2018年中考数学真题汇编:代数式(含答案)
2018中考数学试题分类汇编考点3代数式含解析
考点3 代数式一.选择题(共25小题)1.(2018•齐齐哈尔)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.2.(2018•大庆)某商品打七折后价格为a元,则原价为()A.a元B. a元C.30%a元D. a元【分析】直接利用打折的意义表示出价格进而得出答案.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.3.(2018•河北)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.4.(2018•临安区)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为.故选B.5.(2018•枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.6.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.7.(2018•安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.8.(2018•河北)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.9.(2018•贵阳)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣4【分析】把x的值代入解答即可.【解答】解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.10.(2018•重庆)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.11.(2018•包头)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.12.(2018•武汉)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.13.(2018•淄博)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.14.(2018•台湾)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.15.(2018•随州)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A.33 B.301 C.386 D.571【分析】由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,据此得出最大的三角形数和正方形数即可得.【解答】解:由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,当n=19时, =190<200,当n=20时, =210>200,所以最大的三角形数m=190;当n=14时,n2=196<200,当n=15时,n2=225>200,所以最大的正方形数n=196,则m+n=386,故选:C.16.(2018•十堰)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B. C.5 D.【分析】由图形可知,第n行最后一个数为=,据此可得答案.【解答】解:由图形可知,第n行最后一个数为=,∴第8行最后一个数为==6,则第9行从左至右第5个数是=,故选:B.17.(2018•临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,D正确.当y=21时,﹣ =21解得a1=30,a2=70,则C错误.故选:D.18.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1921 23 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633【分析】由三角形数阵,知第n行的前面共有1+2+3+…+(n﹣1)个连续奇数,再由等差数列的前n项和公式化简,再由奇数的特点求出第n行从左向右的第m个数,代入可得答案.【解答】解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.19.(2018•宜昌)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.20.(2018•重庆)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【分析】根据第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3可得第④个图形中三角形的个数为2+2×7.【解答】解:∵第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3,……∴第⑦个图案中三角形的个数为2+2×7=16,故选:C.21.(2018•绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),∴34枚图钉最多可以展示16张画;②如果所有的画展示成两行,34÷(2+1)=11(枚)……1(枚),11﹣1=10(张),2×10=20(张),∴34枚图钉最多可以展示20张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8﹣1=7(张),3×7=21(张),∴34枚图钉最多可以展示21张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6﹣1=5(张),4×5=20(张),∴34枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5﹣1=4(张),5×4=20(张),∴34枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D.22.(2018•重庆)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.23.(2018•绍兴)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c ×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.24.(2018•济宁)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.25.(2018•烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n的值,从而可以解答本题.【解答】解:由图可得,第n个图形有玫瑰花:4n,令4n=120,得n=30,故选:C.二.填空题(共17小题)26.(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为 5 .【分析】利用整体思想代入计算即可;【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.27.(2018•白银)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为 1 .【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时, x=125,当x=125时, x=25,当x=25时, x=5,当x=5时, x=1,当x=1时,x+4=5,当x=5时, x=1,当x=1时,x+4=5,当x=5时, x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:128.(2018•菏泽)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是15 .【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.29.(2018•杭州)计算:a﹣3a= ﹣2a .【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:a﹣3a=﹣2a.故答案为:﹣2a.30.(2018•成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.【分析】根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【解答】解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.31.(2018•黔南州)根据下列各式的规律,在横线处填空:,, =,…,+﹣=【分析】根据给定等式的变化,可找出变化规律“+﹣=(n为正整数)”,依此规律即可得出结论.【解答】解:∵ +﹣1=, +﹣=, +﹣=, +﹣=,…,∴+﹣=(n为正整数).∵2018=2×1009,∴+﹣=.故答案为:.32.(2018•咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.【分析】根据数列得出第n个数为,据此可得前2018个数的和为++++…+,再用裂项求和计算可得.【解答】解:由数列知第n个数为,则前2018个数的和为++++…+=++++…+=1﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:.33.(2018•孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是﹣24 .【分析】由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11﹣2a10+10=10+66﹣2×55+10=﹣24,故答案为:﹣24.34.(2018•淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.35.(2018•荆门)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018= 63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=, +2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.36.(2018•常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9 .【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.37.(2018•永州)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216= 4 .【分析】利用log2(x•y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.38.(2018•桂林)将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为(505,2)【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).39.(2018•泰安)观察“田”字中各数之间的关系:则c的值为270或28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+1440.(2018•枣庄)将从1开始的连续自然数按以下规律排列:…则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.41.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055 个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.42.(2018•遵义)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035 .【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.三.解答题(共3小题)43.(2018•安徽)观察以下等式:第1个等式: ++×=1,第2个等式: ++×=1,第3个等式: ++×=1,第4个等式: ++×=1,第5个等式: ++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分字分别是1和n﹣1【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明: =∴等式成立44.(2018•河北)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知“1”所在的台阶数为4k﹣1.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.45.(2018•黔南州)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是60个、6n个.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有61 个圆圈;第n个点阵中有(3n2﹣3n+1)个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【分析】根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.【解答】解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.。
2018-2019年大连市中考数学真题(附答案)
