神经网络基础知识教材

合集下载

《神经网络电子教案》课件

《神经网络电子教案》课件

《神经网络电子教案》PPT课件一、教案简介1. 课程背景:介绍神经网络的基本概念、发展历程和应用领域。

2. 教学目标:使学生了解神经网络的基本原理,掌握神经网络的主要模型和应用。

3. 适用对象:计算机科学、、机器学习等领域的学生。

二、教学内容1. 神经网络的基本概念:神经元、连接、权重、激活函数等。

2. 神经网络的发展历程:生物神经网络、人工神经网络、深度学习等。

3. 神经网络的主要模型:前馈神经网络、卷积神经网络、递归神经网络等。

4. 神经网络的应用领域:图像识别、自然语言处理、推荐系统等。

三、教学方法1. 讲授:讲解神经网络的基本概念、发展历程和主要模型。

2. 案例分析:分析神经网络在图像识别、自然语言处理等领域的应用案例。

3. 互动讨论:引导学生提问、解答疑问,增强课堂活跃度。

4. 练习题:布置课后练习题,巩固所学知识。

四、教学资源1. PPT课件:展示神经网络的基本概念、发展历程、主要模型和应用案例。

2. 参考教材:推荐国内外优秀教材,供学生课后自学。

3. 网络资源:介绍相关领域的在线课程、论文、博客等资源。

五、教学评价1. 课后作业:评估学生对神经网络知识的掌握程度。

2. 课堂互动:评价学生在课堂上的参与程度和提问质量。

3. 小组项目:鼓励学生团队合作,解决实际问题。

4. 期末考试:全面测试学生对神经网络知识的掌握情况。

教案编辑专员:日期:2024六、教学安排1. 课时:共计32课时,每课时45分钟。

2. 授课方式:课堂讲授、案例分析、互动讨论相结合。

3. 课程进度安排:课时1-4:神经网络的基本概念及发展历程课时5-8:前馈神经网络的原理及应用课时9-12:卷积神经网络的原理及应用课时13-16:递归神经网络的原理及应用课时17-20:神经网络在各领域的应用案例分析课时21-24:课后练习及小组项目讨论课时25-28:课堂互动、提问与解答课时29-32:期末考试复习及考试七、教学注意事项1. 确保学生具备一定的数学基础,如线性代数、微积分等。

《神经网络理论基础》PPT课件

《神经网络理论基础》PPT课件

4. 疲劳:一个神经细胞持续兴奋,其阈值慢慢增加,神经细胞就很难兴 奋的现象。
5. 突触结合的可朔性:突触结合的强度即权重wi,可根据输入、输出信号 可朔性地变化。
6. 输出信号的种类
离散信号:神经元输入、输出信号是一定幅值的脉冲,将输出有 脉冲时视为1,无脉冲视为零;
连续信号:将神经元输入、输出用其脉冲的频率来表示,将最高 脉冲频率视为1,则输入输出信号取值在0和1之间。
Wij aia j
aj
ai
uj
ui
Wij
其中,为学习律常数。
神经网络的学习规则
2. 误差传播式学习-Delta学习规则: Delta学习规则是一种有教师 学习,它是利用神经元的希望输出(答案)与实际输出的误差 进行联接权值的修正。
Wij ti (t) ai (t)y j (t)
学习与遗忘:由 于神经元的可朔 性,突触的传递 作用可增强与减 弱,使神经元具 有学习与遗忘功 能。
神经元的模型特征
1. 时空整合功能
空间总和:单个神经元在同一时间可以从别的神经元接受多达上千 个突触的输入,整个膜电位和输入信号与其权重的线性组合有关:
n
wi xi
i 1
时间总和:神经元对于不同时间通过同一突触的输入信号具有时间 总和的功能。
i y j (t)
yj
ai
uj
ui
Wij
ti
规则又称误差修正规则,这类算法的最终目标是通过反 复迭代运算,使 最小,从而求得最佳的Wij值。这种算法
适用于线性可分函数。
神经网络的学习规则
3. 广义误差传播式学习-广义 规则:广义规则是在规则上的进
一步发展,可适用于多层网络非线性可分函数。

