逆断层reversed fault trachyte 粗面岩diorite parallel fault 平移断层闪长岩andesite 安山岩断层泥gouge擦痕stria 辉长岩gabbrojoint 理节玄武岩basaltprimary joint 理原生节细晶岩aplitesecondary joint 理次生节pegmatite 伟晶岩tension joint lamprophyre 煌斑岩理张节diabase 理卸荷节unloading joint 辉绿岩理片schistosity 橄榄岩dunite理层bedding pumice 浮岩)理(叶理板foliation 沉积岩sedimentary rock波痕ripple mark clastic rock 碎屑岩7clay rock 黏土岩quartz 石英topaz 黄玉chemical rock 化学岩corundum 刚玉biolith 生物岩diamand 金刚石砾岩conglomerateorthoclase 正长石siltstone 粉砂岩plagloclase 斜长石mudstone 泥岩biotite shale 页岩黑云母muscovite saline rock 盐岩白云母amphibole 角闪石limestone 石灰岩phroxene 辉石白云岩dolomiteolivine marl 泥灰岩橄榄石dolomite 白云石volcanic breccia 火山角砾岩kaolinite 高岭石火山块集岩volcanic agglomeratemontmorillonite 蒙脱石tuff 凝灰岩膨润土bentonite metamorphic rock 变质岩斑脱石、illite 板岩slate 伊力石garnet 石榴子石phyllite 千枚岩chlorite 绿泥石schist 片岩serpentine 蛇纹石gneiss 片麻岩pyrite 岩黄铁矿石quartzite 英marble 大理岩hematite 赤铁矿糜棱岩magnetite 磁铁矿mylonitemigmatite 混褐铁矿limonite 合岩)工程地质(cataclasite 碎裂岩Engineering Geology 技土工eotechnics ( geotechnique) 土工学(sediment(deposit) 沉积物(层)G)岩石工程术、漂石boulder 、顽石cobble 卵石岩石力学rock mechanics砾石gravel 力学soil mechanics 土岩石力学地质力学sand 砂、geomechanics engineering geological 粉siltstone 土clay 黏土地质条件conditons 工程砂质黏sandy clay 土问题engineering geological problem 工程地质clayey sand 岩体结构粘质砂土rock mass structure地形黏壤sandy loam 土、亚土geographic and geomorphic conditions土、表土浮regolith ( topsoil ) 地貌条件物理黄loess 土地质现象geophysical phenomenon 土红laterite 水文地质条件hydrogeological conditionsnatural materials 泥炭peat 天然材料海泥、ooze 软泥水库reservoir沉降Rock-forming 造岩矿物(settlement位移Minerals)displacementdeformation 变形滑石talctectonic stress 石膏gypsum 构造应力残余应力residual stress 方解石calcite内摩擦角萤石fluorite angle of internal friction凝聚力)磷灰石apatite 、cohesion 内聚力(粘聚力feldspar pressure tunnel 长石压力隧洞8underground cavern/cavity 地下洞室alluvium 冲积物(层)proluvium(diluvium) 洪积物(层)overburden 覆盖物deluvium 坡积物(层)bed rock(base rock/foundation rock) 基岩eluvium 残积物(层)firm/sound rock 坚硬岩石eolian deposit weak/soft rock 软弱岩石风积物(层)lake deposit 湖积物(层)interbed 夹层marine deposit 海积物(层)zone of fracture (broken zones ) 破碎带glacial (drift) deposit 冰川沉积物(层)homogeneity 均质性colluvial deposit (colluvium)nonhomogeneity/heterogeneity 非均质性崩积物(层)isotropy 各向同性cross-bedding 交错层geologic structure 地质构造anisotropy 各向异性geotectonics 矿物质的物理性质(Physical Character of 大地构造学graben Minerals)地堑horst 地垒hardness 硬度cordance(conformity) 整合光泽lusterdiscordance(unconformity) color 颜色非整合deceptive cordance /conformity 假整合transparencey/pellucidity 透明度地质作用(Physical Geology Action) 条痕streakweathering 风化rent/fracture 断口erosion 侵蚀crystal form 晶形transportation 搬运(Petrology) 岩石学deposition/sediment 类沉积classification 分denudation structure 构造应力剥蚀corrasion 磨蚀texture 结构corrosion fabric 腐蚀组构dissolution 成mineral composition 矿物组溶蚀landslide 滑坡crystalline 结晶质collapse(rock fall) 崩塌非晶质amorphous substance mud flow fossil 化石泥石流earthquake 地震磨圆度degree of roundingintensity 烈度degree of grains 粒度magnitude 震级(Stratum andPhysiognomy) 地层地貌◆水文盆地basin (Hydrology)ground water(subsurface water) 地下水river valley 河谷surface water 地表水河床river bedatmospheric water 地形topography 大气水runoff terrain 径流地势fresh /plain /sweet water attitude 产状淡水river flow/discharge rock base ( batholite) 河水流量岩基peak flood flow 洪峰流量rock stock 岩株flood out flow 岩流rock flow 洪水下泄流量dry season rock loccolith 岩盖枯水季wet season 丰水季岩盆rock lopolithflood (raining) season 岩墙rock dike 汛期non-flood season 岩床rock sill 非汛期5% frequency flood 20 年一遇洪水vein dyke 岩脉flood control 沉积物(层)sediment(deposit) 防汛9(二)工程施工.机电类trunion beam 支饺梁dogging beam 锁定梁◆金属结构(Hydromechanical work)启闭机(Hoist)闸门(Gate)wire rope hoist 固定卷扬式启闭机工作门service gatehydraulic hoist emergency gate 事故门液压启闭机monorail hoist 单轨启闭机maintenance gate 检修门overhead crane 桥机sector gate 弧形闸门bridge crane 偏心铰闸门桥机eccentric hinge sector gatesupport frame 机架plane gate 平面闸门reducer 减速器fixed wheel plane gate 定轮平面闸门motor 电动机trashrack 拦污栅pulley 滑轮trash rake 清污机live pulley )动滑轮预埋件(Embedded Partsfixed pulley 底sill 砍定滑轮equalizer pulley 平衡滑轮main guide 主轨drum 卷筒副轨auxiliary guidesteel wire rope 钢丝绳reverse guide 反轨position sensor 高度传感器side guide 侧轨load sensor 荷载传感器lintel 门楣brake 制动器steel liner 钢衬hydraulic system 液压系统高压冲水管high pressure water pipeoil cylinder 油缸pressure balance water pipe 冲水水平管piston rod 活塞杆)部件(组件/Assembly/partspump station gate leaf 门泵站叶oil tank 邮箱crank 拐臂pipe 管道arm 支撑filter seal 水封过滤器accumulator 蓄能器主main seal 水封valve 阀侧水封side seallogic valve top seal 顶水封逻辑阀check valve 单向阀底bottom seal 水封ball valve 球阀节流器水封辅auxiliary seal 助、cartridge valve 插装阀clip plate 压板solenoid operated directional slide block 滑块valve 电磁换向阀side slide block 侧向滑块门式起重机(Grantry Crane)反reverse slide block 向滑块rail 轨道定轮fixed wheellifting mechanism 起升机构轮主main wheeltraveling mechanism 运行机构side wheel 侧轮inspection trolley 重配ballast 检修小车gantry 吊耳lifting ear 门架support column 拉杆门腿lifting linkprimary beam 主梁支饺trunionbridge beam 横梁铰链hingecross beam 端梁饺座hinged supportside beam 铰轴hinged shaft 边梁lifting beam 端盖cover 起吊梁10hook 吊狗progressively 逐渐地purity 纯度buffer 缓冲装置push 推rail clamping device 夹轨器reliable driving wheel 主动轮可靠的residual oil 余油driven wheel 从动轮retraction 回缩其他(Others)run abnormal vibration 反常运行震动secure activate 激活保护separately or simultaneously 单独/anti-clockwise 逆时针同时地set up anticorrosion 防腐架设setting 设置/carry on 继续进行读数shim 行薄垫片执carry outslack 松弛clockwise 顺时针static loading test 静载试验试运行commissioningstill water 静水concentricity deviation 同心度偏差switch off 切断connect 连接synchronize 同步debris 碎片tighten de-energize 拧紧断电under water head condition 探测水压作用条件下detectwet test dry test 无水试验有水试验◆焊接和无损检验(Welding and dynamic loading test 动载试验Nondestructive Testing)加电给energize ……焊接{erection 架立Welding)arc strike 引弧/伸展expansion 弧伤arc welding 扣紧电弧焊fastenautomatic welding fit 安装自动焊back gouging 背面清根flowing water 动水backing 垫板闭门gate closurebase metal gate opening 启门母材build-up welding 堆焊/补焊门位恢复gate position restorationbutt joint 空载试验对接接头idle testcarbon rode impact 碳棒碰撞complete fusion 完全融合in pressure balance condition 平压条件下……lift……into position 将起吊到位角接接头corner joint涂料焊条covered electrode 定位locate降下试件coupon lowerdirect current electrodemanual operation 手动操作直流电极接负noise 噪声negative(DCEN)direct current electrodenote 记录operating gap 直流电极接正运作空隙positive(DCEP)衬垫pack double welding 双面焊particle 微粒double-bevel groove weld 双斜边坡口焊缝执行perform 型坡口焊缝double-J groove weld 双面J型坡口焊缝双面精确定位position accurately Udouble-U groove weld型坡口焊缝精确的precise V double-Vee groove weld 双面/预置/预留pre-set 电极焊条electrode按下按钮press button electrode holder 焊钳11electrosgas welding 电气焊weldment 焊件无损检验(电渣焊Nondestructive Testing)electroslag weldingangled beam filler metal 填充金属斜射波back scatter 背散射fillet weld 角焊缝calibration block 校准试块full fillet weld 大填角焊缝cleaning agent flat welding 平焊清洗剂contact beam 接触波flux 焊剂couplaut 偶合剂药芯焊丝弧焊flux cored arc weldingcrimp 褶皱forehand welding 左焊法definition 清晰度摩擦焊friction weldingdelayed sweep full penetration weld 全融透焊缝延时扫描detergent 去污剂fusion 熔合developer 显像剂fusion line 熔合线double-wall viewing 双壁透照groove weld 坡口焊缝echo 回波heat affecter zone 热影响区eddy current examination 涡流检验横焊horizontal weldingemulsifier 乳化剂lap joint 搭接接头examination medium 检验介质machine welding 机器焊exposure 暴光manual welding 手工焊inage quality indicator overhead welding 象质显示器仰焊inspector 检验师oxyfuel gas cutting(OFC) 氧燃料气割liquid penetrants testing 渗液检验oxyfuel gas welding(OFW) 氧燃料气焊magnetic particle testing 磁粉检验partial penetration weld 非全融透焊缝mass spectrometer 质普仪焊道passnondestructive inspection peening 锤击无损探伤penetrameter 等离子弧焊透度计plasma arc weldingpenetrant plug weld 塞焊渗透剂radiographic testing 射线检验气孔porosityscan postheating 后热扫描scratch 焊后热处理postweld heat treatment 划痕search unit 探头preheating 预热single-wall viewing 电阻焊resistance welding 单壁透照sniffer seal weld 密封焊缝嗅探器straight beam 直射波缝焊seam weldingstreak 条纹半自动焊semi-automatic weldingultrasonic instrument 超声仪单斜边坡口焊缝single-bevel groove weldultrasonic testing 超声波检验型坡口焊缝J single-J groove weld 单面visual testing 目测、外观检验型坡口焊缝单面single-U groove weld Uwheel search unit 轮式探头V单面single-Vee groove weld 型坡口焊缝夹渣slag inclusion X-ray machine X-射线仪)点焊spot welding ◆水轮机(Hydraulic Turbine直坡口焊缝水轮机hydraulic turbine square groove weldreaction turbine 反击式水轮机埋弧焊submerged arc weldingimpulse turbine 冲击式水轮机定位焊tack welding混流式水轮机咬边undercut francis turbine立焊vertical welding axial turbine 轴流式水轮机焊道weld head prototype turbine 原型水轮机12rated head 额定水头inertia 惯性flywheel effect 飞轮效应effective head 有效水头time constant 时间常数net head 净水头mandoor 进入门maximal head 最大水头pit liner 最小水头机坑里衬minimal head elastic layer 弹性垫层spiral case 蜗壳turbine pit 机坑stay ring 座环feedback 反馈wicket gate 导叶main distributing valve main shaft 主轴主配压阀solenoid 主轴密封shaft seal 线圈relay 继电器coupling flange 连接法兰transfer function 传递函数runner 转轮◆runner crown 转轮上冠机械通用词汇abrasion performance 耐磨性runner band 转轮下环abrasion test 磨耗试验runner cone 转轮泄水锥accessory 附件、配件、零件runner blade/bucket 转轮叶片accuracy 准确性、精度head cover 顶盖anti-corrosion 抗蚀底环bottom ringbalance test 平衡试验discharge ring 基础环bearing 轴承draft tube 尾水管bearing box draft tube cone 尾水锥管轴承箱bearing bush 轴瓦、轴套尾水肘管draft tube elbowbearing carrier governor 调速器轴承座bearing collar 轴承环、推力头调速器柜governor cubicle/cabinetbearing cover 轴承盖oil pressure tank/vessel 压力油罐bearing journal 轴颈回油箱oil sump tankbend 弯头gate ring 控制环bend radius 弯曲半径distributor 导水机构bending strength shear pin 剪断销抗弯强度bolt 螺栓筒形阀ring gatebore 钻孔servomotor 接力器bore machine 效率efficiency 镗床brake valve output 出力制动阀by-pass 旁通流量dischargecallipers 卡尺sir admission system 补气系统cardan shaft 万向轴涡流检验vortexcast special tool 专用工具铸造characteristic test auxiliary equipment 特性试验辅助设备chock damper/absorber/cushion 减震器、阴尼器楔子、垫块clamp runout 卡头、夹板摆度clearing of fault 水击water hammer 故障排除clip 导轴承guide bearing 夹具、钳coat operation condition 运行工况涂层correction value 矫正值开度openingcottor pin 开口销空蚀cavitationcoupling flange 抗磨涂层erosion resistant coating 联结法兰damping device 负荷load 缓冲装置13deflection 挠度monkey wrench 活动扳手nail 钉子density 密度nipple 管接头derusting 除锈nut 螺母descale 除垢o-ring O 偏差形环deviationoperating condition 运行情况dial 刻度盘pretreatment 预处理dial gauge 千分尺process 流程、工艺distort 变形screw cap 螺帽dowel pin (setpin) 定位销spigot 偏心凸轮套管、止口eccentric camstroke 偏心销eccentric pin 行程valve 偏心、偏心率、偏心度阀门eccentricityelastic bearing 弹性轴承verticality 垂直度弹性变形elastic deformation washer 垫圈elastic limit 弹性极限楔子板wedgeElectrical Equipment 电气设备及元器件(◆facility 设备、设施)& Element Partsfactory assembly 工厂装配发电机generator 型钢fashioned ironfeed pipe 供水管电动机motor3-phase squirrel-cage asynchronous motor female end 内止口field welding 现场焊缝三相鼠笼式电动机三相绕线式电动表面光洁度、精加工finish 3-phase wind asynchronous机fitting allowance 装配公差电枢motor armature fitting assembling 零件装配fitting face 配合面电刷brush线圈、绕组coil 法兰flangeflatness 平整度energizing coil 励磁线圈stator 缺陷flaw 定子stator core 定子铁芯flexibility 挠性、柔性forge stator winding 定子绕组锻造foundation 基础rotator 转子transformer 变压器摩擦friction隔离变压器isolating transformer gauge 规、计、表互感器齿轮gear mutual inductor globe valve 球阀电流互感器current transformer(CT)grade 电压互感器potential transformer(PT) 等级hardness 硬度高压电器high-voltage equipment热处理heat treatment breaker 断路器interface 分界面、接触面、接口isolating switch 隔离开关bushing 接头、接缝、连接、焊接joint套管结合面、接缝面joint face 绝缘子insulator 润滑剂、润滑材料lubricant 悬式绝缘子suspended insulatorlubrication circuit 润滑管道column-type insulator 支柱绝缘子lubrication oil 润滑油reactor 电抗器电容器机加工machine capacitorlightning rod 机床machine tool 避雷针(器)外止口male end low-voltage electric appliance 低压电器14knife switch 刀开关wiring terminal 接线端子terminal block 接线板、接线盒fuse 熔断器illuminator 照明automatic switch 自动开关lamp 灯contactor 接触器lightning distribution box(board) 触点照明配电箱contact constant close contact 常闭触点screw socket 螺口灯头fluorescence lamp 常开触点日光灯constant open contactbuld 灯泡starter 启动器socket 插座overtravel-limit switch 行程开关grounding 接地changeover switch 转换开关grounding resistance 接地电阻controller 控制器grounding switch 接地开关resistor 电阻器ground connector light resistor 光敏电阻接地体galvanized flat steel 变阻器镀锌扁钢varistorground wire 电磁铁electromagnet 接地线working grounding 母线工作接地busprotection grounding bare bus bar 裸母线保护接地others 其他cable 电缆master switch power cable 电力电缆主令开关induction coil 感应线圈control cable 控制电缆magnetic coil 电磁线圈armored cable 铠装电缆stabilizator 稳压器cab-type cable 橡皮绝缘软电缆bell 电铃电缆夹cable clampIPC cable connector 电缆接头共控机local control unit (LCU) 现地控制单元cable core 电缆芯programmable logic电缆卷筒cable drumcontroller(PLC) 可编程控制器电缆挂钩cable hangerprogrammer 编程器cable rack 电缆架motor valve 电缆终端cable terminal end 电动阀electromagnetic valve 电磁阀H cable 屏蔽电缆◆电气通用词汇裸线bare wirealternation current(AC) 交流电ammeter 电流表allowed value 容许值欧姆表ohmmeter ampere voltmeter 电压表安培automatic operation 电度表kilowatt-hour meter 自动操作bridge megger 兆欧表电桥cabling diagram 继电器relay 电缆连接图capacity of storage battery over current relay 过流继电器蓄电池容量欠流继电器under current relay charging 充电time relay (timer) 时间继电器charging current 充电电流thermal relay 闭合热继电器closeshortdown relay 常闭触点constant close contact 断路继电器constant open contact 蓄电池battery 常开触点battery charger 蓄电池充电器control circuit 控制电路盘屏pannel 电流强度current intensitydirect current (DC) 配电盘swithboard 直流电分线(配电)盒distributing cabinetde-energise (deenergize) 切断、断电15dynamic test 动态试验transient current 瞬时电流transient voltage 瞬时电压electric arc 电弧volt 伏(特)electric leakage 漏电voltage 电压flash test 高压闪络试验wiring scheme generator active power 发电机有功功率接线图withstand voltage test 耐压试验发电机效率generator efficiency◆计算机监控系统(generator reactive power 发电机无功功率Computer Supervisoryinput 输入(量)and Control System)A/D converter 绝缘涂层模数变换器insulating coatinganalog control loop 模拟控制回路insulation grade 绝缘等级automatic-restoration 自恢复insulation test 绝缘试验automatic element 自动化元件interlocker(interlocking) 联锁装置block diagram 方框图kilowatt-hour 千瓦小时、度coaxial cable 同轴电缆leakage protection 漏电保护command 指令line-to-line short circuit 线间短路communication 通信malfunction 误动作compatibility manual operation 手动操作兼容性console 控制台megohm 兆欧current transducer 电流变送器mis-operation 误操作cursor (显示器)光标欧姆ohmD/A converter 数模变换器outlet 引出线、电源插座data bus 数据总线outlet box 引出盒、接线盒database 输出线路数据库outlet linedigital signal 输出量output 数字信号digital screen 显示屏overcurrent protection 电流过载保护electric quantity transducer 电量变送器并联电路parallel circuiteletromagnetic interference power factor 功率因数电磁干扰fiber optic cable 光纤电缆电源power supplyfloppy disk 一次电路软盘primary circuitflowchart rated current 额定电流流程图。
水利专业英语翻译部分
Lesson1 importa nce of water 水的重要性Water is best known and most abundan t of all chemica l compoun ds occurri ng in relativ ely pureformontheearth’ssurface. Oxygen,the most abundan t chemica l element, is present in combina tion with hydroge n to the extentof 89 percent in water. Water coversabout three fourths of the earth's surface and permeat es cracksof much solid land. The polar regions are overl ai d with vast quantiti es of ice, and the atmosphere of the earth carries water vapor in quantiti es from 0.1 percent to 2 percent by weight.It has been estimat ed that the amountof water in the atmosph ere above a squaremile of land on a mild summerday is of the order of 50,000 tons.在地球表面以相对纯的形式存在的一切化合物中,水是人们最熟悉的、最丰富的一种化合物。
在水中,氧这种最丰富的化学元素与氢结合,其含量多达89%。
水利水电工程专业英语的阅读与翻译