2018年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32x+b的图象与反比例函数y=的9.(分)(2018•大连)如图,一次函数y=k1图象相交于A(2,3),B(6,1)两点,当kx+b<时,x的取值范围为()1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= .12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣218.(分)(2018•大连)解不等式组:19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m 的值.2018年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.【解答】解:点(﹣3,2)所在的象限在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6【分析】根据幂的乘方运算性质,运算后直接选取答案.【解答】解:(x3)2=x6,故选:D.【点评】本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键.4.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°【分析】先利用等腰直角三角形的性质得出∠1=45°,再利用平行线的性质即可得出结论;【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.【点评】此题主要考查了等腰直角三角形的性质,平行线的性质,求出∠1=45°是解本题的关键.5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】由常见几何体的三视图即可判断.【解答】解:由三视图知这个几何体是三棱柱,故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.7.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率.【解答】解:列表得:所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(分)(2018•大连)如图,一次函数y=kx+b的图象与反比例函数y=的1x+b<时,x的取值范围为()图象相交于A(2,3),B(6,1)两点,当k1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.x+b<时,x的取值范围为0<x<2或x 【解答】解:由图象可知,当k1>6.故选:D.【点评】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【分析】根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= x(x﹣1).【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是189 .【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189,故答案为:189.【点评】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为9 cm.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R==9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×≈,∴AB=AE+BE=AE+CD=+=≈,故答案为:【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为6﹣2.【分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【点评】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣2【分析】根据完全平方公式和零指数幂的意义计算.【解答】解:原式=3+4+4﹣4+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(分)(2018•大连)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.【分析】只要证明△BEO≌△DFO即可;【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有 4 人,最喜欢篮球的学生数占被调查总人数的百分比为32 %;(2)被调查学生的总数为50 人,其中,最喜欢篮球的有16 人,最喜欢足球的学生数占被调查总人数的百分比为24 %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.【点评】本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.解题的关键是灵活运用所学知识解决问题.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为625 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50 .【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为900 ,并用你学过的知识加以证明.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【解答】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2AF=.【点评】此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.【分析】(1)由图2结合平移即可得出结论;(2)判断出△AOB≌△CEA,得出AE=OB,CE=OA,再由图2知,点C的纵坐标是点B纵坐标的2倍,即可利用三角形ABC的面积求出OB,OA,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论.【解答】解:(1)结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S △A'B'D=,点C移动到x轴上时,即:m=b时,S=S△A'B'C '=S△ABC=,故答案为,(2)如图2,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∵∠BAC=90°,∴∠OAB+∠CAE=90°,∵∠OAB+∠OBA=90°,∴∠OBA=∠CAE,由旋转知,AB=AC,∴△AOB≌△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S==AB2=×5OB2,△ABC∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=﹣x+1;(3)由(2)知,AB2=5,∴AB=,①当0≤m≤时,如图3,∵∠AOB=∠AA'F,∠OAB=∠A'AF,∴△AOB∽△AA'F,∴,由运动知,AA'=m,∴,∴A'F=m,∴S=AA'×A'F=m2,②当<m≤2时,如图4同①的方法得,A'F=m,∴C'F=﹣m,过点C作CE⊥x轴于E,过点B作BM⊥CE于E,∴BM=3,CM=1,易知,△ACE∽△FC'H,∴,∴∴C'H=,在Rt△FHC'中,FH=C'H=由平移知,∠C'GF=∠CBM,∵∠BMC=∠GHC',∴△BMC∽△GHC',∴,∴∴GH=,∴GF=GH﹣FH=∴S=S△A'B'C '﹣S△C'FG=﹣××=﹣(2﹣m)2,即:S=.【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,三角形的面积公式,平移的性质,相似三角形的判定和性质,构造相似三角形是解本题的关键.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.【分析】(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.想办法证明△AEC≌△AED即可;方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.想办法证明∠ACD=∠ADC即可;(2)①如图4中,结论:∠DEF=∠FDG.理由三角形内角和定理证明即可;②结论:BD=k•DE.如图4中,如图延长AC到K,使得∠CBK=∠ABC.首先证明△DFE∽△BAK,推出==,推出BK=k•DE,再证明△BCD≌△BCK,可得BD=BK;【解答】解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.∵∠CAE=∠DAE,∠CAB=2∠DCB,∴∠CAE=∠CDB,∵∠CDB+∠ACD=90°,∴∠CAE+∠ACD=90°,∴∠AEC=90°,∵AE=AE,∠AEC=∠AED=90°,∴△AEC≌△AED,∴AC=AD.方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.∵∠DCF=∠DCB,∠A=2∠DCB,∴∠A=∠BCF,∵∠BCF+∠ACF=90°,∴∠A+∠ACF=90°,∴∠AFC=90°,∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,∴∠ACF=∠B,∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,∴AC=AD.(2)①如图4中,结论:∠DEF=∠FDG.理由:在△DEF中,∵∠DEF+∠EFD+∠EDF=180°,在△DFG中,∵∠GFD+∠G+∠FDG=180°,∵∠EFD=∠GFD,∠G=∠EDF,∴∠DEF=∠FDG.②结论:BD=k•DE.理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC.∵∠ABK=2∠ABC,∠EDF=2∠ABC,∴∠EDF=∠ABK,∵∠DFE=∠A,∴△DFE∽△BAK,∴==,∴BK=k•DE,∴∠AKB=∠DEF=∠FDG,∵BC=BC,∠CBD=∠CBK,∴△BCD≌△BCK,∴BD=BK,∴BD=k•DE【点评】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质.相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5)(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=4,可得出点B的坐标为(m+2,4a+2m﹣5),设BD=t,则点C的坐标为(m+2+t,4a+2m﹣5﹣t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC 的值;(3)由(2)的结论结合S=2可求出a值,分三种情况考虑:①当m>2m△ABC﹣2,即m<2时,x=2m﹣2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m﹣5,即m>5时,x=2m﹣5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣.(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.【点评】本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤5及m>5三种情况考虑.2019年辽宁省大连市中考数学真题(附答案)副标题题号一二三总分得分一、选择题(本大题共9小题,共分)1.-2的绝对值是()A. 2B. 12C. −12D. −22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()3.A. B. C. D.4. 2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg ,将数58000用科学记数法表示为( ) A. 58×103 B. 5.8×103 C. 0.58×105 D. 5.8x1045. 在平面直角坐标系中,将点P (3,1)向下平移2个单位长度,得到的点P ′的坐标为( ) A. (3,−1) B. (3,3) C. (1,1) D. (5,1) 6. 不等式5x +1≥3x -1的解集在数轴上表示正确的是( )A. B. C.D.7. 下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等腰三角形B. 等边三角形C. 菱形D. 平行四边形 8. 计算(-2a )3的结果是( )A. −8x 3B. −6x 3C. 6x 3D. 8x 3 9. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A. 23B. 12C. 13D. 1410. 如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A. 2√5B. 4C. 3D. 2二、填空题(本大题共7小题,共分)11. 如图,抛物线y =-14x 2+12x +2与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB .AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为______.。
(完整版)2018年北京市中考数学试卷(含答案解析)
2018年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,是圆柱的为A.B.C.D.2.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是103214234A.||4a>B.0c b->C.0ac>D.0a c+>3.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则FAST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒6.如果a b-=,那么代数式22 ()2a b aba a b+-⋅-的值为A.B.C.D.127.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为4020 O 46.254.057.9x/my/mA .10mB .15mC .20mD .22.5m8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-); ③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是3A .①②③B .②③④C .①④D .①②③④二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>",“="或“<”)EDCBA10在实数范围内有意义,则实数x 的取值范围是_______.11.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.12.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.FEDCB A14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:45分钟”的可能性最大.15.某公园划船项目收费标准如下:某班18________元.16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.45三、解答题(本题共68分,第17-22题,每小题5分,第23—26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线"的尺规作图过程.已知:直线及直线外一点P .lP求作:PQ ,使得PQ l ∥. 作法:如图,l①在直线上取一点A ,作射线PA ,以点A 为圆心,AP 长为半径画弧,交PA 的延长线于点B ;②在直线上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).18.计算:04sin45(π2)|1|︒+---.19.解不等式组:3(1)1922x xxx+>-⎧⎪⎨+>⎪⎩.620.关于x的一元二次方程210ax bx++=.(1)当2b a=+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.如图,在四边形ABCD中,AB DC∥,AB AD=,对角线AC,BD交于点O,AC平分BAD∠,过点C作CE AB⊥交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,2BD=,求OE的长.OED CBA22.如图,AB是O的直径,过O外一点P作O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP CD⊥;(2)连接AD,BC,若50DAB∠=︒,70CBA∠=︒,2OA=,求OP的长.78A23.在平面直角坐标系xOy 中,函数ky x =(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .9A小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(2xOy x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC △为等腰三角形时,AP 的长度约为____cm .25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,7080x<x<≤,≤,6070x<≤,5060x<≤≤);≤,90100xx<8090频数/分x<≤这一组是:b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B"),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.101126.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C . (1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.