光学教程第2章_参考答案
《光学教程》[姚启钧]课后习题解答
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:改用两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P点离中央亮纹为问两束光在P点的相位差是多少?⑶求P点的光强度和中央点的强度之比。
解:⑴⑵由光程差公式⑶中央点强度:P点光强为:3、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4、波长为的单色平行光射在间距为的双缝上、通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:由干涉条纹可见度定义:由题意,设,即代入上式得5、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角、解:由菲涅耳双镜干涉条纹间距公式6、在题1、6图所示的劳埃德镜实验中,光源S到观察屏的距离为,到劳埃德镜面的垂直距离为。
劳埃德镜长,置于光源和屏之间的中央。
⑴若光波波长,问条纹间距是多少?⑵确定屏上能够看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域P1P2可由图中的几何关系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①②在观察屏上能够看见条纹的区域为P 1P 2间即,离屏中央上方的范围内可看见条纹、7、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。
已知肥皂膜折射率为,且平行光与法向成300角入射。
解:由等倾干涉的光程差公式:8、透镜表面通常镀一层如M gF 2()一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义: 由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
光学教程第二章
第二章理想光学系统2-1 作图:(1)作轴上实物点A的像A'(2)作轴上虚物点A的像A'A'(3)作垂轴实物AB的像BA'(4)作垂轴虚物AB的像B(5)画出焦点F、F'的位置(6)画出焦点F、F'的位置2-2 单透镜成像时,若其共轭距(物与像之间距离)为250mm ,求下列情况透镜焦距:(1) 实物,4-=β;(2)实物,41-=β;(3)虚物,4-=β。
解:(1)实物成像时,由题意:250=-'l l 又∵4-='=ll β∴50-=l mm 200='l mm由单透镜高斯公式:f l l '=-'111 得单透镜的焦距为:40='f mm(2)实物成像时,由题意:250=-'l l 又∵41-='=l l β ∴200-=l mm 50='l mm 由单透镜高斯公式:fl l '=-'111 得单透镜的焦距为:40='f mm(3)虚物成像时,由题意:250='-l l 又∵4-='=ll β ∴50=l mm 200-='l mm 由单透镜高斯公式:f l l '=-'111 得单透镜的焦距为:40-='f mm2-3 有一薄正透镜对某一实物成一倒立实像,像高为物高的一半,今将物向透镜移近100mm ,则所得的像与物同样大小,求该薄正透镜的焦距。
解:物体未移动时,由题意:xf '=-=21β 移动后:1001+'=-=x f β解之得:100='f mm 200-=x mm2-4 一个薄透镜对某一物体成实像,放大率为-1,今以另一透镜紧贴在第一透镜上,则见像向透镜方向移动20mm ,放大率为原先的3/4倍,求两块透镜的焦距。
解:单透镜成像时:1-='=ll β 组合透镜成像时,由题意:4320-=-'=l l β 解之得:80-=l mm 80='l mm对于单透镜成像,设其焦距为'1f ,则有高斯公式:1111f l l '=-' 求得第一块透镜的焦距为:401='f mm对于组合透镜成像,设组合焦距为'f ,则有高斯公式:f l l '=--'11201求得组合透镜的焦距为:7240='f mm ∵两透镜紧贴,设第二块透镜的焦距为'2f ,则:'+'''='2121f f f f f ∴'-'='12111f f f∴第二块透镜的焦距为:2402='f mm2-5 一透镜对无限远处和物方焦点前5m 处的物体成像时,二像的轴向间距为3mm ,求透镜的焦距。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
光学课程:第二章部分习题解答
26.6
mv
17 在下图中,设SC=PK=SQ=PQ=1m,
λ=0.5μm,试计算与G点距离为x的X点所对应的
光程(SX+XP)与G点对应的光程(SG+GP)
之差;并估算当此光程差所产生的相位差为
π/2时的x值
解:如图以镜面为X
Y
轴,法线为Y轴,建立
S(-1,1) P(1,1) 坐标,G为原点
X(x,0)
SX XP 1 (x 1)2 (1 x)2 1
2( 1 x 1 x)
C
G
K x 泰勒级数展开:
SX XP 2(1 1 x 1 x2 1 1 x 1 x2 )
28
28
SX XP 2(1 1 x 1 x2 1 1 x 1 x2 )
28
28
略去x2后的高阶项
SX XP 2 2 2 x2 4
1.61018个
光脉冲动量
p nh / E / c 1109 kg m / s
10 试求红外线、可见光、紫外线和X射 线光子的能量、动量和质量
解:
E h hc (J ) hc (eV )
e
Ph/ E/c
m E / c2 h / c
13 已知铯的脱出功为1.9ev,测得从铯表 面发出光电子的最大动能为2.1ev,问入射光的 波长为多少?它属于什么波段?光强为1W/m2 的光束中,1m3内的光子数为多少?若光电转 换的量子效率为0.1(即平均每10个光子可产生 1个光电子)则它照射在面积为1 cm2的铯表面 时产生的光电流为多大?
N cSn 1.56 1014个 光电子数为
N 1.56 1014 0.1 1.56 1013个
产生光电流
I Ne 2.5106 A 2.5A
光学教程答案(第二章)
1. 单色平面光照射到一小圆孔上,将其波面分成半波带。
求第к个带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:2022rr k k +=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。
问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。
解:(1)根据上题结论ρρ0kr k =将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。
(2)P 点最亮时,小孔的直径为 cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:根据题意m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以 42/211200=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a a a a I I p4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。
光学教程第二版习题答案(一至七章)
∴ d1
=
h1 − h2 tan u1′
= 1.5 −1 0.015
= 33.33mm
tan u2 ′ = tan u2
+
h2 f 2′
= 0.015 +
1 = 0.011
− 250
∴d2
=
h2 − h3 tan u2 ′
1 − 0.9 =
0.011
= 9.091mm
2-13 一球形透镜,直径为 40mm,折射率为 1.5,求其焦距和主点位置。
= −200mm
lH
= dϕ2 ϕ
= 50 × 5 = −100mm − 2.5
2-11
有三个透镜,
f1′
= 100mm,
f2′
= 50mm,
f
′
3
=
−50mm,其间隔 d1
= 10mm,
d 2 = 10mm ,设该系统处于空气中,求组合系统的像方焦距。
解:设 h1 = 100mm, u1 = 0 ,则:
tan u3′
= tan u3 +
h3 f3′
= 2.8 +
62 − 50
= 1.56
∴组合系统的像方焦距为:
f
′=
h1 tan u3′
100 =
1.56
= 64.1mm
2-12
一个三 片型望远镜 系统,已知
f
′
1
= 100mm,
f
′
2
=
−250mm ,
f
′
3
= 800mm,入
射平行光在三个透镜上的高度分别为: h1 = 1.5mm, h2 = 1mm , h3 = 0.9mm ,试求合成
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)课后习题解答《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=7011180500100.4090.022r y cmd λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cmd λ-∆==⨯⨯=两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯=⑵由光程差公式210sin yr r d dr δθ=-==由题意,设22122A A =,即122A A=220.943V ==5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式()()()72sin 20180sin 700100.003522200.1r L y r r L r y λθθλ-+∆=++==⨯⨯=∆⨯⨯180sin 0.003560123.14θθ'≈=⨯⨯6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)习题解答 【2 】第一章光的干预1.波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干预条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为若干?算出这两种光第2级亮纹地位的距离. 解:1500nm λ=7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹地位的距离为:21220.328y y y cm ∆=∆-∆=2.在杨氏试验装配中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中心亮纹之间的距离;⑵若P 点离中心亮纹为0.1mm 问两束光在P 点的相位差是若干?⑶求P 点的光强度和中心点的强度之比. 解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中心点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3.把折射率为1.5的玻璃片插入杨氏试验的一束光路中,光屏上本来第5级亮条纹地点的地位变为中心亮条纹,试求插入的玻璃片的厚度.已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双缝上.经由过程个中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干预图样,求干预条纹间距和条纹的可见度. 解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干预条纹可见度界说:12min2min1221Max Max A A I I V I I A A ⎛⎫ ⎪-⎝⎭==+⎛⎫+ ⎪⎝⎭由题意,设22122A A =,即12A A =0.94V == 5.波长为700nm 的光源与菲涅耳双镜的订交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干预条纹中相邻亮条纹的距离为1mm ,求双镜平面之间的夹角θ.解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干预条纹间距公式()()()72sin 20180sin 700100.003522200.1r L y r r L r y λθθλ-+∆=++==⨯⨯=∆⨯⨯180sin 0.003560123.14θθ'≈=⨯⨯6.在题1.6 图所示的劳埃德镜试验中,光源S 到不雅察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm .劳埃德镜长40cm ,置于光源和屏之间的中心.⑴若光波波长500nm λ=,问条纹间距是若干?⑵肯定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提醒:产生干预的区域P1P2可由图中的几何干系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在不雅察屏上可以看见条纹的区域为P1P2间010.750.22 1.160.750.2P P mm -=⨯=+020.750.22 3.450.750.2P P mm +=⨯=-即21 3.45 1.16 2.29P P mm =-=,离屏中心1.16mm 上方的2.29mm 规模内可看见条纹.212.29120.19P P N y ===∆ 7.试求能产生红光(700nm λ=)的二级反射干预条纹的番笕膜厚度.