解了组成 的每一 单根词 义,该 词的意 义也就 自然明 确了。
3、由 单根词 、复合 词或一 些单独 使用的 词根加 上词头 和词 尾的派 生词, 英语中 大多数 的词都 属于这 种词。
英语单词 中的词 根是词 中最基 本的部 分,表 达该词 的基本 意义 ,虽然 词根的 数量有 限,但 却是构 成单词 的基础 ,能繁
还将继续 引进大 批先进 技术和 设备, 为了尽 快消化 这些新 技术 和装好 、用好 及管理 好这些 设备, 也需要 详细地 阅读和
翻译引进的技术和设备的技术说明文件。要提高专业科技英语 的阅读和翻译能力,除需要掌握英语语法的基本知识和
基本词汇 及具有 相当广 泛的专 业知识 之外, 还必需 熟悉专 业词 汇和科 技英语 中一些 常用词 、词组 或短语 ,熟悉 科技英
ceed
走行
proceeding 进程,步骤;procedure 过程
cent
百, 百分之 一
centigrade 摄氏(百分)度,centimeter 厘米
centr, centri, centro 中心
centrifugal 离心的,orthoce间
certify 证明,uncertain 不确定的 chronograph 记时器,isochronal 等时的
cline
倾, 斜
decline 倾斜,降落
clude
结束
conclude 结束,exclude 除外
cult
耕,培 养
cu ltivate 耕作,culture 栽培
dens dict=dic
3、使 学生掌 握科技 英语文 献翻译 的基本 技巧。
4、为 学生提 供一部 分专业 英语词 汇及常 用词组 或短语 。 第一章 词的构成及科技术语翻译方法
水利水电工程专业英语的阅读与翻译
-graph
表示写 ,画, 记录结 果
和用具
photograph 照片,monograph 专题,论文
-let
表示小
droplet 水滴,streamlet 小溪
-logy
表示 学科
hydrology 水文学,geology 地质学
-meter
表示计,仪 表
barometer 气压计,voltmeter 电压表
uni
单,
uniflow 单向流,unify 统一
vari
变化
variable 变量,可变的,variation 变化,偏差
vers
转,向
reverse 反向,transverse 横向
vis
看
visual 直观的,prevision 预见
(2)英 语单词 的词尾 是接在 词根后 面的部 分,一 般地, 词尾的 意义比 较狭窄 和明 确,常 可根据 词尾来 判断英 语中大
水 利水 电工程 专业 英语的 阅读与 翻译
水利水电 工程
专业英语的阅读与翻译 刘景植 编
二 OO 四年十二月
水利水电 工程专 业英语 的阅读 与翻译
前言
当前,世 界科学 技术发 展十分 迅速, 为了了 解、学 习和借 鉴国 外先进 的科学 技术, 为我国 的社会 主义建 设服务 ,需要
大量的阅 读和翻 译国外 科技文 献资料 。另外 ,近年 来和在 以后 的若干 年内, 我国在 水利水 电建设 中,从 国外引 进了且
多数词的 词类。
专业英语 词汇中 的一些 常用的 词尾:
词尾
意义
词例
Ⅰ、名词 词尾
-age
表示抽象概 念,量 ,性质 ,状态 ,行为 等
水利水电工程专业英语段翻译
•Owingto the fact that electr icity can be transm itted from whereit is genera ted to whereit is needed by meansof powerlinesand transf ormer s, largepowerstatio ns can be builtin remote places far fromindust rialcenter s or largecities, as is citedthe case with hydroe lectr ic powerstatio ns that are insepa rable from watersource s.•由于电力可以从发电的地方通过电线和变压器输送到需要用电的地方,因此大型电站可以建在远离工业中心或大城市的地方,离不开水源的水力发电站就常常是这样建立的。
Ideall y suited to narrow canyon s compos ed of rock, the archdam provid es an econom icaland effici ent struct ure to contro lthe stream flow. The load-carryi ng capaci ty of an arch damenable s the design er to conser ve materi al and stillmainta in anextrem ely safe struct ure.•拱坝最适合于修建在岩石峡谷中,它是一种控制河道中水流经济而有效的建筑物。
一座拱坝的承载能力足以使设计人员用较少的材料而仍能建成极为安全的结构。
汉英水利水电技术词典1-100页
中文English暗钉圈concealed nail washer 背衬材料backing material衬初内注浆lining grouting衬砌后围岩注浆surrounding ground gr 衬砌前围岩注浆surrounding ground gr 地下水工程防水技术规范Technical code for wa 复合管片composite segment高压喷射注浆法high-pressurized jet 回填注浆back-fill grouting加强带strengthening band聚合物水泥防水涂料polymer cement water 可操作时间operational time螺孔密封圈bolt hole sealing was 密封垫gasket密封垫沟槽gasket groove凝胶时间gel time塑料防水板防水层water-proofing course 涂膜抗渗性impermeability of fil 涂膜耐水性water resistance of f 无钉铺设non-nails layouts诱导缝inducing joint预注浆pre-grouting遇水膨胀止水条water swelling strip 自流平水泥artesian cementSpecifications for De 公路钢筋混凝土及预应力混反滤层filter layer反滤织物filter fabric公路排水设计规范Specifications of dra 沟管内汇流历时time of flow in ditch 汇流历时time of concentration 降雨历时转换系数converting factor of 径流系数coefficient of runoff 拦水带dike路界表面排水roadway surface drain 路面内部排水pavement subsurface d 路面排水pavement surface drai 排水系统drainage system坡面汇流历时time of flow on slope 设计降雨重现期design recurrence int 设计径流量design peak rate of r 渗沟underdrains中央分隔带排水median drainage重现期转换系数converting factor of PHP泥浆PHP mud部件component超声波探伤supersonic sounding沉降缝settlement joint沉井基础open caisson foundati 沉入桩penetrated pile初拉力initial tension大体积混凝土major volume concrete 大直径桩large diameter pileexpansion equipment(j 弹塑体材料填充式伸缩装置导墙guide wall地基subsoil地下连续墙underground continuou 吊索suspender顶进法jack-in method顶推法incremental launching 分层分段浇筑concreting layer by l 分环多工作面均衡浇筑法balanced concreting l 分环分段浇筑concreting layer by l 风缆系统cable-stayed stabilitexpansion equipment (复合改性沥青填充式伸缩装钢筋电渣压力焊electroslag pressure 钢筋机械连接rebar mechanical spli 钢筋闪光对焊flash butt welding of 高强度螺栓连接副 a set of high strengt 公路GPS控制测量GPS control survey ofTechnical Specificati 公路桥涵施工设计技术规范构件element挂篮movable suspended sca 贯入度penetration灌注桩cast-in-place concret 焊接网welded fabric后张法post-tensioning metho 滑板sliding plate(PTFE)环境温度ambient temperature 混凝土耐久性durability of concret 挤压套筒接头compressed sleeve cou 加固地基consolidated subsoil 加劲钢箱梁stiffened steel box g 胶接缝glued joint with epox 结构物的表面系数surface factor of str 竣工测量final survey抗滑移系数slip factor控制测量control survey跨河水准测量river-crossing leveli 块石block stone拉索main cable拉索调整力adjustment of cable t 缆索吊装法erection with cablewa 料石dressed stone零件part锚碇anchor模数式伸缩装置module expansion equi 摩擦桩friction pile片石rubble桥涵顶进后背tempory reaction supp 射线探伤X-ray sounding伸缩缝expansion joint施工测量construction survey 施工缝construction joint施工荷载construction load施工猫道catwalk for construct 湿接缝wet joint水泥强度cement strength索鞍cable saddle索夹cable clamp索塔cable bent tower天然地基natural subsoil托架corbel围幕法排水ring curtain wall de-围堰coffer dam先张法pretensioning method 箱梁基准块datum segment of box 斜拉扣挂分环连接浇筑concreting under cont 悬壁浇筑法cast-in-place cantile 悬臂拼装法erection by protrusio 移动支架逐跨施工法span by span method( 膺架falsework预拱度camber预埋件钢筋埋弧压力焊submerged-arc pressur 预拼装test assembling支承桩bearing pile直螺纹套筒接头coupler of linear scr 转体架桥法construction by swing 锥螺纹套筒接头coupler of taper thre 崩塌collapse边坡环境slope environment边坡塌滑区landslipe zone of slo 边坡支护slope retaining等效内摩擦角the equative angle of 动态设计法method of information 工程滑坡landslide due to engi 建筑边坡building slope建筑边坡工程技术规范Technical code for bu 临时性边坡temporary slope锚杆anchor bar锚杆挡墙支护retaining wall with a锚索anchor rope逆作法topdown construction 坡顶重要构筑物important constructio 坡顶重要建筑物important constructio 坡率法slope ratio method软弱结构面weak structural plane 土层锚杆anchored bar in soil 外倾结构面out-dip structural pl 危岩dangerous rock系统锚杆system of anchor bars 信息施工法construction method o 岩石锚杆anchored bar in rock 永久性边坡permanent slope低应变法low strain integrity 高应变法high stain dynamic te 基桩foundation pile建筑基桩检测技术规范Technical code for te 静载试验static loading test 声波透射法crosshole sonic loggi 桩身缺陷pile defects桩身完整性pile integrity钻芯法core drilling method 初期支护initial support点荷载强度指数point-loading strengt 缝管锚杆split set格构锚固Lattice Anchor-hold 格栅钢架reinforcing-bar trus 拱腰haunch衡重式挡土墙Balanceweight Retaini 后期支护final support抗拔力anti-pullforce锚杆挡土墙Anchored WallSpecifications for bo 锚杆喷射混凝土支护技术规锚固力anchoring force喷射混凝土self-drilling bolt喷射混凝土shotcrete润周wetted perimeter水泥裹砂喷射混凝土send enveloped by cem 水胀锚杆swellex bolt隧洞周边位移convergence of tunnel 系统锚杆system bolt一般地区General Area预应力锚杆prestress anchor预应力锚索Prestressed Anchored 重力式抗滑挡土墙Slide-Resistant Gravi 自钻式锚杆self-drilling bolt磁法勘探magnetic prospecting地球物理测井geophysical logging 地球物理勘探geophysical prospecti 地震勘探seismic prospecting 地震速度测井seismic velocity logg 地质雷达geological radar电测井electric logging电法勘探electrical prospectin 电阻率测井resistivity logging 反射法勘探reflection survey放射性测井radioactivity logging 放射性勘探radiometric explorati 工程地球物理勘探engineering geophysic 交流电法 A.C.electrical method 井斜测井drift logging卡法-card method跨孔法cross hold method射气测量emanation survey声波勘探sonic prospecting, ac 剩余磁化强度remanent magnetizatio 铁路工程物理勘探规程Code for geophysical 温度测井temperature logging 折射法勘探refraction survey直流电法 D.C.electrical method 重力勘探gravity prospecting,g 自然电场法natural electric fiel 综合物探方法comprehensive geophys 安全等级safety classes材料性能标准值characteristic value 材料性能设计值design value of mater 承载能力极限状态ultimate limit states 分项系数partial coefficient 几何参数标准值nominal value of geom 抗力resistance可靠性reliability可靠指标reliability index设计基准期design reference peri 失效概率probability of struct 铁路隧道设计规范Code for design on tu 正常使用极限状态serviceability limit 作用action作用标准值characteristic value 作用代表值representative value 作用效应effect of actions作用组合combination of action 铁路特殊路基设计规范Code for design on sp出处地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范地下水工程防水技术规范公路钢筋混凝土及预应力混凝土桥涵设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路排水设计规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范公路桥涵施工设计技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑边坡工程技术规范建筑基桩检测技术规范建筑基桩检测技术规范建筑基桩检测技术规范建筑基桩检测技术规范建筑基桩检测技术规范建筑基桩检测技术规范建筑基桩检测技术规范建筑基桩检测技术规范建筑基桩检测技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范锚杆喷射混凝土支护技术规范铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路工程物理勘探规程铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路隧道设计规范铁路特殊路基设计规范。
水利水电工程专业英语英文词汇
水利水电工程专业英语英文词汇strain meter 应变计set out 放线、放样stake-line temperature sensor 温度传感器测桩线state plane coordinate system 国家平面坐标集线站terminal station其他(Others)系survey point 测点check hole 检查孔theoretical point 灌区理论点compartmenttraverse(polygon) 导线(测dense mix 浓浆量)、横断error of traverse 导线闭合差foundation uplift 基础隆起lattice traverse 网格状导线灌浆孔grout holelong side traverse instrument hole 仪器孔长导线open traverse 非闭合primary/secondary and tertiary grout holes 一导线short side traverse 短导线序、二序、三序灌浆孔traverse closure 导线闭合加密灌浆孔距spilt spacingtraverse station 导线点waste mix 弃浆traverse survey 导线测量Survey◆测量()triangulation 测量方法及术语(Methods and Terms)三角测量triangulation network 三角网调整校正adjust 、triangulation of high order 高等级三角网adjustment 平差triangulation point 容许误差allowance 三角点三边测量backsight point 后视点trilateration程控制网basic point 基础点vertical-control net 高bench mark 水准点木桩wood pile Angular Measure)角度测量(compass 罗盘azimuth 方位角chainage(station number) 桩号象限角bearing 方位三角锁chain of triangulation 、器、水准buddle 、check 校核对照气泡圆盘circle 度盘、控制control point 点器圆水坐标点coordinate point 准circular bubbledatum 基础面轴视准collimation axis点基datum point 准十字丝cross-line(cross-hair)偏差depression angle 俯角deviationeasily identifiable point elevation angle 仰角点容易识别eyepiece(ocular) error 误差目镜量field pole(staff) 标杆一等三角测first order triangulationgeodetic foot-screw 学的大地测量脚螺栓量geodetic surveying 大地测水平角horizontal angle量合联测)mark 标志(明joint survey已知点known point 物镜objective lens面水level surface 准垂线铅垂、plumb(plummet)局local triangulation networks 准、观测sight 瞄部三角网准瞄target 国national coordination system 家坐标网目标、监视观测observe 、纬仪theodolite 经point to be located 待定点横轴tranverse axistripod 三脚架置位、定位position踏勘、选点reconnaissance 竖直角vertical angle参考点reference point vertical axis 竖轴量二等三角测second order triangulation Telescope望远镜()1centering 对中reduced level 归化高差run back 返测盘左face leftrun out 往测face right 盘右three-wire leveling 三丝法水准focus 集中、焦点测量地形测量(T opographic Survey focusing 调焦)boundary 边界、界线index error 指标误差inverted position of telescope(reverse construction stake 施工标桩contour 等高线盘右telescope)倒镜、normal position of telescope(direct telescope)contour interval 等高距contouring 绘等高线、正镜盘右contour-length method 光学垂准器等高线延长法optical plummetcontour line 等高线round 测回control network 控制网set 套、组detail 细部、详图station 测站draw 绘图距离测量(Distance Measure)field 外业气barometer 压计fix 固定、确定base line(basic line/datum line) 基线form line 地形图电battery 池EDM(electromagnetic distance measurement) grid 格网information 注记、资料、情报电磁波测距marginal information 轮廓注记滤波器滤光片filter 、large-scale 大比例尺的laser alignment system 激光准直系统latitude 纬度、范围laser beam 激光束latitude circle 纬圈prism 棱镜latitude line range 纬线距离测程、legend 图例long range 远程location 定线、程medium range 中定位longitude 经short range 短程度longitude line 测距仪经线range findermap signal 地图、制图信号mapping 制图、测spring balance 弹簧称图、地质素描match line 拼接线卷尺tapemonument 标石invar tape 铟瓦钢卷尺、石柱object 高程测量(Height Measurement地物、目标)plan 程、高海拔平面图、略图altitude/elevationplot 近似approximate leveling 置绘图粗平平、profile 断面(图)、纵剖图准自动定平水automatic level 仪difference in altitude(difference of record 记录、资料setup 定置elevation ,height difference) 高差仪器site location error of closure in leveling 差合闭准定位水stakeout 放样、定线平置、精平exact leveling 确、立桩symbol 仪(测点)准水level 符号、记号topographic detail 水level circuit 地形细部环合准闭topographic map 地形图尺垫准水level shoe◆原形观测观测仪器和设施线路准水line of level {Instrumentationand Facilities)国national geodetic vertical datum 家大地高air-entraining meter 面准基程掺气剂2Carlson-type piezometer 卡尔逊式渗压计component 零部件coordinator 坐标仪concrete strain meter 砼应变计damping box 阻尼角convergent point 收敛测点differential resistance direct plumb line 正垂线差动电阻double layer rubber sleeve earth pressure cell 土压力盒双层保护forced centering plate 强制embankment piezometer 坝体渗压计对中盘instrument lead 仪器电堤应变计缆embankment strain meter invar wire 铟瓦丝extended wire 引张线metal ring 计金属环foundation piezometer 基础渗压plumb coordinate meter horizontal inclinometer 水平测斜仪垂线坐标仪pulley 滑轮hydraulic instrument 水力学仪器regulator 调节器水听器hydrophoneriser 立管inclinometer casing 测斜管sensor interface joint meter 界面变位传感器计spool inverted plumb line 倒垂线绕轴steel socket 钢micro piezometer 微压计底座tablet 多点位移计药片multiple position extensometertensioning weight 张拉重锤observation point 观测标点thermistor 热敏电observation well 观测井阻tip 测头视optical alignment line 准线安装过程(Procession of Installation)plate strain meter 钢板计assemble 组装pneumatic piezometer 气压式渗压计couple 连接脉动压力pressure fluctuation meter 计prestressed tendon anchorage 埋设embed安装install 索dynamometer 预应力锚测力计绝缘insulate rock bolt extensometer 锚杆测力计维护计single point extensometer 单点位移maintenancespiral sensor 测扭仪监测monitor测压standpipe 管仪器保护protection of instrumentation归纳reduce 强震仪strong-motion seismograghsurface monument 表密封seal 面标点拼接temperature sensor 温度传感器splice提供终端房terminal house supplyterminal station 终端站测试testInformation资料(倾角tilt meter 计)简图计时均压力time average pressure cell assemble schematic 装配合格证书总压力盒total pressure cell certificate书说计velometer 流速使用明descriptionvertical inclinometer 垂直测斜仪维护指南maintenace guideline书震旋式渗压vibrating wire piezometer 计manual 说明振旋式沉降vibrating wire settlement sensor 理工作原operating principle 作仪范围operating restraint 操序procedure 水堰量的带微压weir with micro piezometer 计程程基点工作working base point 序分trouble shooting procedure 鼓掌析zerostress-strain meter 其他(Others)计砼无应力间)Acessories and Spare Parts附件及配件(行annular space 环空coil data acquisition 盘绕数据采集 3cement mark(strength of cement /cement 数据记录datarecordinggrade) 水泥标号leas drilling hole 引线孔consumptive use of water normal consistance 永久记录permanent record 标准稠度用水readout device 读数设备量degree of mobilization 流动性saturated 饱和的dissolution heat ( solution heat ) 溶解热seepage isolation dike 截渗堤final set trapezoidal 梯形终凝flexural strength 抗弯强度◆水工常规试验flyash 粉煤灰砼原材料试验(Test of Raw and Processedhydration heat 水化热Material of Concrete)initial set Aggregate)初凝骨料(abrasion volume by Los Angeles rattler loss on ignition(ignition loss) 烧矢量setting time 凝结时量间洛杉机磨耗silica fume 计accumulated retained percentage 累筛余百硅粉soundness 水泥的安定性分率specific surface area 比表acicular and flaky grain in aggregate 针状与面积specific heat 量片状颗粒含比热water demand ratio 吸水alkali-aggregate reaction 碱骨料反应量比外加剂(Admixture)视密度apparent densitybubble stability 泡沫稳定性bulk density (unity weight) 容重clay lumps and friable particles in aggregate bubbling ability 起泡能力chloride content 氯化物含量块及易碎颗粒含土量黏compressive strength rate 抗压强度比软化系数coefficient of softeningcontract with dry rate crush index 压碎指标干缩率dispersing coefficient 干燥状态dry state 分散系数dispersing ability of waterexceeding and inferior grain in-reducing agent 减水剂aggregate 超逊径颗粒含量分散能力loss of slump 塌落度损失细度模数fineness modulussulphate content 硫酸盐含空隙率量gaping place ratesolid content 分计grader retained percentage 筛余百固体含分率量surface tension 颗粒级grain composition 配表面张力water-reducing rate 减水率粒径grain size水(Water)量lightweight