《工程流体力学》阀门局部阻力系数的测定实验
流体流动阻力测定实验指导书
流体流动阻力的测定一、实验目的1.掌握管道沿程阻力系数和局部阻力系数的测定方法。
2.掌握三点法、四点法量测局部阻力系数的技能。
3.通过对圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径;加深对局部阻力损失机理的理解;二、实验仪器设备三、 实验原理1.阀门局部阻力实验图2 阀门的局部水头损失测压管段对1、4两断面列能量方程式,可求得阀门的局部水头损失及2(L 1+ L 2)长 度上的沿程水头损失,以h w1表之,则1411h p p h w ∆=-=γ对2、3两断面列能量方程式,可求得阀门的局部水头损失及(L 1+ L 2)长 度上的沿程水头损失,以h w2表之,则2322h p p h w ∆=-=γ∴阀门的局部水头损失h 1应为:1212h h h ∆-∆=亦即 12222h h gv ∆-∆=ζ∴阀门的局部水头损失系数为:2122)2(vg h h ∆-∆=ζ 式中v 为管道的平均流速 2. 突扩突缩局部阻力损失实验图2 突扩突缩的局部水头损失测压管段写出局部阻力前后两断面的能量方程根据推导条件,扣除沿程水头损失可得:1)突然扩大采用三点法计算,A 为突扩点。
下式中h f1-2由h f2-3按流长比例换算得出。
实测:= [(Z1 +) +] - [ (Z2 +) ++ h f1-2 ]=/理论:= (1 - )2=2)突然缩小采用四点法计算,下式中B 点为突缩点,B f h -3由32-f h 换算得出,4-fB h 由54-f h 换算得出。
实测:= [(Z3 +) +] - [ (Z4 +) ++ h fB-4 ]=/理论:= 0.5(1 - )=3. 沿程阻力系数的测定对沿程阻力两点的端面列能量方程得h pg P pg P hr ∆=-=//21由达西公式:g u d L hr 2//2⋅⋅=λ用体积法测得流量, 并计算出断面平均流速,即可求得沿程阻力系数λ2/2u L gdh r ⋅=λ四、 实验步骤1.实验前准备关闭阀1、2、3全开阀4全开阀E开启水泵,把恒压水箱注满水,再调节阀4,使水箱的水有少量溢流,并保持压力过渡管(测压管)水头的连线为一平行基准线的水平线。
实验7 局部阻力系数实验
实验七 局部阻力系数实验1实验目的和要求1.掌握测量局部阻力系数的方法;2.测量管道突然扩大、突然缩小时的局部阻力系数;3.了解影响局部阻力系数的因素2局部阻力系数实验的原理水流在流动过程中,由于水流边界条件或过水断面的改变,引起水流内部各质点的流速、压强也都发生变化,并且产生旋涡。
在这一过程中,水流质点间相对运动加强,水流内部摩擦阻力所作的功增加,水流在流动调整过程中消耗能量所损失的水头称为局部水头损失。
局部水头损失的一般表达式为gvh j 22ζ= (1)式中,j h 为局部水头损失;ζ为局部水头损失系数,即局部阻力系数,它是流动形态与边界形状的函数,即)(e R f 边界形状,=ζ,一般水流的雷诺数e R 足够大时,可以认为ζ系数不再随e R 而变化,可视作为一常数;v 为断面平均流速,一般用发生局部水头损失以后的断面平均流速,也有用损失断面前的平均流速,所以在计算或查表时要注意区分。
局部水头损失可以通过能量方程进行分析。
图1为一水流突然扩大的实验管段,在发v 1图1 局部水头损失分析简图j h =gv v p z p z 2)()(2222112211ααγγ-++-+(2)式中,)()(2211γγp z p z +-+为断面1-1和2-2的测压管水头差;v 1、v 2 分别为1-1断面和2-2断面的平均流速。
管道局部水头损失目前仅有断面突然扩大(图1)可利用动量方程,能量方程和连续方程进行理论分析,并可得出足够精确的结果,其它情况尚需通过实验方法测定局部阻力系数。
对于管道突然扩大,理论公式为gv v h j 2221)(-= (3)由连续方程A 1v 1=A 2v 2,解出v 1或v 2代入上式可分别得 g v A A h j 2122212)(-= , 21211)(扩大-=A A ζ (4)或 gv A A h j 2121221)(-=, 22121)(扩大A A -=ζ (5)式中,A1、A2分别为断面1-1和2-2的过水断面面积;1扩大ζ、2扩大ζ叫做突然放大的局部阻力系数。
流体流动阻力的测定实验
流体流动阻力的测定实验一、实验内容1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ, 并确定λ和Re 之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1. 解测定流体流动阻力摩擦系数的工程定义, 掌握测定流体阻力的实验组织方法。
2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力, 确定直管阻力摩擦系数与雷诺数之间的关系。
3. 熟悉压差计和流量计的使用方法。
4. 认识组成管路系统的各部件、阀门并了解其作用。