已知番笕膜折射率为1.33,且平行光与法向成300角入射. 解:2700, 1.33nm n λ==由等倾干预的光程差公式:22λδ=222λλ=P 2 P 1 P 0题1.6图426d nm ==8.透镜表面平日镀一层如MgF2( 1.38n =)一类的透明物资薄膜,目标是应用干预来降低玻璃表面的反射.为了使透镜在可见光谱的中间波长(550nm )处产生微小的反射,则镀层必须有多厚?解: 1.38n =物资薄膜厚度使膜高低表面反射光产生干预相消,光在介质高低表面反射时均消失半波损掉.由光程差公式:122nh δλ==555099.611044 1.38h nm cm n λ-====⨯⨯9.在两块玻璃片之间一边放一条厚纸,另一边互相压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行不雅察,问在玻璃片单位长度内看到的干预条纹数量是若干?设单色光源波长为500nm解:02cos602o n h δ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干预条纹数量为:1001010N n l === 即每cm 内10条.10.在上题装配中,沿垂直于玻璃表面的倾向看去,看到相邻两条暗纹间距为1.4mm .已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长.解:当光垂直入射时,等厚干预的光程差公式:22nh λδ=+可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何干系:h H l l ∆=∆,即l h H l ∆∆= 40.1422210.00360.563110563.117.9l n h n H cm nm l λ-∆=∆==⨯⨯⨯=⨯=11.波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强. 解:61.210, 1.5h m n -=⨯=由光正入射的等倾干预光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=()4172002121nh nm j j λ==⨯++5,654.5j nm λ== 6,553.8j nm λ== 7,480.0j nm λ== 8,423.5j nm λ==12.迈克耳逊干预仪的反射镜M2移动0.25mm 时,看到条纹移过的数量为909个,设光为垂直入射,求所用光源的波长.解:光垂直入射情形下的等厚干预的光程差公式:22nh h δ== 移动一级厚度的转变量为:2h λ∆=60.25109092nmλ⨯=60.25102550.0909nm λ⨯⨯==13.迈克耳逊干预仪的平面镜的面积为244cm ⨯,不雅察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为若干?解:由光垂直入射情形下的等厚干预的光程差公式: 22nh h δ== 相邻级亮条纹的高度差:2h λ∆=由1M 和2M '构成的空气尖劈的双方高度差为:2010H h λ∆=⨯∆=710589100.0001472530.3944H rad α-∆⨯⨯''====14.调节一台迈克耳逊干预仪,使其用波长为500nm 的扩大光源照明时会消失齐心圆环条纹.若要使圆环中间处接踵消失1000条圆环条纹,则必须将移动一臂多远的距离?若中间是亮的,试盘算第一暗环的角半径.(提醒:圆环是等倾干预图样,盘算第一暗环角半径时可应用21sin ,cos 12θθθθ≈≈-的关系.)解:500nm λ=消失齐心圆环条纹,即干预为等倾干预M 1M 21M2M '对中间 2h δ=72210001100050010 2.5100.252h h cm mmλ--∆=∆=⨯⨯⨯=⨯= 15.用单色光不雅察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长. 解:由牛顿环的亮环的半径公式:r =()22132122j R r λ⎛⎫+== ⎪⎝⎭()2224.62(5)122j R r λ⎛⎫++== ⎪⎝⎭以上两式相减得:12.1654R λ=3312.160.590310590.345 1.0310mm nm λ-==⨯=⨯⨯⨯ 16.在反射光中不雅察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离.解:牛顿环的反射光中所见亮环的半径为:r =即:2r =3r =19r =20r =则:)2019320.160.40.4r r r r r mm ∆=-==-== 第2章光的衍射1.单色平面光照耀到一小圆孔上,将其波面分成半波带.求第k 个带的半径.若顶点到不雅察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径.解:由公式2011HR k r R λ⎛⎫=+ ⎪⎝⎭对平面平行光照耀时,波面为平面,即:R →∞20H R kr λ=26301450101100.45H R kr λ-==⨯⨯⨯⨯=H R2.平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像拍照机光圈那样转变大小.问:⑴小孔半径应知足什么前提时,才能使得此小孔右侧轴线上距小孔中间4m 的P 点的光强分离得到极大值和微小值;⑵P 点最亮时,小孔直径应为多大?设此光的波长为500nm . 解:⑴04400r m cm ==H R ===当k 为奇数时,P 点为极大值 当C 数时,P 点为微小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k =,即仅露出一个半波带时,P 点最亮.10.141,(1)H R cm k ==,0.282D cm =3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个表里半径分离为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强0I 之比.解:()123211900.50.510111115001011H H R mmR k r R λ--=⨯⎛⎫⎛⎫=+=+= ⎪ ⎪⨯⎝⎭⎝⎭ ()223222901110111145001011H H R mmR k r R λ--=⨯⎛⎫⎛⎫=+=+= ⎪ ⎪⨯⎝⎭⎝⎭ 即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ====234P A a a a a =-+=没有光阑时()111,2,01122P k k PA a a k a A a a '=±→∞→'== 光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中间的P 点是亮点照样暗点?⑵要使P 点变成与⑴相反的情形,至少要把屏分离向前或向后移动若干? 解:由公式2011HR k r R λ⎛⎫=+ ⎪⎝⎭对平面平行光照耀时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点. 则 0113k r R ⎛⎫=⨯+⎪⎝⎭, 注:0,r R 取m 作单位 013k r = 向右移,使得2k =,031.5, 1.510.52r m r m '==∆=-= 向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5.一波带片由五个半波带构成.第一半波带为半径1r 的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无限大的不透明区域.已知1234:::r r r r =用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出如今哪些地位上. 解: 由1234:::r r r r =⑴片具有透镜成像的感化,2HkR f k λ'=波带2129111150010,0.07r m r r cmλλ-=⨯==⨯= ⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度. ⑶因为波带片还有11,35f f ''…等多个核心消失,即光强极大值在轴上11,35m m … 6.波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带(1,3,5,…,199).别的100个不透明偶数半波带.比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I . 解:由波带片成像时,像点的强度为:()2100I a =由透镜成像时,像点的强度为:()20200I a =即014I I = 7.平面光的波长为480nm ,垂直照耀到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm .分离盘算当缝的双方到P 点的相位差为/2π和/6π时,P 点离核心的距离. 解:对沿θ倾向的衍射光,缝的双方光的光程差为:sin b δθ= 相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点2sin 2b ππϕθλ∆==sin 4bλθ=6148010tan sin 6000.18440.4y f f f mm b λθθ-⨯'''=⨯≈⨯==⨯=⨯对使6πϕ∆=的P`点2sin 6b ππϕθλ∆==sin 12bλθ=6148010tan sin 6000.0612120.4y f f f mm b λθθ-⨯'''=⨯⨯==⨯=⨯8.白光形成的单缝衍射图样中,个中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长.解:对θ方位,600nm λ=的第二个次最大位1sin 22bλθθ⎛⎫≈=+ ⎪⎝⎭对 λ'的第三个次最大位1sin 32b λθθ'⎛⎫≈=+ ⎪⎝⎭即:5722b b λλ'⨯=⨯ 55600428.677nm λλ'==⨯=9.波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中心到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分离为若干?解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅6111546.110tan sin 10000.551y f f f mm b λθθ-⨯'''=≈==⨯=⑵第一最大值的方位角1θ'为:11sin 12bλθ⎛⎫'=+ ⎪⎝⎭6111546.110tan sin 1.431000 1.430.781y f f f mm b λθθ-⨯''''''=≈=⨯=⨯⨯=⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅6333546.110tan sin 310003 1.651y f f f mm b λθθ-⨯'''=≈=⨯=⨯⨯=10.钠光经由过程宽0.2mm 的狭缝后,投射到与缝相距300cm 的拍照底片上.所得的第一最小值与第二最小值间的距离为0.885cm ,问钠光的波长为若干?若改用X 射线(0.1nm λ=)做此试验,问底片上这两个最小值之间的距离是若干?解:单缝衍射名堂最小值地位对应的方位θ知足:sin ,1,2,3,....kk bλθ==±±±则 11sin 1bλθθ≈=⋅22sin 2bλθθ≈=⋅()21x L Lbλθθ∆=⋅-=40.28.85 5.9105903000b x mm nm L λ-=∆=⨯=⨯=740.110300 1.5100.02x L cm b λ--⨯'∆==⨯=⨯11.以纵坐标表示强度,横坐标表示屏上的地位,粗略地画出三缝的夫琅禾费衍射(包括缝与缝之间的干预)图样.设缝宽为b ,相邻缝间的距离为d ,3d b =.留意缺级问题.12.一束平行白光垂直入射在每毫米50条刻痕的光栅上,问第一级光谱的末尾和第二光谱的始端的衍射角θ之差为若干?(设可见光中最短的紫光波长为400nm ,最长的红光波长为760nm ) 解:每毫米50条刻痕的光栅,即10.0250d mm mm == 第一级光谱的末尾对应的衍射方位角1θ末为111sin 1sin d dθλλθθ=⋅≈=红末红末末第二级光谱的始端对应的衍射方位角2θ始为1sin 22sin d dθλλθθ=⋅≈=2始紫紫2始2始 ()()66321112240010760102100.02rad d θθθλλ---∆=-=-=⨯⨯-⨯=⨯红始末紫 13.用可见光(760400nm )照耀光栅时,一级光谱和二级光谱是否重叠?二级和三级如何?若重叠,则重叠规模是若干?解:光谱线对应的方位角θ:sin kdλθθ≈=2140076021d dθθ=⨯>=⨯始末即第一级光谱与第二级光谱无重叠237601520400120023d d d dθθ=⨯=>=⨯=末始 即第二级光谱与第三级光谱有重叠 由2152015203,506.73nm nm d dλθλ==⨯==末 即第三级光谱的400506.7nm 的光谱与第二级光谱重叠.14.用波长为589nm 的单色光照耀一衍射光栅,其光谱的中心最大值和第二十级主最大值之间的衍射角为01510',求该光栅1cm 内的缝数是若干? 解:第20级主最大值的衍射角由光栅方程决议20sin 20d θλ=2020sin 20dλθθ==15601020180603.14dλ⨯+=⨯ 解得20.4510d cm -=⨯1222/N cm d==条 15.