matter in aggregate 轻物质含alkalinity 碱度量云母含mica contentcalcion 含水率钙离子moisture content(water rate)carbonic acid mud content 钙酸含泥量chlorion 有机质含organic content 量氯离子equivalent concentration 骨料潜在活性potential reactivity of aggregate 当量浓度oxygen consumption saturation 饱和的耗氧量normal solution (standard 曲线筛sieving curve 分solution) 量soft grain in aggregate 软弱骨料含标准溶液PH value PH坚固性值soundnesswater analysis 水值面含水率表surface moisture content 分析砼(水溶性硫化物water-soluble sulphide Concrete)砼拌和物(水硬性胶凝材料Mixture(Hydraulicity cementitious )material) assurance strength of concrete 砼保证强度bleeding rate age 泌水率龄期4cement-sand ration 灰砂比砂浆(Cement)cement lime mortar 标号水泥石灰砂浆design strength of concrete 砼设计cement mortar 水泥砂浆flowability of concrete 砼的流动性cement-clay mortar 水泥黏土mix proportion (proportion ofmixture) 砼配合砂浆epoxy mortar 环氧砂浆比lime mortar 石灰砂浆mixture uniformity 拌和物的均匀性plastering mortar 抹面砂浆penetration-obstruction method 贯入阻力法pointing joint mortar probability of ensuring strength of concrete 砼勾缝砂浆土(Soil强度保证率)accumulation curve (cumulative curve) 累砂率sand rate 计曲线单位用水量unit consumption of wateractivity index 活性指标water retention (water retentiveness) 保水性angle of frictionwater-cement ratio 摩擦角水灰比Atterberg limits(water content as limit) Hardened concrete 阿)硬化砼(太堡界限(界限含水量axial tensile strength 轴向抗拉强度)California bearing ratio 导热系数载重比coefficient of thermal conductivitycoarse-grained soil cooling rate 冷却率粗粒土coefficient of compressibility 压缩系数砼芯样core of concrete coefficient of cubical徐变变creep deformation (time deformation )compressibility 体积压缩系数形coefficient of curvature 曲率系数form coefficient(form factor) 形状系数compression 压缩freezing -melting circulation 冻融循环compression index frost-resistance mark 抗冻标号压缩指数compression modulus 压缩模数砼热学性能heat property of concreteconsolidated-undrained (quick) shear test height-diameter ration 高径比固结不排水剪(固结快剪)试验linear expansion coefficient 线膨胀系数consolidated-drained (slow) shear test loss of weight 重量损失固结不排水剪(慢剪)试验自振频率natural frequency consolidation 固结permeate 渗透consolidation coefficient 透permeated height 渗高度固结系数consolidation settlement 固结沉降permeated-resisting mark 抗渗标号consolidation stress 系固结应力透relative coefficient of permeability 相对渗continuous grading/gradation 连接级配数contraction test(shrinkage test) 收缩试验振频率共resonance frequencycore cutter method sample 试环刀法件creep curve self-grown volume deformation(砼)蠕变曲线自生体积critical slope 变形逸出坡降(临界坡降)Darcy's law 达西定律劈裂抗拉强度splitting tensile strengthdegree of consolidation 固结度static compressive modulus of elasticity 静力degree of free swelling 自由膨胀率抗压弹数direct shear test 导温系数直接剪切试验temperature conductivity direct shear test of reiteration 反复直剪强度试抗拉弹性模tensile modulus of elasticity 量验绝热温升thermal insulation warmingdistribution curve 分极限拉应变ultimate tensile strain 布曲线drift soil (shifting soil/mass flow) 极限抗拉强度ultimate tensile strength 流土effective angle of inner friction 有效内摩擦角磨损率wear rate effective strength envelope 有效强度抗冲磨强度wear-resisting strength 包线5expansion force 膨胀力剪(快剪)试验variable head method 变水头法expansion ration(specificexpansion) 膨胀率void(pore) ratio 孔隙比渗流filtering flow(seepage flow)water replacement method 灌水法fine-grained soil 细粒土wet density 湿密度flow net(drift net) 流网其它建筑材料hydraulic slope 水力坡降钢筋(steel hydrometer method 比重计法)bending and unbending 反常水头法复弯曲hydrostatic head methodcold bending test 冷弯试验limit equilibrium state 极限平衡状态elongation test 拉伸试验liquefaction 液化nominal diameter 公称直径liquid limit 液限ratio of elongation liquidity index 液化指标伸长率relaxation test maximum dry density 最大干密度松弛试验steel strand 钢绞线method of sieving 筛分法tensile yield strength 拉伸屈服强度Mohr's stress circle 莫力应力圆ultimate tensile strength 极限抗拉强度库伦破坏Mohr-coulomb failure criteria 莫尔-Wood)准则木材(curshing strength paralled to the normal stress 法向应力(正应力)oedometer curve 顺纹抗压强度grain 压缩曲线tensile strength paralled to the 量optimum moisture content 最优含水顺纹抗拉强度涌piping 管graincrushing strength across th e plastic limit 塑限横纹抗压强度grain plasticity index 塑性指标tensile strength across to the 空隙水压力pore water pressure空隙率porosity 横纹抗拉强度grainprincipal stress 主)沥青(应力Asphalt脆化点试验Proctor compaction test 普氏击实试验brittle temperature test 相对密度relative density 延伸度试验expansion testsand replacement method 灌砂法针入式试验penetration test saturability (saturation degree/percent 软化点试验softening point testtest of aging saturation) 饱和度老化试验viscosity test 饱和容重saturated unit weight 粘滞性试验Quality Management透seepage deformation 渗变形)质量管理(average 力渗seepage force(seepage pressure) 透平均值deviation standard(error of mean 透渗seepage line 线均方差squares) 速度渗seepage speed 透deviationcoefficient(dispersion shear stress 切向应力(剪应力)离差系数缩限shrinkage limit coefficient)断级间skip(gap/jump) grading 配相关系数index of correlation土specific gravity of soil particle 粒比重界限management limit 管理steady seepage field 统计数稳定渗流场mathematic statistics 理maximum 应力路径stress path 最大值值minimum 最线包总强度total strength envelope 小布三轴压缩试验triaxial compression test 正态分normal distributionunconfined compression strength 保证量quality assurance 无侧限抗压质量强度检测质quality examinationunconsolidated undrained test regression curve 不固结不排水回归曲线 6relative dampness 相对湿度mud crack 泥痕rain print 雨痕本容量sample capacity 样orientation of bedrock 岩层产状sampling frequency 取样频率strike specimen 样品走向dip 倾向统计分析statistical analysisangle of dip (dip angle ) 倾角technical specification 技术规范fold technical standard 褶皱技术标准anticline testing circumstance 试验环境背斜syncline 向斜testing error 试验误差Monocline (homocline) 单斜testing regulation 试验规程dome 穹隆析variance analysis 方差分soft stratum ◆地质(Geology)软弱岩层zone of fracture(broken zone ) 破碎带地质年代(Geochronology of Geologicaffected zone Ages)影响带platy structure 板状构造Archaeozoic era (erathem) 太古代(界)解理cleavage Proterozoic era (erathem) 元古代(界)fracture(rupture) 断裂古生代(界)Palaeozoic era (erathem)fissure(crack/fracture) 裂隙Mesozoic era (erathem) 中生代(界))岩石类型(Rock typeCenozoic era (erathem) 新生代(界)岩石学petrology Sinian period (system) 震旦纪(系)岩igneous rock 火成寒武纪(系)Cambrian period (system)Ordovician period (system) 奥陶纪(系)岩浆岩magmatic rock火山岩lava(vocanic rock) 志留纪(系)Silurian period (system) 侵入岩intrusive (invade) rock Devonian period (system) 泥盘纪(系)成石碳纪(系)Carboniferous period (system) 岩effusive rock 深成岩pypabussal rock 二叠纪(系)Permian period (system) 浅三叠纪(系)acid rock 酸性岩Triassic period (system) 侏罗纪(系)Jurassic period (system) 中性岩inter-mediate rock基性岩basic rock Cretaceous period (system) 白垩纪(系)第Tertiary period (system) 三纪(系)超基性岩ultrabasic rock 第Quaternary period (system) 四纪(系)花岗岩granite斑岩Geologic Structural地质构造()porphyryrhyolite 玢岩断层faultsyenite normal fault 正断层流纹岩逆断层reversed fault trachyte 粗面岩diorite parallel fault 平移断层闪长岩andesite 安山岩断层泥gouge擦痕stria 辉长岩gabbrojoint 理节玄武岩basaltprimary joint 理原生节细晶岩aplitesecondary joint 理次生节pegmatite 伟晶岩tension joint lamprophyre 煌斑岩理张节diabase 理卸荷节unloading joint 辉绿岩理片schistosity 橄榄岩dunite理层bedding pumice 浮岩)理(叶理板foliation 沉积岩sedimentary rock波痕ripple mark clastic rock 碎屑岩7clay rock 黏土岩quartz 石英topaz 黄玉chemical rock 化学岩corundum 刚玉biolith 生物岩diamand 金刚石砾岩conglomerate。
建筑设计:水利水电工程专业(水文与水资源篇)中英文对照翻译
水利水电工程专业〔水文与水资源篇〕中英文对照翻译水利水电工程专业〔水文与水资源篇〕中英文对照翻译1. Hydrological Cycle and BudgetHydrology is an earth science. It encompasses the occurrence, distribution, movement, and properties of the waters of the earth and theirenvironmental relations. Closely allied fields include geology, climatology, meteorology and oceanography.水文学是一门地球科学。
它包含地球水资源的发生、分布、运动和特质,以及其环境关系。
与之密切相关领域包括地质学,气候学,气象学和海洋学。
The hydrologic cycle is a continuous process by which water is transported from the oceans to the atmosphere to the land and back to the sea. Manysub-cycles exist. The evaporation of inland water and its subsequent precipitation over land before returning to the ocean is one example. The driving force for the global water transport system is provided by the sun, which furnishes the energy required for evaporation. Note that the water quality also changes during passage through the cycle; for example, sea water is converted to fresh water through evaporation.水文循环是一个连续的过程,在这个过程中水从海洋被运输到大气中,降落到陆地,然后回到海洋。
水利水电工程专业英语
Specialized EnglishforGraduates of 2011Contents1 HYDROPOWER PLANT (1)1.1 Hydropower (1)1.2 Advantages of Hydropower (1)1.3 Disadvantage of a Hydroplant (2)1.4 Multi-Purpose Uses (2)1.4.1 Irrigation (2)1.4.2 Flood control (2)1.4.3 Navigation (2)1.4.4 Recreation (2)1.4.5 Fish Breeding (3)1.5 Typical Components of a Hydroelectric Plant (3)1.5.1 Dam or Barrage (3)1.5.2 Water-Conduit System (3)1.5.3 Power House (3)1.5.4 Tail Race (3)1.5.5 Electrical Power Transmission (4)1.6 Classification of Hydroelectric Plants (4)1.6.1 Base-Load and Peak-Load Plants (4)1.6.2 Plants can also be classified as follows: (4)1.6.3 Classification on the Basis of Available Heads (7)2 HYDRAULIC TURBINES (10)2.1 Introduction (10)2.1.1 Sub-systems of a Water Turbine (10)2.2 Classification of Water Turbines (10)2.3 Pelton Turbine (12)2.3.1 Injector (12)2.3.2 Runner (12)2.3.3 Number of Nozzles (13)2.3.4 Distributor (14)2.3.5 Casing (15)2.3.6 Jet Brake (16)2.3.7 Tail Water Depressor System (16)2.4 Francis Turbine (17)2.4.1 Main Components (18)2.4.2 Scroll Case (18)2.4.3 Stay Vanes Ring (18)2.4.4 Guide Vanes Mechanism (19)2.4.5 Runner (19)2.4.6 Draft Tube (21)2.4.7 Head Cover (22)2.4.8 Bottom Ring (22)2.4.9 Shaft (23)2.4.10 Turbine Pit Liner (23)2.4.11 Dewatering of Turbine (23)2.5 Propeller and Kaplan Turbine (23)2.5.1 Introduction (23)2.5.2 Improvement in Efficiency (24)2.5.3 Main Components of the Runner (24)2.5.4 Location of Servomotor (26)2.5.5 Scroll Case (26)2.5.6 Automatic Air Valves (27)2.5.7 Shaft of the Hydrounit (27)2.5.8 Over-speed Protective Devices (27)2.6 Deriaz Turbine (27)2.6.1 Introduction (27)2.6.2 Servomotor (29)3 HVAC (30)3.1 Background (30)3.2 Heating (31)3.3 Ventilation (33)3.3.1 Mechanical or forced ventilation (33)3.3.2 Natural ventilation (34)3.3.3 Airborne Illnesses (34)3.4 Air conditioning (34)3.5 Energy efficiency (36)3.5.1 Heating energy (36)3.5.2 Geothermal Heat Pump (37)3.5.3 Ventilation Energy recovery (37)3.5.4 Air conditioning energy (37)3.6 Air Filtration and Cleaning (37)3.6.1 Clean Air Delivery Rate and Filter Performance (38)3.7 HVAC industry and standards (38)3.7.1 International (38)3.7.2 North America (USA) (38)3.7.3 Europe (United Kingdom) (39)3.7.4 Australia (40)3.7.5 Asia (India) (40)1 HYDROPOWER PLANT1.1 HydropowerIt is the power generated by using water as the energy-supplying agent. In this case, water is allowed to flow from a higher level to a lower level through a turbine where the potential energy of water is converted into kinetic energy and the turbine, in turn, rotates a generator to produce electricity.Hydropower generation depends upon the availability of rainwater. Clouds are formed because of the heating of seawater by the sun. They move towards the land, where low-pressure zones are formed and as they get cooled, moisture starts precipitating. The rainwater starts moving towards lower levels becauseof gravity, through a system of natural drains consisting of nullahs, rivulets, rivers and so on. This water can be stored in reservoirs created on the rivers, by construction of dams and can be used to generate power. After generation, the water is let out into the river and gradually travels further and ultimately reaches the sea. Here it is heated up by the sun to start the next cycle. Therefore, hydropower is nothing but conversion of solar energy into electricity through a circuitous route.1.2 Advantages of HydropowerHydropower generation is non-wasting self-replenishing and non-polluting.It is a physical phenomenon and no chemical change is involved. Water come out unchanged from the turbine after imparting its energy and can be used again either for power generation or for irrigation. In fact, this is done in multi-purpose river-valley schemes like the Chambal Valley development in India and the Tennessee Valley development in U.S.A. In the case of the Chambal Valley development, power is generated with the help of the same water in three powerhouses, situated one after another on the river, before being released into irrigation canals. As against this, coal, oil or nuclear fuel can only be used once.The supply of water is automatic and the water utilized in one season is replenished by nature in the next season. The water reaches the powerhouse site on its own-no mining operations and transportation are involved as in the case of coal or oil.Waterpower is clean as it does not produce any pollutants, whereas in the case of thermal or nuclear power generation pollution is inevitable, as toxic by-products are emitted.The hydropower plants have very high efficiencies. The turbine efficiency is above 90 percent and the overall efficiency can be above 80 percent which is much higher than that of thermal plants. The hydro-plants are long lasting and many plants are still in service even 40 years after commissioning. The percentage of outages is very low, as shutdowns for repairs and maintenance are fewer. The plants are available for instant loading and a set can start taking full load within five minutes, starting from the standstill position, whereas thermal plants may take about five to six hours.1.3 Disadvantage of a HydroplantThe initial investments are very heavy and the specific cost is high compared to a thermal plant. The time needed for construction is quite long and it affects the economy adversely as returns start flowing in late. When a lake is formed, land submergence creates its own problem.As the availability of water varies from year to year, in low rainfall years the plant capacity is under-utilized.Anyway the advantages far outweigh the disadvantages.1.4 Multi-Purpose UsesAs already started earlier, a number of additional benefits can be obtained from water stored besides generating power, such as irrigation, flood control, navigation and so on. The multi-purpose use of water gives much better returns on investment and there is marked improvement in the cost-benefit ratio.1.4.1 IrrigationThe water being discharged from a powerhouse can be fed into a canal network to provide irrigation facilities to land situated down stream. As a matter of fact, in many multi-purpose projects in India, water is stored predominantly for irrigation purposes with power generation playing a secondary role.1.4.2 Flood controlCreation of lake on a river has the inherent possibilities of flood moderation. The flood waters may be fully or partly absorbed in the lake and only regulated quantities of water are allowed to pass downstream, protecting the lower areas from floods. This aspect assumes great importance in the case of rivers, which go on devastating large tracts of fertile land and valuable property year after year.1.4.3 NavigationThe formation of storage reservoir increasesthe normal water level in a river. Many pools and