三、实验原理流体通过由直管和阀门组成的管路系统时, 由于粘性剪应力和涡流应力的存在, 要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力 流体流动过程是一个多参数过程, 。
由因次分析法, 从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示:⎥⎦⎤⎢⎣⎡ξμρ=ρ∆d ,du ,d l F u P 2 λ=Ψ(Re, ε/d ) 雷诺准数μρdue =R ;22u d l Ph f ⋅⋅=∆=λρ只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。
g P Hg )R(ρρ-=∆易知, 直管摩擦系数λ仅与Re 和 有关。
因此, 只要在实验室规模的装置上, 用水做实验物系, 进行试验, 确定λ与Re 和 的关系, 然后计算画图即可。
2.局部阻力局部阻力可以用当量长度法或局部阻力系数法来表示, 本实验用局部阻力系数法来表示, 即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示, 用公式表示:一般情况下, 由于管件和阀门的材料及加工精度不完全相同, 每一制造厂及每一批产品的阻力系数是不尽相同的。
四、实验设计由和知, 当实验装置确定后, 只要改变管路中流体流速u及流量V, 测定相应的直管阻力压差ΔP1和局部阻力压差ΔP2, 就能通过计算得到一系列的λ和ξ的值以及相应的Re的值,【原始数据】在实验中, 我们要测的原始数据有流量V, 用来计算直管阻力压差ΔP1和局部阻力压差ΔP2的U型压差计的左右两边水银柱高度, 流体的温度t(据此确定ρ和μ), 还有管路的直径d和直管长度l。
阻力系数的测定分析
3.流量调节:手控状态,电动调节阀的开度选择100,然 后开启管路出口阀,调节流量,让流量从1到4m3/h范围内 变化,建议每次实验变化0.5m3/h左右。每次改变流量,待 流动达到稳定后,记下对应的压差值;自控状态,流量控
制界面设定流量值或设定电动调节阀开度,待流量稳定记
录相关数据即可。
4.计算:装置确定时,根据∆P和u的实验测定值,可 计算λ和ξ,在等温条件下,雷诺数Re=duρ/μ=Au,其中A 为常数,因此只要调节管路流量,即可得到一系列λ~Re 的实验点,从而绘出λ~Re曲线。
5.实验结束:关闭出口阀,关闭水泵和仪表电源,清
理装置
五、实验数据处理 根据上述实验测得的数据填写到下表:
实验日期:
实验人员:
学号:
粗糙管径
温度:
局
直管基本参数: 光滑管径 部阻力管径
序号 流量(m3/h) 光滑管压差 (KPa)
粗糙管压差 (KPa)
局部阻力压差 (KPa)
六、实验报告
1.根据粗糙管实验结果,在双对数坐标纸上标绘出 λ~Re曲线,对照化工原理教材上有关曲线图,即可估算 出该管的相对粗糙度和绝对粗糙度。 2.根据光滑管实验结果,对照柏拉修斯方程,计算其
V u 900d 2
(5)
p f 可用U型管、倒置U型管、测压直管等液柱压差计
测定,或采用差压变送器和二次仪表显示。 (1)当采用倒置U型管液柱压差计时
p f gR
(2)当采用U型管液柱压差计时
(6)
f 0 gR
(7)
根据实验装置结构参数l、d,指示液密度ρ0 ,流体 温度t0(查流体物性ρ、μ),及实验时测定的流量V、液柱 压差计的读数R,通过式(5)、(6)或(7)、(4)和式(2)求取 Re和λ,再将Re和λ标绘在双对数坐标图上。 2.局部阻力系数 的测定 局部阻力损失通常有两种表示方法,即当量长度法和 阻力系数法。 (1)当量长度法
实验四 摩擦系数和局部阻力系数的测定
汕 头 大 学 实 验 报 告学院:工学院 系:机电系 年级: 2014级 姓名:成吉祥 学号:2014124089 成绩:实验四 摩擦系数和局部阻力系数的测定一、实验目的摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。
二、实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起流体压力损失。
流体在流动时所产生的阻力有直管摩擦阻力和局部阻力。
1、直管阻力流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示22u d l h f ⋅⋅=λ式中:f h :直管阻力损失,J/kg ;l :直管长度,m ; d :直管内径,m ; u :流体的速度,m/s ; λ:摩擦系数。
在一定的流速和雷诺数下,测出阻力损失,按下式即可求出摩擦系数λ。
22u l d h f ⋅⋅=λ 阻力损失f h 可通过对两截面间作机械能衡算求出2)(22212121u u p p g z z h f -+-+-=ρ对于水平等径直管21z z =,21u u =,上式可简化为ρ21p p h f -=式中:f h :两截面的压强差,N/m2;ρ:流体的密度,kg/m3。