第一讲神经网络基本原理ppt课件

第一讲神经网络基本原理ppt课件

人工神经网络基本要素
人工神经网络(简称神经网络)是由人工神经元(简称神经元)互 连组成的网络,它是从微观结构和功能上对人脑的抽象、简化,是模 拟人类智能的一条重要途径,反映了人脑功能的若干基本特征,如并 行信息处理、学习、联想、模式分类、记忆等。
人工神经网络(ANN)可看成是以人工神经元为节点,用有向加权 弧连接起来的有向图。
20 世 纪 80 年 代 以 来 , 人 工 神 经 网 络 ( ANN , Artificial Neural Network)研究取得了突破性进展。神经网络控制是将神经网络与控制 理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的 分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途 径。
y 是神经元的输出。
神经元的输出 y=f(w*u+θ )
人工神经网络基本要素 —神经元
可见,神经元的实际输出还取决于所选择的作用函数f(x)。神经元的阈值 可以看作为一个输入值是常数1对应的连接权值。根据实际情况,也可以 在神经元模型中忽略它。关于作用函数的选择将在后面详细讨论。在上述 模型中,w和θ是神经元可调节的标量参数。设计者可以依据一定的学习规 则来调整它。
每个神经元的突触数目有所不同,而且各神经元之间的连接强度 和极性有所不同,并且都可调整,基于这一特性,人脑具有存储信息的 功能。图1.1 生物神经元的结构
人工神经网络基本要素 —神经元
神经生理学和神经解剖学的研究 结果表明,神经元是脑组织的基 本单元,是神经系统结构与功能 的单位。
• 大脑
Brain
在此有向图中,人工神经元就是对生物神经元的模拟,而有向弧则 是轴突—突触—树突对的模拟。有向弧的权值表示相互连接的两个人 工神经元间相互作用的强弱。

《神经网络基础知识》word版

《神经网络基础知识》word版

实验十二: 神经网络及其在数据拟合中的应用(设计性实验)一、实验目的1.了解神经网络的基本知识。

2.学会用matlab神经网络工具箱进行数据拟合。

3.通过实例学习matlab神经网络工具箱的应用。

二、实验原理人工神经网络是在对复杂的生物神经网络研究和理解的基础上发展起来的。

我们知道, 人脑是由大约个高度互连的单元构成, 这些单元称为神经元, 每个神经元约有个连接。

仿照生物的神经元, 可以用数学方式表示神经元, 引入人工神经元的概念, 并由神经元的互连可以定义出不同种类的神经网络。

1.神经网络的概念及结构单个人工神经元的数学表示形式如图1所示。

其中, 为一组输入信号, 它们经过权值加权后求和, 再加上阈值, 则得出的值。

可以认为该值为输入信号与阈值所构成的广义输入信号的线性组合。

该信号经过传输函数可以得出神经元的输出信号。

图1由若干个神经元相互连接, 则可以构成一种网络, 称为神经网络。

由于连接方式的不同, 神经网络的类型也不同。

这里仅介绍前馈神经网络, 因为其权值训练中采用误差逆向传播的方式, 所以这类神经网络更多地称为反向传播(back propagation)神经网络, 简称BP神经网络。

BP网的基本结构如下图所示:MATLAB的神经网络工具箱提供了现成的函数和神经网络类, 可以使用newff()函数来建立一个前馈的BP神经网络模型。

newff()的具体调用格式如下:net=newff(x,y,[h1,h2,…,hk],{f1,f2,…,fk})其中, x为输入向量, y为输出(目标)向量。

[h1,h2,…,hk]是一个行向量, 用以存储神经网络各层的节点数, 该向量的大小等于神经网络隐层的层数。

{f1,f2,…,fk}为一个元胞数组, 由若干个字符串构成, 每个字符串对应于该层的传输函数类型。

当这些参数设定好后, 就建立了一个神经网络数据对象net, 它的一些重要属性在下表给出。

2.神经网络的训练和泛化若建立了神经网络模型net, 则可以调用train()函数对神经网络参数进行训练。

神经网络理论基础 神经网络控制课件(第三版)