shallow stretches of the river get submerged underwater and a sufficient depth of water becomes available for ship to navigate these stretches. Thus facilitates economic transport of cargo and passengers.The multi-purpose development of the river Danube in Europe is a typical example of combining navigation with power generation. It 'li s nking up with the river Rhine has allowed the ships to pass from the North Sea to the Black Sea. Barrages have been constructed at a number of points in the river increasing the upstream water levels and power is being generated at these places. The only additional construction needed is to provide navigational locks at the sites of the barrage for the uninterrupted movement of a ship.1.4.4 RecreationCreation a reservoir of water considerably enhances the beauty and charm of surrounding areas and tourist resorts and picnic spots are being developed in these areas.1.4.5 Fish BreedingIt can take place on a large scale and fish can be made available economically to the populati on liv ing in the n eighbori ng areas.1.5 Typical Components of a Hydroelectric PlantThe mai n comp onents are (Fig.1.1): (i) The dam, (ii) The water-c on duit system, (iii) The powerhouse, (iv) The tail-water system, (v) The switchyard, and (vi) The transmission lin es.1.5.1 Dam or BarrageA dam or a barrage is con structed on the river course result ing in an in crease in the upstream water level because of the formatio n of a reservoir whose storage capacity is decided by the water requireme nt for power gen erati on.1.5.2 Water-Conduit SystemWater-c on duit system carries water from the reservoir to the power stati on .It may con sist of a pressure tunnel an d/or pipes called pen stocks which may be laid above ground or un dergro und. One pen stock may feed a nu mber of turb in es, where a nu mber of bran ches have to take off. Flow-c on trol valves may be provided before water is admitted to the turb in es. A surge tank is occasi on ally provided to restrict the effects of water hammer.Fig.1.1 Typical layout of a high head hydroelectric pla nt1.5.3 Power HouseThe powerhouse accommodates the turb ines and gen erators, the con trol equipme nt and in some cases the tran sformers. Its locatio n can be either at the surface or un dergro und and it may be away from, at the foot of, or in the body of, the dam.1.5.4 Tail RaceThe water, after pass ing through the turb in e, is discharged into the tailrace which, in tur n, carries it to a river.The tailrace can be an ope n cha nnel as in the case of a surface powerhouse, or a tunnel as in the case of an underground powerhouse. The discharge from all the turbines is collected in the tail race at its beginning by means of branch channels. The tailrace may discharge into the original river itself or, in rare cases, some other river when there is an inter-basin transfer of water.1.5.5 Electrical Power TransmissionThe electrical power generated by the generators is fed to the step-up transformers by means of cables as the generating voltage may be much less than the transmission voltage. The power is then supplied to the transmission network via a switchyard where the switchingand protective equipment is installed. The switchyard is located within a short distance of the powerhouse.Transmission lines take off in different directions to supply power to the consumers.In the case of combined hydropower and irrigation multi-purpose projects, a canal network is established downstream of dam.1.6 Classification of Hydroelectric PlantsThey can be classified on the basis of the operating heads, the output or some other important features, such as the nature of duty.1.6.1 Base-Load and Peak-Load PlantsEvery hydro-plant is an individual entity and no two plants are identical as regards the head, availability of power and so on. A hydro-plant works as a base-load plant if there is continuous power generation. This is especially the case if the flow through the river has to be maintained constant for meeting the irrigation or navigation requirements.If the conditions prevailing at the power station permit regulated releases, the plant can be used to generate peak power. For example, the Roseland plant (France) is designed to meet the peak winter demand from water largely stored during the summer period.1.6.2 Plants can also be classified as follows:(a) Conventional hydro-plants with valley storage.(b) Run-of-the-river plants.(c) Diversion type of plants.(d) Pumped storage plants.(e) Tidal-power plants.Valley storage plantsIn the case of conventional hydro-plants, a reservoir has to be created on the river to store sufficient rainwater, for power generation throughout the year by construction of a dam. These types of plants are sub-divided into high-head plants, medium-head plants, and low-head plants (Fig.1.2).It is difficult to lay down exact ranges. However, the following limits are recommended (they are arbitrary and are as good as any other arbitrary ranges recommended):(i) High-head pla nts - hav ing heads of more tha n 250 m.(ii) Medium-head pla nts - hav ing heads betwee n 50 m and 250 m.(iii) Low-head pla nts - hav ing heads less tha n 50 m.Fig.1.2 The Geheya n valley storage pla nt (Chi na)Today, the plant capacities range from a few hundred kilowatts to thousands of megawatts with in dividual unit capacities ranging from few hun dred kW to 700,000 kW and it is rather difficult to classify the plants on capacity basis.Run-of-the-river plantsFig.1.3 Chief Joseph Dam n ear Bridgeport, Wash ington, USA, is a major run-o f-the-riverstati on without a sizeable reservoirThese pla nts gen erate power on rivers with a con ti nu ous flow throughout the year with minor seasonal variations. Such conditions prevail mainly in colder countries but rarely in tropical regions. The storage needed is minor and can be created by building a barrage across the river, which raises the water level creat ing some head for power gen erati on. The site chosen should be on a stable reach of the river with stable bed and banks. The maximum flood an ticipated should have a low value and water should not carry muchsedime nt. Creati ng a small pool does not create problems of land acquisiti on and does not substantially alter the original topography along the banks of the river as submergence is low. This pool may also be useful for n avigati on (Fig.1.3).Such pla nts are quite popular in Europe. A cha in of such pla nts have bee n con structed on the Danube to fully utilize its power and navigation potential.Diversion Canal PlantsThese diversi on type of pla nts can gen erate power, tak ing adva ntage of the level differe nce on a curved mean deri ng stretch of a river with a steep bed-slope.A divers ion canal with a flat slope in which the flow from the river is diverted takes off from the higher reaches of the main river. A weir is constructed at the end of the canal to create a small pool of water, called the forebay. The water from the forebay is fed by means of the pen stocks to the powerhouse situated in the low reach of the river (Fig.1.4).Pumped Storage Plants A pumped-storage pla nt uses two reservoirs, one located at a much higher elevati on tha n the other. During periods of low dema nd for electricity, such as ni ghts and weeke nds, en ergy is stored by revers ing the turb in es a nd pump ing water from the lower to the upper reservoir. The stored water can later be released to turn the turb ines and gen erate electricity as it flows back into the lower reservoir.* ju IntakeFig.1.4 Diversio n hydropower plantThese are peak load pla nts where water is pumped up to a higher level duri ng off peak periods to gen erate peak power duri ng the high dema nd period.Gantry CraneRepEbM F^jmp-turbrieFig.1.5 Pumped storage pla ntTidal Power PlantsThese depend on tides for generating power. This source is unconventional and a lot of importa nee is being give n to this type of pla nt.1.6.3 Classification on the Basis of Available HeadsThere are various classificati ons of hydroelectric power pla nts. Based on the total head of water available the hydroelectric power pla nts are classified in to three types: low head hydroelectric power plants, medium head hydroelectric power plants, and high head hydroelectrci power pla nts.163.1 Low head hydroelectric power plantsFig.1.6 Cross-sectio n of a typical low head pla ntThe low head hydroelectric power plants are the ones in which the available water head is less than 30 meters. The dam in this type of power plants is of very small head may be eve n of few meters only. In certa in cases weir is used and in other cases there is no dam at all and merely flowing water in the river is used for generation of electricity. The low head types of hydroelectric power pla nts cannot store water and electricity is produced only when sufficient flow of water is available in the river. Thus they produce electricity only duri ng particular seas ons whe n abundant flow of water is available. Since the head of water is very small in these hydroelectric power plants, they have lesser power produci ngcapacity .In such pla nts Fran cis, Propeller or Kapla n types of turb ines are used. Also no surge tank is required.163.2 Medium head hydroelectric power plantsThe hydroelectric power plants in which the working head of water is more than 30 meters but less tha n 300 meters are called medium head hydroelectric power pla nts. These hydroelectric power pla nt are usually located in the mountainous regi ons where the rivers flows at high heights, thus obtaining the high head of the water in dam becomes possible. In medium head hydroelectric plants dams are constructed behind which there can be large reservoir of water. Water from the reservoir can be take n to the power gen erati on system where electricity is gen erated. The turb ines used are Fran cis type of the steel en cased variety.Fig.1.7 Cross-sectio n of a typical medium head pla nt1.6.3.3 High head hydroelectric power plantsIn the high head hydroelectric power plants the head of water available for producing electricity is more than 300 meters and it can extend even up to 1000 meters. These are the most commonly constructed hydroelectric power plants. In the high head hydroelectric power pla nts huge dams are con structed across the rivers. There is large reservoir of water in the dams that can store water at very high heads. Water is mainly stored duri ng the rainy seas onsand it can be used throughout the year. Thus the high head hydroelectric power pla nts can gen erate electricity throughout the year. The high head hydroelectric power pla nts are very importa nt in the n ati onal grid because they can be adjusted easily to produce the power as per the required loads.Whe n con struct ing the high head types of hydroelectric power pla nts a nu mber of factors especially those related to the environment and natural ecosystem of the land and water should be con sidered. The total height of the dam depe nds upon a nu mber of factors like qua ntity of available water, power to be gen erated, surro unding areas, n atural ecosystem etc.Mainly in these plants pressure tunnel is provided before the surge tank, which in turn conn ected to pen stock. A pressure tunnel is take n off from the reservoir and water brought to the valve house (not show n in picture) at the start of the pen stocks. The pen stocks are huge steel pipes which take large qua ntity of water from the valve house to the power house. The valve house contains main sluice gates and in additi on automatic isolati ng valves which come into operati on whe n the pen stock bursts, cutt ing further supply of water. Surge tank is an ope n tank and is built just in betwee n the begi nning of the pen stocks and the valve house. In abse nee of surge tank, the water hammer can damage thefixed gates. Normally the high head pla nts are 500 meters above and for heads above 500 meters Pelt on wheels are used.Fig.1.8 Cross-secti on of a typical high head pla nt2 HYDRAULIC TURBINES2.1 IntroductionHydraulic turbines are machines which convert water energy into mechanical energy. So they can be considered as motors run by water. Water stored in a reservoir at higher level flows through the turbine to the tail race channel situated at a lower level imparting potential energy to the turbine.The theoretical foundations of the modern turbine were laid by Euler. The first practical turbines were made by Fourneyron and Bourdin. Forneyron installed a 40 H.P. turbine at St. Blassius, France in 1835. Other prominent names in the field are Pelton, Francis and Kaplan. The impulse turbine is named after Pelton who contributed a lot to its development. The mixed flow reaction turbine is named after Francis, who built the first well designed unit in 1849. The movable blade propeller type turbine is named after Kaplan.The function of a water turbine is to rotate the generator coupled to it to produce electricity. The conversion of energy to the electrical form is necessary because electrical energy can be transmitted over long distances with proportionately very small losses compared to mechanical or hydraulic energy.2.1.1 Sub-systems of a Water TurbineEssentially any water turbine must have the following sub-systems:(i) Guide passages to admit water to the rotating element with minimum loss of energy. (ii) A governing mechanism to instantaneously adjust the quantity of water being admitted, to match the load fluctuations.(iii) A rotating element or a runner where the conversion of energy takes place. A torque is developed which rotates the generator coupled to the turbine.