用每毫米内有400条刻痕的平面透射光栅不雅察波长为589nm 的钠光谱.试问:⑴光垂直入射时,最多功效能不雅察到几级光谱?⑵光以030角入射时,最多能不雅察到几级光谱? 解:61,58910400d mm mm λ-==⨯⑴光垂直入射时,由光栅方程:sin d j θλ=6111sin 4.24458910400j d θλ-==⨯=≈⨯即能看到4级光谱⑵光以30o角入射()sin sin 30o d j θλ+=()1sin sin 304162odj θλ⎛⎫=+=+= ⎪⎝⎭16.白光垂直照耀到一个每毫米250条刻痕的平面透射光栅上,试问在衍射角为030处会消失哪些波长的光?其色彩若何? 解:1250d mm =在30o的衍射角倾向消失的光,应知足光栅方程:sin 30od j λ=11111sin 3020002502o d mm nm j j jλ==⨯⨯=⨯3,667j nm λ==4,500j nm λ== 5,400j nm λ==17.用波长为624nm 的单色光照耀一光栅,已知该光栅的缝宽b 为0.012mm ,不透明部分的宽度a 为0.029mm ,缝数N 为310条.求:⑴单缝衍射图样的中心角宽度;⑵单缝衍射图样中心宽度内能看到若干级光谱?⑶谱线的半宽度为若干? 解:0.012,0.029b mm a mm ==0.041d a b mm =+= 1000N =⑴6062410220.1040.012rad b λθ-⨯∆==⨯= ⑵j 级光谱对应的衍射角θ为:11sin sin 1d j dθλλθθ==⨯112 3.43d k bθθ∆===→即在单缝图样中心宽度内能看到()2317⨯+=条(级)光谱 ⑶由多缝干预最小值地位决议公式:sin j Ndλθ'=⋅651262410 1.521010000.041rad Nd λθ--⨯∆===⨯⨯第3章几何光学的根本道理1.证实反射定律相符费马道理 证实:设A 点坐标为()10,y ,B 点坐标为()22,x y 入射点C 的坐标为(),0x 光程ACB为:∆=令2sin sin 0x x d i i dx -∆'==-=即:sin sin i i '=*2.依据费马道理可以导出近轴光线前提下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物像公式.3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm .求物体PQ 的像P`Q`与物体PQ 之间的距离2d 为若干?解:12sin sin i n i =由图:()121211tan tan sin sin 1sin BB d i d i d i i d i n ⎛⎫'=-≈-=-⎪⎝⎭1111130110tan sin 1.5BB BB CE d cm i i n ''⎛⎫⎛⎫=≈=-=-= ⎪ ⎪⎝⎭⎝⎭4.玻璃棱镜的折射角A 为060,对某一波长的光其折射率n 为1.6,盘算:⑴最小倾向角;⑵此时的入射角;⑶能使光线从A 角两侧透过棱镜的最小入射角. 解:⑴ 由()()()1212112211i i i i i i i i i i A θ'''''=-+-=+-+=+- 当11i i '=时倾向角为最小,即有221302o i i A '=== 12i A θ=-121sin sin 1.60.82i n i ==⨯= 15308o i '=25308604616o o o θ''=⨯-=⑵15308oi '=5.(略)6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的地位及高度,(并作光路图) 解:由球面成像公式:112s s r+=' 代入数值1121220s +='-- 得:60s cm '=- 由公式:0y y s s '+='y s y s''=- 6052512s y y cm s '-'=-=-⨯=-- 7.一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像.求⑴此镜的曲率半径;⑵此镜是凸面镜照样凹面镜?解:⑴5,10y cm s cm ==-1y cm '=, 虚像0s '>由y s y s''=- 1510s '=-- 得:2s cm '=⑵由公式112s s r+=' 112210r+=- 5r cm =(为凸面镜)8.某不雅察者经由过程一块薄玻璃板去看在凸面镜中他本身的像.他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一路.若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离为40cm ,问玻璃板距不雅察者眼睛的距离为若干? 解:由题意,凸面镜焦距为10cm ,即10r = 112s s r +=' 11140108s s cm+='-'= 48PP cm '=玻璃板距不雅察者眼睛的距离为1242d PP cm '== 9.物体位于凹面镜轴线上核心之外,在核心与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为1d ,折射率为n .试证实:放入该玻璃板后使像移动的距离与把凹面镜向物体移动()11/d n n -的一段距离的后果雷同.证实:设物点P 不动,由成像公式112s s r+=' ()2rss s r '=-由题3可知:11110PP d d n ⎛⎫==-> ⎪⎝⎭入射到镜面上的光线可视为从1P 发出的,即参加玻璃板后的物距为s d +1112s s d r +='+ ()()12r s d s s d r+'=+-反射光线经玻璃板后也要平移d ,所成像的像距为11s s d '''=-放入玻璃板后像移量为:()()()1122r s d rss s s d s d r s r +''''∆=-=--+-- 凹面镜向物移动d 之后,物距为s d + (0,0s d <>)2112s s d r +='+ ()()22r s d s s d r+'=+-2s '相对o 点距离()()222r s d s s d d s d r+'''=-=-+-()()()2222r s d rss s s d s d r s r +''''∆=-=--+-- 10.欲使由无限远发出的近轴光线经由过程透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为若干?解:,1,2s n s r '=-∞==由球面折射成像公式:n n n ns s r''--='2n n nr r''-=解得: 2n '=11.有一折射率为1.5.半径为4cm 的玻璃球,物体在距球表面6cm 处,求:⑴物所成的像到球心之间的距离;⑵像的横向放大率. 解:⑴P 由球面1o 成像为P ',n n n ns s r''--=' 1.51 1.5164s --='- 36s cm '=-P '由2o 球面成像P ''236844s cm =--=-21 1.51 1.5444s --='-- 211s cm '=,P ''在2o 的右侧,离球心的距离11415cm += ⑵球面1o 成像1111y s y s n β''==⋅ (应用P194:y s n y s n ''=⋅') 球面2o 成像222121y s n y s β''==⋅' 121223611 1.5644s s s s βββ''-==⋅=⋅=---12.一个折射率为1.53.直径为20cm 的玻璃球内有两个吝啬泡.看上去一个正好在球心,另一个从比来的倾向看去,似乎在表面与球心连线的中点,求两气泡的现实地位. 解:设气泡1P 经球面1o 成像于球心,由球面折射成像公式:n n ns s r'--=' 11 1.531 1.531010s --=-- 110s cm =-, 即气泡1P 就在球心处另一个气泡2P21 1.531 1.53510s --=-- 2 6.05s cm =-, 即气泡2P 离球心10 6.05 3.95cm -=13.直径为1m 的球形鱼缸的中间处有一条小鱼,若玻璃缸壁的影响可疏忽不计,求缸外不雅察者所看到的小鱼的表不雅地位和横向放大率. 解:由球面折射成像公式:n n n ns s r''--=' 1 1.331 1.335050s --='-- 解得 50s cm '=-,在原处50 1.331.33501s n s n β'-=⋅=⨯='- 14.玻璃棒一端成半球形,其曲率半径为2cm .将它程度地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,应用盘算和作图法求像的地位及横向放大率,并作光路图. 解:由球面折射成像公式:s s r-=' 1.5 1.33 1.5 1.3382s --='- 18.5s cm '=-18.5 1.332.058 1.5s n s n β'-=⋅=⨯='- 15.有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm .一物点在主轴上距镜20cm 处,若物和镜均浸入水中,分离用作图法和盘算法求像点的地位.设玻璃的折射率为1.5,水的折射率为1.33. 解:由薄透镜的物像公式:211212n n n n n ns s r r ---=+' 对两表面均为凸球面的薄透镜:1.33 1.33 1.5 1.33 1.33 1.5201010s ---=+'-- 40.9s cm '=-对两表面均为凹球面的薄透镜:1.33 1.33 1.5 1.33 1.33 1.5201010s ---=+'-- 13.2s cm '=-16.一凸透镜在空气的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为若干(水的折射率为1.33)?若将此透镜置于CS2中(CS2的折射率为1.62),其焦距又为若干? 解:⑴ 薄透镜的像方焦距:21212n f n n n n r r '=⎛⎫--+ ⎪⎝⎭12n n = 时,()111211n f n n r r '=⎛⎫-- ⎪⎝⎭在空气中:()1121111f n r r '=⎛⎫-- ⎪⎝⎭在水中:()2121.33111.33f n r r '=⎛⎫-- ⎪⎝⎭两式比拟:()()12 1.33401.331136.8n f f n -'=='- 解得 1.54n = ⑵12 1.62n n ==1112111n f n n r r '=⋅-⎛⎫- ⎪⎝⎭而:()11211111f n r r '-=⎛⎫- ⎪⎝⎭则:()1.6240 1.541437.41.54 1.62f cm '=⨯⨯-=--第4章 光学仪器的根本道理1.眼睛的结构简略地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于 1.试盘算眼球的两个焦距.用肉眼不雅察月球时月球对眼的张角为01,问视网膜上月球的像有多大? 解:由球面折射成像公式:n n n n s s r''--='令43,5.55 2.22413n s f r cm n n ''=-∞=⋅=⨯='--令1,5.5516.7413n s f r cm n n '=∞=-⋅=-⨯=-'--2 5.550.190.019180y mm cm π'=⨯⨯==2.把人眼的晶状体算作距视网膜2cm 的一个简略透镜.有人能看清距离在100cm 到300cm 间的物体.试问:⑴此人看远点和近点时,眼睛透镜的焦距是若干?⑵为看清25cm 远的物体,需配戴如何的眼镜?解:⑴对于远点:11300,2s cm s cm '=-= 由透镜成像公式:111111s s f -='' 1111123001.987f f cm-='-'= 对于近点:2211121001.961f f cm-='-'= ⑵对于25cm1112251.852f f cm-='-'= 由两光具组互相接触0d =组合整体:21111111.852 1.961f f f f =+''''=+''y '110.030cm f -=''(近视度:300o ) 3.一拍照机瞄准远物时,底片距物镜18cm ,当镜头拉至最大长度时,底片与物镜相距20cm ,求目标物在镜前的比来距离?解:由题意:拍照机瞄准远物时,底片距物镜18cm ,18f cm '=由透镜成像公式:111s s f -=''1112018180s s cm-==- 4.两星所成的视角为4',用千里镜物镜拍照,所得两像点相距1mm ,问千里镜物镜的焦距是若干? 解: 3.14118060rad '=⨯3.1444118060859.585.95f f mmf mm cm '''⨯=⨯⨯=⨯'== 5.一显微镜具有三个物镜和两个目镜.三个物镜的焦距分离为16mm .4mm 和1.9mm ,两个目镜的放大本领分离为5和10倍.设三个物镜造成的像都能落在像距为160cm 处,问这显微镜的最大和最小的放大本领各为若干? 解:由显微镜的放大本领公式:12125l cm l M M f f f =-⋅=-⋅'''目 其最大放大本领:1160108421.9Max l mmM M f mm=-⋅=-⨯='目 其最小放大本领:min 116055016l mm M M f mm=-⋅=-⨯=-'目6.一显微镜物镜焦距为0.5cm ,目镜焦距为2cm ,两镜间距为22cm .不雅察者看到的像在无限远处.试求物体到物镜的距离和显微镜的放大本领. 解:由透镜物像公式:111s s f -=''111200.5s -=解得:0.51s cm =- 显微镜的放大本领:1212252522255500.52s l M f f f f '=-⋅≈-⋅=-⨯=-'''' 7.(略)8.已知千里镜物镜的边缘即为有用光阑,试盘算并作图求入光瞳和出射光瞳的地位. 9. 10.*13.焦距为20cm 的薄透镜,放在发光强度为15cd 的点光源之前30cm 处,在透镜后面80cm 处放一屏,在屏上得到通亮的圆斑.