神经网络理论基础 神经网络控制课件(第三版)
神经网络理论基础
神经网络理论基础
人脑
人的思维由脑完成
人脑约由10^11~10^12个神经元组成,每个神经 元约与10^4~10^5个神经元连接,能接受并处理 信息。因此,人脑是复杂的信息并行加工处理 巨系统。
人脑
可通过自组织、自学习,不断适应外界环境的 变化。其自组织、自学习性来源于神经网络结 构的可塑性,主要反映在神经元之间连接强度 的可变性上。
基础
神经网络理论基础
• 引言
• 生物神经元与人工神经元模型 • 感知器 • 线性神经网络 • 多层前馈网络与BP学习算法 • 径向基函数神经网络 • 小脑模型神经网络 • PID神经网络 • 局部递归型神经网络 • 连续型Hopfield网络 • 应用Simulink设计神经网络 • 应用GUI设计网络 • 小结
静态与动态网络 2. 按连接方式分:前馈型与反馈型 3.按逼近特性分:全局逼近型与局部逼近型 4.按学习方式分:有导师的学习;无导师的学习;
再励学习三种 从总的方面讲,一般将神经网络分为: 前馈、反馈、 介绍模拟生物神经元的人工神经元模型 2. 阐述控制中常用的前馈型与反馈型网络的理论
人工神经网络
人工神经网络 是从微观结构与功能上模拟人脑神经系统而建 立的一类模型,是模拟人的智能的一条途径。
人工神经网络 信息处理由人工神经元间的相互作用来实现, 由连接权来传递,具有学习能力、自适应性、 联接强度的可变性。
神经网络的分类
神经网络的不同分类: 1. 按性能分:连续型与离散型;确定型与随机型;

神经网络基本理论资料PPT课件

神经网络基本理论资料PPT课件
1984年,博士又提出了连续神经网络模型,实现了神经 网络的电子线路仿真,开拓了计算机应用神经网络的新途径, 成功解决了著名的优化组合问题——旅行商问题,引起了相 关领域研究人员的广泛关注。
1986年,等提出多层网络的逆推学习算法,即BP算法, 否定了M.Minsky等人的错误结论,该算法一直成为应用最广、 研究最多、发展最快的算法。
2.1 神经网络概述
胞体:也称为细胞体,包括细胞质、细胞核和细胞膜 三部分,是细胞的营养中心。
树突:胞体的伸延部分产生的分枝称为树突,是接受 从其它神经元传入的信息入口。但不一定是神经传入的唯一 通道,还可以是胞体膜。
轴突:每个神经元只有一个轴突,一般自胞体发出, 与一个或多个目标神经元连接,为神经元的输出通道,其作 用是将细胞体发出的神经冲动传递给另一个或多个神经元。
如果在输出层没有得到期望的输出,则计算输出层的误差变化值,然后转向反向传播,通过网络将误差信号沿原来的连接通路反传回
1949年,心理学家提出神经 来,修改各层神经元的权值,直至达到期望目标。
但人们在应用专家系统解决语音识别、图像处理和机器人控制等类似人脑形象思维的问题时却遇到很大的唐困纳难。德·赫布
BP算法的核心是最速下降法,这是一种以梯度为基础的误差下降算法,具有原理简单、实现方便等特点,但也有许多不足之处: 联想记忆的作用是用一个不完整或模糊的信息联想出存储在记忆中的某个完整、清晰的模式来。
初创期:标志就是提出模型,建立规则。 神经网络的自学习和自适应能力使其成为对各类信号进行多用途加工处理的一种天然工具。 人工智能
侧,右脑支配人体的左侧,大脑受伤会使他支配的那部分身 体产生功能障碍。
左右脑具有不同的功能。左脑主要是语言中枢,同时从 事分析性工作,如逻辑推理、数学运算和写作等。右脑主要 处理空间概念和模式识别。