(iv) Passages to lead the water out of the turbine body.In the case of water turbines, the density remains constant while water is passing through all above stages. In steam turbines and gas turbines the density varies. Hence their construction differs materially from water turbines.2.2 Classification of Water TurbinesThe water turbines are divided into two main categories: the impulse type and reaction type (Fig.2.1). In the impulse type, water flows out of a nozzle in the form of a jet such that all the pressure energy is converted into kinetic energy. This jet hits one of a series buckets mounted on a runner. Because of the impact, the runner is rotated about the axis. Therefore the turbine is called the impulse turbine. The water comes out of the nozzle at atmospheric pressure. Hence the pressure throughout the turbine is atmospheric, i.e., constant. Therefore the turbine is also called a constant pressure turbine.bucketstationarynozzleFig.2.1 Prin ciple of the basic impulse turbi ne (left) and react ion turbi ne (right)The reacti on type of turb ine works on the prin ciple of react ion. Water en ters the turbi ne at high pressure and low velocity in the guide passage. Some pressure energy is conv erted in to kin etic en ergy and water the n en ters the runner (rotor) and pressure en ergy is successively con verted into kin etic en ergy. As the water flow ing through the runner is accelerated, it creates a reaction on the runner vane and the runner is rotated (Fig.2.2). As the static fluid pressure acts on both sides the vane, it does not do any work. Work is en tirely done due to con vers ion of en ergy into kin etic form. It is to be no ted that relative velocity goes on in creas ing from inlet to outlet though the absolute velocity decreases. In a reaction turbine water is under pressure and the turbine is filled with water when work ing. Therefore, the turb ine must be en closed in a cas ing which should be able to withstand the pressure. In the case of an impulse turbine, the casing protects the runner and does not allow the water to splash out. It does not serve any hydraulic function. In a reaction turbine, water can be admitted all over the runner at one time. Therefore, it is sometimes called a full admissi on turb ine.Fluid inletFig.2.2 Francis turbi ne (react ion type)Only three turb ines have served the test of time. They are Pelt on turb ines of the impulse type and Francis and Kapla n turb ines of the react ion type.Therefore, these three will be discussed in some detail. Rece ntly, ano ther type of turb ine known as Deriaz turb ine or diag onal flow turb ine has bee n developed which is a cross between a Francis turbine and a Kaplan turbine.2.3 Pelton TurbineThe Pelt on turbi ne (Fig.2.3) is an impulse type of turb in e. It was n amed after L.A.Pelo n (1829-1908) who in 1880, patented and improved the form of impulse wheels. In impulse turbine, water flows out of a nozzle in the form of a jet in the atmosphere, converting hydraulic energy into kinetic energy. The jet delivers an impact to one of a series of blades mounted on the runner, which starts rotating. As the pressure is atmospheric and constant, this turbine is also called constant pressure turbine. This turbine is essentially a high head turb ine and is curre ntly being used for a head range of 300 m to 1800 m. The specific speed range is from Ns=4 to Ns=70.The turb ine esse ntially con sists of three comp onen ts: (i) the in jector (ii) the runner and (iii) the cas ing.2.3.1 InjectorThe fun cti on of the injector are (a) to direct the water received from the pen stock at the proper an gle on the runner (b) to vary the quality of water to suit in sta ntan eousload con diti ons, thereby gover ning the turb ine.The injectors are located either at the end of a bend fitted to the pen stock of in the case of multi-nozzle turbines, or at the end of the distribution branches.The injector consists of (a) a nozzle (b) a spear rod also called a needle and (c) a deflector. The spear rod slides coaxially in the nozzle. Its movement controls the area of the nozzle opening and therefore the quantity of water being admitted to the runner.Fig.2.3 Cross sect ion of a Pelt on turb ine2.3.2 RunnerThis consists of a cylindrical disc with the blades mounted on its periphery (Fig.2.4).The blades, also called buckets, look like twin hemi-ellipsoided cups joined in the middle by means of a ridge. This shape is give n to obta in maximum efficie ncy con diti ons. The jet of water enters the bucket in the center, bifurcates into two portions and travels over the bucket and leaves at the outlet tips. This bifurcation counter balances any axial thrust developed.Fig.2.4 An in tegrally cast Pelt on turbi ne runnerThe jet is deflected at an an gle of 168o to 176o, such that it just clears the back of the succeed ing bucket.For the most efficient conditions, the jet should hit the bucket perpendicularly. But this is not always possible as each bucket intercepts the jet at an angle of 2 n/n (where n = nu mber of buckets). For the jet to hit the bucket perpe ndicularly for the maximum time, the buckets are inclined backwards to the radius, the inclination varying from 10to 18oA notch is provided at the tip of the bucket, so that the succeeding bucket does not interfere with the jet hitting the previous bucket.The nu mber of bucket is decided by two con diti ons:(i) The nu mber must be adequate to the in tercept the jet at all times and no water should go to the tail race directly without imparting energy to the runner.(ii) The nu mber of buckets provided curre ntly varies from 18 to 24, though the extreme limits may be from 14 to 30.2.3.3 Number of NozzlesThe Pelt on turb in e can have either a horiz on tal axis or a vertical axis layout. If the axis is horizontal, the runner can be fed either by one nozzle or by two nozzles (Fig.2.4). Sometimes the turbi ne may have twin runners placed side by side or alter natively, the gen erator may be drive n by two turb ines placed on either side.In the vertical shaft disposition, there is only one runner, the number of nozzles varying from 2 to 6, though most of the turb ines have either 4 or 6 no zzles (Fig.2.5).Fig.2.5 Distributor of a six no zzle Pelt on turbi ne2.3.4 DistributorTo feed water to these no zzles a distributor is provided which a pipe attached to the end of pen stock. For a two-no zzle horiz on tal shaft layout, the distributor is Y-shaped with bends being attached to the two arms of the bifurcate for mounting of the injectors (Fig.2.6). The angle of the Y varies between 70cTo 90oFig.2.6 A two-no zzle horiz on tal shaft layout with Y-shaped distributorFor the vertical shaft layout, the simplest type of distributor consists of annular pipe starti ng from the pen stock with successively decreas ing cross-sectio nal area and with a runner of arms project ing in side for fitti ng of the no zzles (Fig.2.5).。
水利水电工程专业英语段翻译
•Owing to the fact that electricity can be transmitted from where it is generated to where it is needed by means of power lines and transformers, large power stations can be built in remote places far from industrial centers or large cities, as is cited the case with hydroelectric power stations that are inseparable from water sources.•由于电力可以从发电的地方通过电线和变压器输送到需要用电的地方,因此大型电站可以建在远离工业中心或大城市的地方,离不开水源的水力发电站就常常是这样建立的。
Ideally suited to narrow canyon s composed of rock, the arch dam provides an economical and efficient structure to control the stream flow. The load-carrying capacity of an arch damenables the designer to conserve material and still maintain an extremely safe structure.•拱坝最适合于修建在岩石峡谷中,它是一种控制河道中水流经济而有效的建筑物。
一座拱坝的承载能力足以使设计人员用较少的材料而仍能建成极为安全的结构。
•The general theory of arch dam design is comparatively new and changing rapidly as more information is obtained. Engineers have cautiously applied mathematical theory, the law of mechanics, and theories of elasticity to reduce the thickness of arch dams and gain substantial economies.•拱坝的一般设计理论比较新颖,同时在获得更多的资料之后,理论的变化也很迅速。
水利水电工程专业外文翻译、英汉互译、中英对照
水利水电工程专业外文翻译、英汉互译、中英对照毕业设计,论文,外文翻译题目姚家河水电站溢流坝及消能工优化设计专业水利水电工程使用CFD模型分析规模和粗糙度对反弧泄洪洞的影响12 作者 Dae Geun Kimand Jae Hyun Park摘要在这项研究中,利用CFD模型、FLOW-3D模型详细调查流量特性如流量、水面、反弧溢洪道上的峰值压力,并考虑到模型规模和表面粗糙度对速度和压力的垂直分布特征的影响,因此,在领域中被广泛验证和使用。
由于表面粗糙度数值的误差是微不足道的,对于流量,水面平稳,波峰压力影响较小。
但是我们只是使用长度比例小于100或200在可接受的误差范围的建筑材料一般粗糙度高度和规模效应的模型,最大速度在垂直的坐标堰发生更严重的粗糙度和规模效应。
原型的速度比缩尺比模型的更大,但现却相反1的。
在任何一节的最大速度略有降低或者表面粗糙度和长度的比例增加。
最大速度出现在上游水头的增加几乎呈线性增加溢洪道前的距离和位置较低的垂直位置位上。
关键词:FLOW-3D,反弧溢洪道,粗糙度效应,规模效应1.简介工程师在大多数情况下都选着设计建造具有过流高效、安全地反弧溢洪道,并且它在使用过程中具有良好的测量能力。
反弧溢洪道的形状是从较高顶堰的直线段流到半径R的网弧形段,在反弧附近的大气压力超过设计水头。
在低于设计水头时波峰阻力减少。
在高水头的时候,顶堰的大气压较高产生负压使水流变得更缓。
虽然这是关于一般反弧从上游流量条件下的变化、修改的波峰形状或改变航的形状和其流动特性的理解,但是道由于局部几何性质等的标准设计参数的偏差都会改变的水流的流动性,影响的分析结果。
物理模型被广泛的用来确定溢洪道非常重要的大坝安全。
物理模型的缺点是成本高,它可能需要相当长的时间得到的结果。
此外,由于规模效应的误差的严重程度增加原型模型的大小比例。
因此在指导以正确的模型细节时,计算成本相对较低物理建模、数值模拟,即使它不能被用于为最终确定的设计也是非常宝贵的资料。
水电工程英语学习和翻译
但一定要想办法验证。对于猜测出来的术语,都应到专业网站上去查实后才会采用。
如电气词汇,可上国际电工协会的文章里核对;水电的词汇,可上美国陆军工程师团 的文章里核对。术语选择时,最忌望文生义。如在翻译一篇风电文章时,有译者将 “风机”不假思索地翻译成“fan”,实际上应翻译成”wind turbine”,它们可是完全
damheightdambase2水电站工程特性hydropowerprojectcharacteristics主要建筑物mainstructures泄水建筑物waterreleasestructures溢洪道spillway溢流表孔surfacebay泄水孔outlethighleveloutlet底孔lowlevelbottomoutlet泄洪洞floodtunnel堰顶高程weircrestelevation消能方式energydissipationmodehydraulicjumpskijumpstillingbasinapron2水电站工程特性hydropowerprojectcharacteristics主要建筑物mainstructures输水建筑物waterconveyancestructures发电进水口powerintake引水道headrace有压无压隧洞pressurefreeflowtunnel压力管道pressureconduit压力钢管penstock岔管bifurcation支管branch调压井surgeshaftchamber尾水道tailrace尾水隧洞tailracetunnel消能方式energydissipationmodehydraulicjumpskijumpstillingbasinapron2水电站工程特性hydropowerprojectcharacteristics主要建筑物mainstructures通航过木过鱼设施navigationstructureslogpassfishpass船闸五级船闸shiplockfiveflightshiplock垂直升船机shiplift过木设施logpass过鱼设施fishpassfishway鱼梯fishladder设计年运输能力designannualshippingcapacity2水电站工程特性hydropowerprojectcharacteristics机电设备electromechanicalequipment水轮发电机组turbinegeneratorunits混流式francis轴流式kaplan冲击式pelton灯泡式bulb水轮机参数turbineparameters型号type额定出力转速水头流量ratedoutputspeedheadflow吸出高度suctionheight安装高程setti
水利水电工程专业外文翻译--边坡稳定性
外文翻译Stability of Slopes1.1 Introduction Gravitational and seepage forces tend to cause instability in natural slopes, in slopes of embankments and earth dams. The most important types of slope failure arc illustrated in Fig.1.1. In rotational slips the shape of the failure surface in section may be a circular are or a non-circular curve. In general, circular slips are associated with homogeneous soil conditions and non-circular slips with non- homogeneous conditions. Translational and compound slips occur where the form of failure surface is influenced by the presence of an adjacent stratum is at a relatively shallow depth bellow the surface of the slope: the failure surface tends to be plane and roughly parallel to the slope. Compound slips usually occur where the adjacent stratum is at greater depth, the failure surface consisting of curved and plane sections.Figure 1.1 Type of slope failureIn practice, limiting equilibrium methods are used in the analysis of slope stability. It is considered that failure is on the point of occurring along an assumed or a known failure surface. The shear strength required to maintain a condition of the limiting equilibrium is compared with the available shear strength of the soil, giving the average factor safety along the failure surface. The problem is considered in two dimensions, conditions of plane strain being assumed. It has been shown that two-dimensional analysis gives a conservative result for a failure on a three-dimensional (dish-shaped) surface.Figure 1. 2 The φu =0 analysis1.2 Analysis for the Case of φu =0The analysis, in term of total stress ,covers the case of a fully-saturated clay under undrained conditions, i.e. for the condition immediately after construction. Only moment equilibrium is considered in the analysis. In section, the potential failure surface is assumed to be a circle arc. A trial failure surface (centre O, radius and length L a ) is shown in Fig 1.2.Potential instability is due to the total weight of the soil mass(W per unit length) above the failure surface. For equilibrium the shear strength which must be mobilized along the failure surface is expressed as: τm =f F τ=Cu Fwhere F is the factor of safety with respect to shear strength. Equation momentabout O:Wd=Cu FL a r F=u a C L r Wd (1.1) The moments of any additional forces must be taken into account. In the event of a tension crack developing, as shown in Fig1.2,the arc length L a is shortened and a hydrostatic force will act normal to the crack if the crack fills with water. It is necessary to analyze the slope for a number of trial failure surfaces in order that the minimum factor of safety can be determined.Example 1.1A 45°slope is excavated to a depth of 8m in a deep layer of unit weight 19kN/m 3: the relevant shear strength parameters are c u =65kN/m 3 and φu =0.Determine the factor of safety for the trial surface specified in Fig1.3.In Fig1.3, the cross-sectional area ABCD is 70m 2.The weight of the soil mass=70×19=1330m 2.The cent roid of ABCD is 4.5m from O.The angle AOC is 89.5°and radius OC is 12.1m.The arc length ABC is calculated as 18.9m.The factor of safety is given by:F=u a C L r Wd=6518.912.11330 4.5⨯⨯⨯6518.912.11330 4.5⨯⨯⨯ =2.48This is the factor of safety for the trial failure surface selected and is not necessarily the minimum factor of safety.Figure 1.3 example 1.11.3 The φ-Circle MethodThe analysis is in terms of total stress. A trial failure surface , a circular arc (centre o, radius r) is selected as shown in Fig 1.4.If the shear strength parameters are c u and φu ,the shear strength which must be mobilized for equilibrium is:τm =f Fτ=l ∑ =c m +tan m σφ Figure 1.4 The φ-circle methodWhere F is the factor of safety with respect to shear strength .For convenience the following notation is introduced:c m =u cc F (1.2) tan m φ=tan u F φφ (1.3) it being a requirement that:F C =F φ=FAn element ab, of length l, of the failure surface is considered, the element being short enough to be approximated to a straight line. The forces acting on ab (per unit dimension normal to the section) are as follows:(1) the total normal force 1σ;(2) the component of shearing resistance c m l;(3) the component of shearing resistance 1σtan m φ.If each force c m l along the failure surface is split into components perpendicular and parallel to the chord AB, the perpendicular components sum to zero and the sum of the parallel components is given by:C=c m L c (1.4) where L c is the chord length AB. The force C is thus the resultant, acting parallel to the chord c m l. The line of application of the resultant force C can be determined by taking moments about the centre O, then:C r c =r m c l ∑i.e.c m L c r c =rc m L awhere La=l ∑ is the arc length AB.Thus,r c =a CL L r (1.5) The resultant of the forces 1σ and 1σtan m φ on the element ab acts at angle m φ to the normal and is the force tangential to a circle, centre O, of radius r sin m φ: this circle is referred to as the φ-circle. The same technique was used in Chapter 5.The overallresult (R) for the arc AB is assumed to be tangential to the φ-circle. Strictly, the resultant R is tangential to a circle of radius slightly greater than r sin m φ but the error involved in the above assumption is generally insignificant.The soil mass above the trial failure surface is in equilibrium under its totalweight (W) and the shear resultants C and R. The force W is known in magnitude and direction; the direction only of the resultant C is known. Initially a trial value