求不计透镜中光的接收时,圆斑的中间照度. 解:1113020s -='- 60s cm '=230Sd Id Iφ=Ω= (S 为透镜的面积) P 点的像点P '的发光强度I '为: 2230460S Id I I S d φ'==='Ω22cos 415000.2I I E lx R α'=== 14.一长为5mm 的线状物体放在一拍照机镜头前50cm 处,在底片上形成的像长为1mm .若底片后移1cm ,则像的弥散斑宽度为1mm .试求拍照机镜头的F 数. 解:由y s y s''= 1550s '= 得10s cm '= 由透镜物像公式:111s s f -=''1111050f -='- 506f '=由图可见,100.11d =1d cm = F 数:508.336f d '== 15.某种玻璃在接近钠光的黄色双谱线(其波长分离为589nm 和589.6nm )邻近的色散率/dn d λ为1360cm --,求由此种玻璃制成的能分辩钠光双谱线的三棱镜,底边宽度应小于若干?解:由色分辩本领:dnP d λδλλ==∆ 589.3nm λ=0.6nm λ∆=mm360dnd λ=- 2.7cm dn d λλδλ∆≥=16.设计一块光栅,请求⑴使波长600nm 的第二级谱线的衍射角小于030,并能分辩其0.02nm 的波长差;⑵色散尽可能大;⑶第三级谱线缺级.求出其缝宽.缝数.光栅常数和总宽度.用这块光栅总共能看到600nm 的几条谱线? 解:由sin d j θλ=326002400 2.410sin 30onmd nm mm -⨯≥==⨯ 由第三级缺级313,0.8103d b d mm b-===⨯由 P jN λλ==∆ 60020.0215000NN == 光栅的总宽度:315000 2.41036L Nd mm -==⨯⨯=由sin 9024004600od j λ=== 能看到0,1,2±±,共5条谱线17.若请求显微镜能分辩相距0.000375mm 的两点,用波长为550nm 的可见光照明.试求:⑴此显微镜物镜的数值孔径;⑵若请求此两点放大后的视角为2',则显微镜的放大本领是若干?解:⑴由显微镜物镜的分辩极限界说0.610sin y n uλ∆=655010sin 06100.8950.000375n u -⨯=⨯=⑵ 3.1418060387.70.000375250M ⨯==18.夜间自远处驶来汽车的两前灯相距1.5m .如将眼睛的瞳孔算作产生衍射的圆孔,试估量目力正常的人在多远处才能分辩出光源是两个灯.设眼睛瞳孔的直径为3mm ,设光源发出的光的波长λ为550nm . 解: 1.5U L=当0.610U Rλθ==才能分辩出1.50.610L Rλ= 61.5550100.610 1.5m mmLm mm-⨯=⨯ 6706 6.7L m km ==19.用孔径分离为20cm 和160cm 的两种千里镜可否分辩清月球上直径为500m 的环形山?(月球与地面的距离为地球半径的60倍,面地球半径约为6370km .)设光源发出的光的波长λ为550nm .解:635001.31060637010U rad -==⨯⨯⨯ 孔径20cm 千里镜:661550101.22 1.22 3.35510200rad D λθ--⨯'==⨯=⨯孔径160cm 千里镜:661550101.22 1.220.419101600rad D λθ--⨯''==⨯=⨯1U θ'<,即用孔径20cm 千里镜不能分辩清 1U θ''>,即用孔径160cm 千里镜能分辩清20.电子显微镜的孔径角028u =,电子束的波长为0.1nm ,试求它的最小分辩距离.若人眼能分辩在明视距离处相距26.710mm -⨯的两点,则此显微镜的放大倍数是若干?解: 3.144sin sin 4180on u u u ⨯====660.610.1100.87100.873.144180y mm nm --⨯⨯∆==⨯=⨯2466.7107.7100.8710mm mmβ--⨯==⨯⨯ 第五章光的偏振1.试肯定下面两列光波()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦的偏振态.解:①()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+--⎪⎢⎥⎝⎭⎣⎦()10cos x E A t kz ω=-()100cos sin 2y E A t kz A t kz πωω⎛⎫=--=- ⎪⎝⎭有:222110x y E E A +=剖析()(),0000,2x y x y E A t kz A E E t kz A E Aωπω=⎧⎪-=⎨=⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光②()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+--⎪⎢⎥⎝⎭⎣⎦()20sin x E A t kz ω=-()200sin cos 2y E A t kz A t kz πωω⎛⎫=--=-- ⎪⎝⎭有:222110x y E E A +=剖析()()0,,002x y x y E t kz A E A E A t kz A E ωπω=⎧⎪-=-⎨=-⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光2.为了比较两个被天然光照耀的表面的亮度,对个中一个表面直接进行不雅察,另一个表面经由过程两块偏振片来不雅察.两偏振片的透振倾向的夹角为060.若不雅察到两表面的亮度雷同.则两表面现实的亮度比是若干?已知光经由过程每一块偏振片后损掉入射光能量的0010.解:因为被光照耀的表面的亮度与其反射的光的光强成正比.设直接不雅察的表面临应的光强为1o I ,经由过程两偏振片不雅察的表面的光强为2o I 经由过程第一块偏振片的光强为:1210.92o I I =⨯ 经由过程第二块偏振片的光强为:22122110.9cos 600.90.90.124o o I I I I ==⨯⨯⨯⨯=由1220.1o o I I I == 则:120.1ooI I = 3.两个尼科耳N1和N2的夹角为060,在它们之间放置另一个尼科耳N3,让平行的天然光经由过程这个体系.假设各尼科耳对异常光均无接收,试问N3和N1的透振倾向的夹角为何值时,经由过程体系的光强最大?设入射光强为0I ,求此时所能经由过程的最大光强. 解:1012I I =223101cos cos 2I I I αα==()()2222301cos 60cos cos 602o I I I ααα=-=⋅-令:20dId α=得:()tan tan 60αα=-30o α= ()222220019cos 30cos 6030232I I I =⋅-= 4.在两个公理的幻想偏听偏振片之间有一个偏振片以匀角速度ω绕光的传播倾向扭转(见题5.4图),若入射的天然光强为0I ,试证实透射光强为()011cos 416I I t ω=- 证实:1012I I =21cos I I t ω'=1N 2N3N60oα1N2NNt ω()()22222000cos 90sin 111cos sin sin 21cos 42816I I t I tI t t I t I t ωωωωωω''=-=⋅=⋅==- 5.线偏振光入射到折射率为1.732的玻璃片上,入射角是060,入射光的电矢量与入射面成030角.求由分界面上反射的光强占入射光强的百分比. 解:设入射线偏振光振幅为A ,则入射光强为20I A = 入射光平行分量为:1cos 30oP A A = 入射光垂直分量为:1sin 30oS A A =由:21sin603sin i =得:230oi =由:()()()()121112tan 6030tan 0tan tan 6030oPo P i i A A i i --'===++ ()()()()121112sin 6030sin 1sin 2sin 6030o S o S i i A A i i --'=-=-=-++ 111124S S A A A '== 014I I '=6.一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成030角.两束折射光经由过程在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动倾向成050角.盘算两束透射光的相对强度. 解:601sin 302o o A A A ==cos30o e A A A ==当光振动面与N 主截面在晶体主截面同侧:02cos80cos802o e e A A A ==21sin80sin802o o o o A A A ==22222222sin 8010.723cos 80oe e o o o I A I A ===⋅ 当光振动面与N 主截面在晶体主截面两侧:02cos 20cos 20o e e A A A ==21cos70sin 202o o o o A A A ==22222222sin 200.0443cos 20oe e o o o I A I A ===⋅7.线偏振光垂直入射到一块光轴平行于表面的方解石波片上,光的振动面和波片的主截面成030角.求:⑴透射出来的平常光和异常光的相对强度为若干?⑵用钠光入时如要产生090的相位差,波片的厚度应为若干?(589nm λ=)解:⑴1sin 302oo A A A ==214o I A =cos302o e A A A ==234e I A = 13o e I I = ⑵ 方解石对钠光 1.658 1.486o e n n ==由()2o e n n d πϕλ∆=-()22o e n n d ππλ-=()58.7104o e d cm n n λ-==⨯-8.有一块平行石英片是沿平行于光轴倾向切成一块黄光的14波片,问这块石英片应切成多厚?石英的01.552, 1.543,589e n n nm λ===. 解:()2o e n n d πϕλ∆=-()()2212o e n n d k ππλ-=⋅+()()()321211.64104o e k d k cm n n λ-+==+⨯-9.⑴线偏振光垂直入射到一个表面和光轴平行的波片,透射出来后,本来在波片中的平常光及异常光产生了大小为π的相位差,问波片的厚度为若干?0 1.5442, 1.5533,500e n n nm λ===⑵问这块波片应如何放置才能使透射出来的光是线偏振光,并且它的振动面和入射光的振动面成090的角? 解:⑴()()221o e n n d k πϕπλ∆=-=+()()()321212.75102o e k d k cm n n λ-+==+⨯-⑵振动倾向与晶体主截面成45o角10.线偏振光垂直入射到一块表面平行于光轴的双折射波片,光振动面和波片光轴成025角,问波片中的平常光和异常光透射出来后的相对强度若何? 解:cos 25o e A A = sin 25o o A A =222tan 250.22o o e e oI A I A ===11.在两正交尼科耳棱镜N1和N2之间垂直插入一块波片,发明N2后面有光射出,但当N2绕入射光向顺时针转事后020, N2的视场全暗,此时,把波片也绕入射光顺时针转过020,N2的视场又亮了,问:⑴这是什么性质的波片;⑵N2要转过多大角度才能使N2的视场以变为全暗. 解:⑴由题意,当2N 绕入射光向顺时针迁移转变20o 后,2N 后的视场全暗,解释A '与1N 夹角为20o.只有当波片为半波片时,才能使入射线偏振光出射后仍为线偏振光.⑵把波片也绕入射光顺时针转过020,2N 要转过040才能使2N 后的视场又变为全暗 12.一束圆偏振光,⑴垂直入射1/4波片上,求透射光的偏振状况;⑵垂直入射到1/8波片上,求透射光的偏振状况.解:在xy 平面上,圆偏振光的电矢量为:()()cos sin x y E A t kz e A t kz e ωω=-±- +为左旋;-为右旋圆偏振光设在波片入射表面上为()cos x E A t kz ω=-()sin y E A t kz ω=- ⑴波片为14波片时,2πϕ∆= ()cos xo E A t kz ω=-()sin cos 2yo E A t kz A t kz πωω⎛⎫=-+=- ⎪⎝⎭ 即透射光为振动倾向与晶片主截面成45o 角的线偏振光 ⑵波片为18波片时,4πϕ∆= ()cos xo E A t kz ω=-sin 4yo E A t kz πω⎛⎫=-+ ⎪⎝⎭ 即透射光为椭圆偏振光.13.试证实一束左旋圆偏振光和一束右旋圆偏振光,当它们的振幅相等时,合成的光是线偏振光. 解:左旋圆偏振光()()1cos sin x y E A t kz e A t kz e ωω=-+-右旋圆偏振光()()2cos sin x y E A t kz e A t kz e ωω=---()122cos x E E E A t kz e ω=+=-即E 为线偏振光14.设一方解石波片沿平行光轴倾向切出,其厚度为0.0343mm ,放在两个正交的尼科耳棱镜间,平行光束经由第一尼科耳棱镜后,垂直地射到波片上,对于钠光(589.3nm )而言,晶体的折射率为1.658, 1.486o e n n ==.问经由过程第二尼科耳棱镜后,光束产生的干预是增强照样削弱?假如两。
《光学教程》(姚启钧)课后习题解答
《光学教程》(姚启钧)课后习题解答 - 百度文库《光学教程》(姚启钧)习题解答第一章光的干涉1 、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2 级亮纹位置的距离。