神经网络原理与应用第1讲:基础知识PPT课件

神经网络原理与应用第1讲:基础知识PPT课件
定了神经网络的基础。
1957年,心理学家Frank Rosenblatt提出了感知机模 型,它可以识别一些简单的
模式,但无法处理异或 (XOR)问题。
1974年,Paul Werbos提出 了反向传播算法,解决了感 知机模型无法学习异或问题
的问题。
2006年,加拿大多伦多大学 的Geoffrey Hinton等人提出 了深度学习的概念,开启了
权重更新是根据损失函数的梯度调整权重的过程,通过不断 地迭代优化,使神经网络逐渐接近最优解。权重更新的过程 通常使用梯度下降法或其变种进行。
03
神经网络的类型
前馈神经网络
总结词
前馈神经网络是最基本的神经网络类型,信息从输入层开始,逐层向前传递,直 至输出层。
详细描述
前馈神经网络中,每一层的神经元只接收来自前一层的输入,并输出到下一层。 这种网络结构简单,易于训练和实现,常用于模式识别、分类和回归等任务。
利用神经网络进行游戏AI的决 策和策略制定,如AlphaGo
等。
02
神经网络的基本概念
神经元模型
总结词
神经元是神经网络的基本单元,模拟 生物神经元的行为。
详细描述
神经元模型通常包括输入信号、权重 、激活函数和输出信号等部分。输入 信号通过权重进行加权求和,经过激 活函数处理后得到输出信号。
激活函数
06
神经网络的应用实例
图像识别
总结词
图像识别是神经网络应用的重要领域之一, 通过训练神经网络识别图像中的物体、人脸 等特征,可以实现高效的图像分类、目标检 测等功能。
详细描述
神经网络在图像识别领域的应用已经取得了 显著的成果。例如,卷积神经网络(CNN) 被广泛用于图像分类、目标检测和人脸识别 等任务。通过训练神经网络,可以自动提取 图像中的特征,并基于这些特征进行分类或 检测目标。这大大提高了图像识别的准确性

神经网络入门指南从零开始学习神经网络的基础知识

神经网络入门指南从零开始学习神经网络的基础知识

神经网络入门指南从零开始学习神经网络的基础知识神经网络入门指南:从零开始学习神经网络的基础知识神经网络作为一种模拟人脑神经系统的计算模型,已经在各个领域得到了广泛的应用。

从图像识别、语音识别、自然语言处理,到游戏智能化等,神经网络已经逐步成为机器智能领域的重要基础技术之一。

本篇文章将从零开始介绍神经网络的基础知识,帮助初学者快速掌握神经网络的基本原理及应用。

一、什么是神经网络?神经网络是一种模拟人脑神经系统的计算模型,其基本原理是通过模仿生物神经元之间的相互连接和信息传递来实现复杂的信息处理功能。

简单来说,神经网络就是由一个由神经元和神经元之间的连接组成的网络。

二、神经网络的基本结构神经网络的基本结构包括输入层、隐藏层和输出层。

其中输入层用于接受外部输入信息;隐藏层根据输入信息进行“加工”,并向下一层传递信息;输出层将隐藏层传递过来的信息进行最终的处理和输出。

三、神经网络的工作原理神经网络的工作原理可以简单概括为“学习”和“推理”两个过程。

具体来讲,它通过不断调整网络参数,使网络模型能够根据训练数据进行学习,获得越来越准确的预测结果;在真实数据到来时,神经网络便可以通过这些已经学习到的规律,对新的数据进行推理和预测。