of F φ is selected and the corresponding value of m φ is calculated from equation1.3.For equilibrium the line of application of the resultant R must be tangential to the φ-circle and pass though the point of intersection of the forces W and C. The force diagram can then be drawn, from which the value of C can be obtained .Then:c m =CC L andF C =Cu Cm It is necessary to repeat the analysis at least three times, starting with different values of F φ.If the calculated values of F C are plotted against the corresponding values of F φ,the factor of safety corresponding to the requirement F C =F φ can be determined .The whole procedure must be repeated for a series of trial failure surfaces in order that the minimum factor of safety is obtained.For an effective stress analysis the total weight W is combined with the resultant boundary water force on the failure mass and the effective stress parameters c ′and φ′used.Based on the principle of geometric similarity, Taylo r (1.13)published stability coefficients for the analysis of homogeneous slopes in terms of total stress. For a slope of height H the stability coefficients for the analysis of homogeneous slopes in terms of total stress. For a slope of height H the stability coefficient (N s ) for the failure surface along which the factor of safety is a minimum is:N s =u C F Hγ (1.6) Values of N s , which is a function of the slope angle β and the shear strength parameter u φ,can be obtained from Fig 1.5.For u φ=0,the value of N s also depends on the depth factor D, where DH is the depth to a firm stratum.Firm stratumFigure 1.5 Taylo r ′s coefficients.In example 1.1, β=45°, u φ=0,and assuming D is large, the value of N s is 0.18.Then from equation 1.6:F=s Cu N H γ = 650.18198⨯⨯ =2.37Gibson and Morgenste r n 〔1.4〕published stability coefficients for slopes in normally-consolidated clays in which the untrained strength c u (u φ=0) varies linearly with depth.Figure 1.6 Example 1.2Example 1.2An embankment slope is detailed in Figure 1.6.Fir the given failure surface. Determine the factor of safety in terms of total stress using the φ-circle method. The appropriate shear strength parameters are c u =15kN/m 2 and u φ=15°: the unit weight of soil is 20 kN/m 2.The area ABCD is 68 m 2 and the centroid (G) is 0.60m from the vertical through D. The radius of the failure arc is 11.10m.The arc length AC is 19.15 m and the chord length AC is 16.85m.The weight of the soil mass is:W=68×20=1360 k N/mThe position of the resultant C is given by:r c =a CL L r = 19.1516.85×11.10 Now:m φ=tan -1(tan15F φ) Trial value of F φ are chosen, the corresponding values of r sin m φ are calculated and the φ-circle drawn shown in Fig.1.6.The resultant C(for any value of F φ) acts in a directions parallel to the chord AC and at distance r c from O. The resultant C(for any value F φ) acts in a direction parallel to the chord AC and at distance r c from O. The forces C and W intersect at point E. The resultant R, corresponding to each value of F φ, passes through E is tangential to the appropriate φ-circle. The force diagrams are drawn and the values of C determined.The results are tabulated below.If F c is plotted against F φ(Fig.1.6) it is apparent that:F=F C =F φ=1.431.4 The Method of SlicesIn this method the potential failure surface, in section, is against assumed to be a circle arc with centre O radius r. The soil mass (ABCD) above a trial failure surface(AC) is divided by vertical planes into series of slices of width b, as shown in Fig.1.7. The base of each slice is assumed to be a straight line. For any slice the inclination of the base to the horizontal is α and the height, measured on the centerline, is h. The factor of safety is defined as the ratio of the available shear strength (f τ) to the shear strength (m τ) which must be mobilized to maintain a condition of limiting equilibrium. i.e.F=f mττ The factor of safety is taken to be the same for each slice, implying that there must be mutual support between the slice. i.e. forces must act between the slices.The forces (per unit dimension normal to the section) acting on a slice are listed below.(1) The total weight of slice, W=γbh (γsat where appropriate)(2) The total normal force on the base, N. In general this force has two components.The effective normal force N′ (equal to σ′l ) and the boundary water force ul, where u is the pore water pressure at the center of the base and l is the length of the base.(3) The shear force on the sides, T=m τl.(4) The total normal forces on the sides,E 1 and E 2.(5) The shear forces on the sides, X 1 and X 2.Any external forces must also be included in the analysis.The problem is statically indeterminate and in order to obtain a solution assumptions must be made regarding the inter-slice forces E and X: the resulting solution for factor of safety is not exact.Considering moments about O, the sum of the moments of the shear forces T on the failure arc AC must equal the moment of the weight of the soil mass ABCD. For any slice the lever arm of w is r sin α, therefore:Tr ∑=sin rW α∑Figure 1.7 The method of slices.Now,T=m τl=f l F τ ∵ f l F τ∑=sin W α∑∴ F=sin fl W τα∑∑ For an analysis in terms of effective stress:F=(tan )sin c l W σφα'''+∑∑ or, F= tan sin c La N W φα'''+∑∑ (1.7) where L a is the arc length AC. Equation 1.7 is exact but approximations are introduced in determining the forces N′. For a given failure arc the value of F will depend on the way in which the forces N′ are estimated.The Fellenius SolutionIn the solution it is assumed that for each slice the resultant of the inter-slice forces is zero. The solution involves resolving the forces on each slice normal to the base, i.e.:cos N W ul α'=-Hence the factor of safety in terms of effective stress ( equation 1.7 ) is given by: F=tan (cos )sin c La W ul W φαα''+-∑∑ (1.8)The components cos W α and sin W α can be determined graphically for each slice. Alternatively, the value of α can be measured or calculated. Again, a series of trial failure surfaces must be chosen in order to obtain the minimum factor of safety. This solution underestimates the factor of safety :the error, compared with more accurate methods of analysis, is usually within the range of 5-20﹪.For an analysis in terms of total stress the parameters c u and φu are used and the value of u in equation 1.8 is zero. If φu =0 the factor of safety is given by:F=sin u a c L W α∑(1.9)As N ′does not appear in equation 1.9 an exact value of F is obtained.The Bishop Simplified SolutionIn this solution it is assumed that the resultant forces on the sides of the slices are horizontal, i.e.X 1-X 2=0For equilibrium the shear force on the base of any slice is:T= 1(tan )c l N Fφ'''+ Resolving forces in the vertical direction:cos cos sin tan sin c l N W N ul F Fαααφα''''=+++ ∴ tan sin (sin cos )/(cos )c l N W ul F F φαααα'''=--+ (1.10) It is convenient to substitute:l= sec b αFrom equation 1.7, after some rearrangement:1sec [{()tan }]tan tan sin 1F c b W ub W Fαφαφα''=+-'+∑∑ (1.11) The pore water press can be related to the tota l ‘fill pressure ’ at any point by means of the dimensionless pore press ratio , defined as:u u r hγ= (1.12) (sat γ where appropriate )For any slice,/u u r W b =Hence equation 1.11 can be written: 1sec [{(1)tan }]tan tan sin 1u F c b W r W Fαφαφα''=+-'+∑∑ (1.13) As the factor of safety occurs on both sides of equation 1.13 a process of successive approximation must be used to obtain a solution but convergence is rapid. The method is very suitable for solution on the computer. In the computer program the slope geometry can be made more come complex, with soil strata having different properties and pore pressure conditions being introduced.In most problems the value of the pore pressure ratio u r is not constant overthe whole failure surface but, unless there are isolates regions of high pore pressure, an average value (weighted on an area basis) is normally used in design. Again, the factor of safety determined by this method is an underestimate but the error is unlikely to exceed 7﹪ and in most cases is less than 2﹪.Spencer [1.12] proposed a method of analysis in which the resultant inter-slice forces are parallel and in which both force and moment equilibrium are satisfied.Spencer showed that the accuracy of the Bishop simplified method, in which only moment equilibrium is satisfied, is due to the insensitivity of the moment equation to the slope of the inter-slice forces.Dimensionless stability coefficients for homogeneous slopes, based on equation 1.13, have been published by Bishop and Morgenstern[1.3]. It can be shown that for a given slope angle and given soil properties the factor of safety varies linearly with u r and can thus be expressed as:u F m nr =- (1.14)where m and n are the stability coefficients m and n are functions of β,φ', the dimensionless number /c h γ' and the depth factor D.Example 1.3Using the Fellenius method of slices, determined the factor of safety in terms of effective stress of the slope shown in Fig.1.8 for the given failure surface. The distribution of pore water pressure along the failure surface is given in the figure. The unit weight of the soil is 20 kN/m 3 and the relevant shear strength parameters are c '=10kN/m 2 and φ'=29°.The factor of safety is given by equation 9.8. The soil mass is divided into slices 1.5m wide. The weight(W) of each slice is given by:20 1.530/W bh h hkN m γ==⨯⨯=The height h for each slice is set off bellow the centre of the base and the normal and tangential components cos h α and sin h α respectively are determined graphically, as shown in Fig.1.8.Then:cos 30cos W h αα=andsin 30sin W h αα=Figure 1.8 Example 1.3.The arc length (L a ) is calculated as 14.35m. The results are tabulated below:cos 3017.50525/W kN m α=⨯=∑sin 308.45254/W kN m α=⨯=∑(cos )525132.8392.2/W ul kN m α-=-=∑tan (cos )sin ac L W ul F W φαα''+-=∑∑ (1014.35)(0.554393.2)254⨯+⨯= 1.5 Analysis of a Plane Translational SlipIt is assumed that potential failure surface is parallel to the surface of the slope and is at a depth that is small compared with the length of the slope. The slope can then be considered as being of infinite length, with end effects being ignored. The slope is inclined at angle β to the horizontal and the depth of the failure plane z, as shown in section in Fig.1.9. The water table is taken to be parallel to the slope at a height of mz(0<m <1)above the failure plane. Steady seepage is assumed to be taking place in a direction parallel to the slope. The forces on the sides of any vertical slice are equal and opposite and the stress conditions are the same at every point on the failure plane.Figure 1.9 Plane translational slip.In terms of effective stress, the shear strength of the soil along the failure plane is:()tan f c u τσφ''=+-and the factor of safety is:f F ττ= The expressions for σ, τ and u are as follows:2{(1)}cos sat m m z σγγβ=-+{(1)}sin cos sat m m z τγγββ=-+2cos w u mz γβ=The following special cases are of interest. If c '=0 and m=0(i.e. the soil between the surface and the surface plane is not fully saturated), then:tan tan F φβ'= (1.15) If c '=0 and m=1(i.e. the water table conditions with the surface of the slope),then: sat tan tan F γφγβ''==If should be noted that when c '=0 the factor of safety is independent of the depth z. If c ' is greater to zero, the factor of safety is a function of z, and β may exceed φ' provided z is less than a critical value.For a total stress analysis the shear strength parameters u c and u φ are used and the value of u is zero.A long natural slope in fissured overconsolidated clay is inclined at 12° to the horizontal. The water table is at the surface and seepage is roughly parallel to the slope. A slip has developed on a plane parallel to the surface at a depth of 5m.The saturated unit weight of the clay is 20 kN/m 3. The peak strength parameters arec '=10kN/m 2 and φ'=26°; the residual strength parameters are r c '=0 and r φ'=18°. Determine the factor of safety along the slip plane(a) in terms of the peak strength parameters, (b) in terms of the residual strength parameters.With the water table at the surface (m=1), at any point on the slip plane:2cos sat z σγβ=22205cos 1295.5/kN m =⨯⨯=sin cos sat z τγββ=2205sin12cos1220.3/kN m =⨯⨯⨯=2cos w u z γβ=229.85cos 1246.8/kN m =⨯⨯=Using the peak strength parameters:()tan f c u τσφ''=+-210(48.7tan 26)33.8/kN m =+⨯=Then the factor of safety is given by:33.8 1.6620.3f F ττ=== Using the residual strength parameters, the factor of safety can be obtained from equation 1.16:tan tan r sat F γφγβ''=10.2tan180.7820tan12=⨯= 1.6 General Methods of AnalysisMorgenstern and Price[1.8] developed a general analysis in which all boundary and equilibrium conditions are satisfied and in which the failure surfacemay be any shape, circle ,non-circle and compound. The soil mass above the failure plane is divided into sections by a number of vertical planes and the problem is rendered statically determinate by assuming a relationship between the forces E and X on the vertical boundaries between each section. This assumption is of the form:()X f x E λ= (1.17)where f(x) is an arbitrary function describing the pattern in which the ratio X/E varies across the soil mass and λ is obtained as part of the solution along with the factor of safety F. The values of the forces E and X and the point of application of E can be determined at each vertical boundary. For any assuming function f(x) it is necessary to examine the solution in detail to ensure that it is physically reasonable (i.e. no shear failure or tension must be implied within the soil mass above the failure surface). The choice of the function f(x) does not appear to influence the computed value of F by more than about 5﹪ and f(x)=1 is a common assumption.The analysis involves a complex process of iteration for the value of λand F, described by Morgenstern and Price [1.9], and the use of a computer is essential.Bell [1.15] proposed a method of analysis in which all the conditions of equilibrium are satisfied and the assumed failure surface may be of any shape. The soil mass is divided into a number of vertical slices and statical determinacy is obtained by means of an assumed distribution of normal stress along the failure surface. Thus the soil mass is considered as a free body as is the case in the φ-circle method.Sarma [1.16] developed a method, based on the method of slices, in which the critical earthquale accelaration required to produce a condition of limiting equilibrium is determined. An assumed distribution of vertical inter-slice forces is used in the analysis. Again, all