解:改用两种光第二级亮纹位置的距离为:2 、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第 1 亮条纹和中央亮纹之间的距离;⑵若 P 点离中央亮纹为问两束光在 P 点的相位差是多少?⑶求 P 点的光强度和中央点的强度之比。
解:⑴⑵由光程差公式⑶中央点强度:P 点光强为:3 、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4 、波长为的单色平行光射在间距为的双缝上。
通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:由干涉条纹可见度定义:由题意,设,即代入上式得5 、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角。
解:由菲涅耳双镜干涉条纹间距公式6 、在题 1.6 图所示的劳埃德镜实验中,光源 S 到观察屏的距离为,到劳埃德镜面的垂直距离为。
劳埃德镜长,置于光源和屏之间的中央。
⑴若光波波长,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域 P 1 P 2 可由图中的几何关系求得)解:由图示可知:①②在观察屏上可以看见条纹的区域为 P 1 P 2 间即,离屏中央上方的范围内可看见条纹。
7 、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。
已知肥皂膜折射率为,且平行光与法向成 30 0 角入射。
高等光学_第二章_部分习题答案
w 2π × 3 ×104 V= = = g k 2π × 3 ×10
2.5 Solved:
3 ×103
这题的题目应该出错了。如果不是出错的话,那么空间频率太大了, 导致 z 分量会很大, 计算会很麻烦。 因此, 应该将复振幅的公式改为:
3 × E ( x, y ) = exp i 2 10 π ( x + 1.5 y )
= λ
1 = fs
3 = 102 + 102 + 102 30
→
1
6.相位速度:相速度公式的推导可得:
常数 对于等相面,我们有: wt − k r =
0 ,于是我们得出: 两边取全微分,有: wdt − k d r =
→
Vp =
dr w = dt k
→
这里的 w 代表时间圆频率,k 代表总波数。故由题目可得:
2.13 Solved:
由于光波的群速度与 n,w,V p 都有关系,这里只要根据题目给出的 已知,选取合适的公式以简化计算就行了。题目不止一种解法,而且 选用的公式不同,得出的答案也会不同,都是正确的,但可能有的答 案比较复杂。以下只给出最简单的答案。 (1)对于给出折射率 n 的变化公式,由于题目说明是正常的色散介 质,所以可使用简化的群速度公式:
c 出发,变形可得: n c n = k w
两边对 w 取一阶导数(k 与 w 有关 ):
dn c c dk = −k 2 + dw w w dw
c dw V p = ,得出: 利用 Vg = n dk 和
dn n c 1 = − + dw w w Vg
整理公式,最后可得:
Vg =
c n + w dn dw
光学第二三章部分答案
2-1 在杨氏实验中,用波长为的氦氖激光束垂直照射到间距为1.00mm 的两个小孔上,小孔至屏幕的垂直距离为100cm. 试求在下列两种情况下屏幕上干涉条纹的间距: (1)整个装置放在空气中;(2)整个装置放在n=的水中.解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为21()sin xn r r nd nd Dδθ=-==所以相邻干涉条纹的间距为D x d nλ∆=⋅(1) 在空气中时,n =1。
于是条纹间距为10431.0632810 6.3210(m)1.010D x d λ---∆==⨯⨯=⨯⨯ (2) 在水中时,n =。
条纹间距为10431.0632810 4.7510(m)1.010 1.33D x d n λ---⨯⨯∆=⋅==⨯⨯⨯2-2 在杨氏干涉装置中,双缝至屏幕的垂直距离为2.00m. 测得第10级干涉亮纹至中央亮纹之间的距离为3.44cm ,双缝间距为0.342mm , 试求光源的单色光波长.解:在杨氏干涉装置中,两束相干光的光程差为:sin xd d Dδθ==根据出现亮条纹的条件0λδk ±=,对第10级亮条纹,k 取10,于是有:010λ=Dxd带入数据得:0231021044.310342.0λ=⨯⨯⨯--由此解出:nm 24.5880=λ2-4因为:λθj Dxd d ==sin 所以:λ∆=∆j Dxd)(102.24m djD x -⨯=∆=∆λ2-5 用很薄的云母片(n =覆盖在双缝干涉实验装置的一条缝上,观察到干涉条纹移动了9个条纹的距离,光源的波长为 nm ,试求该云母片的厚度。
解:设云母片厚度为h ,覆盖在双缝中的1r 光路上,此时两束相干光的光程差为:21()(1)xr r h nh dn h k Dδλ''=--+=--= 当没有覆盖云母片,两束相干光的光程差为:21xr r d k Dδλ=-==因为条纹移动了9个,则:9k k '-=由①、②两式得:(1)9n h λ-=由此可得云母片的厚度为:9699550.0108.5310(m)1 1.581h n λ--⨯⨯===⨯--2-13nm 8.6420=λ2-14 将两块平板玻璃叠合在一起,一端互相接触。
光学教程课后习题解答
《光学教程》(姚启钧)课后习题解答(总47页)-本页仅作为预览文档封面,使用时请删除本页-《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭012(10.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
光学教程姚启钧课后习题解答
光学教程姚启钧习题解答 第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离;若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离;解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比;解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度;已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上;通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度;解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义: 由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ;解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm ;劳埃德镜长40cm ,置于光源和屏之间的中央;⑴若光波波长500nm λ=,问条纹间距是多少⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹提示:产生干涉的区域P 1P 2可由图中的几何关系求得解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯==== ①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在观察屏上可以看见条纹的区域为P 1P 2间即21 3.45 1.16 2.29P P mm =-=,离屏中央1.16mm 上方的2.29mm 范围内可看见条纹;P 2 P 1 P 0题图7、试求能产生红光700nm λ=的二级反射干涉条纹的肥皂膜厚度;已知肥皂膜折射率为1.33,且平行光与法向成300角入射;解:2700, 1.33nm n λ==由等倾干涉的光程差公式:22λδ=8、透镜表面通常镀一层如MgF 2 1.38n =一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射;为了使透镜在可见光谱的中心波长550nm 处产生极小的反射,则镀层必须有多厚解: 1.38n =物质薄膜厚度使膜上下表面反射光产生干涉相消,光在介质上下表面反射时均存在半波损失;由光程差公式:9、在两块玻璃片之间一边放一条厚纸,另一边相互压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行观察,问在玻璃片单位长度内看到的干涉条纹数目是多少设单色光源波长为500nm解:02cos602o n hδ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干涉条纹数目为: 即每cm 内10条;10、在上题装置中,沿垂直于玻璃表面的方向看去,看到相邻两条暗纹间距为1.4mm ;已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长;解:当光垂直入射时,等厚干涉的光程差公式: 可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何关系:h H l l ∆=∆,即l h H l∆∆= 11、波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强;解:61.210, 1.5h m n -=⨯= 由光正入射的等倾干涉光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=12、迈克耳逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长;解:光垂直入射情况下的等厚干涉的光程差公式:22nh h δ==移动一级厚度的改变量为:2h λ∆=13、迈克耳逊干涉仪的平面镜的面积为244cm ⨯,观察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为多少解:由光垂直入射情况下的等厚干涉的光程差公式: 22nh h δ==相邻级亮条纹的高度差:2h λ∆=由1M 和2M '构成的空气尖劈的两边高度差为:M 1 M214、调节一台迈克耳逊干涉仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹;若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离若中心是亮的,试计算第一暗环的角半径;提示:圆环是等倾干涉图样,计算第一暗环角半径时可利用21sin ,cos 12θθθθ≈≈-的关系;解:500nm λ=出现同心圆环条纹,即干涉为等倾干涉 对中心2h δ=15、用单色光观察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长;解:由牛顿环的亮环的半径公式:r = 以上两式相减得:16、在反射光中观察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离;解:牛顿环的反射光中所见亮环的半径为:即:2r =则:)2019320.160.40.4rr r r r mm ∆=-==-==第2章 光的衍射1、单色平面光照射到一小圆孔上,将其波面分成半波带;求第k 个带的半径;若极点到观察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径;解:由公式对平面平行光照射时,波面为平面,即:R →∞2、平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小;问:⑴小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4m 的P 点的光强分别得到极大值和极小值;⑵P 点最亮时,小孔直径应为多大设此光的波长为500nm ;解:⑴04400r m cm == 当k 为奇数时,P 点为极大值 当C 数时,P 点为极小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k=,即仅露出一个半波带时,P 点最亮;10.141,(1)H R cm k ==,0.282D cm =3、波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强0I 之比;解:即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ==== 没有光阑时光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4、波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中心的P 点是亮点还是暗点⑵要使P 点变成与⑴相反的情况,至少要把屏分别向前或向后移动多少解:由公式对平面平行光照射时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点; 则 0113kr R ⎛⎫=⨯+ ⎪⎝⎭, 注:0,r R 取m 作单位向右移,使得2k=,031.5, 1.510.52r m r m '==∆=-= 向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5、一波带片由五个半波带组成;第一半波带为半径1r 的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无穷大的不透明区域;已知1234:::r r r r =用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出现在哪些位置上;解: ⑴由1234:::r r r r =波带片具有透镜成像的作用,2HkR f k λ'=⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度; ⑶由于波带片还有11,35f f ''…等多个焦点存在,即光强极大值在轴上11,35m m … 6、波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带1,3,5,…,199;另外100个不透明偶数半波带;比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I ;解:由波带片成像时,像点的强度为: 由透镜成像时,像点的强度为: 即014I I = 7、平面光的波长为480nm ,垂直照射到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm ;分别计算当缝的两边到P 点的相位差为/2π和/6π时,P 点离焦点的距离;解:对沿θ方向的衍射光,缝的两边光的光程差为:sin b δθ= 相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点对使6πϕ∆=的P `点8、白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长;解:对θ方位,600nm λ=的第二个次最大位对 λ'的第三个次最大位 即:5722b bλλ'⨯=⨯ 9、波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分别为多少解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅⑵第一最大值的方位角1θ'为: ⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅10、钠光通过宽0.2mm 的狭缝后,投射到与缝相距300cm 的照相底片上;所得的第一最小值与第二最小值间的距离为0.885cm ,问钠光的波长为多少若改用X 射线0.1nm λ=做此实验,问底片上这两个最小值之间的距离是多少解:单缝衍射花样最小值位置对应的方位θ满足: 则 11sin 1bλθθ≈=⋅11、以纵坐标表示强度,横坐标表示屏上的位置,粗略地画出三缝的夫琅禾费衍射包括缝与缝之间的干涉图样;设缝宽为b ,相邻缝间的距离为d ,3d b =;注意缺级问题;12、一束平行白光垂直入射在每毫米50条刻痕的光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少设可见光中最短的紫光波长为400nm ,最长的红光波长为760nm解:每毫米50条刻痕的光栅,即10.0250dmm mm == 第一级光谱的末端对应的衍射方位角1θ末为第二级光谱的始端对应的衍射方位角2θ始为13、用可见光760400nm 照射光栅时,一级光谱和二级光谱是否重叠二级和三级怎样若重叠,则重叠范围是多少解:光谱线对应的方位角θ:sin kdλθθ≈=即第一级光谱与第二级光谱无重叠 即第二级光谱与第三级光谱有重叠 由2152015203,506.73nm nm d dλθλ==⨯==末即第三级光谱的400506.7nm 的光谱与第二级光谱重叠;14、用波长为589nm 的单色光照射一衍射光栅,其光谱的中央最大值和第二十级主最大值之间的衍射角为01510',求该光栅1cm 内的缝数是多少解:第20级主最大值的衍射角由光栅方程决定 解得20.4510d cm -=⨯15、用每毫米内有400条刻痕的平面透射光栅观察波长为589nm 的钠光谱;试问:⑴光垂直入射时,最多功能能观察到几级光谱⑵光以030角入射时,最多能观察到几级光谱解:61,58910400dmm mm λ-==⨯⑴光垂直入射时,由光栅方程:sin d j θλ= 即能看到4级光谱⑵光以30o角入射16、白光垂直照射到一个每毫米250条刻痕的平面透射光栅上,试问在衍射角为030处会出现哪些波长的光其颜色如何解:1250dmm =在30o的衍射角方向出现的光,应满足光栅方程:sin 30od j λ=17、用波长为624nm 的单色光照射一光栅,已知该光栅的缝宽b 为0.012mm ,不透明部分的宽度a 为0.029mm ,缝数N 为310条;求:⑴单缝衍射图样的中央角宽度;⑵单缝衍射图样中央宽度内能看到多少级光谱⑶谱线的半宽度为多少解:0.012,0.029b mm a mm ==⑴6062410220.1040.012rad b λθ-⨯∆==⨯= ⑵j 级光谱对应的衍射角θ为:即在单缝图样中央宽度内能看到()2317⨯+=条级光谱⑶由多缝干涉最小值位置决定公式:sin j Ndλθ'=⋅第3章 几何光学的基本原理1、证明反射定律符合费马原理 证明:设A 点坐标为()10,y ,B 点坐标为()22,x y入射点C 的坐标为(),0x光程ACB为:∆=令2sin sin 0x x d i i dx -∆'==-=即:sin sin i i '=2、根据费马原理可以导出近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等;由此导出薄透镜的物像公式;3、眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板见题图,平板的厚度d 为30cm ;求物体PQ 的像P `Q`与物体PQ 之间的距离2d 为多少解:由图:()121211tan tan sin sin 1sin BB d i d i d i i d i n ⎛⎫'=-≈-=-⎪⎝⎭4、玻璃棱镜的折射角A 为060,对某一波长的光其折射率n 为1.6,计算:⑴最小偏向角;⑵此时的入射角;⑶能使光线从A 角两侧透过棱镜的最小入射角;解:⑴ 由()()()1212112211i i i i i i i i i i A θ'''''=-+-=+-+=+- 当11i i '=时偏向角为最小,即有221302o i i A '=== ⑵15308oi '= 5、略6、高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图解:由球面成像公式: 代入数值1121220s +='-- 得:60s cm '=- 由公式:0y y s s '+='7、一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像;求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜解:⑴5,10y cm s cm ==-1y cm '=, 虚像0s '>由y s y s''=- 得:2s cm '=⑵由公式112s s r+=' 5r cm =为凸面镜8、某观察者通过一块薄玻璃板去看在凸面镜中他自己的像;他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起;若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离为40cm ,问玻璃板距观察者眼睛的距离为多少解:由题意,凸面镜焦距为10cm ,即10r = 玻璃板距观察者眼睛的距离为1242dPP cm '==9、物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为1d ,折射率为n ;试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动()11/d n n -的一段距离的效果相同;证明:设物点P 不动,由成像公式s s r+='由题3可知:11110PP d d n ⎛⎫==-> ⎪⎝⎭入射到镜面上的光线可视为从1P 发出的,即加入玻璃板后的物距为s d +反射光线经玻璃板后也要平移d ,所成像的像距为11s s d '''=- 放入玻璃板后像移量为:()()()1122r s d rss s s d s d r s r +''''∆=-=--+--凹面镜向物移动d 之后,物距为s d + 0,0s d <>2s '相对o 点距离()()222r s d s s d d s d r+'''=-=-+-10、欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少解:由球面折射成像公式:n n n n s s r''--=' 解得: 2n '=11、有一折射率为1.5、半径为4cm 的玻璃球,物体在距球表面6cm 处,求:⑴物所成的像到球心之间的距离;⑵像的横向放大率;解:⑴P 由球面1o 成像为P ',P '由2o 球面成像P ''211s cm '=,P ''在2o 的右侧,离球心的距离11415cm += ⑵球面1o 成像1111y s y s n β''==⋅ 利用P194:y s ny s n ''=⋅'球面2o 成像12、一个折射率为1.53、直径为20cm 的玻璃球内有两个小气泡;看上去一个恰好在球心,另一个从最近的方向看去,好像在表面与球心连线的中点,求两气泡的实际位置;解:设气泡1P 经球面1o 成像于球心,由球面折射成像公式:n n ns s r'--=' 110s cm =-, 即气泡1P 就在球心处 另一个气泡2P2 6.05s cm =-, 即气泡2P 离球心10 6.05 3.95cm -=13、直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率;解:由球面折射成像公式:n n n ns s r''--=' 解得 50s cm '=-,在原处14、玻璃棒一端成半球形,其曲率半径为2cm ;将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图;解:由球面折射成像公式:s sr-='15、有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm ;一物点在主轴上距镜20cm 处,若物和镜均浸入水中,分别用作图法和计算法求像点的位置;设玻璃的折射率为1.5,水的折射率为1.33;解:由薄透镜的物像公式:211212n n n n n n s s r r ---=+' 对两表面均为凸球面的薄透镜: 对两表面均为凹球面的薄透镜:16、一凸透镜在空气的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为多少水的折射率为1.33若将此透镜置于CS 2中CS 2的折射率为1.62,其焦距又为多少解:⑴ 薄透镜的像方焦距:21212n f n n n n r r '=⎛⎫--+ ⎪⎝⎭12n n = 时,()111211n f n n r r '=⎛⎫-- ⎪⎝⎭在空气中:()1121111f n r r '=⎛⎫-- ⎪⎝⎭在水中:()2121.33111.33f n r r '=⎛⎫-- ⎪⎝⎭两式相比:()()12 1.33401.331136.8n f f n -'=='- 解得 1.54n = ⑵12 1.62n n ==而:()11211111f n r r '-=⎛⎫- ⎪⎝⎭则:()1.6240 1.541437.41.54 1.62f cm '=⨯⨯-=--第4章 光学仪器的基本原理1、眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于1;试计算眼球的两个焦距;用肉眼观察月球时月球对眼的张角为01,问视网膜上月球的像有多大解:由球面折射成像公式:n n n ns s r''--=' 令43,5.55 2.22413n s f r cm n n ''=-∞=⋅=⨯='--令1,5.5516.7413n s f r cm n n '=∞=-⋅=-⨯=-'--2、把人眼的晶状体看成距视网膜2cm 的一个简单透镜;有人能看清距离在100cm 到300cm 间的物体;试问:⑴此人看远点和近点时,眼睛透镜的焦距是多少⑵为看清25cm 远的物体,需配戴怎样的眼镜解:⑴对于远点:11300,2s cm s cm '=-= 由透镜成像公式:111111s s f -='' 对于近点:2211121001.961f f cm-='-'= ⑵对于25cm 由两光具组互相接触0d =组合整体:110.030cm f -=''近视度:300o3、一照相机对准远物时,底片距物镜18cm ,当镜头拉至最大长度时,底片与物镜相距20cm ,求目的物在镜前的最近距离解:由题意:照相机对准远物时,底片距物镜18cm , 由透镜成像公式:111s s f -=''4、两星所成的视角为4',用望远镜物镜照相,所得两像点相距1mm ,问望远镜物镜的焦距是多少解: 3.14118060rad '=⨯5、一显微镜具有三个物镜和两个目镜;三个物镜的焦距分别为16mm 、4mm 和1.9mm ,两个目镜的放大本领分别为5和10倍;设三个物镜造成的像都能落在像距为160cm 处,问这显微镜的最大和最小的放大本领各为多少解:由显微镜的放大本领公式: 其最大放大本领: 其最小放大本领:6、一显微镜物镜焦距为0.5cm ,目镜焦距为2cm ,两镜间距为22cm ;观察者看到的像在无穷远处;试求物体到物镜的距离和显微镜的放大本领;解:由透镜物像公式:111s s f -=''解得:0.51s cm =- 显微镜的放大本领:1212252522255500.52s l M f f f f '=-⋅≈-⋅=-⨯=-'''' 7、略8、已知望远镜物镜的边缘即为有效光阑,试计算并作图求入光瞳和出射光瞳的位置;9、 10、13、焦距为20cm 的薄透镜,放在发光强度为15cd 