四、神经网络的应用1. 图像识别神经网络在图像识别领域的应用已经相当成熟,它可以通过学习大量的图像数据,并利用其内部的特征分析方法来实现对图像的智能化识别。

2. 语音识别语音识别是神经网络另一个重要应用领域。

神经网络可以通过语音信号分析技术,将语音信号转化为数字信号,并通过特征提取、分类等技术,实现对语音的自动识别。

3. 自然语言处理在自然语言处理领域,神经网络已经成为了文本分类、语种识别、情感分析等关键技术之一。

通过神经网络的“学习”和“推理”能力,它可以自动地理解、分析和理解大量的自然语言文本信息。

4. 游戏智能化在大型游戏开发中,神经网络也具有非常重要的应用前景。

它可以通过学习玩家的习惯和操作行为,实现对玩家行为的预测,同时还可以对游戏场景的元素进行分析和规划,实现对游戏智能化水平的提升。

《神经网络理论基础》课件

《神经网络理论基础》课件
2 发展历程
神经网络起源于20世纪40年代,经过多年的发展和研究,如今广泛应用于人工智能、图 像识别、语音识别等领域。
神经元和神经网络模型
神经元
神经网络的基本单位,接收输入信号,经过处理后 产生输出信号。
神经网络模型
由多个神经元组成的网络结构,具有输入层、隐藏 层和输出层,用于解决复杂的问题。
前馈神经网络与反馈神经网络
《神经网络理论基础》 PPT课件
本课件将介绍神经网络的定义和发展历程,神经元和神经网络模型,前馈神 经网络与反馈神经网络,深度神经网络和卷积神经网络,循环神经网络和长 短期记忆网络,神经网络的训练与优化算法,以及神经网络的应用和前景展 望。
神经网络的定义和发展历程
1 定义
神经网络是由大量相互连接的处理单元(神经元)组成的计算模型,模仿生物神经系统 的运行机制。
循环神经网络和长短期记忆网络
循环神经网络
具有反馈连接的神经网络,可以处理序列数据,如自然语言处理和语音合成。
长短期记忆网络
一种特殊的循环神经网络,通过门控单元来记忆长期依赖关系,适用于处理时间序列数据。
神经网络的训练与优化算法
1 训练
使用反向传播算法根据输入和期望输出调整神经网络的权重和偏差,使其逐渐学习到正 确的映射关系。
2 优化算法
常用的优化算法包括梯度下降、Adam、RMSprop等,用于加速神经网络的训练和提高性 能。
神经网络的应用和前景展望
应用领域
神经网络被广泛应用于人工智能、自动驾驶、金融 预测、医学影像分析等领域。
前景展望
随着技术的不断发展,神经网络在未来将继续发挥 重要作用,带来更多创新和突破。
1
前馈神经网络
信息只能单向传递,无反馈循环,适用于静态问题的处理。

神经网络基础PPT课件

神经网络基础PPT课件

AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。

神经网络理论基础PPT课件

神经网络理论基础PPT课件
神经网络的复兴
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。

《神经网络理论基础》课件

《神经网络理论基础》课件

梯度下降法
定义
梯度下降法是一种优化算法,通过不断迭代更新 参数,使得损失函数逐渐减小并趋于最小值。
计算步骤
计算损失函数关于参数的梯度,然后沿着负梯度 的方向更新参数。
收敛性
梯度下降法不一定能保证全局最优解,但在局部 范围内可以找到一个较优解。反向传播算法01 Nhomakorabea定义
反向传播算法是一种基于梯度下降法的优化算法,用于训练神经网络。
针对序列数据设计的特殊结构,通过记忆 单元实现信息的长期存储和传递,常用于 自然语言处理和语音识别等领域。
CHAPTER
02
前向传播
线性代数基础
线性方程组
介绍线性方程组的基本概念、解法及 其在神经网络中的应用。
矩阵运算
重点讲解矩阵的加法、乘法、转置等 基本运算,以及它们在神经网络中的 重要性。
激活函数
02
它通过卷积运算,将输入数据与一组可学习的滤波 器进行卷积,得到一组特征图。
03
卷积层的参数数量相对较少,能够有效地降低模型 复杂度,减少过拟合的风险。
池化层
01 池化层是卷积神经网络中的一种下采样层,用于 降低数据的维度和计算复杂度。
02 它通过对输入数据进行降采样操作,如最大池化 、平均池化等,提取出关键的特征信息。
《神经网络理论基础》 ppt课件
CONTENTS
目录
• 神经网络概述 • 前向传播 • 反向传播 • 深度神经网络 • 卷积神经网络 • 循环神经网络 • 神经网络的训练与优化
CHAPTER
01
神经网络概述
神经网络定义
神经网络是一种模拟人类大脑神经元 连接方式的计算模型,通过训练不断 优化网络参数,实现对输入数据的分 类、预测和识别等功能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络基础知识教材用平常语言介绍神经网络(Neural Networks in Plain English)因为我们没有很好了解大脑,我们经常试图用最新的技术作为一种模型来解释它。