the conditions of equilibrium are satisfied and the assumed failure surface may be of any shape. The static factor of safety is the factor by which the shear strength of the soil must be reduced such that the critical acceleration if zero.The use of a computer is also essential for the Bell and Sarma methods and all solutions must be checked to ensure that they are physically acceptable.1.7 End-of-Construction and Long-Term StabilityWhen a slope is formed either by excavation or by the construction of an embankment the changes in total stress result in changes in pore water pressure in the vicinity of the slope and, in particular, along a potential failure surface. Prior toconstruction the initial pore water pressure(u 0) at any point is governed either by a static water table level or by a flow net for conditions of steady seepage. The change in pore water pressure at any point is is given theoretically by equation 4.17 or 4.18. The final pore water pressure, after dissipation of the excess pore water pressure, is governed by the static water table level or the steady seepage flow net for the final conditions after construction.If the permeability of the soil is low, a considerable time will elapse before any significant dissipation of excess pore water pressure will have taken place. At the end of construction the soil will be virtually in the undrained condition and a total stress analysis will be relevant. In principle an effective stress analysis is also possible for the end of construction condition using the pore water pressure (u) for this condition, where :o u u u =+∆However, because of its greater simplicity, a total stress analysis is generally used. It should be realised that the same factor of safety will not generally be obtained from a total stress and an effective stress analysis of the end-of-construction condition. In a total stress and an effective stress analysis of the end-of-construction condition. In a total stress analysis it is implied that the pore water pressures are those for a failure condition: in an effective stress analysis the pore water pressures used are those predicted for a non-failure condition. In the long-term, the fully-drained condition will be reached and only an effective stress analysis will be appropriate.If, on the other hand, the permeability of the soil is high, dissipation of excess pore water pressure will be largely complete by the end of construction. An effective stress analysis is relevant for all conditions with values of pore water pressure being obtained from the static water table level or the appropriate flow net.Pore water pressure may thus be an independent variable, determined from the static water table level or from the flow net for conditions of steady seepage, or may be dependent on the total stress changes tending to cause failure.It is important to identify the most dangerous condition in any practical problem in order that the appropriate shear strength parameters are used in design. Excavated and Natural Slopes in Saturated ClaysEquation 4.17, with B=1 for a fully-saturated clay, can be rearranged as follows:131311()()()22u A σσσσ∆=∆+∆+-∆-∆ (1.18) For a typical point P on a potential failure surface(Fig.9.10) the first term in equation 1.18 is negative and the second term will also be negative if the value ofA is less than 0.5. Overall, the pore water pressure change u ∆ is negative. The effect of the rotation of principal stress directions is neglected. As dissipation proceeds the pore pressure increases to the final value as shown in Fig.1.10. The factor of safety will therefore have a lower value in the long-term, when dissipation is complete, than at the end of construction.Figure 1.10 Pore press pressure dissipation and factor of safety (AfterBishop and [1.2])Residual shear strength is relevant to the long-term stability of slopes in over consolidated fissured clays. A number of cases are on record in which failures in this type of clay have occurred long after dissipation of excess pore water pressure hade been completed. Analysis of these failures showed that the average shear strength at failure was bellow the peak value. In clays of this type it is suspected that large strains can occur locally due to the presence of fissures, resulting in the peak strength being reached, followed by a gradual decrease towards the residual value. The development of large local strains can lead eventually to a progressive slope failure. Fissures may not be the only cause of progressive failures: there is considerable nonuniformity of shear stress along a potential failure surface and local overstressing may initiate progressive failure. It should be realised, however, that the residual strength is reached only after a considerable slip movement has taken place and the strength relevant to first-time ′ slips lies between the peak and residual values. Analysis of failures in natural slopes in overconsolidated fissured clays has indicated that the residual shear strength is ultimately attained, probably as a result of successive slipping.1.8 Stability of Earth DamsIn the design of earth dams the factor of safety of both slopes must be determined as possible for the most critical conditions. For economic reasons an unduly conservative design must be avoided. In the case of the upstream slope the most critical stages are at the end of construction and during rapid drawdown of the reservoir level. The critical stages for the downstream slope are at the end of construction and during steady seepage when the reservior is full. The pore water pressure distribution at any stage has a dominant influence on the factor of safetyand in large earth dams it is common practice to install a piezometer system so that the actual pore water pressures can be measured at any stage and compared with the predicted values used in design(provided an effective stress analysis has been used) . Remedial action can then be taken if the factor of safety , based on the measured values, is considered too bellow.(a) End of ConstructionThe construction Period of an earth dam is likely to be long enough to allow partial dissipation of excess pore water pressure before the end of construction, especially in a dam with internal drainage. A total stress analysis, therefore, would result in too conservative a design. An effective stress analysis is preferable, using predicted values of r u .The pore pressure (u) at any point can be written as:0u u u =+∆where 0u is the initial value and u ∆ is the change in pore water pressure undrained conditions. In terms of the change in total major principal stress:01u u B σ=+∆Then:01u u r B h hσγγ∆=+ If it is assumed that the increase in total major principal stress is approximately equal to the fill pressure along a potential failure surface, then:0u u r B hγ=+ (1.19) The soil is partially saturated when compacted, therefore the initial pore water pressure (u 0) is negative. The actual value of u 0 depends on the placement water content, the higher the water content, the closer the value of u 0 to zero. The value of B also depends on the placement water content, the higher the water content, the higher the value of B . Thus for an upper bound:u r B = (1.20) The value of B must correspond to the stress conditions in the dam. Equations1.19 and 1.20 assume no dissipation during construction. A factor of safety as low as 1.3 may be acceptable at the end of construction provided there is reasonable confidence in the design data.If high values of u r are anticipated, dissipation of excess pore water pressure。
水工专业课程中英文
力学mechanics:理论力学Theoretical mechanics静力学Statics动力学Dynamics材料力学Material Mechanics结构力学Structural Mechanics土力学Soil Mechanics水力学Hydraulics岩石力学Rock Mechanics专业基础课:工程制图Engineering Drawing 5.0工程地质Engineering Geology 3.0工程材料Engineering Materials工程水文学Engineering Hydrology 2.0工程项目管理Construction Project Management 4.5工程施工Construction of Works 3.5钢结构Steel Structure 2.0地基处理Foundations Treatment 1.5电工学Electric Engineering 2.0水利水电工程项目评估Evaluation of Water Resources and Hydropower Projects 2.0水资源规划及利用Water Resources Planning and Development 3.0 水工建筑物Hydraulic Structure 3.5模型试验理论及方法Theory and Method of Model Test 2.0弹性力学及有限元Elastic Mechanics and FEM 2.5水电站Hydropower Station 3.0课程设计Course Project钢结构课程设计Course Project for Steel Structure钢筋混凝土课程设计Course Project forReinforced Concrete Structure 水资源规划及利用课程设计Course Project for Water Resources Planning and Development坝工课程设计Course Project for Hydraulic Structure水电站课程设计Course Project for Hydropower station工程施工课程设计Course Project for Construction of Works毕业设计Graduation Project 12.0实验:水力学实验Experiment for Hydraulics 1.0力学实验Experiment for Mechanics 1.0工程材料实验Experiment for Engineering material 1.0土力学实验Experiment for Soil Mechanics 0.5水工建筑学实验Experiments for Hydraulic Structure 1.0 物理实验Physics Experiments 3.0实习:工程地质实习Study Trip for Engineering Geology 0.5生产实习Study Trip工程测量实习Field Study for Surveying 2.0。
水利水电工程专业英语教材翻译
P71 2-1混凝土重力坝类型基本上,重力水坝保持其对设计载荷从几何形状和混凝土的质量和强度稳定坚固的混凝土结构。
一般情况下,它们在一条直线轴构成,但也可以稍微弯曲或成角度,以适应特定的现场条件。
重力坝通常由非溢流坝段(S)和溢出部分或溢洪道。
这两个一般混凝土的施工方法,混凝土重力坝是常规放置大体积混凝土和碾压。
Conventional concrete dams.传统的混凝土大坝。
(1)传统上放置大体积混凝土坝的特点是建筑施工中用的材料和配料使用的技术,混匀,放置,固化和大体积混凝土的温度控制(美国混凝土学会(ACI)207.1 R-87)。
典型溢出和非溢出部分示于图2-1和图2-2。
建筑采用已开发和完善了多年设计和建造大体积混凝土大坝的方法。
普通混凝土的水泥水化过程限制大小和混凝土浇筑的速度和建设就必须在巨石满足裂缝控制要求。
通常采用大尺寸的粗集料,混合比例被选择为产生低坍落度混凝土,使经济,在放置期间保持良好的加工性,水化过程中发育的最低温度上升,并产生重要性能如强度,抗渗性和耐久性。
大坝建设与传统的混凝土容易便于安装管道,压力管道,画廊等,在结构内。
(2)施工过程包括配料和混合,运输,安置,振动,冷却,固化,并准备电梯间的水平施工缝。
在重力坝大体积混凝土通常证明一个现场搅拌站,并需要足够的质量和数量,位于或项目的经济范围内的总根源。
一般是在水桶由卡车,铁路,起重机,索道,或这些方法的组合进行4至12立方码大小不等,从批次厂坝运输。
最大桶大小通常是通过有效地扩散和振动混凝土桩后它被从桶倾倒的能力受到限制。
混凝土被放置在5-升降机至10英尺的深度。
每部电梯由连续层不超过18至20英寸。
振动一般由大的人,气动,开钻式振动器进行。
保洁水平施工缝固化过程中去除表面上的薄弱浮浆薄膜的方法包括绿色切削,湿喷砂和高压气水射流。
传统的混凝土安置的其他详情载于EM 1110-2-2000。
(3)由于水泥水化产生的热量,需要在大体积混凝土的放置和放置几天后仔细的温度控制。
水利水电专业英语词汇 (1)
专业英语词汇水利水电工程专业施工总平面布置(施工总体布置) construction general layout施工组织Consruction Programming施工组织设计construction planning施工坐标系(建筑坐标系)construction coordinate system湿化变形soaking deformation湿润比percentage of wetted area湿润灌溉wetting irrigation湿室型泵房wet-pit type pump house湿陷变形系数soaking deformation coefficient湿陷起始压力initial collapse pressure湿陷系数(湿陷变形系数) coefficient of collapsibility湿周wetted perimeter十字板剪切试验vane shear test石袋honeycomb时均流速time average velocity时均能量time average energy时效硬化(老化) age hardening (ageing)时针式喷灌系统(中心支轴自走式系统) central pivot sprinkler system 实测放大图surveyed amplification map实腹柱solid column实际材料图primitive data map实时接线分析real time connection analysis实时控制real-time control实时数据和实时信息real time data and real time information实体坝solid dike实体重力坝solid gravity dam实物工程量real work quantity实验站experimental station实用堰practical weir示流信号器liquid-flow annunciator示坡线slope indication line示误三角形error triangle示踪模型tracer model事故failure (accident)事故备用容量reserve capacity for accident事故低油压tripping lower oil pressure事故音响信号emergency signal (alarmsignal)事故运行方式accident operation mode事故闸门emergency gate事故照明accident lighting事故照明切换屏accident lighting change-over panel势波potential wave势流potential flow势能potential energy势涡(自由涡) potential vortex视差parallax视差法测距(基线横尺视差法)subtense method with horizontal staff 视差角parallactic angle视准线法collimation line method视准轴(照准轴)coolimation axis试验处理treatment of experiment试验端子test terminal试验项目Testing item试验小区experimental block试运行test run试运行test run收敛测量convergence measurement收敛约束法convergence-confinement method收缩断面vena-contracta收缩缝(温度缝) contraction joint (temperature joint)收缩水深contracted depth手动[自动]复归manual [automatic] reset手动[自动]准同期manual [automatic] precise synchronization手动调节manual regulation手动控制manual control手动运行manual operation手工电弧焊manual arc welding首曲线(基本等高线)standard contour首子午线(本初子午线,起始子午线)prime meridian受油器oil head枢纽布置layout of hydroproject疏浚dredging输电系统transmission system输电线transmission line输入功率试验input test输沙量sediment runoff输沙率sediment discharge输水钢管steel pipe for water conveyance输水沟conveyance ditch输水建筑物water conveyance structure输水渠道water conveyance canal鼠道mole drains鼠道犁mole plough鼠笼型感应电动机squirrel cage induction motor竖井定向测量shaft orientation survey竖井贯流式水轮机pit turbine竖井联系测量shaft connection survey竖井排水drainage well竖井式进水口shaf tintake竖轴弧形闸门radial gate with vertic alaxes数字地面模型digital terrain model(DTM)数字化测图digitized mapping数字通信digital communication数字图像处理digital image processing数字仪表digital instrument甩负荷load dump (load rejection,load shutdown)甩负荷试验load-rejection test (load-shutdowntest)双层布置double storey layout双调节调速器dual-regulation governor双扉闸门double-leaf gate双回线double-circuit line双击式水轮机cross flow turbine,Banki turbine双极高压直流系统bipolar HVDC system双金属标bimetal bench mark双列布置double row layout双母线接线double-bus connection双曲拱坝double curvature arch dam双曲拱渡槽double curvature arch aqueduct双室式调压室double-chamber surge shaft双吸式离心泵double-suction pump双向挡水人字闸门bidirectional retaining mitre gate水泵[水泵水轮机的水泵工况]的反向最大稳态飞逸转速steady state reverse runaway speed of pump水泵比转速specific speed of pump水泵并联扬程曲线head curve of parallel pumping system水泵参数与特性Parameters and characteristics of pump水泵串联扬程曲线head curve of series pumping system水泵的最大[最小]输入功率maximum[minimum] input power of pump 水泵电动机机组Motor-pump unit水泵反常运行pump abnormal operating水泵工况(抽水工况) pump operation水泵工作点(水泵工况点) pump operating point水泵供水water feed by pump水泵机械效率mechanical efficiency of pump水泵机组pump unit水泵类型Classification of pumps水泵零部件Components of pumps水泵流量pump discharge水泵容积效率volumetric efficiency of pump水泵输出功率output power of pump水泵输入功率(水泵轴功率) input power of pump水泵水力效率hydraulic efficiency of pump水泵水轮机Pump-turbine水泵无流量输入功率no-discharge power of pump水泵效率pump efficiency水泵扬程(水泵总扬程) total head of pump水泵站Pumping Station水泵装置pump system水锤(水击) water hammer水锤泵站hydrauli cram pump station水锤波(水击波) wave of water hammer水锤波波速wave velocity of water hammer水电站Hydroelectric Station水电站(水力发电站) Hydroelectric station (hydroelectric power station) 水电站保证出力firm power, firm output水电站厂房(发电厂房) power house水电站厂房的类型Types of power house of hydroelectric station水电站出力power output of hydropower station水电站出力和发电量Power and energy output of hydropower station水电站的水头、流量、水位Waterhead, discharge, water lever of hydropower station水电站发电成本generation cost of hydropower station水电站发电量energy output of hydropower station水电站建筑物hydroelectric station structure水电站经济指标Economie index of hydropower station水电站类型Types of hydroelectric station水电站引用流量quotative discharge of hydropower station水电站装机容量installed capacity of hydropower station水电站自动化automation of hydroelectric station水跌hydraulic drop水动力学Hydrodynamics水斗bucket水斗式水轮机(贝尔顿式水轮机) pelton turbine水工建筑物hydraulic structure水工建筑物的类别及荷载Classification and load of hydraulic structures水工建筑物级别grade of hydraulic structure水工金属结构及安装Metal Structures and Their Installation水工隧洞hydraulic tunnel水工隧洞Hydraulic tunnels水工隧洞构造Components of hydraulic