只要测出两截面上静压强的差即可算出f h 。
两截面上静压强的差可用U 形管或倒U 型管压差计测出。
流速由流量计测得,在已知d 、u 的情况下只需测出流体的温度t ,查出该温度下流体的ρ、μ,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数λ与雷诺数Re 的关系。
2、局部阻力流体流过阀门、扩大、缩小等管件时,所引起的阻力损失可用下式计算)2(2u h f ζ=(J/kg ) (5)式中z 为局部阻力系数, z 的值一般都由实验测定。
计算局部阻力系数时应注意扩大、缩小管件的阻力损失f h 的计算。
三、实验注意事项1、各自循环供水实验均需注意:计量后的水必须倒回原实验装置的水斗内,以保持自循环供水(此注意事项后述实验不再提示)。
流体力学综合实验装置——流体流动阻力测定实验---实验报告
流体流动阻力测定实验一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re 的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数ξ。
4.学会倒U形压差计和涡轮流量计的使用方法。
5.识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:即,式中:λ—直管阻力摩擦系数,无因次;d —直管内径,m;—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。
滞流(层流)时,式中:Re —雷诺准数,无因次;μ—流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l、d,测定、u、ρ、μ等参数。
l、d 为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。
例如本装置采用涡轮流量计测流量V(m3/h)。
可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
根据实验装置结构参数l、d,指示液密度,流体温度 (查流体物性ρ、μ),及实验时测定的流量V、压差,通过式(5)、(6)或(7)、(4) 和式(2)求取Re和λ,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
化工原理实验~流体流动阻力系数的测定实验报告
流体流动阻力系数的测定实验报告一、实验目的:1、掌握测定流体流动阻力实验的一般实验方法。
2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。
4、将所得光滑管的λ—Re方程与Blasius方程相比较。
二、实验器材:流体阻力实验装置一套l——被测管长,md——被测管内径,mu——平均流速,m/sλ——摩擦阻力系数。
当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。
改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。
(1)、湍流区的摩擦阻力系数在湍流区内λ=f(Re,ε/ d)。
对于光滑管,大量实验证明,当Re在3×103~105范围内,λ和Re的关系遵循Blasius关系式,即λ=0.3163 / Re0.25对于粗糙管,λ和Re的关系均以图来表示。
2、局部阻力=ξu2/2hf式中,ξ为局部阻力系数,其与流体流过的管件的几何形状及流体的Re有关,当Re达到一定值后,ξ与Re无关,成为定值。
四、实验步骤:1、启动离心泵,打开被测管线上的开关阀及面板上与其相应的切换阀,关闭其他的开关阀和切换阀,保证测压点一一对应。
2、排净系统中的气体以便使液体能连续流动。
设备和测压管线中的气体都要排净,观察U形压差计中两液面是否水平,如果水平说明系统中气体已经排净。
3、测定光滑管和粗糙管摩擦阻力,先将流量从小到大慢慢增加,并观察U形压差计中两Re0.25可所求粗糙管在不同流量下的u、Re、λ、λ’如下表:粗糙管的相关数据表如下:—Re 流体势能的降低,即△P/ρ,只有当管道水平放置时,才能用△P代替△P。
当不是水平管时△P还包含了高度差所产生的势能差,所以如果不是水平管,则所求的摩擦阻力值要比实际的摩擦阻力要大。
局部阻力系数测定
局部阻力系数测定一、实验目的1、掌握三点法、四点法测量局部阻力系数的技能;2、实验验证圆管突扩局部阻力系数理论公式及突缩局部阻力系数的经验公式,熟悉局部阻力系数实验法及理论分析法的步骤;3、加深对局部阻力损失的理解。