(1)求证:GF GC=;(2)用等式表示线段BH与AE的数量关系,并证明.DA28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d (M,N).已知点A(2-,6),B(2-,2-),C(6,2-).(1)求d(点O,ABC△);12(2)记函数y kx=,直接写出k的取值范=(11k≠)的图象为图形G,若d(G,ABCx-≤≤,0△)1围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值范围.△)113142018年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A. B. C. D.【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是13214234A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.15【考点】实数与数轴3.方程组33814x y x y -=⎧⎨-=⎩的解为A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D . 【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面积总面积约为 A .327.1410m ⨯ B .427.1410m ⨯ C .522.510m ⨯ D .622.510m ⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m ),故选C . 【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A .360︒B .540︒C .720︒D .900︒【答案】C【解析】由题意,正多边形的边数为360660n ︒==︒,其内角和为()2180720n -⋅︒=︒. 【考点】正多边形,多边形的内外角和.6.如果a b-=,那么代数式22()2a b aba a b+-⋅-的值为A.B.C.D.【答案】A【解析】原式()2222222a ba b ab a a a ba ab a a b-+--=⋅=⋅=--,∵a b-=∴原式=.【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系2y ax bx c=++(0a≠).下图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为my/A.10m B.15m C.20m D.22.5m【答案】B【解析】设对称轴为x h=,1617由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .【考点】抛物线的对称轴.8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-); ③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-). 上述结论中,所有正确结论的序号是 A .①②③ B .②③④ C .①④ D .①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移1819二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“="或“<")EDCBA【答案】>【解析】如下图所示,G FABCD EAFG △是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.另:此题也可直接测量得到结果.【考点】等腰直角三角形10在实数范围内有意义,则实数x 的取值范围是_______.【答案】0x ≥【解析】被开方数为非负数,故0x ≥. 【考点】二次根式有意义的条件.2011.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.【答案】答案不唯一,满足a b <,0c ≤即可,例如:,2,1- 【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变. 【考点】不等式的基本性质12.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.【答案】70【解析】∵CB CD =,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.FEDCB A21【答案】103【解析】∵四边形ABCD 是矩形,∴4AB CD ==,AB CD ∥,90ADC ∠=︒,在Rt ADC △中,90ADC ∠=︒,∴5AC ==, ∵E 是AB 中点,∴1122AE AB CD ==,∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:45分钟"的可能性最大. 【答案】C【解析】样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C . 【考点】用频率估计概率15.某公园划船项目收费标准如下:某班18元.【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元)【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从下图可知,创新产出排名全球第11,对应创新效率排名全球第3.2223【考点】函数图象获取信息三、解答题(本题共68分,第17—22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P .lP求作:PQ ,使得PQ l ∥. 作法:如图,l①在直线上取一点A ,作射线PA ,以点A 为圆心,AP 长为半径画弧,交PA 的延长线于点B ;24②在直线上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q ; ③作直线PQ .所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AB =_______,CB =_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:l(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin 45(π2)|1|︒+--.【解析】解:原式4112=-+=- 【考点】实数的运算2519.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;26(2)若AB =2BD =,求OE 的长.OEDCB A【解析】(1)证明:∵AB CD ∥∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠ ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB CD ∥∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==,∴112OB BD ==.在Rt AOB △中,90AOB ∠=︒.27∴2OA ==. ∵CE AB ⊥, ∴90AEC ∠=︒.在Rt AEC △中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===.【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.A【解析】(1)证明:∵PC 、PD 与O ⊙相切于C 、D .∴PC PD =,OP 平分CPD ∠.在等腰PCD △中,PC PD =,PQ 平分CPD ∠. ∴PQ CD ⊥于Q ,即OP CD ⊥. (2)解:连接OC 、OD .28∵OA OD =∴50OAD ODA ∠=∠=︒∴18080AOD OAD ODA ∠=︒-∠-∠=︒ 同理:40BOC ∠=︒∴18060COD AOD BOC ∠=︒-∠-∠=︒. 在等腰COD △中,OC OD =.OQ CD ⊥ ∴1302DOQ COD ∠=∠=︒. ∵PD 与O ⊙相切于D . ∴OD DP ⊥. ∴90ODP ∠=︒.在Rt ODP △中,90ODP ∠=︒,30POD ∠=︒∴cos cos30OD OA OP POD ====∠︒【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy 中,函数ky x =(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;A29②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围. 【解析】(1)解:∵点A (4,1)在ky x=(0x >)的图象上. ∴14k=, ∴4k =.(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =30∴综上所述:514b -<-≤或71144b <≤. 【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .A小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(2xOy x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.3132【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:4050x <≤,5060x <≤,6070x <≤,7080x <≤,8090x <≤,90100x ≤≤); /分频数b .A 课程成绩在7080x <≤这一组是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.533c .A ,B 两门课程成绩的平均数、中位数、众数如下:(1)写出表中m 的值;(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人.∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.34【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4) ∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=.2b a =-∴223y ax ax a =-- ∴对称轴为212ax a-=-=. (3)解:①当抛物线过点C 时.251034a a a --=,解得13a =. ②当抛物线过点B 时.3534a -=,解得43a =-. ③当抛物线顶点在BC 上时.此时顶点为(1,4)∴234a a a --=,解得1a =-.∴综上所述43a <-或13a ≥或1a =-.【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH . (1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.(完整版)2018年北京市中考数学试卷(含答案解析)36HDA【解析】(1)证明:连接DF .∵A ,F 关于DE 对称. ∴AD FD =.AE FE =. 在ADE △和FDE △中.AD FDAE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△ ∴DAE DFE ∠=∠. ∵四边形ABCD 是正方形 ∴90A C ∠=∠=︒.AD CD = ∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒ ∴DFG C ∠=∠ ∵AD DF =.AD CD = ∴DF CD =在Rt DCG △和Rt DFG △.DH37DC DFDG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △ ∴CG FG =.(2)BH =.证明:在AD 上取点M 使得AM AE =,连接ME . ∵四这形ABCD 是正方形. ∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △ ∴ADE FDE ∠=∠ 同理:CDG FDG ∠=∠∴EDG EDF GDF ∠=∠+∠1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥ ∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒ ∴EHD EDH ∠=∠ ∴DE EH =. ∵90A ∠=︒MHD38∴90ADE AED ∠+∠=︒ ∵90DEH ∠=︒ ∴90AED BEH ∠+∠=︒ ∴ADE BEH ∠=∠ ∵AD AB =.AM AE = ∴DM EB =在DME △和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △ ∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME ==∴BH =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离",记作d (M ,N ). 已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC △);(2)记函数y kx=,直接写出k的取值范=(11xk≠)的图象为图形G,若d(G,ABC-≤≤,0△)1围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值范围.△)1【解析】(1)如下图所示:∵B(2-,2-),C(6,2-)∴D(0,2-)∴d(O,ABC==OD△)2(2)10<≤kk≤或01-<39(3)4t=-或04t-≤≤或4t=+.【考点】点到直线的距离,圆的切线40。
中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)
全国中考真题解析代数式、整式及单项式、多项式的有关概念一、选择题1. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. 若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。
专题:计算题。
分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。
专题:计算题。
分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。
2018年四川省中考数学真题汇编解析:数与式、方程不等式
2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是( )A .B .C .D .解:∵=3,∴=3,∴x ﹣y=﹣3xy ,则原式====, 故选:D .10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ) A .8% B .9%C .10%D .11%解:设平均每次下调的百分率为x ,由题意,得 6000(1﹣x )2=4860,解得:x 1=0.1,x 2=1.9(舍去). 答:平均每次下调的百分率为10%. 故选:C .二.填空题(共10小题)11.(2018•自贡)分解因式:ax 2+2axy +ay 2= a (x +y )2 . 解:原式=a (x 2+2xy +y 2)…(提取公因式) =a (x +y )2.…(完全平方公式)12.(2018•成都)已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B 型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A 型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N >0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m 的取值范围为:16≤m ≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n )m +(600﹣400﹣n )•(50﹣m )=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。