的点光源之前30cm 处,在透镜后面80cm 处放一屏,在屏上得到明亮的圆斑;求不计透镜中光的吸收时,圆斑的中心照度;解:230Sd Id Iφ=Ω= S 为透镜的面积P 点的像点P '的发光强度I '为:14、一长为5mm 的线状物体放在一照相机镜头前50cm 处,在底片上形成的像长为1mm ;若底片后移1cm ,则像的弥散斑宽度为1mm ;试求照相机镜头的F 数;解:由y s y s''= 1550s '= 得10s cm '=由透镜物像公式:111s s f -=''由图可见,100.11d = 1d cm = F 数:508.336f d '==15、某种玻璃在靠近钠光的黄色双谱线其波长分别为589nm 和589.6nm 附近的色散率/dn d λ为1360cm --,求由此种玻璃制成的能分辨钠光双谱线的三棱镜,底边宽度应小于多少解:由色分辨本领:dnP d λδλλ==∆ 16、设计一块光栅,要求⑴使波长600nm 的第二级谱线的衍射角小于030,并能分辨其0.02nm 的波长差;⑵色散尽可能大;⑶第三级谱线缺级;求出其缝宽、缝数、光栅常数和总宽度;用这块光栅总共能看到600nm 的几条谱线解:由sin d j θλ= 由第三级缺级 由 P jN λλ==∆ 光栅的总宽度:315000 2.41036L Nd mm -==⨯⨯=由sin 9024004600od j λ=== 能看到0,1,2±±,共5条谱线17、若要求显微镜能分辨相距0.000375mm 的两点,用波长为550nm 的可见光照明;试求:⑴此显微镜物镜的数值孔径;⑵若要求此两点放大后的视角为2',则显微镜的放大本领是多少解:⑴由显微镜物镜的分辨极限定义⑵ 3.1418060387.70.000375250M ⨯==18、夜间自远处驶来汽车的两前灯相距1.5m ;如将眼睛的瞳孔看成产生衍射的圆孔,试估计视力正常的人在多远处才能分辨出光源是两个灯;设眼睛瞳孔的直径为3mm ,设光源发出的光的波长λ为550nm ;解: 1.5U L=当0.610URλθ==才能分辨出19、用孔径分别为20cm 和160cm 的两种望远镜能否分辨清月球上直径为500m 的环形山月球与地面的距离为地球半径的60倍,面地球半径约为6370km ;设光源发出的光的波长λ为550nm ;解:63500 1.31060637010Urad -==⨯⨯⨯ 孔径20cm 望远镜:孔径160cm 望远镜:1U θ'<,即用孔径20cm 望远镜不能分辨清 1U θ''>,即用孔径160cm 望远镜能分辨清20、电子显微镜的孔径角028u =,电子束的波长为0.1nm ,试求它的最小分辨距离;若人眼能分辨在明视距离处相距26.710mm -⨯的两点,则此显微镜的放大倍数是多少解: 3.144sin sin 4180o n uu u ⨯====第五章光的偏振1、试确定下面两列光波的偏振态;解:①()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:22211x y E E A += 分析()(),0000,2x y x y E At kz A E E t kz A E Aωπω=⎧⎪-=⎨=⎪⎩=⎧⎪-=⎨=⎪⎩为左旋圆偏振光②()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:22211x y E E A += 分析()()0,,002x y x y E t kz A E A E A t kz A E ωπω=⎧⎪-=-⎨=-⎪⎩=⎧⎪-=⎨=⎪⎩为左旋圆偏振光2、为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面通过两块偏振片来观察;两偏振片的透振方向的夹角为060;若观察到两表面的亮度相同;则两表面实际的亮度比是多少已知光通过每一块偏振片后损失入射光能量的0010;解:由于被光照射的表面的亮度与其反射的光的光强成正比;设直接观察的表面对应的光强为1o I ,通过两偏振片观察的表面的光强为2o I通过第一块偏振片的光强为:通过第二块偏振片的光强为: 由1220.1o o I I I ==则:120.1ooI I = 3、两个尼科耳N 1和N 2的夹角为060,在它们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统;假设各尼科耳对非常光均无吸收,试问N 3和N 1的透振方向的夹角为何值时,通过系统的光强最大设入射光强为0I ,求此时所能通过的最大光强;解:令:20dI d α=得:()tan tan 60αα=- 4、在两个正义的理想偏听偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转见题图,若入射的自然光强为0I ,试证明透射光强为()011cos 416I I t ω=- 证明:5、线偏振光入射到折射率为1.732的玻璃片上,入射角是060,入射光的电矢量与入射面成030角;求由分界面上反射的光强占入射光强的百分比;解:设入射线偏振光振幅为A ,则入射光强为20I A = 入射光平行分量为:1cos 30oP A A = 入射光垂直分量为:1sin 30o S A A = 由:21sin603sin i =得:230o i =由:()()()()121112tan 6030tan 0tan tan 6030oPo P i i A A i i --'===++ 6、一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成030角;两束折射光通过在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动方向成050角;计算两束透射光的相对强度;解:当光振动面与N 主截面在晶体主截面同侧: 当光振动面与N 主截面在晶体主截面两侧:7、线偏振光垂直入射到一块光轴平行于表面的方解石波片上,光的振动面和波片的主截面成030角;求:⑴透射出来的寻常光和非常光的相对强度为多少⑵用钠光入时如要产生090的相位差,波片的厚度应为多少589nm λ=解:⑴1sin 302o o A A A ==214o I A = ⑵ 方解石对钠光 1.658 1.486o e n n ==由()2o e n n d πϕλ∆=-8、有一块平行石英片是沿平行于光轴方向切成一块黄光的14波片,问这块石英片应切成多厚石英的01.552, 1.543,589e n n nm λ===;解:()2o e n n d πϕλ∆=-9、⑴线偏振光垂直入射到一个表面和光轴平行的波片,透射出来后,原来在波片中的寻常光及非常光产生了大小为π的相位差,问波片的厚度为多少0 1.5442, 1.5533,500e n n nm λ===⑵问这块波片应怎样放置才能使透射出来的光是线偏振光,而且它的振动面和入射光的振动面成090的角解:⑴()()221o e n n d k πϕπλ∆=-=+⑵振动方向与晶体主截面成45o角10、线偏振光垂直入射到一块表面平行于光轴的双折射波片,光振动面和波片光轴成025角,问波片中的寻常光和非常光透射出来后的相对强度如何解:cos 25oe A A =11、在两正交尼科耳棱镜N 1和N 2之间垂直插入一块波片,发现N 2后面有光射出,但当N 2绕入射光向顺时针转过020后, N 2的视场全暗,此时,把波片也绕入射光顺时针转过020,N 2的视场又亮了,问:⑴这是什么性质的波片;⑵N 2要转过多大角度才能使N 2的视场以变为全暗;解:⑴由题意,当2N 绕入射光向顺时针转动20o 后,2N 后的视场全暗,说明A '与1N 夹角为20o;只有当波片为半波片时,才能使入射线偏振光出射后仍为线偏振光;⑵把波片也绕入射光顺时针转过020,2N 要转过040才能使2N 后的视场又变为全暗12、一束圆偏振光,⑴垂直入射1/4波片上,求透射光的偏振状态;⑵垂直入射到1/8波片上,求透射光的偏振状态;解:在xy 平面上,圆偏振光的电矢量为: ()()cos sin x y E A t kz e A t kz e ωω=-±- +为左旋;-为右旋圆偏振光设在波片入射表面上为 ⑴波片为14波片时,2πϕ∆= 即透射光为振动方向与晶片主截面成45o角的线偏振光⑵波片为18波片时,4πϕ∆= 即透射光为椭圆偏振光;13、试证明一束左旋圆偏振光和一束右旋圆偏振光,当它们的振幅相等时,合成的光是线偏振光;解:左旋圆偏振光 右旋圆偏振光 即E 为线偏振光14、设一方解石波片沿平行光轴方向切出,其厚度为0.0343mm ,放在两个正交的尼科耳棱镜间,平行光束经过第一尼科耳棱镜后,垂直地射到波片上,对于钠光589.3nm 而言,晶体的折射率为 1.658, 1.486o e n n ==;问通过第二尼科耳棱镜后,光束发生的干涉是加强还是减弱如果两个尼科耳棱镜的主截面是互相平行的,结果又如何解:①1N 与2N 正交时,即通过第二个尼科耳棱镜后,光束的干涉是减弱的; ②1N 与2N 互相平行时,即通过第二个尼科耳棱镜后,光束的干涉是加强的;15、单色光通过一尼科耳镜N 1,然后射到杨氏干涉实验装置的两个细缝上,问:⑴尼科耳镜N 1的主截面与图面应成怎样的角度才能使光屏上的干涉图样中的暗条纹为最暗⑵在上述情况下,在一个细缝前放置一半波片,并将这半波片绕着光线方向继续旋转,问在光屏上的干涉图样有何改变解:⑴尼科耳镜N 1的主截面与图面应成90的角度时,光屏上的干涉图样中的暗条纹为最暗;⑵在一个细缝前放置一半波片,并将这半波片绕着光线方向继续旋转,光屏上的干涉图样随半波片的旋转而由清晰变模糊再由模糊变清晰的改变;16、单色平行自然光垂直入射在杨氏双缝上,屏幕上出现一组干涉条纹;已知屏上A 、C 两点分别对应零级亮纹和零级暗纹,B 是AC 的中点,如题图所示,试问:⑴若在双缝后放一理想偏振片P,屏上干涉条纹的位置、宽度会有何变化A 、C 两点的光强会有何变化⑵在一条缝的偏振片后放一片光轴与偏振片透光方向成045的半波片,屏上有无干涉条纹A 、B 、C 各点的情况如何答:⑴若在双缝后放一理想偏振片P,屏上干涉条纹的位置、宽度不全有变化;A 、C 两点的光强会减弱;⑵在一条缝的偏振片后放一片光轴与偏振片透光方向成045的半波片,屏上有无干涉条纹位置不变,A 、B 、C 各点的光强有变化,干涉图样可见度下降了; C B A。
光学教程习题解答
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比.解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
高等光学教程-第2章参考答案要点
第二章 干涉理论基础和干涉仪2.1用迈克耳逊干涉仪进行精密测长,光源波长为633nm ,其谱线宽度为104-nm ,光电接收元件的灵敏度可达1/10个条纹,问这台仪器测长精度是多少?一次测长量程是多少? 解答:设测长精度为l δ,则l δ由探测器接受灵敏度10λδ=N 所决定,N l δδ=2∴ m 032.02μδδ≈=Nl (32nm )一次测长量程M l 由相干长度c l 所决定,c M l l =2∴ m l l c M221212≈∆==λλ2.2 雨过天晴,马路边上的积水上有油膜,太阳光照射过去,当油膜较薄时呈现出彩色,解释为什么油膜较厚时彩色消失。
解答:太阳光是一多色光,相干长度较小。
当油膜较厚时光经上下两界面反射时的光程差超过了入射光的相干长度,因而干涉条纹消失。
2.3计算下列光的相干长度(1)高压汞灯的绿线,546.15nm nm λλ=∆=(2)HeNe 激光器发出的光,6331nm MHz λν=∆=解答:计算相干长度(1) m 6.592μλλ≈∆=c L(2) 300m c cL ν=≈∆2.4在杨氏双缝实验中(1)若以一单色线光源照明,设线光源平行于狭缝,光在通过狭缝以后光强之比为1:2,求产生的干涉条纹可见度。
(2)若以直径为0.1mm 的一段钨丝作为杨氏干涉实验的光源,为使横向相干宽度大于1mm ,双缝必须与灯丝相距多远?设λ=550nm解答:(1) δcos 2220000I I I I I ⋅++= V ∴=(2)由(2-104)式 dbP λ=0 λdP b =∴ 182.0>b M2.5图p2-5所示的杨氏干涉实验中扩展光源宽度为p ,光源波长为5893A ,针孔P 1、P 2大小相同,相距为d ,Z 0=1m , Z 1=1m(1)当两孔P 1、P 2相距d=2mm 时,计算光源的宽度由p =0增大到0.1mm 时观察屏上可见度变化范围。
(2)设p=0.2mm ,Z 0、Z 1不变,改变P 1P 2之间的孔距d ,当可见度第一次为0时 d=? (3)仍设p=0.2mm ,若d=3mm , 01Z m =.求0∑面上z 轴附近的可见度函数。
光学第二三章部分答案
2-1 在杨氏实验中,用波长为632.8nm 的氦氖激光束垂直照射到间距为1.00mm 的两个小孔上,小孔至屏幕的垂直距离为100cm. 试求在下列两种情况下屏幕上干涉条纹的间距: (1)整个装置放在空气中;(2)整个装置放在n=1.33的水中.解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为21()sin xn r r nd nd Dδθ=-==所以相邻干涉条纹的间距为D x d nλ∆=⋅(1) 在空气中时,n =1。
于是条纹间距为10431.06328106.3210(m )1.010D x d λ---∆==⨯⨯=⨯⨯ (2) 在水中时,n =1.33。