二、实验装置图6-1 局部阻力系数实验装置图1—自循环供水器;2—实验台;3—泵;4—恒压水箱;5—溢流板;6—稳水孔板;7—突然扩大实验管段;8—测压计;9—滑动测量尺;10—测压管;11—突然收缩实验管段;12—实验流量调节阀三 、实验原理 (一)突然扩大1、实验法:三点法,取1-1和2-2两个截面j f h h gv p z g v p z ++++=++-212222211122αγγ2122212121222221112)2()2(----+-=-++-++=f f j h gv v p p h g v p z g v p z h γγγgv h j221=ζ式中:γ21p p -由1、2测验管读出; 24dQv π=,Q 由体积法测量; 21-f h 由32-f h 按流长比例换算得出:取2-2和3-3截面322333222222-+++=++f h gv p z g vp z γγ γ2232p p h f -=- 由2、3测压管读出。
32322121----=l h l h f f2、理论gvh j 221ζ'=221)1(A A -='ζ (二)突然缩小1、 实验法:四点法,取4-4和5-5两个截面,其中B 为突缩点j fB B f h h h gv p z g vp z +++++=++--542555244422γγ5425245454255524442)2()2(-------+-=--++-++=fB B f fB B f j h h gv v p p h h gv p z g v p z h γγγgv h j225=ζ式中:γ54p p -由4、5测验管读出; 24dQv π=,Q 由体积法测量; 同理B f h -4由43-f h 按流长比例换算得出,γ4343p p h f -=- 由3、4测压管读出。
2-流体流动阻力测定实验
一、 实验目的1、 掌握流体经直管和管阀件时阻力损失的测定方法。
通过实验了解流体流动中能量损失的变化规律。
2、 测定直管摩擦系数λ于雷诺准数Re 的关系。
3、 测定流体流经闸阀等管件时的局部阻力系数ξ。
4、 学会压差计和流量计的适用方法。
5、 观察组成管路的各种管件、阀件,并了解其作用。
二、 实验原理流体在管内流动时,犹豫粘性剪应力和涡流的存在,不可避免得要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起局部阻力。
1、沿程阻力影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。
根据因次分析,影响阻力损失的因素有, (a)流体性质:密度ρ、粘度μ;(b)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (c)流动条件:流速μ。
可表示为: 则式中,λ称为摩擦系数。
层流 (滞流)时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的函数,须由实验确定 2、局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
(1)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le 表示。
则流体在管路中流动时的总阻力损失 为 (2)阻力系数法流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法。
ρρpp p h f ∆=-=21),,,,,(ερμu l d f p =∆22u d l ph f λρ=∆=∑f h 22u d le l h f ∑∑+=λ即式中,ξ——局部阻力系数,无因次; u ——在小截面管中流体的平均流速,m /s三、 实验装置流程(1)实验装置实验装置如图所示主要由离心泵,不同管径、材质的管子,各种阀门和管件、转子流量计等组成。
化工原理实验~流体流动阻力系数的测定实验报告
流体流动阻力系数的测定实验报告一、实验目的:1、掌握测定流体流动阻力实验的一般实验方法。
2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。
4、将所得光滑管的λ—Re方程与Blasius方程相比较。
二、实验器材:流体阻力实验装置一套三、实验原理:1、直管摩擦阻力不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。
流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为△P=f (d, l, u,ρ,μ,ε)引入下列无量纲数群。
雷诺数Re=duρ/μ相对粗糙度ε/ d管子长径比l / d从而得到△P/(ρu2)=ψ(duρ/μ,ε/ d, l / d)令λ=φ(Re,ε/ d)△P/ρ=(l / d)φ(Re,ε/ d)u2/2可得摩擦阻力系数与压头损失之间的关系,这种关系可=△P/ρ=λ(l / d)u2/2用试验方法直接测定。
hf——直管阻力,J/kg式中,hfl——被测管长,md——被测管内径,mu——平均流速,m/sλ——摩擦阻力系数。
当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。
改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。