tunnel水工隧洞类型Classification of hydraulic tunnels水管冷却pipe cooling水柜water pool水环真空泵liquid ring pump水灰比water-cement ratio水窖(旱井) water callar(dry wall)水静力学Hydrostatics水库并联运用operation of parallel-connected resertvoir水库测量reservoir survey水库串联运用operation of serial-connected reservoirs水库调度reservoir operation水库调度图graph of reservoir operation水库回水变动区fluctuating back water zone of reservoir水库浸没reservoir immersion水库控制缓洪controlled flood retarding水库库底清理cleaning of reservoir zone水库泥沙Reservoir sediment水库泥沙防治Prevention of sediment水库年限ultimate life of reservoir水库渗漏reservoir leakage水库水文测验reservoir hydrometry水库塌岸bank ruin of reservoir水库特征库容Characteristic capacity of reservoir水库特征水位Characteristic level of reservoir水库泄空排沙sediment releasing by emptying reservoir水库蓄清排浑clear water impounding and muddy flow releasing水库淹没补偿compensation for reservoir inundation水库淹没处理Treatment of reservoir inundation水库淹没处理范围treatment zone of reservoir inundation水库淹没界线测量reservoir inundation line survey水库淹没区zone of reservoir inundation水库淹没实物指标material index of reservoir inundation水库异重流density current in reservoir水库异重流排沙sediment releasing by density current水库诱发地震reservoir induced earthquake水库淤积Sediment deposition in reservoir水库淤积测量reservoir accretion survey水库淤积极限limit state of sediment deposition in reservoir水库淤积平衡比降equilibrium slope of sediment deposition in reservoir 水库淤积上延(翘尾巴) upward extension of reservoir deposition水库淤积纵剖面longitudinal profile of deposit in reservoir水库滞洪排沙flood retarding and sediment releasing水库自然滞洪free flood retarding水冷式空压机water-cooled compressor水力半径hydraulic radius水力冲填hydraulic excavation and filling水力冲填坝hydraulic fill dam水力冲洗式沉沙池hydraulic flushing sedimentation basin水力粗糙度hydraulic roughness水力粗糙区hydraulic roughness region水力共振hydraulic resonance水力光滑区hydraulic smooth水力机械Hydraulic Machinery水力机械与电气设备HYDRAULIC MACHINERY AND ELECTRIC EQUIPMENT 水力机组hydropower unit水力机组测试Measurement and test for hydropower unit水力机组的安装和试运行Installation and starting operation of hydropower unit水力机组调节系统Regulating system of hydropower unit水力机组辅助系统Auxiliary system for hydropower unit水力开挖hydraulic excavation水力坡降(水力比降) hydraulic slope (energy gradient)水力破裂法(水力致裂法) hydro fracturing method水力侵蚀(水蚀) water erosion水力学Hydraulics水力要素(水力参数) hydraulic elements水力指数hydraulic exponent水力自动闸门hydraulic operating gate水力最优断面optimal hydraulic cross section水利工程经营管理management and administration of water project水利计算Computation of water conservancy水利区划zoning of water conservancy水利枢纽hydroproject水利水电工程等别rank of hydroproject水利水电工程规划PLANNING OF HYDROENGINEERING水利水电工程技术术语标准Standard of Technical Terms on Hydroengineering水利水电工程勘测SURVEY AND INVESTIGATION FOR HYDROENGINEERING 水利水电工程施工CONSTRUCTION OF HYDRAULIC ENGINEERING水量分布曲线water distribution curve水流动力轴线(主流线) dynamic axis of flow水流连续方程continuity equation of flow水流流态State of flow水流阻力和能头损失Flow resistance and head loss水轮泵站turbine-pump station水轮发电机Hydraulic generator水轮发电机hydraulic turbine-driven synchronous generator(hydro-generator)水轮发电机组Hydraulic turbine-generator unit水轮发电机组hydraulic turbine-generator unit水轮机hydraulic turbine,water turbine水轮机[水泵]额定流量rated discharge of turbine[pump]水轮机安装Installation of hydraulic turbine水轮机安装高程setting of turbine水轮机保证出力guaranteed output of turbine水轮机比转速specific speed of turbine水轮机参数和特性Turbine parameters and turbine characteristics水轮机层turbine storey (turbine floor)水轮机的机械效率mechanical efficiency of turbine水轮机的容积效率volumetric efficiency of turbine水轮机的水力效率hydraulic efficiency of turbine水轮机调节系统turbine regulating system水轮机调节系统静特性试验static characteristic test of regulation system of hydraulic turbine水轮机调速器turbine governor水轮机额定输出功率(水轮机额定出力) rated output of turbine水轮机飞逸转速runaway speed of turbine水轮机工况(发电工况) turbine operation水轮机空载流量no-load discharge of turbine水轮机类型Classification of turbines水轮机零、部件Components of hydraulic turbine水轮机流量turbine discharge水轮机模型试验model test of turbine水轮机磨蚀与振动Erosion and vibration of hydraulic turbine水轮机气蚀系数cavitation factor of turbine,cavitation coefficient of turbine 水轮机设计水头design head of turbine水轮机试运行Test runof hydraulic turbine水轮机室turbine casing水轮机输出功率(水轮机出力) turbine output水轮机输入功率turbine input power水轮机水头(水轮机净水头) turbine net head水轮机吸出水头损失suction head loss of turbine水轮机效率turbine efficiency水轮机压力管道(高压管道) penstock水轮机引水室turbine flume水轮机主轴turbine main shaft水轮机最大输出功率(水轮机最大出力) maximum output of turbine水轮机最高效率maximum efficiency of turbine水面曲线water surface profile水面蒸发量evaporation from water surface水能waterpower, hydropower水能计算hydropower computation水能开发方式Types of hydropower development水能利用Water power utilization水能利用规划waterpower utilization planning水能资源(水力资源) waterpower resources, hydropower resources水泥比表面积specific surface of cement水泥罐cement silo水泥水化热hydration heat of cement水泥体积安定性soundness of cement水平底坡horizontal slope水平地质剖面图geological plan水平度levelness水平沟horizontal ditches水平阶地horizontal terraces水平位移工作点operative mark of horizontal displacement水平位移观测horizontal displacement observation水平位移基点datum mark of horizontal displacement水生态学hydrobiology水头water head水头损失head loss水头预想出力expected power, expected output水土保持soil and water conservation水土保持工程措施Soil and water conservation works水土保持规划Planning of soil and water conservation水土保持林业措施Afforestation measures for soil and water conservation 水土流失Soilandwaterloss水土流失(土壤侵蚀) soil erosion(soil and waterloss)水位water stage (water level)水位、流速、流量Water stage, flow velocity, flow discharge水位传导系数coefficient of water level conductivity水位调节装置water level regulator水位计water-level gauge水位流量关系曲线stage-discharge relation curve水位信号water-level indicating signal水位站water stage gauging station水文测验hydrometry水文测站hydrometrical station水文测站和站网Hydrometrical station and network水文地质Hydrogeology水文地质基础Basichydrogeology水文地质试验Hydrogeologicaltest水文地质图hydrogeological map水文调查hydrological investigation水文分析计算Hydrological analysis and computation水文观测hydrological observation水文观测Hydrological observation and measurement水文过程线hydrograph水文核技术nuclear technology in hydrology水文计算Hydrologic computation水文计算及水文预报Hydrological Computation and Forecasing水文空间技术space technology in hydrology水文模型hydrological model水文年鉴hydrological almanac(hydrological yearbook)水文频率曲线hydrological frequency curve水文手册hydrological handbook水文统计hydrological statistics水文图集hydrological atlas水文遥测技术hydrological telemetering technology水文要素hydrological data水文预报Hydrological forecast水文站hydrometrical station水文站网hydrological network水文资料整编hydrological data processing水系(河系,河网) hydrographic net(river system)水下爆破under water blasting水下地形测量underground topographic survey水下混凝土浇筑underwater concreting水下接地网under water earthed network水压力hydraulic pressure水跃hydraulic jump水跃长度length of hydraulic jump水跃高度height of hydraulic jump水跃函数hydraulic jump function水跃消能率coefficient of energy dissipation of hydraulic jump 水运动学Hydrokinematics水运动学及水动力学Hydrokinematics and hydrodynamics水闸sluice (barrage)水闸类型Classification of sluices水闸组成部分Components of sluice水质water quality水质标准water quality standard水质监测站water quality monitoring station水质评价water quality assessment水质污染Water quality pollution水质预报water quality forecast水中起动starting in water水中起动力矩starting torque in water水柱water column水坠坝sluicing siltation earth dam水准测量leveling水准点benchmark水准路线leveling line水准器分划值(水准器角值,水准器格值)scale value of level水准网平差adjustment of leveling network水准仪(水平仪)level水准仪与经纬仪Leveland theodolite水资源water resources水资源规划water resources planning水资源开发利用Development and utilization of water resources水资源开发利用water resources development税金tax顺坝longitudinal dike (training dike)顺坡(正坡) positive slope顺行波advancing downstream wave顺序控制系统sequential control system顺直型河流straight river瞬动电流instantaneous acting current瞬发雷管(即发雷管) instantaneous blasting cap瞬时沉降(弹性沉降,初始沉降,形变沉降) initial settlement瞬时单位线instantaneous unit hydrograph瞬时电流速断保护(无时限电流速断保护) instantaneous over current cut-off protection瞬时流速instantaneous velocity瞬态法finite increment method死库容(垫底库容) dead storage死区dead band死水位minimum pool level(dead water level)松动爆破loosening blasting (crumbling blasting)松方loose measure松散系数bulk factor素混凝土(无筋混凝土) plain concrete素图simple map速动时间常数promptitude time constant速度环量velocity circulation速度三角形velocity triangle速凝(瞬时凝结) quick set (flash set)速凝剂accelerator塑料导爆管(传爆管) plastic primacord tube塑限(塑性限度,塑性界限含水量) plastic limit塑性铰plastic hinge塑性指数plasticity index溯源冲刷[淤积] backward erosion[deposition]算术平均粒径arithmetic mean diameter算术平均水头arithmetic average head算术平均效率arithmetic average efficiency随动系统servo system随动系统不准确度inaccuracy of servosystem随机波random wave随机性水文模型(非确定性水文模型) stochastic hydrological model 碎部点(地形特征点)detail point碎裂结构clastic structure碎屑结构clastic texture隧洞衬砌tunnel lining隧洞导流tunnel diversion隧洞渐变段tunnel transition section隧洞开挖tunnel excavation隧洞排水tunnel drainage隧洞钻孔爆破法(隧洞钻爆法) drill-blast tunneling method损失容积(死容积) lost volume缩限(收缩界限) shrinkage limit锁坝closure dike锁定装置dog device (latch device,gate lock device)锁锭装置locking device (checking device)它励(它激) separate excitation塔式进水口tower intake踏面rolling face台车式启闭机platform hoist台阶结构面step structural plane台阶掘进法heading and bench method坍落度slump坍落拱collapse arch探槽exploratoryt rench探洞exploratory adit探井exploratory shaft探坑exploratory pit碳素钢(碳钢) carbon steel塘堰pond掏槽孔(掏槽眼) cut hole套管casing pipe套闸(双埝船闸) double dike lock特大暴雨extraordinary rainstorm特大洪水extraordinary flood特高压(特高电压) ultra-high voltage (U.H.V.)特类钢(C类钢) type C steel特殊地区施工增加费additional cost for special condition特殊荷载specia lload (unusual load)特殊荷载组合special load combination特性和参数Characteristics and parameters特性阻抗(波阻抗) characteristic impedance (wave impedance) 特征线法characteristics method特征斜率characteristic slope梯段爆破bench blasting梯级水电站cascade hydroelectric station梯形堰trapezoidal weir锑恩锑(三硝基甲苯) TNT (trinitroto luene)提升式升船机lifting type ship lift提水灌溉pumping irrigation提水排水pumping drainage体积模量bulk modulus体积压缩系数coefficient of volume compressibility天然骨料natural aggregate天然密度(天然容重) natural density(naturalunitweight)天文潮astronomical tide田间持水量field capacity田间工程farml and works田间排水沟(墒沟) field ditch田间排水试验experiment for farm land drainage田间渠系farm canal system田间水利用系数water efficiency in field田间需水量(田间耗水量) water consumption on farmland填埋式管(上埋式管) buried pipe line填石笼gabion填筑filling填筑含水量placement water content(placement moisture content) 挑坎(挑流鼻坎) flip bucket。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P71 2-1混凝土重力坝类型基本上,重力水坝保持其对设计载荷从几何形状和混凝土的质量和强度稳定坚固的混凝土结构。
一般情况下,它们在一条直线轴构成,但也可以稍微弯曲或成角度,以适应特定的现场条件。
重力坝通常由非溢流坝段(S)和溢出部分或溢洪道。
这两个一般混凝土的施工方法,混凝土重力坝是常规放置大体积混凝土和碾压。
Conventional concrete dams.传统的混凝土大坝。
(1)传统上放置大体积混凝土坝的特点是建筑施工中用的材料和配料使用的技术,混匀,放置,固化和大体积混凝土的温度控制(美国混凝土学会(ACI)207.1 R-87)。
典型溢出和非溢出部分示于图2-1和图2-2。
建筑采用已开发和完善了多年设计和建造大体积混凝土大坝的方法。
普通混凝土的水泥水化过程限制大小和混凝土浇筑的速度和建设就必须在巨石满足裂缝控制要求。
通常采用大尺寸的粗集料,混合比例被选择为产生低坍落度混凝土,使经济,在放置期间保持良好的加工性,水化过程中发育的最低温度上升,并产生重要性能如强度,抗渗性和耐久性。
大坝建设与传统的混凝土容易便于安装管道,压力管道,画廊等,在结构内。
(2)施工过程包括配料和混合,运输,安置,振动,冷却,固化,并准备电梯间的水平施工缝。
在重力坝大体积混凝土通常证明一个现场搅拌站,并需要足够的质量和数量,位于或项目的经济范围内的总根源。
一般是在水桶由卡车,铁路,起重机,索道,或这些方法的组合进行4至12立方码大小不等,从批次厂坝运输。
最大桶大小通常是通过有效地扩散和振动混凝土桩后它被从桶倾倒的能力受到限制。
混凝土被放置在5-升降机至10英尺的深度。
每部电梯由连续层不超过18至20英寸。
振动一般由大的人,气动,开钻式振动器进行。
保洁水平施工缝固化过程中去除表面上的薄弱浮浆薄膜的方法包括绿色切削,湿喷砂和高压气水射流。
传统的混凝土安置的其他详情载于EM 1110-2-2000。
(3)由于水泥水化产生的热量,需要在大体积混凝土的放置和放置几天后仔细的温度控制。
不受控制的发热体,可能会导致过大的张应力,由于大体积混凝土内极端梯度或由于温度的降低作为具体接近其每年的温度循环。
控制措施包括预冷却和后冷却技术来限制峰值温度和控制温度下降。
减少在水泥含量和水泥置换火山灰降低了温升潜力。
裂缝的控制是通过构建传统混凝土重力坝中的一系列横向收缩缝分开单独稳定的巨石实现。
通常情况下,石柱是大约50英尺宽。
在第6章设置在温度控制方法的进一步细节。
b.碾压混凝土(RCC)重力坝。
碾压混凝土重力坝设计类似于传统的混凝土结构。
不同之处在于施工方法,混凝土配合比设计,以及细节的附属结构。
碾压混凝土坝施工是一个相对较新的概念的经济。
经济优势是使用类似于那些用于土石坝施工技术实现快速布局。
RCC是一个比较干燥,稀薄,零坍落度混凝土含粗,细骨料由外部振动采用振动压路机,推土机和其他重型设备材料合并。
在硬化状态下,碾压混凝土具有相似的特性传统的混凝土。
为有效整合,碾压必须足够干燥以支持施工设备的重量,但有一个一致性足够湿以使过去粘合剂的适当分布在整个块中的混合和振动过程,因此,实现必要的压实碾压和预防不良的偏析和空隙。
一致性要求对混合比例的要求有直接的影响(ACI 207.1 R-87)。
EM 1110- 2-2006,碾压混凝土,提供了使用,设计,施工RCC的详细指导。
在经济利益的设计和建造考虑进一步讨论在第9章规定。
2-2. Coordination Between Disciplines学科之间的协调结构,材料和岩土工程师,地质学家,水文和水利工程师充分协调小组应确保所有工程和地质方面的考虑适当纳入整体设计。
一些分析和设计过程中,需要协调的关键方面是:a.地质资料,地下条件和岩石结构的初步评估。
初步设计是基于有限的现场数据。
规划和评估领域的探索,使根据现场条件设计的改进应该是结构和岩土工程师的共同努力。
b.选择的材料特性,设计参数,负载条件,负载效应,潜在的故障机制,并且分析模型的其它相关特征的。
应参与这些活动的结构工程师获得的不确定性的载荷,强度参数,基金会内部潜在的故障飞机的选择范围有充分的认识。
c.评价替代型结构的技术和经济可行性。
优化结构类型和基础条件是相互关联的。
使用替代结构类型决策比较研究需要与岩土工程师共同完成,以确保替代品的技术和经济可行性。
d.施工性审查按照ER415-1-11。
参与施工性的评价是必要的,以确保设计假设和施工方法是兼容的。
Constructibility审查应遵循由工程局的备忘录,以在施工关键阶段有关特殊设计考虑和设计工程师建造的访问日程安排的驻地工程师。
e.初步结构配置的细化,以反映详细的现场勘探,材料的可用性研究,实验室测试,和数值分析的结果。
一旦基础和混凝土材料的特性定义,大坝的创始水平应共同岩土与结构工程师设置和具体的研究,提出,要在适当的混合,电梯到达的厚度,并要求裂缝控制措施。
f.围堰和导流布局,设计和测序的要求。
规划这些功能和设计将基于经济风险,并要求水文学家和土工,建筑,水利,和结构工程师的共同努力。
围堰必须设置在海拔,这将使结构进行以最小的中断,还可以设计成允许在不寻常的事件受控的淹没。
g.大小和出口工程和溢洪道的类型。
规模和出口工程和溢洪道的类型应会同设计过程中的早期阶段涉及的所有学科进行设置。
这些功能将上坝的配置和施工作业的顺序显著影响。
特殊的液压特征,如水质控制结构需要与水文学家以及机械和液压工程师联合开发。
h.修改在施工期间的结构配置,由于在基础条件下的意外变化。
施工过程中修改是昂贵的,在设计阶段,应尽量避免使用一个全面的勘探计划。
然而,从这些在其上的设计是基于地基强度或岩石结构的任何变化必须完全由结构工程师评估。
2-3. Construction Materials建材在调查阶段混凝土坝的设计涉及考虑各种建筑材料。
评估上需要来制造满足结构和耐久性的要求和,足够数量的混凝土在坝和附属结构的体积混凝土质量所需的材料的可用性和适用性。
建筑材料包括罚款和粗骨料,水泥材料,水洗涤聚集,混炼,硫化混凝土和化学外加剂。
一个在确定具体的质量和经济性的最重要的因素是聚合的合适的源的选择。
在混凝土坝的建设,它的源有足够的生产为quantitives经济地生产大体积混凝土的能力是非常重要的。
在混凝土中使用的大的聚集体降低了水泥含量。
本程序为骨料的调查应当遵循EM 1110-2-2000为大体积混凝土和EM 1110-2-2006为RCC的要求。
2-4. Site Selectiona.通用。
在可行性研究,初步选址将取决于兵团“管辖范围内的项目用途。
适用于大坝建设用地包括导航,洪水伤害减免,水电发电,鱼类和野生动物的增强,水质,供水和娱乐。
可行性研究将建立最合适,最经济的位置和结构的类型。
调查将在水文气象,搬迁,基础和现场地质,建材,附属功能,环境因素和转移的方法进行。
b. Selection factors. 湾选择因素。
(1)一个混凝土大坝需要健全的基石的基础。
重要的是,在基岩具有足够的剪切强度和承载能力,以满足必要的稳定性要求。
当越过堤坝的重大过失或剪切带,特殊的设计特点(关节,整体长度,具体区域等)应在设计中纳入以适应预期的运动。
所有特殊功能应根据分析技术和测试模拟断层运动设计。
该基金会渗透性和的程度和基础灌浆,排水,或其他防渗和隆起控制措施的成本应进行调查。
该水库的从可能的滑坡方面适合需要彻底评估,以确保该池的波动和地震不会造成任何质量滑入池中的项目建成后。
(2) 地形是在混凝土坝和其附属结构的选择和位置的重要因素。
建设作为一个网站上的声音基岩接近表面的窄峡谷轮廓是优选的,因为这位置将会减少混凝土材料的要求和相关成本。
(3)阐述了溢洪道,发电厂房的标准,和其他项目附属物将在选址的重要作用。
这些特征的项目对准的关系和适应性需要评价,随着相关的成本。
(4)不太重要的其他因素需要纳入考虑的是在说谎水库和大坝的道路,现有的设施和公用设施的搬迁。
包含在这些铁路,输电线,公路,城镇等应避免大量成本高昂的迁移。
(6)施工期间周围或通过坝址流量分流的方法或方案是一个重要的考虑大坝的经济。
混凝土重力坝提供主要的优势和潜在的成本节约提供导流通过交替建筑砌块的选项,并降低风险,并应漫顶发生延迟。
2-5. Determining Foundation Strength确定基础力量a.通用。
基金会强度参数是必需的重力坝段的稳定性分析。
所需参数的确定是由最合适的实验室和/或在加上一个岩石地基的地下地质特点广博的知识基础,有代表性的样品现场强度试验做出评价。
在原位测试是昂贵的,通常只有在合理非常大的项目,或当基础问题都知道存在。
在原位测试将是适当的,其中更精确的基础参数是必需的,因为岩石的强度是边际或者软弱层存在,并且在就地属性不能从岩石样品的实验室检测来适当地确定。
b.实地调查。
经现场勘察必须是一个持续的过程开始与已知条件的初步审查地质,发展到一个详细的钻探计划和抽样检验程序,并在施工结束与一个安全和业务结构的结论。
调查取样的范围应基于同质或地质结构的复杂性的评估。
例如,调查的程度可以从相当变化受限(其中基础材料是强甚至沿最弱潜在损坏面),以相当广泛和细致(其中弱区或接缝存在)。
有必要调查的某一最低水平,以确定薄弱的区域中不存在的基础。
现场调查还必须评估的深度和风化程度,地下水条件(水文),透气性,强度,变形特性,渗透。
不受干扰样品需测定的基础材料的工程性质,在应用和取样方法苛刻格外小心。
适当的采样是科学与艺术的结合;很多程序都已经标准化,但改建和技术适应经常受到特定领域的程序在EM 1110-2-1804讨论决定。
c.强度试验。
各种各样的基础岩石性质和岩石结构条件的排除标准的通用方法,强度测试。
决定必须作出关于需要在原位测试。
前发起的任何岩石测试,岩土工程师,地质学家和设计师负责制定测试计划必须明确界定了每个测试的目的是,谁将会监督测试。
当务之急是要使用所有可用的数据,如从地质和地球物理研究,选取有代表性的样本进行测试时的结果。
实验室检测必须尝试尽可能接近重复的实际预期荷载情况越好。
抗压强度试验和直剪试验通常需要确定抗剪强度和承载能力设计值。
在某些情况下,拉伸强度测试,以及巩固和喜好程度的测试也可能是必要的软岩地基。
摇滚测试程序在岩石测试手册(美国陆军工程师水道实验站(WES)1980年),并在岩石力学国际协会讨论,“建议的方法测定剪切强度,”(岩石力学学会国际1974年)。
这些测试方法可以以适合的项目的情况下适当地进行修改。
d.设计剪切强度。
在滑动分析中使用的剪切强度值从可获得的实验室和现场测试和判断来确定。
对于初步设计,各类岩石适当的剪切强度可以从众多可用引用,包括美国垦局获得的报告SP-39和REC-ERC-74-10,和许多参考文献(见参考文献)。