安徽省2018年中考数学试题(含答案)
数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.试卷包括”试题卷“和“答题卷”两部分,“试题卷”共4页,“答题卷“共6页;3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的;4.考试结束后,请将”试题卷”和“答题卷”一井交回。
一、选择题(本大题共10小题,每小题4分,满分40分) 每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
1.8-的绝对值是( )A.8- C.8± D.81-年我赛粮食总产量为亿斤,其中亿科学记数法表示( )A.610352.6⨯ B.810352.6⨯ C.1010352.6⨯ D.8102.635⨯ 3.下列运算正确的是( ) A.()532a a = B.842a a a =• C. 236a a a =÷ D.()333b a ab =4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )5.下列分解因式正确的是( )A.)4(42+-=+-x x x x B.)(2y x x x xy x +=++ C.2)()()(y x x y y y x x -=-+- D.)2)(2(442-+=+-x x x x6.据省统计局发布,2017年我省有效发明专利数比2016年增长%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则( ) A.a b )2%1.221(⨯+= B.a b 2%)1.221(+= C.a b 2%)1.221(⨯+= D.a b 2%1.22⨯=7. 若关于x 的一元二次方程(+1)+a =0有两个相等的实数根,则实数a 的值为( ) A. 1- C.22或- D.13或-8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8 乙23488类于以上数据,说法正确的是( )A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )=DF =CF /C E D.∠BAE =∠DCF10.如图,直线21l l 、都与直线l 垂直,垂足分别为M,N,MN =1正方形ABCD 的边长为3,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止,记点C 平移的距离为,正方形ABCD 的边位于21l l 、之间分的长度和为y ,则y 关于的函数图象太致为( )二、填空题(本大共4小题,每小题5分,满分30分) 11. 不等式128>-x 的解集是 。
2018年江苏省扬州市中考数学试卷(含答案)
江苏省扬州市2018年中考数学试卷参考答案与试卷解读一、选择题<共8小题,每小题3分,满分24分))3.<3分)<2018•扬州)若反比例函数y=<k≠0)的图象经过点P<﹣2,3),则该函数的图象的点是< )b5E2RGbCAPy=x的值是都相切,则阴影部分的面积与下列各数最接近的是< )p1EanqFDPw,点M,N在边OB上,PM=PN,若MN=2,则OM=< )DXDiTa9E3d中,cos60°==,∴MD=ND=MN=1,8.<3分)<2018•扬州)如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2,则tan ∠MCN=< )RTCrpUDGiTA .B .C .D .﹣2 考点: 全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理专题:计算题.分析: 连接AC ,通过三角形全等,求得∠BAC=30°,从而求得BC 的长,然后根据勾股定理求得CM 的长,连接MN ,过M 点作ME ⊥ON 于E ,则△MNA 是等边三角形求得MN=2,设NF=x ,表示出CF ,根据勾股定理即可求得MF ,然后求得tan ∠MCN .解答: 解:∵AB=AD=6,AM :MB=AN :ND=1:2,∴AM=AN=2,BM=DN=4,连接MN ,连接AC ,∵AB ⊥BC ,AD ⊥CD ,∠BAD=60°在Rt △ABC 与Rt △ADC 中,,∴Rt △ABC ≌Rt △ADC<LH )∴∠BAC=∠DAC=∠BAD=30°,MC=NC ,∴BC=AC ,∴AC2=BC2+AB2,即<2BC )2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt △BMC 中,CM===2.∵AN=AM ,∠MAN=60°,∴△MAN 是等边三角形,∴MN=AM=AN=2,CE=2x2=<2x=EC=2﹣==,MCN==9.<3分)<2018•扬州)据统计,参加今年扬州市初中毕业、升学统一考试的学,则它的<单元:cm)可以得出该长方体的体积是18 cm3.xHAQX74J0X考点:由三视图判断几何体.分析:首先确定该几何体为立方体,并说出其尺寸,直接计算其体积即可.解答:解:观察其视图知:该几何体为立方体,且立方体的长为3,宽为2,高为3,故其体积为:3×3×2=18,故答案为:18.点评:本题考查了由三视图判断几何体,牢记立方体的体积计算方法是解答本题的关键.制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280 人.LDAYtRyKfE考点:用样本估计总体;扇形统计图.分析:先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.解答:解:∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生700人,则据此估计步行的有700×40%=280<人).故答案为:280.点评:本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.中的∠1= 67.5°.Zzz6ZB2Ltk考点:等腰梯形的性质;多边形内角与外角分首先求得正八边形的内角的度数,则∠1的度数是正八边形的则∠1=×135°=67.5°.DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40 cm3.dvzfvkwMI1∴S△ABC=BC×AF=×10×8=40cm2.AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE= 50°.rqyn14ZNXI析:倍,然后利用三角形的内角和求得∠BOD+∠EOC,然后利用平角的性质求得即可.解答:解:∵∠A=65°,∴∠B+∠C=180°﹣65°=115°,∴∠BDO=∠DBO,∠OEC=∠OCE,∴∠BDO+∠DBO+∠OEC+∠OCE=2×115°=230°,∴∠BOD+∠EOC=2×180°﹣230°=130°,∴∠DOE=180°﹣130°=50°,故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.<1,0)且平行于y轴的直线,若点P<4,0)在该抛物线上,则4a﹣2b+c的值为0 .EmxvxOtOco考点:抛物线与x轴的交点分析:依据抛物线的对称性求得与x轴的另一个交点,代入解读式即可.解答:解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点<1,0),与x轴的一个交点是P<4,0),∴与x轴的另一个交点Q<﹣2,0),把<﹣2,0)代入解读式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.点评:本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.考点:因式分解的应用;一元二次方程的解;根与系数的关系专题:计算题.分根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即析:a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a<a+3)+b+3+3<a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.解答:解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a<a+3)+b+3+3<a+3)﹣11a﹣b+5 =2a2﹣2a+17=2<a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为23.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了一元二次方程解的定义.的一列数,若a1+a2+…+a2018=69,<a1+1)2+<a2+1)2+…+<a2018+1)2=4001,考点:规律型:数字的变化类.分析:首先根据<a1+1)2+<a2+1)2+…+<a2018+1)2得到a12+a22+…+a20182+2152,然后设有x个1,y个﹣1,z个0,得到方程组,解方程组即可确定正确的答案.解答:解:<a1+1)2+<a2+1)2+…+<a2018+1)2=a12+a22+…+a20182+2<a1+a2+…+a2018)+2018 =a12+a22+…+a20182+2×69+2018=a12+a22+…+a20182+2152,设有x个1,y个﹣1,z个0∴,化简得x﹣y=69,x+y=1849解得x=959,y=890,z=165∴有959个1,890个﹣1,165个0,故答案为:165.点评:本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,难度较大.19.<8分)<2018•扬州)<1)计算:<3.14﹣π)0+<﹣)﹣2﹣2sin30°;<2)化简:﹣÷.考实数的运算;分式的混合运算;零指数幂;负整数指数幂;特式的减法法则计算即可得到结果.﹣•=﹣=.20.<8分)<2018•扬州)已知关于x的方程<k﹣1)x2﹣<k﹣1)x+=0有两个相x+)10<2)计算乙队的平均成绩和方差;分析:<1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;<2)先求出乙队的平均成绩,再根据方差公式进行计算;<3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.解答:解:<1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是<9+10)÷2=9.5<分),则中位数是9.5分;10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;<2)乙队的平均成绩是:<10×4+8×2+7+9×3)=9,则方差是:[4×<10﹣9)2+2×<8﹣9)2+<7﹣9)2+3×<9﹣9)2]=1;<3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.点评:本题考查方差、中位数和众数:中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[<x1﹣)2+<x2﹣)2+…+<xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.M2ub6vSTnP <1)若他去买一瓶饮料,则他买到奶汁的概率是;<2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或考点:列表法与树状图法;概率公式分析:<1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;<2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.解答:解:<1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;故答案为:;∴他恰好买到雪碧和奶汁的概率为:=.ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.eUts8ZQVRd<1)判断线段DE、FG的位置关系,并说明理由;<2)连结CG,求证:四边形CBEG是正方形.∴∠BCG+∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原考点:分式方程的应用.分析:设原来每天制作x件,根据原来用的时间﹣现在用的时间=10,列出方程,求出x的值,再进行检验即可.解答:解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.点评:此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间﹣现在用的时间=10.D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.GMsIasNXkA<1)求证:DE∥BC;<2)若AF=CE,求线段BC的长度.。
2018年中考数学真题知识分类练习试卷:代数式(有答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。
2018年中考数学真题知识分类练习试卷:代数式(含答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
中考数学 真题精选 专题试卷 代数式(含答案解析) (含答案解析)
代数式一.选择题(共19小题)1.(•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()2.(•吉林)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()3.(•自贡)为庆祝战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为()4.(•恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()a+b+a5.(•江阴市模拟)某厂1月份产量为a吨,以后每个月比上一个月增产x%,则该厂3月份的产量(单位:吨)为()6.(•海南)已知x=1,y=2,则代数式x﹣y的值为()7.(•娄底)已知a2+2a=1,则代数式2a2+4a﹣1的值为()8.(•漳州)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()9.(•湖州)当x=1时,代数式4﹣3x的值是()10.(•广西)下列各组中,不是同类项的是()与﹣11.(•柳州)在下列单项式中,与2xy是同类项的是()12.(•玉林)下列运算中,正确的是()13.(•泰安模拟)下列各式计算正确的是()14.(•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()15.(•济宁)化简﹣16(x﹣0.5)的结果是()16.(•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m 是第i组第j个数(从左往右数),如A7=(2,3),则A=()17.(•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()B18.(•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()19.(•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()二.填空题(共11小题)20.(•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)=.21.(•盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为.22.(•苏州)若a﹣2b=3,则9﹣2a+4b的值为.23.(•扬州)若a2﹣3b=5,则6b﹣2a2+=.24.(•潜江)已知3a﹣2b=2,则9a﹣6b=.25.