条纹间距为10431.0632810 4.7510(m)1.010 1.33D x d n λ---⨯⨯∆=⋅==⨯⨯⨯2-2 在杨氏干涉装置中,双缝至屏幕的垂直距离为2.00m. 测得第10级干涉亮纹至中央亮纹之间的距离为3.44cm ,双缝间距为0.342mm , 试求光源的单色光波长.解:在杨氏干涉装置中,两束相干光的光程差为:sin xd d D δθ==根据出现亮条纹的条件0λδk ±=,对第10级亮条纹,k 取10,于是有:010λ=Dxd带入数据得:0231021044.310342.0λ=⨯⨯⨯--由此解出:nm 24.5880=λ2-4因为:λθj Dxd d ==sin 所以:λ∆=∆j D xd)(102.24m djD x -⨯=∆=∆λ2-5 用很薄的云母片(n =1.58)覆盖在双缝干涉实验装置的一条缝上,观察到干涉条纹移动了9个条纹的距离,光源的波长为550.0 nm ,试求该云母片的厚度。
解:设云母片厚度为h ,覆盖在双缝中的1r 光路上,此时两束相干光的光程差为:21()(1)xr r h nh dn h k Dδλ''=--+=--= 当没有覆盖云母片,两束相干光的光程差为:21xr r d k Dδλ=-==因为条纹移动了9个,则:9k k '-=由①、②两式得:(1)9n h λ-=由此可得云母片的厚度为:9699550.0108.5310(m)1 1.581h n λ--⨯⨯===⨯--2-13nm 8.6420=λ2-14 将两块平板玻璃叠合在一起,一端互相接触。
高等光学教程-第2章参考答案
0.82
d
pd Z 0
Z 0 2.95 mm p
sin
(3)
V
pd Z 0
sin 3.19 4.76 10 3 3.19
2.6
有两束振幅相等的平行光,设它们相干,在原点处这两束光的初相位 10 20 0 , 偏振方向均垂直于 xoy 平面,这两束光的入射方向与 x 轴的夹角大小相等(如图 p2-6 所示) ,对称地斜射在记录面 yoz 上,光波波长为 633 nm 。 (1) 作出 yoz 平面,并在该平面上大致画出干涉条纹的形状,画三条即可。 (2) 当两束光的夹角 10 和 30 时,求 yoz 平面上干涉条纹的间距和空间频率。 (3) 设置于 yoz 平面上记录面感光物质的空间分辨率为 2000 条/mm,若要记录干涉条 纹,问上述相干涉的两束光波波矢方向的夹角 最大不能超过多少度。
第二章 干涉理论基础和干涉仪
2.1 用迈克耳逊干涉仪进行精密测长,光源波长为 633nm,其谱线宽度为 10
4
nm,光电接
收元件的灵敏度可达 1/10 个条纹, 问这台仪器测长精度是多少?一次测长量程是多少? 解答:设测长精度为 l ,则 l 由探测器接受灵敏度 N 10 所决定, 2 l N
所以电矢量的振幅以及电能密度的时间平均值沿 z 方向是周期变化的。由(1-81)式,电能 密度的时间平均值
Re( E D * )
1 4
0n2
4
(i ) Re( E E * ) 0 n 2 E 0
2
2 sin 2 2 kz
结果与坐标 z 有关,与坐标 x 、 y 无关。
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 单色平面光照射到一个圆孔上,将其波面分成半波带,求第k 各带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,0r k R hk λ=。
第一半波带半径067.011045001100=⨯⨯⨯==-r k R hk λcm 。
2.2平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像摄像机光圈那样改变大小.问:(1)小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4 m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此光的波长为500nm 。
解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,k k r k R hk 414.14105000100=⨯⨯⨯==-λmm 。
K 为奇数时,P 点光强为极大值; K 为偶数时,P 点光强为极小值。
(2)P 点最亮时,由p 点的振幅)(211k k a a a +=,所以当k=1时,k a 为最大所以2828.021==h R d cm 。
2.3 波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5 mm 和1 mm 的透光圆环,接收点P 离光阑1 m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02Rr R k hk +=λ,圆环内径对应的半波带数1)1111(105000)105.0()11(10230211=+⨯⨯=+=--R r R k h λ圆环外径对应的半波带数4)1111(105000)101()11(10230212=+⨯⨯=+=--R r R k h λ 由题意可知,实际仅露出3各半波带,即142)(21a a a a k ≈+=,而1121)(21a a a a ≈+=∞∞所以光强之比4220==∞a a I I k。
2.4波长为632.8 nm 的平行光射向直径为2.76 mm 的圆孔,与孔相距l m 处放一屏,试问:(1)屏上正对圆孔中心的P 点是亮点还是暗点?(2)要使P 点变成与(1)相反的情况,至少要把屏幕分别向前或向后移动多少?解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02Rr R k hk +=λ,当∞→R 时,31106328)21076.2(102302≈⨯⨯⨯==--r R k hk λ。
由于k=3,为奇数,所以屏上正对圆孔中心的P 点时亮点。
(2)预使P 点变为暗点,即要使k 为偶数,即k=2or4 当k=2时5.12106328)21076.2('102320≈⨯⨯⨯==--k R r hk λm 5.0'00-=-=∆r r r m 即将屏向后移动0.5m 当k=2时75.04106328)21076.2('102320≈⨯⨯⨯==--k R r hk λm 25.0'00=-=∆r r r m即将屏向前移动0.25m2.5 一波带片由五个半波带组成,第一半波带为半径r 1的不透明圆盘,第二半波带是半径r 1至r 2的透明圆环,第三半波带是r 2至r 3的不透明圆环,第四半波带是r 3至r 4的透明圆环,第五半波带是r 4至无穷大的不透明区域.已知r 1:r 2:r 3:r 4=l :2:3:4,用波长500nm 的平行单色光照明,最亮的像点在距波带片1 m 的轴上.试求:(1)r1;(2)像点的光强;(3)光强极大值出现在轴上哪些位置上。
解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,λk r R hk 0=,由于500=λnm ,0r =1m , 所以k R hk 101050001-⨯⨯=由题意可知43214321:4:3:2:1:::k k k k R R R R h h h h ::== 所以1k =1,2k =2,3k =3,4k =4。
707.011050001101=⨯⨯⨯=-h R mm 。
由题意可知,屏对于波带片只让偶数的半波带透光,所以‘ 2422a a a a k ≈+=而221a a ≈∞所以0222216164I a a a I k ===≈∞(3)因为1'20===λk Rr f h m ——主焦点它还有次焦点:'31f 、'51f 、'71f ……故光强极大点出现在轴上31、51、71……2.6波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带(1,3,5,…,199).另外100个不透明偶数半波带.比较用波带片和换上同样焦距和口径的透镜时,该像点的强度比0:I I 。
解:由题意可知,将所有偶数半波带挡住了,二只有奇数的半波带透过 所以在考察点的振幅为119919731100a a a a a a k ≈++++= ,即21210000a a I k =≈ 当换上同样焦距的口径的透镜时,透镜对所有光波的相位延迟一样,所以1a 、2a 、3a …199a 、200a 的方向时一致的,即12001994321200a a a a a a a a k ≈+++++=强度212040000a a I k =≈所以40=I I2.7 平面光的波长为480 nm ,垂直照射到宽度为0.4 mm 的狭缝上,会聚透镜的焦距为60 cm ,分别计算当缝的两边到P 点的相位差为2π和6π时,P 点离焦点的距离。
解:如图所示'2tan 2sin 2f y bb b λπθλπθλπϕ=≈=∆, 所以ϕπλ∆=bf y 2'18.02104.021*********'32911=⨯⨯⨯⨯⨯⨯=∆=---ππϕπλb f y mm 06.06104.021*********'32911=⨯⨯⨯⨯⨯⨯=∆=---ππϕπλb f y mm2.8 白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二各次最大值重合,求该光波的波长。
解:由单缝衍射出现次最大值的条件为λθ43.1sin 10≈b λθ46.2sin 20≈b λθ47.3sin 30≈b由题意可知046.247.3λλ=,即91060046.247.3-⨯⨯=λ,9104.425-⨯=λm2.9 波长为546.1nm 的平行光垂直地射在l mm 宽的缝上,若将焦距为100 cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,试问衍射图样的中央到(1)第一最小值;(2)第一最大值;(3)第三最小值的距离分别为多少?解:(1)由单缝衍射出现最小值的条件为λθk b k =sin而θθsin 'tan 'f f y ≈=所以bk f y λ'=,所以63921101.546101101.54610100'----⨯=⨯⨯⨯⨯==b f y λm (2) 由单缝衍射出现第一级最大值的条件为λθ43.1sin =k b而θθsin 'tan 'f f y ≈=所以b f y λ43.1'•=,所以63921109.780101101.5461010043.1'43.1'----⨯=⨯⨯⨯⨯⨯=⨯=b f y λ (3) 由单缝衍射出现最小值的条件为λθk b k =sin而θθsin 'tan 'f f y ≈= 所以b kf y λ'=, 所以63921103.1638101101.546101003'3----⨯=⨯⨯⨯⨯⨯==b f y λm2.10钠光通过宽0.2 mm 的狭缝后,投射到与缝相距300cm 的照相底片上.所得的第一最小值与第二最小值间的距离为0.885 cm ,试问钠光的波长为多少?若改用X 射线(λ=0.1 nm)做此实验,问底片上这两个最小值之间的距离是多少? 解:由单缝衍射出现最小值的条件为λθk b k =sin 而θθsin 'tan 'f f y ≈=所以bkf y λ'=,由题意可得bf y y y λ)12('12-=-=∆322102.0)12(1030010885.0---⨯-⨯⨯=⨯λ10105900-⨯=λm若改用X 射线作此实验,底片上这两个最小值之间的距离639212105.1102.0101.0)12(10300)12('----⨯=⨯⨯-⨯⨯=-=-=∆b f y y y λm2.11 以纵坐标表示强度,横坐标表示屏上的位置,粗略地画出三缝的夫琅禾费衍射(包括缝与缝之间的干涉)图样,设缝宽为b ,相邻缝间的距离为d ,d=3b ,注意缺级问题。
解:2.12 一束平行白光垂直入射在每毫米50条刻痕的全息光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少?(设可见光中最短的紫光波长为400 nm ,最长的红光波长为760nm)解:由光栅方程λθj d k =sin (j=0,±1 、±2、±3… )由题意可知光栅常数53102501011--⨯=⨯==N d m 对于白光,第一级的末端为红光,对应波长为760nm2591108.3102107601sin ---⨯=⨯⨯⨯==d j λθrad 第二级的始端为紫光,对应波长为400nm2592100.4102104002sin ---⨯=⨯⨯⨯==d j λθrad 所以衍射角之差为rad 100.2)10arcsin(3.8)10arcsin(4.0Δθ222---⨯≈⨯-⨯='7180102.02=︒⨯⨯=-π2.13 用可见光(760-400nm)照射全息光栅,一级光谱和二级光谱是否重叠?二级和三级怎样?若重叠,则重叠范围是多少?解:由光栅方程λθj d k =sin (j=0,±1 、±2、±3… )对于白光,第一级的末端为红光,对应波长为760nmdd d j 99110760107601sin --⨯=⨯⨯==λθrad第二级的始端为紫光,对应波长为400nmdd d j 99210800104002sin --⨯=⨯⨯==λθrad所以12θθ>,所以第一级与第二级之间是不会重叠的 第二级末端的红光,对应的衍射角由dd d j 992101520107602sin --⨯=⨯⨯==λθrad第三级始端的紫光,对应的衍射角dd d j 993101200104003sin --⨯=⨯⨯==λθrad23θθ<,所以第二级与第三级之间是会重叠的对于重叠范围如下计算32sin sin θθ=时,即为重叠部分故有dd 9910)760~400(310)760~400(2--⨯⨯=⨯⨯,即)760~400(3)760~400(2⨯=⨯ )2280~1200()1520~800(=可见重叠部分为1520~12001520~1200= 对于第二级对应波长为600~760nm 对于第三级对应的波长为400~506.7nm即第二级光谱的600~760nm 与第三级的400~506.7nm 重合。