(1)、湍流区的摩擦阻力系数在湍流区内λ=f(Re,ε/ d)。
对于光滑管,大量实验证明,当Re在3×103~105范围内,λ和Re的关系遵循Blasius关系式,即λ=0.3163 / Re0.25对于粗糙管,λ和Re的关系均以图来表示。
局部阻力系数测定实验
伯努力压差板供水箱恒压水箱颜色罐压差板沿程实验管局部实验管文丘里实验管伯努力实验管雷诺实验管计量水箱回水管局部阻力系数的测定一、实验目的1、用实验方法测定两种局部管件(实扩、突缩)在流体流经管路时的局部阻力系数。
2、学会局部水头损失的测定方法。
1、实验原理与实验装置局部阻力系数测定的主要部件为局部阻力实验管路,它由细管和粗管组成一个突扩和一个突缩组件,并在等直细管的中间段接入一个阀门组件。
每个阻力组件的两侧一定间距的断面上都设有测压孔,并用测压管与测压板上相应的测压管相联接。
当流体流经实验管路时,可以测出各测压孔截面上测压管的水柱高度与前后截面的水柱高度差h 。
实验时还需要测定实验管路中的流体流量。
由此可以测算出水流流经各局部阻力组件的水头损失h ζ,从而最后得出各局部组件的局部阻力系数ζ。
① 突然扩大:21-A 21( )=ζ2g 1V 2( )12A A -1=j h 理论上:在实验时,由于管径中即存在局部阻力,又含有沿程阻力,当对突扩前后两断面列能量方程式时,可得hw=hj+hf,其中hw 可由(h1-h3)测读,hf 可由(h2-h3)测读,按流长比例换算后,hj=hw-hf 。
由此得出:2h jζ=② 突然收缩:理论上,ζ缩=0.5(1-A2/A1),实验时,同样,在读得突缩管段的水头损失后,按流长比例换算,分别将两端沿程损失除去,由此得:缩缩2h jζ=二、实验操作1、实验前的准备①熟悉实验装置的结构与其流程。
②进行排气处理。
③启动水泵,然后慢慢打开出水阀门时水流经过实验管路。
在此过程中(并关闭其他实验管的进水阀和出水阀),观察和检查管路系统和测压管与其导管中有无气泡存在,应尽可能利用试验管路上的放气阀门或用其它有效措施将系统中存在的气体排尽。
2、进行实验,测录数据①调节进水阀门和出水阀门,使各组压差达到测压管可测量的最大高度。
②在水流稳定时,测读测压管的液柱高和前后的压差值。
实验三 局部阻力系数的测定
实验三局部水头损失量测实验一、实验目得1.观察突扩管旋涡区测管水头线,以及其它各种边界突变情况下得测管水头变化情况,加深对局部水头损失得感性认识。
2. 掌握测定管道局部水头损失系数得方法,并将突扩管得实测值与理论值比较,将突缩管得实测值与经验值比较。
ﻫ3。
学习用测压管测量压强与用体积法测流量得实验技能。
二、实验原理有压管道恒定流遇到管道边界得局部突变→ 流动分离形成剪切层→ 剪切层流动不稳定,引起流动结构得重新调整,并产生旋涡→平均流动能量转化成脉动能量,造成不可逆得能量耗散(图1)。
与沿程因摩擦造成得分布损失不同,这部分损失可以瞧成就是集中损失在管道边界得突变处,每单位重量流体承担得这部分能量损失称为局部水头损失.图1 流道得局部突变示意图根据能量方程,局部水头损失ﻫ,ﻫ这里我们认为因边界突变造成得能量损失全部产生在1-1,2—2两断面之间,不再考虑沿程损失。
上游断面1—1应取在由于边界得突变,水流结构开始发生变化得渐变流段中,下游2-2断面则取在水流结构调整刚好结束,重新形成渐变流段得地方.总之,两断面应尽可能接近,又要保证局部水头损失全部产生在两断面之间。
经过测量两断面得测管水头差与流经管道得流量,进而推算两断面得速度水头差,就可测得局部水头损失。
局部水头损失系数就是局部水头损失折合成速度水头得比例系数,即当上下游断面平均流速不同时,应明确它对应得就是哪个速度水头?例如,对于突扩圆管就有与之分。
其它情况得局部损失系数在查表或使用经验公式确定时也应该注意这一点.通常情况下对应下游得速度水头。
ﻫ局部水头损失系数随流动得雷诺数而变,即。
但当雷诺数大到一定程度后, 值成为常数。
在工程中使用得表格或经验公式中列出得就就是指这个范围得数值.局部水头损失得机理复杂,除了突扩圆管得情况以外,一般难于用解析方法确定,而要通过实测来得到各种边界突变情况下得局部水头损失系数。
对于突扩圆管得情况,局部水头损失系数有理论结果,推导如下:流动经过突扩圆管得局部水头损失,ﻫ取1—1,2-2两断面如图2,这里要特别注意1—1断面取为突扩开始得断面,2—2断面则取在水流结构调整刚好结束,重新形成渐变流段得地方.两断面面积都为,而与则分别为细管与粗管中得平均流速。
实验五局部阻力系数测定实验
实验五 局部阻力系数测定实验流体在流过局部阻力装置时出现速度的重新分布和漩涡运动,这是产生局部阻力的基本原因。
局部阻力的一般计算公式为:22j 2h 2gυ=ζ。
j h 局部阻力装置水头损失 (m);2ζ 局部阻力系数,绝大部分通过实验确定,它是一个无量纲数。
2υ 局部阻力装置后的平均流速 (m/s);本实验中的局部阻力系数2ζ,是相对于局部阻力装置之后的平均流速而言。