(•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖元.26.(•株洲)如果手机通话每分钟收费m元,那么通话n分钟收费元.27.(•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.28.(•天津模拟)计算3a﹣2a的结果等于.29.(•徐州模拟)化简:2x2﹣3x2=.30.(春•南县校级期中)若﹣2a m b4与5a n+2b2m+n的和为单项式,则m n的值是.初中数学组卷代数式参考答案与试题解析一.选择题(共19小题)1.(•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()2.(•吉林)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()3.(•自贡)为庆祝战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为()4.(•恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()a+b+ax=a+5.(•江阴市模拟)某厂1月份产量为a吨,以后每个月比上一个月增产x%,则该厂3月份的产量(单位:吨)为()6.(•海南)已知x=1,y=2,则代数式x﹣y的值为()7.(•娄底)已知a2+2a=1,则代数式2a2+4a﹣1的值为()8.(•漳州)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()代入得:代入得:代入得:=1代入得:代入得:代入得:代入得:=1代入得:9.(•湖州)当x=1时,代数式4﹣3x的值是()10.(•广西)下列各组中,不是同类项的是()与﹣11.(•柳州)在下列单项式中,与2xy是同类项的是()12.(•玉林)下列运算中,正确的是()13.(•泰安模拟)下列各式计算正确的是()14.(•重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是(),.15.(•济宁)化简﹣16(x﹣0.5)的结果是()16.(•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m 是第i组第j个数(从左往右数),如A7=(2,3),则A=()解:是第≥≥+117.(•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()B个数为,,,个数为时,=.个数为18.(•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()19.(•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()二.填空题(共11小题)20.(•遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)=1.21.(•盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为18.22.(•苏州)若a﹣2b=3,则9﹣2a+4b的值为3.23.(•扬州)若a2﹣3b=5,则6b﹣2a2+=2005.24.(•潜江)已知3a﹣2b=2,则9a﹣6b=6.25.(•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a 元.,得结果.,故答案为:26.(•株洲)如果手机通话每分钟收费m元,那么通话n分钟收费mn元.27.(•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a元.28.(•天津模拟)计算3a﹣2a的结果等于a.29.(•徐州模拟)化简:2x2﹣3x2=﹣x2.30.(春•南县校级期中)若﹣2a m b4与5a n+2b2m+n的和为单项式,则m n的值是1.。
2018年江苏省常州市中考数学试卷(含答案)
2018年江苏省常州市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.43.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y27.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.78.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=______.10.若分式有意义,则x的取值范围是______.11.分解因式:x3﹣2x2+x=______.12.一个多边形的每个外角都是60°,则这个多边形边数为______.13.若代数式x﹣5与2x﹣1的值相等,则x的值是______.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是______km.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是______.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=______.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是______.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.20.解方程和不等式组:(1)+=1(2).21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了______名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为______,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE 剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为______;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD 及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.2018年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.4【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,所以3﹣(﹣1)=3+1=4.【解答】解:3﹣(﹣1)=4,故答案为:D.【点评】本题考查了有理数的减法,属于基础题,比较简单;熟练掌握减法法则是做好本题的关键.3.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D【考点】数轴.【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,点P表示的数是1.5,则﹣=0.75>﹣1,则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P所表示的数是解题的关键.5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm【考点】圆周角定理;勾股定理.【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.【点评】本题考查了圆周角定理和勾股定理,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y2【考点】不等式的性质.【分析】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变.【解答】解:(A)在不等式x>y两边都加上1,不等号的方向不变,故(A)正确;(B)在不等式x>y两边都乘上2,不等号的方向不变,故(B)正确;(C)在不等式x>y两边都除以2,不等号的方向不变,故(C)正确;(D)当x=1,y=﹣2时,x>y,但x2<y2,故(D)错误.故选(D)【点评】本题主要考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.7.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【考点】垂线段最短.【分析】根据垂线段最短得出结论.【解答】解:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.8.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4【考点】二次函数与不等式(组).【分析】先在表格中找出点,用待定系数法求出直线和抛物线的解析式,用y2>y1建立不等式,求解不等式即可.【解答】解:由表可知,(﹣1,0),(0,1)在直线一次函数y1=kx+m的图象上,∴,∴∴一次函数y1=x+1,由表可知,(﹣1,0),(1,﹣4),(3,0)在二次函数y2=ax2+bx+c(a≠0)的图象上,∴,∴∴二次函数y2=x2﹣2x﹣3当y2>y1时,∴x2﹣2x﹣3>x+1,∴(x﹣4)(x+1)>0,∴x>4或x<﹣1,故选D【点评】此题是二次函数和不等式题目,主要考查了待定系数法,解不等式,解本题的关键是求出直线和抛物线的解析式.二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.若分式有意义,则x的取值范围是x≠﹣1.【考点】分式有意义的条件.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.11.分解因式:x3﹣2x2+x=x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.12.一个多边形的每个外角都是60°,则这个多边形边数为6.【考点】多边形内角与外角.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.13.若代数式x﹣5与2x﹣1的值相等,则x的值是﹣4.【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 2.8km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条道路的实际长度为x,则:,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.8【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的转换.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是(1,1).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于原点对称,∴该点的坐标为(1,1).故答案为:(1,1).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=50°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的对角互补求得∠C的度数,利用圆周角定理求出∠BOD的度数,再根据四边形内角和为360度即可求出∠ODC的度数.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补以及圆周角定理是解答此题的关键.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是1≤y≤.【考点】解一元一次不等式组;同底数幂的乘法;幂的乘方与积的乘方.【分析】首先把已知得到式子的两边化成以2为底数的幂的形式,然后得到x和y的关系,根据x 的范围求得y的范围.【解答】解:∵2x•4y=8,∴2x•22y=23,即2x+2y=23,∴x+2y=3.∴y=,∵0≤x≤1,∴1≤y≤.故答案是:1≤y≤.【点评】本题考查了幂的乘方和同底数的幂的乘法法则,理解幂的运算法则得到x和y的关系是关键.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是1.【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判断ab的最大值即可.【解答】解:延长EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【考点】多项式乘多项式.【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.20.解方程和不等式组:(1)+=1(2).【考点】解分式方程;解一元一次不等式组.【分析】(1)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原方程可化为x﹣5=5﹣2x,解得x=,把x=代入2x﹣5得,2x﹣5=﹣5=≠0,故x=是原分式方程的解;(2),由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.【点评】本题考查的是解分式方程,在解答此类题目时要注意验根.21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.【解答】解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)根据数量关系算出样本容量;(2)求出选择其它和锻炼的人数;(3)根据比例关系估算出本市晚饭后1小时内锻炼的人数.本题属于中档题,难度不大,解决该题型题目时,熟练掌握各统计图的有关知识是关键.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)直接利用概率公式求解;(2)先利用画树状图展示所有9种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【考点】等腰三角形的性质.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元.根据“3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元”列出方程组并解答;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,结合“总价不超过240元”列出不等式,并解答.【解答】解:(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元,依题意得:,解得.答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,依题意得:10a+14(20﹣a)≤240,解得a≥10,=10.即a最小值答:该顾客混合的糖果中甲种糖果最少10千克.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【考点】一次函数图象上点的坐标特征;平行四边形的判定;坐标与图形变化-旋转.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解答】解;(1)如图1中,∵一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,,解得,∴直线O′B′的解析式为y=x+1,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.【点评】本题考查一次函数图象上的点的特征、平行四边形的性质和判定、旋转变换等知识,解题的关键是利用性质不变性解决问题,属于中考常考题型.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE 剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)【考点】四边形综合题.【分析】(1)依题意补全图形如图1,利用剪拼前后的图形面积相等,得出大正方形的面积即可;(2)①先求出梯形EDBC的面积,利用剪拼前后的图形面积相等,结合等边三角形的面积公式即可;②依题意补全图形如图3所示;(3)依题意补全图形如图4,根据剪拼的特点,得出AC是正方形的对角线,点E,F是正方形两邻边的中点,构成等腰直角三角形,即可.