在我童年的时候,我们都坚信大脑是一部电话交换机。

(否则它还能是什么呢?)我当时还看到英国著名神经学家谢林顿把大脑的工作挺有趣地比作一部电报机。

更早些时候,弗罗伊德经常把大脑比作一部水力发电机,而莱布尼茨则把它比作了一台磨粉机。

我还听人说,古希腊人把大脑功能想象为一付弹弓。

显然,目前要来比喻大脑的话,那只可能是一台数字电子计算机了。

-John R.Searle [注1]1.神经网络介绍(Introduction to Neural Networks)曾有很长一个时期,人工神经网络对我来说是完全神秘的东西。

当然,有关它们我在文献中已经读过了,我也能描述它们的结构和工作机理,但我始终没有能“啊哈!”一声,如同你头脑中一个难于理解的概念有幸突然得到理解时的感觉那样。

我的头上好象一直有个榔头在敲着,或者像电影AnimalHouse(中文片名为“动物屋”)中那个在痛苦地尖叫“先生,谢谢您,再给我一个啊!”的可怜家伙那样。

我无法把数学概念转换成实际的应用。

有时我甚至想把我读过的所有神经网络的书的作者都抓起来,把他们缚到一棵树上,大声地向他们吼叫:“不要再给我数学了,快给我一点实际东西吧!”。

但无需说,这是永远不可能发生的事情。

我不得不自己来填补这个空隙...由此我做了在那种条件下唯一可以做的事情。

我开始干起来了。

<一笑>这样几个星期后,在一个美丽的日子里,当时我在苏格兰海边度假,当我越过一层薄雾凝视着狭长的海湾时,我的头脑突然受到一个冲击。

一下子悟到了人工神经网络是怎样工作的。

我得到“啊哈!”的感觉了!但我此时身边只有一个帐篷和一个睡袋,还有半盒子的脆玉米片,没有电脑可以让我迅速写出一些代码来证实我的直觉。

Arghhhhh!这时我才想到我应该买一台手提电脑。

不管怎样,几天后我回到家了,我立刻让我的手指在键盘上飞舞起来。

几个小时后我的第一人工神经网络程序终于编成和运行了,并且工作得挺好!自然,代码写的有点乱,需要进行整理,但它确实已能工作了,并且,更重要的是,我还知道它为什么能工作!我可以告诉你,那天我是一位非常得意的人。

我希望本书传递给你的就是这种“啊哈!”感觉。

当我们学完遗传算法时,你可能已尝到了一点感觉,但你希望这种感觉是美妙的话,那就要等把神经网络部分整个学完。

2.生物学的神经网络-大脑(A Biological Neural Network–The Brain)....你的大脑是一块灰色的、像奶冻一样的东西。

它并不像电脑中的CPU那样,利用单个的处理单元来进行工作。

如果你有一具新鲜地保存到福尔马林中的尸体,用一把锯子小心地将它的头骨锯开,搬掉头盖骨后,你就能看到熟悉的脑组织皱纹。

大脑的外层象一个大核桃那样,全部都是起皱的[图0左],这一层组织就称皮层(Cortex)。

如果你再小心地用手指把整个大脑从头颅中端出来,再去拿一把外科医生用的手术刀,将大脑切成片,那么你将看到大脑有两层[图0右]:灰色的外层(这就是“灰质”一词的来源,但没有经过福尔马林固定的新鲜大脑实际是粉红色的。