2υ一、实验目的要求:利用本装置的实验管B (见图1),可完成渐扩管和渐缩管等局部阻力装置的局部阻力系数测定实验。
本实验指导书着重介绍渐缩管的局部阻力系数测定的实验原理、方法和步骤。
渐扩管局部阻力系数的测定与渐缩管完全类似,可由学生自己完成实验的设计。
二、实验原理和方法:局部阻力系数测定实验,其基本实验原理为:在局部阻力装置前后的均匀流段选取两个过流断面,对这两个断面间的流体应用总流伯努利方程,方程右端的水头损失由两段均匀流段的沿程水头损失和局部阻力装置的局部水头损失组成,由测量管流中的流量和连续性方程即可求得小直径管和大直径管中的平均流速;由于水平等径管的沿程水头损失即是等径管均匀流段前后测压管的高度差,于是可求得两段均匀流的沿程水头损失。
据此,即可通过伯努利方程求得局部装置的局部阻力系数2ζ。
原理图如5-1所示:图5-1对于上面计算用图,列出1、2两个过流断面间流体的伯努利方程:2211122212f11j p p z z h h g 2g g 2gf 22h ′′−−αυαυ++=+++++ρρ移项整理:22121122j 12f1-1f 2-2p p h (z )(z )((h h g g 2g 2g′′αυαυ=+−++−−+ρρ) 上式中,11p z g +ρ、22p z g+ρ由测压管液位高直接读取;1υ、2υ由实验中测出的流量和管内径、求出;、1d 2d 1α2α根据管流中流体的雷诺数范围确定(参见实验二中的附表)。
实验三 局部阻力系数的测定
实验三局部水头损失量测实验一、实验目的1.观察突扩管旋涡区测管水头线,以及其它各种边界突变情况下的测管水头变化情况,加深对局部水头损失的感性认识。
2.掌握测定管道局部水头损失系数的方法,并将突扩管的实测值与理论值比较,将突缩管的实测值与经验值比较。
3.学习用测压管测量压强和用体积法测流量的实验技能。
二、实验原理有压管道恒定流遇到管道边界的局部突变→流动分离形成剪切层→剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡→平均流动能量转化成脉动能量,造成不可逆的能量耗散(图1)。
与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中损失在管道边界的突变处,每单位重量流体承担的这部分能量损失称为局部水头损失。
图1流道的局部突变示意图根据能量方程,局部水头损失,这里我们认为因边界突变造成的能量损失全部产生在1-1,2-2两断面之间,不再考虑沿程损失。
上游断面1-1应取在由于边界的突变,水流结构开始发生变化的渐变流段中,下游2-2断面则取在水流结构调整刚好结束,重新形成渐变流段的地方。
总之,两断面应尽可能接近,又要保证局部水头损失全部产生在两断面之间。
经过测量两断面的测管水头差和流经管道的流量,进而推算两断面的速度水头差,就可测得局部水头损失。
局部水头损失系数是局部水头损失折合成速度水头的比例系数,即 当上下游断面平均流速不同时,应明确它对应的是哪个速度水头?例如,对于突扩圆管就有和之分。
其它情况的局部损失系数在查表或使用经验公式确定时也应该注意这一点。
通常情况下对应下游的速度水头。
局部水头损失系数随流动的雷诺数而变,即(Re)f ζ=。
但当雷诺数大到一定程度后,值成为常数。
在工程中使用的表格或经验公式中列出的就是指这个范围的数值。
局部水头损失的机理复杂,除了突扩圆管的情况以外,一般难于用解析方法确定,而要通过实测来得到各种边界突变情况下的局部水头损失系数。
对于突扩圆管的情况,局部水头损失系数有理论结果,推导如下:流动经过突扩圆管的局部水头损失,取1-1,2-2两断面如图2,这里要特别注意1-1断面取为突扩开始的断面,2-2断面则取在水流结构调整刚好结束,重新形成渐变流段的地方。
局部阻力分析实验
管道内的局部阻力实验报告一、实验目的:1.了解各种局部阻力的形成原因及影响状况。
2.掌握能量损失以及损失计算方法二、实验设备:压力测量计,管道,阀门三、实验原理:在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。
此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。
这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。
因此一般的管路系统中,既有沿程损失,又有局部损失。
四、局部损失的产生的原因及计算:一、产生局部损失的原因对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。
进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。
在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。
另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。
局部损失就发生在旋涡开始到消失的一段距离上。