【解答】解:(1)补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为5∴大正方形的面积为5,∴大正方形的边长为,故答案为:;(2)①如图2,∵边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,∴DE=BC=1,BD=CE=1过点D作DM⊥BC,∵∠DBM=60°∴DM=,=(DE+BC)×DM=(1+2)×=,∴S梯形EDBC由剪拼可知,梯形EDBC的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a,∴a2=,∴a=或a=﹣(舍),∴新等边三角形的边长为,故答案为:;②剪拼示意图如图3所示,(3)剪拼示意图如图4所示,∵正方形的边长为60cm,由剪拼可知,AC是正方形的对角线,∴AC=60cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,∴CE=CF=30cm,∵∠ECF=90°,根据勾股定理得,EF=30cm;∴轻质钢丝的总长度为AC+EF=60+30=90cm.【点评】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,勾股定理,剪拼的特点,解本题的关键是根据题意补全图形,难点是剪拼新正三角形和筝形.27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A(3,3)代入y=x2+bx中,即可解决问题.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.设点P(m,m)(0<m <1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),构建二次函数,利用二次函数性质即可解决问题.(3)存在,首先证明EF是线段AM的中垂线,利用方程组求交点E坐标即可.【解答】解:(1)把点A(3,3)代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为y=x2﹣2x.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.∵PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的解析式为y=kx,∴∠QPE=45°,∴PE=PQ=2.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),∴PP1=3m﹣m2,QQ1=2﹣m2﹣m,∴=(PP1+QQ1)•PE=﹣2m2+2m+2=﹣2+,∴当m=时,取最大值,最大值为.(3)存在.如图2中,点E的对称点为F,EF与AM交于点G,连接OM、MF、AF、OF.∵S△AOF=S△AOM,∴MF∥OA,∵EG=GF,=,∴AG=GM,∵M(1,﹣1),A(3,3),∴点G(2,1),∵直线AM解析式为y=2x﹣3,∴线段AM的中垂线EF的解析式为y=﹣x+2,由解得,∴点E坐标为(,).【点评】本题考查二次函数综合题、待定系数法、平行线的性质、一次函数、面积问题等知识,解题的关键是灵活应用待定系数法确定函数解析式,学会构建二次函数,利用二次函数性质解决最值问题,学会利用方程组求两个函数的交点,属于中考压轴题.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD 及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.【考点】圆的综合题.【分析】(1)在直角△ABP中,利用特殊角的三角函数值求∠BAP的度数;(2)设PC=x,根据全等和正方形性质得:QC=1﹣x,BP=1﹣x,由AB∥DQ得,代入列方程求出x的值,因为点P在线段BC上,所以x<1,写出符合条件的PC的长;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,只要证明FC⊥CM即可,先根据直角三角形斜边上的中线得CM=PM,则∠MCP=∠MPC,从而可以得出∠MCP+∠BAP=90°,再证明△ADF ≌△CDF,。
2018年中考数学真题汇编--二次函数压轴题(含答案解析)
2018年中考数学真题汇编--二次函数压轴题1.(2018·甘肃)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2.(2018·盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(−1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为−1,求△DPQ面积的最大值,并求此时点D的坐标;2(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.3.(2018·邵阳)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+ 2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边?若存在,求tan∠MAN的值;若不存的Rt△AMN,使△AMN的面积为△ABC面积的13在,请说明理由.4.(2018·随州)如图1,抛物线C1:y=ax2−2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(−1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=−1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.5.(2018·杭州临安)如图,△OAB是边长为2+√3的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;x2+bx+c经过点A′和E时,求抛物线与x轴的交点(2)当A′E//x轴,且抛物线y=−16的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.6.(2018·荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=−2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当1x2−1x1=12时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=√(x1−x2)2+(y1−y2)2)7.(2018·安顺)如图,已知抛物线y=ax2+bx+C(a≠0)的对称轴为直线x=−1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物成的解析式;(2)在抛物线的对称轴x=−1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=−1上的一个动点,求使△BPC为直角三角形的点P的坐标.8.(2018·株洲)如图,已知二次函数y=ax2−5√3x+c(a>0)的图象抛物线与x 轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=√3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60∘,抛物线的对称轴l与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+1,连接AF,满足∠ADB=∠AFE,求2a该二次函数的解析式.9.(2018·永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,−3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.10.(2018·南通)已知,正方形ABCD,A(0,−4),B(l,−4),C(1,−5),D(0,−5),抛物线y=x2+mx−2m−4(m为常数),顶点为M.(1)抛物线经过定点坐标是______,顶点M的坐标(用m的代数式表示)是______;(2)若抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45∘时,求m的值.11.(2018·湘潭)如图,点P为抛物线y=14x2上一动点.(1)若抛物线y=14x2是由抛物线y=14(x+2)2−1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,−1),过点P作PM⊥l 于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.12.(2018·宜昌)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(−6,0),B(0,4).过点C(−6,1)的双曲线y=kx(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=______,k=______,点E的坐标为______;(2)当1≤t≤6时,经过点M(t−1,−12t2+5t−32)与点N(−t−3,−12t2+3t−72)的直线交y轴于点F,点P是过M,N两点的抛物线y=−12x2+bx+c的顶点.①当点P在双曲线y=kx 上时,求证:直线MN与双曲线y=kx没有公共点;②当抛物线y=−12x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.13.(2018·浙江)已知,点M为二次函数y=−(x−b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>−(x−b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(14,y1),D(34,y2)都在二次函数图象上,试比较y1与y2的大小.14.(2018·恩施)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(−1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.15.(2018·孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(−2,0),B(0,−6),将Rt△AOB绕点O按顺时针方向分别旋转90∘,180∘得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为______,点E的坐标为______;抛物线C1的解析式为______.抛物线C2的解析式为______;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记ℎ=PM+NM+√2BM,求h与x的函数关系式,当−5≤x≤−2时,求h的取值范围.2018年最新中考数学压轴精选15题二次函数类【答案】1. 解:(1)将点B 和点C 的坐标代入函数解析式,得 {c =39a+6+c=0,解得{c =3a=−1,二次函数的解析是为y =−x 2+2x +3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上, 如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C(0,3),∴E(0,32),∴点P 的纵坐标32,当y =32时,即−x 2+2x +3=32,解得x 1=2+√102,x 2=2−√102(不合题意,舍), ∴点P 的坐标为(2+√102,32);(3)如图2,P 在抛物线上,设P(m,−m 2+2m +3), 设直线BC 的解析式为y =kx +b , 将点B 和点C 的坐标代入函数解析式,得 {b =33k+3=0, 解得{b =3k=−1.直线BC 的解析为y =−x +3, 设点Q 的坐标为(m,−m +3),PQ =−m 2+2m +3−(−m +3)=−m 2+3m . 当y =0时,−x 2+2x +3=0, 解得x 1=−1,x 2=3, OA =1,AB =3−(−1)=4,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ =12AB ⋅OC +12PQ ⋅OF +12PQ ⋅FB =12×4×3+12(−m 2+3m)×3 =−32(m −32)2+758,当m =32时,四边形ABPC 的面积最大. 当m =32时,−m 2+2m +3=154,即P 点的坐标为(32,154). 当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758.2. 解:(1)将A(−1,0)、B(3,0)代入y =ax 2+bx +3,得:{9a +3b +3=0a−b+3=0,解得:{b =2a=−1, ∴抛物线的表达式为y =−x 2+2x +3.(2)(I)当点P 的横坐标为−12时,点Q 的横坐标为72, ∴此时点P 的坐标为(−12,74),点Q 的坐标为(72,−94). 设直线PQ 的表达式为y =mx +n , 将P(−12,74)、Q(72,−94)代入y =mx +n ,得: {−12m +n =7472m +n =−94,解得:{m =−1n =54, ∴直线PQ 的表达式为y =−x +54.如图②,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54), ∴DE =−x 2+2x +3−(−x +54)=−x 2+3x +74,∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+6x +72=−2(x −32)2+8.∵−2<0,∴当x =32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t,−t 2+2t +3),点Q 的坐标为(4+t,−(4+t)2+2(4+t)+3), 利用待定系数法易知,直线PQ 的表达式为y =−2(t +1)x +t 2+4t +3. 设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3), ∴DE =−x 2+2x +3−[−2(t +1)x +t 2+4t +3]=−x 2+2(t +2)x −t 2−4t , ∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+4(t +2)x −2t 2−8t =−2[x −(t +2)]2+8.∵−2<0,∴当x =t +2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.3. 解:(1)y =x 2+2x +1=(x +1)2的图象沿x 轴翻折,得y =−(x +1)2.把y =−(x +1)2向右平移1个单位,再向上平移4个单位,得y =−x 2+4, ∴所求的函数y =ax 2+bx +c 的解析式为y =−x 2+4; (2)∵y =x 2+2x +1=(x +1)2, ∴A(−1,0),当y =0时,−x 2+4=0,解得x =±2,则D(−2,0),C(2,0); 当x =0时,y =−x 2+4=4,则B(0,4),从点A ,C ,D 三个点中任取两个点和点B 构造三角形的有:△ACB ,△ADB ,△CDB , ∵AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,∴△BCD 为等腰三角形,∴构造的三角形是等腰三角形的概率=13; (3)存在.