)和白色的内层。

灰色层只有几毫米厚,其中紧密地压缩着几十亿个被称作neuron(神经细胞、神经元)的微小细胞。

白色层在皮层灰质的下面,占据了皮层的大部分空间,是由神经细胞相互之间的无数连接组成。

皮层象核桃一样起皱,这可以把一个很大的表面区域塞进到一个较小的空间里。

这与光滑的皮层相比能容纳更多的神经细胞。

人的大脑大约含有1OG(即100亿)个这样的微小处理单元;一只蚂蚁的大脑大约也有250,OOO个。

以下表l显示了人和几种动物的神经细胞的数目。

图0 大脑的外形和切片形状表l人和几种动物的神经细胞的数目图1神经细胞的结构在人的生命的最初9个月内,这些细胞以每分钟25,000个的惊人速度被创建出来。

神经细胞和人身上任何其他类型细胞十分不同,每个神经细胞都长着一根像电线一样的称为轴突(axon)的东西,它的长度有时伸展到几厘米[译注],用来将信号传递给其他的神经细胞。

神经细胞的结构如图1所示。

它由一个细胞体(soma)、一些树突(dendrite)、和一根可以很长的轴突组成。

神经细胞体是一颗星状球形物,里面有一个核(nucleus)。

树突由细胞体向各个方向长出,本身可有分支,是用来接收信号的。

轴突也有许多的分支。

轴突通过分支的末梢(terminal)和其他神经细胞的树突相接触,形成所谓的突触(Synapse,图中未画出),一个神经细胞通过轴突和突触把产生的信号送到其他的神经细胞。

每个神经细胞通过它的树突和大约10,000个其他的神经细胞相连。

这就使得你的头脑中所有神经细胞之间连接总计可能有l,000,000,000,000,000个。

这比100兆个现代电话交换机的连线数目还多。

所以毫不奇怪为什么我们有时会产生头疼毛病!有趣的事实曾经有人估算过,如果将一个人的大脑中所有神经细胞的轴突和树突依次连接起来,并拉成一根直线,可从地球连到月亮,再从月亮返回地球。

如果把地球上所有人脑的轴突和树突连接起来,则可以伸展到离开们最近的星系!神经细胞利用电-化学过程交换信号。

输入信号来自另一些神经细胞。

这些神经细胞的轴突末梢(也就是终端)和本神经细胞的树突相遇形成突触(synapse),信号就从树突上的突触进入本细胞。

信号在大脑中实际怎样传输是一个相当复杂的过程,但就我们而言,重要的是把它看成和现代的计算机一样,利用一系列的0和1来进行操作。

就是说,大脑的神经细胞也只有两种状态:兴奋(fire)和不兴奋(即抑制)。

发射信号的强度不变,变化的仅仅是频率。

神经细胞利用一种我们还不知道的方法,把所有从树突上突触进来的信号进行相加,如果全部信号的总和超过某个阀值,就会激发神经细胞进入兴奋(fire)状态,这时就会有一个电信号通过轴突发送出去给其他神经细胞。

如果信号总和没有达到阀值,神经细胞就不会兴奋起来。

这样的解释有点过分简单化,但已能满足我们的目的。

神经细胞利用电-化学过程交换信号。

输入信号来自另一些神经细胞。

这些神经细胞的轴突末梢(也就是终端)和本神经细胞的树突相遇形成突触(synapse),信号就从树突上的突触进入本细胞。

信号在大脑中实际怎样传输是一个相当复杂的过程,但就我们而言,重要的是把它看成和现代的计算机一样,利用一系列的0和1来进行操作。

就是说,大脑的神经细胞也只有两种状态:兴奋(fire)和不兴奋(即抑制)。

发射信号的强度不变,变化的仅仅是频率。

神经细胞利用一种我们还不知道的方法,把所有从树突上突触进来的信号进行相加,如果全部信号的总和超过某个阀值,就会激发神经细胞进入兴奋(fire)状态,这时就会有一个电信号通过轴突发送出去给其他神经细胞。