图4.9()给出了弯曲管道的流动。
由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。
在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。
综上所述,碰撞和旋涡是产生局部损失的主要原因。
当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。
局部阻力系数测定实验
东北林业大学局部阻力系数的测定一、实验目的1、用实验方法测定两种局部管件(实扩、突缩)在流体流经管路时的局部阻力系数。
2、学会局部水头损失的测定方法。
1、实验原理及实验装置局部阻力系数测定的主要部件为局部阻力实验管路,它由细管和粗管组成一个突扩和一个突缩组件,并在等直细管的中间段接入一个阀门组件。
每个阻力组件的两侧一定间距的断面上都设有测压孔,并用测压管与测压板上相应的测压管相联接。
当流体流经实验管路时,可以测出各测压孔截面上测压管的水柱高度及前后截面的水柱高度差 h。
实验时还需要测定实验管路中的流体流量。
由此可以测算出水流流经各局部阻力组件的水头损失hζ,从而最后得出各局部组件的局部阻力系数ζ。
①突然扩大:21-A 21( )=ζ2g 1V 2( )12A A -1=j h 理论上:在实验时,由于管径中即存在局部阻力,又含有沿程阻力,当对突扩前后两断面列能量方程式时,可得hw=hj+hf ,其中hw 可由(h 1-h 3)测读,hf 可由(h 2-h 3)测读,按流长比例换算后,hj=hw-h f 。
由此得出:2h jζ=② 突然收缩:理论上,ζ缩=0.5(1-A 2/A 1),实验时,同样,在读得突缩管段的水头损失后,按流长比例换算,分别将两端沿程损失除去,由此得:缩缩2h jζ=二、实验操作1、实验前的准备①熟悉实验装置的结构及其流程。
②进行排气处理。
③启动水泵,然后慢慢打开出水阀门时水流经过实验管路。
在此过程中(并关闭其他实验管的进水阀和出水阀),观察和检查管路系统和测压管及其导管中有无气泡存在,应尽可能利用试验管路上的放气阀门或用其它有效措施将系统中存在的气体排尽。
2、进行实验,测录数据①调节进水阀门和出水阀门,使各组压差达到测压管可测量的最大高度。
②在水流稳定时,测读测压管的液柱高和前后的压差值。
③在此工况下测定流量。
④调节出水阀门,适当减小流量,测读在新的工况下的实验结果。
如此,可做3~5个实验点。
流体力学综合实验装置——流体流动阻力测定实验---实验报告
流体流动阻力测定实验一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re 的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数ξ。
4.学会倒U形压差计和涡轮流量计的使用方法。
5.识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:即,式中:λ—直管阻力摩擦系数,无因次;d —直管内径,m;—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。
滞流(层流)时,式中:Re —雷诺准数,无因次;μ—流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l、d,测定、u、ρ、μ等参数。
l、d 为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。
例如本装置采用涡轮流量计测流量V(m3/h)。
可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
根据实验装置结构参数l、d,指示液密度,流体温度 (查流体物性ρ、μ),及实验时测定的流量V、压差,通过式(5)、(6)或(7)、(4) 和式(2)求取Re和λ,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
三、流体流动阻力测定实验
化工原理实验报告实验名称:流体流动阻力测定实验学院:化学工程学院专业:化学工程与工艺班级:姓名:学号:指导教师:日期:一、 实验目的1、掌握流体经直管和管阀件时阻力损失的测定方法。
通过实验了解流体流动中能量损失的变化规律。
2、测定直管摩擦系数λ于雷诺准数Re 的关系。
3、测定流体流经闸阀等管件时的局部阻力系数ξ。
4、学会压差计和流量计的适用方法。
5、观察组成管路的各种管件、阀件,并了解其作用。
二、实验原理流体在管内流动时,犹豫粘性剪应力和涡流的存在,不可避免得要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起局部阻力。
1、沿程阻力影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。