易得BC 的解析是为y =−2x +4,S △ABC =12AC ⋅OB =12×3×4=6, M 点的坐标为(m,−2m +4)(0≤m ≤2),①当N 点在AC 上,如图1,∴△AMN 的面积为△ABC 面积的13, ∴12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,M 点的坐标为(0,4),N(0,0),则AN =1,MN =4, ∴tan∠MAC =MN AN=41=4;当m =1时,M 点的坐标为(1,2),N(1,0),则AN =2,MN =2,∴tan∠MAC =MN AN=22;②当N 点在BC 上,如图2, BC =√22+42=2√5,∵12BC ⋅AN =12AC ⋅BC ,解得AN =3×42√5=6√55, ∵S △AMN =12AN ⋅MN =2, ∴MN =4AN =2√53, ∴∠MAC =MNAN =2√536√55=59; ③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t , 由②得AH =6√55,则BH =√(√17)2−(6√55)2=7√55, ∵∠NBG =∠HBA , ∴△BNM ∽△BHA , ∴MN AH=BNBH ,即MN 6√55=√17−t7√55,∴MN=6√17−6t7,∵12AN⋅MN=2,即12⋅(√17−t)⋅6√17−6t7=2,整理得3t2−3√17t+14=0,△=(−3√17)2−4×3×14=−15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或59.4. 解:(1)∵点A的坐标为(−1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2−2ax+c,得:{c=3a+2a+c=0,解得:{c=3a=−1,∴抛物线C1的解析式为y=−x2+2x+3=−(x−1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=−x2+2x+3−k,即y=−(x−1)2+4−k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=√3B′D=√3m,则点B′的坐标为(m+1,0),点G′的坐标为(1,√3m),将点B′、G′的坐标代入y=−(x−1)2+4−k,得:{−m 2+4−k=04−k=√3m,解得:{k1=4m1=0(舍),{m2=√3k2=1,∴k=1;(3)设M(x,0),则P(x,−x 2+2x +3)、Q(x,−x 2+2x +2), ∴PQ =OA =1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y =−1于点H ,则∠QHN =∠OMQ =90∘, 又∵△AOQ ≌△PQN ,∴OQ =QN ,∠AOQ =∠PQN , ∴∠MOQ =∠HQN , ∴△OQM ≌△QNH(AAS),∴OM =QH ,即x =−x 2+2x +2+1, 解得:x =1±√132(负值舍去), 当x =1+√132时,HN =QM =−x 2+2x +2=√13−12,点M(1+√132,0),∴点N 坐标为(1+√132+√13−12,−1),即(√13,−1); 或(1+√132−√13−12,−1),即(1,−1); 如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=−(−x2+2x+2)−1,解得:x=−1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=−(−x2+2x+2)=6,∴点N的坐标为(4+6,−1)即(10,−1),或(4−6,−1)即(−2,−1);综上点M1(1+√132,0)、N1(√13,−1);M2(1+√132,0)、N2(1,−1);M3(4,0)、N3(10,−1);M4(4,0)、N4(−2,−1).5. 解:(1)由已知可得∠A′OE=60∘,A′E=AE,由A′E//x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=√3b,OE=2b,√3b+2b=2+√3,所以b=1,A′、E的坐标分别是(0,1)与(√3,1).(2)因为A′、E在抛物线上,所以{1=c1=−16⋅(√3)2+√3b+c,所以{c=1b=√36,函数关系式为y=−16x2+√36x+1,由−16x2+√36x+1=0,得x1=−√3,x2=2√3,与x轴的两个交点坐标分别是(−√3,0)与(2√3,0).(3)不可能使△A′EF成为直角三角形.∵∠FA′E=∠FAE=60∘,若△A′EF 成为直角三角形,只能是∠A′EF =90∘或∠A′FE =90∘ 若∠A′EF =90∘,利用对称性,则∠AEF =90∘, A 、E 、A 三点共线,O 与A 重合,与已知矛盾; 同理若∠A′FE =90∘也不可能, 所以不能使△A′EF 成为直角三角形. 6. 解:(1)根据题意得,{−b2a=−216a +4b +c =8c =0,∴{a =14b =1c =0, ∴抛物线解析式为y =14x 2+x ;(2)∵直线y =kx +4与抛物线两交点的横坐标分别为x 1,x 2, ∴14x 2+x =kx +4, ∴x 2−4(k −1)x −16=0,根据根与系数的关系得,x 1+x 2=4(k −1),x 1x 2=−16, ∵1x 2−1x 1=12,∴2(x 1−x 2)=x 1x 2, ∴4(x 1−x 2)2=(x 1x 2)2,∴4[(x 1+x 2)2−4x 1x 2]=(x 1x 2)2, ∴4[16(k −1)2+64]=162, ∴k =1;(3)如图,取OB 的中点C , ∴BC =12OB , ∵B(4,8), ∴C(2,4), ∵PQ//OB ,∴点O 到PQ 的距离等于点O 到OB 的距离, ∵S △POQ :S △BOQ =1:2, ∴OB =2PQ ,∴PQ =BC ,∵PQ//OB , ∴四边形BCPQ 是平行四边形, ∴PC//AB ,∵抛物线的解析式为y =14x 2+x②,令y =0, ∴14x 2+x =0, ∴x =0或x =−4, ∴A(−4,0), ∵B(4,8),∴直线AB 解析式为y =x +4,设直线PC 的解析式为y =x +m , ∵C(2,4),∴直线PC 的解析式为y =x +2②,联立①②解得,{x =2√2y =2√2+2(舍)或{x =−2√2y =−2√2+2,∴P(−2√2,−2√2+2).7. 解:(1)依题意得:{−b2a =−1a +b +c =0c =3,解之得:{a =−1b =−2c =3,∴抛物线解析式为y =−x 2−2x +3 ∵对称轴为x =−1,且抛物线经过A(1,0), ∴把B(−3,0)、C(0,3)分别代入直线y =mx +n ,得{n =3−3m+n=0,解之得:{n =3m=1,∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小.把x =−1代入直线y =x +3得,y =2, ∴M(−1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)设P(−1,t), 又∵B(−3,0),C(0,3),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1=3−√172,t 2=3−√172;综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172) 或(−1,3−√172).8. 解:(1)抛物线的对称轴是:x =−b 2a =−−5√32a=√3,解得:a =52;(2)由题意得二次函数解析式为:y =15x 2−5√3x +c , ∵二次函数与x 轴有两个交点, ∴△>0,∴△=b 2−4ac =(−5√3)2−4×15c , ∴c <54;(3)∵∠BOD =90∘,∠DBO =60∘, ∴tan60∘=ODOB =cOB =√3, ∴OB =√33c , ∴B(√33c,0),把B(√33c,0)代入y =ax 2−5√3x +c 中得:ac 23−5√3⋅√3c 3+c =0,ac 23−5c +c =0,∵c ≠0, ∴ac =12, ∴c =12a,把c =12a代入y =ax 2−5√3x +c 中得:y =a(x 2−5√3x a+12a 2)=a(x −4√3a)(x −√3a), ∴x 1=4√3a,x 2=√3a, ∴A(√3a ,0),B(4√3a,0),D(0,12a ), ∴AB =4√3a −√3a=3√3a ,AE =3√32a, ∵F 的纵坐标为3+12a , ∴F(5√32a ,6a+12a),过点A作AG⊥DB于G,∴BG=12AB=AE=3√32a,AG=92a,DG=DB−BG=8√3a −3√32a=13√32a,∵∠ADB=∠AFE,∠AGD=∠FEA=90∘,∴△ADG∽△AFE,∴AEAG =FEDG,∴3√32a92a=6a+12a13√32a,∴a=2,c=6,∴y=2x2−5√3x+6.9. 解:(1)设抛物线的表达式为:y=a(x−1)2+4,把(0,3)代入得:3=a(0−1)2+4,a=−1,∴抛物线的表达式为:y=−(x−1)2+4=−x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,∵E(0,3),,易得的解析式为:y=3x−3,当x=1时,y=3×1−3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),∴NQ=(−m2+2m+3)−(−2m+6)=−m2+4m−3,∵AD//NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90∘,∴△QMN∽△ADB,∴QNMN =ABBD,∴−m2+4m−3MN =2√52,∴MN=−√55(m−2)2+√55,∵−√55<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90∘,∴△NGP∽△ADB,∴PGNG =BDAD=24=12,∴PG=12NG=12m,∴OP=OG−PG=−m2+2m+3−12m=−m2+32m+3,∴S△PON=12OP⋅GN=12(−m2+32m+3)⋅m,当m=2时,S△PON=12×2(−4+3+3)=2.10. (2,0);(−m2,−14m2−2m−4)11. 解:(1)∵抛物线y=14(x+2)2−1的顶点为(−2,−1)∴抛物线y=14(x+2)2−1的图象向上平移1个单位,再向右2个单位得到抛物线y=14x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,14a2)∴PM=PF=14a2+1∵PB=a ∴Rt△PBF中BF=√PF2−PB2=√(14a2+1)2−a2=14a2−1∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+QM的最小值当Q、P、M三点共线时,QP+QM有最小值为点Q纵坐标5.∴QP+PF的最小值为5.,4)12. 6;−6;(−3213. 解:(1)点M为二次函数y=−(x−b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=−(0−b)2+4b+1=5,解得b=2,二次函数的解析是为y=−(x−2)2+9,当y=0时,−(x−2)2+9=0,解得x1=5,x2=−1,∴A(5,0).由图象,得当mx+5>−(x−b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=−x+5,联立EF,AB得方程组{y =−x +5y=4x+1, 解得{x =45y =215,∴点E(45,215),F(0,1). 点M 在△AOB 内,1<4b +1<215∴0<b <45.当点C ,D 关于抛物线的对称轴对称时,b −14=34−b ,∴b =12, 且二次函数图象开口向下,顶点M 在直线y =4x +1上, 综上:①当0<b <12时,y 1>y 2, ②当b =12时,y 1=y 2, ③当12<b <45时,y 1<y 2.14. 解:(1)由OC =2,OB =3,得到B(3,0),C(0,2),设抛物线解析式为y =a(x +1)(x −3), 把C(0,2)代入得:2=−3a ,即a =−23,则抛物线解析式为y =−23(x +1)(x −3)=−23x 2+43x +2;(2)抛物线y =−23(x +1)(x −3)=−23x 2+43x +2=−23(x −1)2+83, ∴D(1,83),当四边形CBPD 是平行四边形时,由B(3,0),C(0,2),得到P(4,23); 当四边形CDBP 是平行四边形时,由B(3,0),C(0,2),得到P(2,−23); 当四边形BCPD 是平行四边形时,由B(3,0),C(0,2),得到P(−2,143); (3)设直线BC 解析式为y =kx +b , 把B(3,0),C(0,2)代入得:{b =23k+b=0,解得:{k =−23b =2, ∴y =−23x +2,设与直线BC 平行的解析式为y =−23x +b , 联立得:{y =−23x +by =−23x 2+43x +2, 消去y 得:2x 2−6x +3b −6=0,当直线与抛物线只有一个公共点时,△=36−8(3b −6)=0, 解得:b =72,即y =−23x +72, 此时交点M 1坐标为(32,52);可得出两平行线间的距离为√1313,同理可得另一条与BC 平行且平行线间的距离为√1313的直线方程为y =−23x +12,联立解得:M 2(3−3√22,√2−12),M 3(3+3√22,−√2−12),此时S =1.15. (−6,0);(2,0);y =−12x 2−4x −6;y =−12x 2−2x +6【解析】1. (1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.2. (1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+6x +72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+4(t +2)x −2t 2−8t ,再利用二次函数的性质即可解决最值问题. 本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S △DPQ =−2x 2+6x +72;(II)利用三角形的面积公式找出S △DPQ =−2x 2+4(t +2)x −2t 2−8t .3. (1)利用配方法得到y =x 2+2x +1=(x +1)2,然后根据抛物线的变换规律求解;(2)利用顶点式y =(x +1)2得到A(−1,0),解方程−x 2+4=0得D(−2,0),C(2,0)易得B(0,4),列举出所有的三角形,再计算出AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,然后根据等腰三角形的判定方法和概率公式求解;(3)易得BC 的解析是为y =−2x +4,S △ABC =6,M 点的坐标为(m,−2m +4)(0≤m ≤2),讨论:①当N 点在AC 上,如图1,利用面积公式得到12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,求出AN =1,MN =4,再利用正切定义计算tan∠MAC 的值;当m =1时,计算出AN =2,MN =2,再利用正切定义计算tan∠MAC 的值;②当N 点在BC 上,如图2,先利用面积法计算出AN =6√55,再根据三角形面积公式计算出MN =2√53,然后利用正切定义计算tan∠MAC 的值;③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t ,由②得AH =6√55,利用勾股定理可计算出BH =7√55,证明△BNM ∽△BHA ,利用相似比可得到MN =6√17−6t 7,利用三角形面积公式得到12⋅(√17−t)⋅6√17−6t7=2,根据此方程没有实数解可判断点N 在AB 上不符合条件,从而得到tan∠MAN 的值为1或4或59. 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的判定、概率公式;理解二次函数图象的图象变换规律,会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4. (1)由点A 的坐标及OC =3OA 得点C 坐标,将A 、C 坐标代入解析式求解可得;(2)设抛物线C 2的解析式为y =−x 2+2x +3−k ,即y =−(x −1)2+4−k ,′作G′D ⊥x 轴于点D ,设BD′=m ,由等边三角形性质知点B′的坐标为(m +1,0),点G′的坐标为(1,√3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,−x2+2x+3)、Q(x,−x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN 均为钝角知△AOQ≌△PQN,延长PQ交直线y=−1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解.