如果信号总和没有达到阀值,神经细胞就不会兴奋起来。

这样的解释有点过分简单化,但已能满足我们的目的。

正是由于数量巨大的连接,使得大脑具备难以置信的能力。

尽管每一个神经细胞仅仅工作于大约100Hz的频率,但因各个神经细胞都以独立处理单元的形式并行工作着,使人类的大脑具有下面这些非常明显的特点:能实现无监督的学习。

有关我们的大脑的难以置信的事实之一,就是它们能够自己进行学习,而不需要导师的监督教导。

如果一个神经细胞在一段时间内受到高频率的刺激,则它和输入信号的神经细胞之间的连接强度就会按某种过程改变,使得该神经细胞下一次受到激励时更容易兴奋。

这一机制是50多年以前由DonardHebb在他写的Organination of Behavior一书中阐述的。

他写道:“当神经细胞A的一个轴突重复地或持久地激励另一个神经细胞B后,则其中的一个或同时两个神经细胞就会发生一种生长过程或新陈代谢式的变化,使得励B细胞之一的A细胞,它的效能会增加”与此相反的就是,如果一个神经细胞在一段时间内不受到激励,那么它的连接的有效性就会慢慢地衰减。

这一现象就称可塑性(plasticity)。

对损伤有冗余性(tolerance)。

大脑即使有很大一部分受到了损伤,它仍然能够执行复杂的工作。

一个著名的试验就是训练老鼠在一个迷宫中行走。

然后,科学家们将其大脑一部分一部分地、越来越大地加以切除。

他们发现,即使老鼠的很大的一部大脑被切除后,它们仍然能在迷宫中找到行走路径。

这一事实证明了,在大脑中,知识并不是保存在一个局部地方。

另外所作的一些试验则表明,如果大脑的一小部分受到损伤,则神经细胞能把损伤的连接重新生长出来。

处理信息的效率极高。

神经细胞之间电-化学信号的传递,与一台数字计算机中CPU的数据传输相比,速度是非常慢的,但因神经细胞采用了并行的工作方式,使得大脑能够同时处理大量的数据。

例如,大脑视觉皮层在处理通过我们的视网膜输入的一幅图象信号时,大约只要100ms的时间就能完成。

考虑到你的神经细胞的平均工作频率只有100Hz,100ms的时间就意味只能完成10个计算步骤!想一想通过我们眼睛的数据量有多大,你就可以看到这真是一个难以置信的伟大工程了。

善于归纳推广。

大脑和数字计算机不同,它极擅长的事情之一就是模式识别,并能根据已熟悉信息进行归纳推广(generlize)。

例如,我们能够阅读他人所写的手稿上的文字,即使我们以前从来没见过他所写的东西。

它是有意识的。

意识(consciousness)是神经学家和人工智能的研究者广泛而又热烈地在辩论的一个话题。

有关这一论题已有大量的文献出版了,但对于意识实际究竟是什么,至今尚未取得实质性的统一看法。

我们甚至不能同意只有人类才有意识,或者包括动物王国中人类的近亲在内才有意识。

一头猩猩有意识吗?你的猫有意识吗?上星期晚餐中被你吃掉的那条鱼有意识吗?因此,一个人工神经网络(Artificial neural network,简称ANN)就是要在当代数字计算机现有规模的约束下,来模拟这种大量的并行性,并在实现这一工作时,使它能显示许多和生物学大脑相类似的特性。

下面就让我们瞧瞧它们的表演吧!3数字版的神经网络 (The Digital Version)上面我们看到了生物的大脑是由许多神经细胞组成,同样,模拟大脑的人工神经网络ANN是由许多叫做人工神经细胞(Artificialneuron,也称人工神经原,或人工神经元)的细小结构模块组成。

人工神经细胞就像真实神经细胞的一个简化版,但采用了电子方式来模拟实现。

一个人工神经网络中需要使用多少个数的人工神经细胞,差别可以非常大。

有的神经网络只需要使用10个以内的人工神经细胞,而有的神经网络可能需要使用几千个人工神经细胞。

这完全取决于这些人工神经网络准备实际用来做什么。

相关文档
最新文档