根据因次分析,影响阻力损失的因素有, (a)流体性质:密度ρ、粘度μ;(b)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (c)流动条件:流速μ。
可表示为:式中,λ称为摩擦系数。
层流 (滞流)时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的函数,须由实验确定 2、局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
(1)、当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le 表示。
则流体在管路中流动时的总阻力损失 为(2)、阻力系数法流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算ρρpp p h f ∆=-=21),,,,,(ερμu l d f p =∆22u d l p h f λρ=∆=∑f h 22u dle l hf∑∑+=λ局部阻力的方法,称为阻力系数法。
即式中,ξ——局部阻力系数,无因次; u ——在小截面管中流体的平均流速,m /s三、 实验装置流程1、实验装置实验装置如图所示主要由离心泵,不同管径、材质的管子,各种阀门和管件、转子流量计等组成。
流体局部阻力系数的测定实验小结
流体局部阻力系数的测定实验小结第一篇:流体局部阻力系数的测定实验小结流体局部阻力系数的测定实验小结这次开放性实验我做了流组局部阻力测定与离心泵特性曲线测定两个实验。
之前有做过相关实验,但这次虽然差不多,但在细节上还是有许多的不一样。
实验前经过和老师商讨操作步骤和数据处理上可以看出流体局部阻力系数测定实验在操作上虽简单,但要一份完美的报告还是需要再三的修改。
我从这次试验认识和掌握流体局部阻力实验的一般实验方法测定突然扩大管和阀门的局部阻力系数ξ。
实验过程中,在取三个不同流量时必须在1~4m3之间,全开时为了方便测阀门在不同开度时的局部阻力系数,需记下全开时的总圈数,为了数据图完美点需要多测几组。
还学到了在计算机上绘图的一些技巧。
处理局部阻力数据时学到两种不同方法处理数据,一种是根据公式分别算出在不同阀门开度和不同流量的阻力系数,最后求平均值。
另一种是根据公式,画出在不同阀门开度下局部阻力损失与动能的关系曲线,得出曲线的斜率即局部阻力系数。
通过这次试验,在加深对实验原理理解的基础上,又通过反复操作,掌握实验步骤,为实际操作做好充分准备,同时培养了我们理论联系实际的能力,提高了独立思考和独立工作的能力。
第二篇:沿程阻力系数测定实验材料表沿程阻力系数测定实验材料表1-蓄水箱(有机玻璃板)2-实验水箱,计量水箱(透明有机玻璃板)3-直径20PPR管,直径25PPR管4-细玻璃管4根,细橡皮软管2根,取压管2根 5-闸阀X16-普通阀门X2第三篇:流体流动阻力的测定(教案)化工原理实验教案实验二流体流动阻力的测定实验二流体流动阻力的测定难点:因次分析方法对工程实际问题的分析解决;重点:测定流体经直管和管件时阻力损失的实验组织法;课时:4学时,其中实验讲解约1学时,学生完成实验3学时;流体流动阻力测定是化工领域中最重要的实验之一,是运用因次分析方法的理论来具体解决复杂工程问题的实例,通过实验掌握工程实验的基本实验技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程流体力学》阀门局部阻力系数的测定实验
【实验目的】
(1)测定阀门不同开度时:全开,<30o , <45o 三种的阻力系数。
(2)掌握局部阻力系数的测定方法。
【实验装置】
在流体力学综合实验台中,雷诺实验涉及的部分有阀门阻力实验管、上水阀、出水阀,水泵和计量水箱等,时间及温度可由显示面板直接读出。
【实验原理】
对Ⅰ,Ⅳ两断面列能量方程式,可求得阀门的局部水头损失与两段(L1+L2)长度上沿程水头损失之和,用hw 1表示,则有:1411/)(h g P P h w ∆=-=ρ
同理对Ⅱ,Ⅲ两断面列能量方程式,可求得阀门局部水头损失与L1+L2长度上的沿程水头损失之和,用hw 2表示:2322/)(h g P P h w ∆=-=ρ
所以阀们的局部水头损失ξh 应为 122h h h ∆-∆=ξ 亦12222/h h g ∆-∆=⋅μξ 所以阀门的局部阻力系数应为:212/2)2(μξg h h ⋅∆-∆=
式中:μ为管道断面的平均流速。
【实验步骤】
(1)本实验共进行三组实验,阀门全开,<30o , <45o
(2)开启进水阀门,是压差达到测压计可测量的最大高度。
(3)测读压差,同时用体积法测量流量。
(4)每组各个实验点的压差值不要太接近。
(5)变换阀门开启角度重复上述步骤。
(6)绘制)(ξf a =曲线。
【实验数据记录】
1、记录有关常数
实验装置台号_____________,阀门形式__________, 水温______________ 管外径_____________,管道壁厚______________
2、实验数据
表6-1 阀门局部阻力系数实验数据表。