本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.5. (1)当A′E//x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+√3,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能:①∠A′EF=90∘,根据折叠的性质,∠A′EF=∠AEF=90∘,此时A′与O重合,与题意不符,因此此种情况不成立.②∠A′FE=90∘,同①,可得出此种情况也不成立.因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形.本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强.6. (1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x1+x2=4(k−1),x1x2=−16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC//AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.7. (1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8. (1)根据抛物线的对称轴公式代入可得a的值;(2)根据已知得:抛物线与x轴有两个交点,则△>0,列不等式可得c的取值范围;(3)根据60∘的正切表示点B的坐标,把点B的坐标代入抛物线的解析式中得:ac=12,则c=12a,从而得A和B的坐标,表示F的坐标,作辅助线,构建直角△ADG,根据已知的角相等可得△ADG∽△AFE,列比例式得方程可得a和c的值.本题是二次函数综合题,涉及的知识点有:代入法的运用,根与判别式的关系,对称轴公式,解方程,三角形相似的性质和判定,勾股定理等知识,第3问有难度,利用特殊角的三角函数表示A、B两点的坐标是关键,综合性较强.9. (1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,先求的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),表示NQ=−m2+4m−3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.10. 解:(1)y=x2+mx−2m−4=(x2−4)+m(x−2)=(x−2)(x+2+m),当x=2时,y=0,∴抛物线经过定点坐标是(2,0).∵抛物线的解析式为y=x2+mx−2m−4,∴顶点M的对称轴为直线x=−b2a =−m2当x═−m2时,y=(−m2)2+m⋅(−m2)−2m−4=−14m2−2m−4故答案为:(2,0);(−m2,−14m2−2m−4).(2)设x=−m2,y=−14m2−2m−4则m=−2x,带入y=−m2,−14m2−2m−4.整理得y=−x2+4x−4即抛物线的顶点在抛物线y=−x2+4x−4上运动.其对称轴为直线x=2,当抛物线顶点直线x=2右侧时即m<−4时,抛物线y=x2+mx−2m−4与正方形ABCD 无交点.当m>−4时,观察抛物线的顶点所在抛物线y=−x2+4x−4恰好过点A(0,−4),此时m= 0当抛物线y=x2+mx−2m−4过点C(1,−5)时−5=1+m−2m−4,得m=2∴抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点时m的范围为:0≤m≤2(3)由(2)抛物线顶点M在抛物线y=−x2+4x−4上运动当点M在线段AB上方时,过点B且使∠ABM=45∘的直线解析式为y=−x−3联立方程−x2+4x−4=−x−3求交点横坐标的x1=5+√212(舍去)x2=5−√212m=−5+√21当点M在线段AB下方时过点B且使∠ABM=45∘的直线解析式为y=x−5联立方程−x2+4x−4=x−5求交点横坐标为x1=3+√132(舍去)x2=3−√132m=−3+√13∴m的值为−5+√21或−3+√13(1)判断函数图象过定点时,可以分析代入的x值使得含m的同类项合并后为系数为零.(2)由(1)中用m表示的顶点坐标,可以得到在m变化时,抛物线顶点M抛物线在y=−x2+ 4x−4上运动,分析该函数图象和正方形ABCD的顶点位置关系可以解答本题;(3)由已知点M在过点B且与AB夹角为45∘角的直线与抛物线在y=−x2+4x−4的交点上,则问题可解.本题考查含有字母参数的二次函数图象及其性质,解答过程中注意数形结合,关注m的变化过程中,抛物线的变化趋势.11. (1)找到抛物线顶点坐标即可找到平移方式.(2)①设出点P坐标,利用PM=PF计算BF,求得F坐标;②利用PM=PF,将QP+PF转化为QP+QM,利用垂线段最短解决问题.本题以二次函数为背景,考查了数形结合思想、转换思想和学生解答问题的符号意思.12. 解:(1)∵A点坐标为(−6,0)∴OA=6∵过点C(−6,1)的双曲线y=kx∴k=−6y=4时,x=−64=−32∴点E 的坐标为(−32,4) 故答案为:6,−6,(−32,4)(2)①设直线MN 解析式为:y 1=k 1x +b 1 由题意得:{−12t 2+5t −32=k 1(t −1)+b 1−12t 2+3t −72=k 1(−t −3)+b 1 解得{k 1=1b =−12t 2+4t −12∵抛物线y =−12x 2+bx +c 过点M 、N∴{−12t 2+5t −32=−12(t −1)2+b(t −1)+c−12t 2+3t −72=−12(−t −3)2+b(−t −3)+c 解得{c =5t −2b=−1∴抛物线解析式为:y =−12x 2−x +5t −2 ∴顶点P 坐标为(−1,5t −32) ∵P 在双曲线y =−6x 上∴(5t −32)×(−1)=−6∴t =32此时直线MN 解析式为: 联立{y =x +358y =−6x∴8x 2+35x +49=0∵△=352−4×8×48=1225−1536<0∴直线MN 与双曲线y =−6x 没有公共点.②当抛物线过点B ,此时抛物线y =−12x 2+bx +c 与矩形OADB 有且只有三个公共点 ∴4=5t −2,得t =65当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点 ∴10t−32=4,得t =1110∴t =65或t =1110③∵点P 的坐标为(−1,5t −32)∴y P =5t −32当1≤t ≤6时,y P 随t 的增大而增大 此时,点P 在直线x =−1上向上运动 ∵点F 的坐标为(0,−12t 2+4t −12)∴y F =−12(t −4)2+152∴当1≤t ≤4时,随者y F 随t 的增大而增大 此时,随着t 的增大,点F 在y 轴上向上运动∴1≤t ≤4当t =1时,直线MN :y =x +3与x 轴交于点G(−3,0),与y 轴交于点H(0,3) 当t =4−√3时,直线MN 过点A .当1≤t ≤4时,直线MN 在四边形AEBO 中扫过的面积为S =12×(32+6)×4−12×3×3=212(1)根据题意将先关数据带入(2)①用t 表示直线MN 解析式,及b ,c ,得到P 点坐标带入双曲线y =kx 解析式,证明关于t 的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B 和在BD 上时的情况;③由②中部分结果,用t 表示F 、P 点的纵坐标,求出t 的取值范围及直线MN 在四边形OAEB 中所过的面积.本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t 表示相关点坐标.13. (1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案; (2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M 的纵坐标的范围,又利用了二次函数的性质:a <0时,点与对称轴的距离越小函数值越大.14. (1)由OC 与OB 的长,确定出B 与C 的坐标,再由A 坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD 是平行四边形;当四边形BCPD 是平行四边形;四边形BDCP 是平行四边形时,利用平移规律确定出P 坐标即可;(3)由B 与C 坐标确定出直线BC 解析式,求出与直线BC 平行且与抛物线只有一个交点时交点坐标,。
江苏省常州市2018年中考数学试题含答案解析
2018年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.47.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1=.10.(2.00分)化简:=.11.(2.00分)分解因式:3x2﹣6x+3=.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为km.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.20.(8.00分)解方程组和不等式组:(1)(2)21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y 轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C 不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.2018年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣1),∴2=﹣k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选:A.【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案.【解答】解:A、一组对边平行且相等的四边形是平行四边形,是假命题;B、三个角是直角的四边形是矩形,是真命题;C、四边相等的四边形是菱形,是真命题;D、有一个角是直角的菱形是正方形,是真命题;故选:A.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别,关键是根据矩形、正方形、平行四边形、菱形的判定解答.6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.4【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA的度数.【解答】解:∵MN是⊙O的切线,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1=2.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.10.(2.00分)化简:=1.【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(2.00分)分解因式:3x2﹣6x+3=3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1).【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=40°.【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案为40°.【点评】本题考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是2.【分析】连接OB、OC,利用弧长公式转化为方程求解即可;【解答】解:连接OB、OC.∵∠BOC=2∠BAC=120°,的长是,∴=,∴r=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是3≤AP<4.【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.【点评】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)解方程组和不等式组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1),①+②得:x=2,把x=2代入②得:y=﹣1,所以方程组的解为:;(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是BC⊥AB.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.【分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC⊥AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%)=8400(人),答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,∴AC•OC=4,∴AC=OC=2,∴点A的坐标为(2,2);(2)∵四边形ABOC的面积是3,∴(OB+2)×2÷2=3,解得OB=1,∴点B的坐标为(0,1),依题意有,解得.故一次函数y=kx+b的表达式为y=x+1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k值的几何意义、梯形的面积、待定系数法求一次函数解析式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2,x3=1;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y 轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C 不重合).(1)b=﹣,点B的坐标是(,0);(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.【分析】(1)由点A的坐标,利用二次函数图象上点的坐标特征可求出b的值,代入y=0求出x值,进而可得出点B的坐标;(2)代入x=0求出y值,进而可得出点C的坐标,由点A、C的坐标利用待定系数法可求出直线AC的解析式,假设存在,设点M的坐标为(m,m+2),分B、P在直线AC的同侧和异侧两种情况考虑,由点B、M的坐标结合PM:MB=1:2即可得出点P的坐标,再利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之即可得出结论;(3)作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,设OE=n,则CE=2﹣n,EF=n,利用面积法可求出n值,进而可得出==,结合∠AOC=90°=∠BOE可证出△AOC∽△BOE,根据相似三角形的性质可得出∠CAO=∠EBO,再根据角平分线的性质可得出∠CBA=2∠EBO=2∠CAB,此题得解.【解答】解:(1)∵点A(﹣4,0)在二次函数y=﹣+bx+2的图象上,∴﹣﹣4b+2=0,∴b=﹣.当y=0时,有﹣x2﹣x+2=0,解得:x1=﹣4,x2=,∴点B的坐标为(,0).故答案为:﹣;(,0).(2)当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).设直线AC的解析式为y=kx+c(k≠0),将A(﹣4,0)、C(0,2)代入y=kx+c中,得:,解得:,∴直线AC的解析式为y=x+2.假设存在,设点M的坐标为(m,m+2).①当点P、B在直线AC的异侧时,点P的坐标为(m﹣,m+3),∵点P在抛物线y=﹣x2﹣x+2上,∴m+3=﹣×(m﹣)2﹣×(m﹣)+2,整理,得:12m2+20m+9=0.∵△=202﹣4×12×9=﹣32<0,∴方程无解,即不存在符合题意得点P;②当点P、B在直线AC的同侧时,点P的坐标为(m+,m+1),∵点P在抛物线y=﹣x2﹣x+2上,∴m+1=﹣×(m+)2﹣×(m+)+2,整理,得:4m2+44m﹣9=0,解得:m1=﹣,m2=,∴点P的横坐标为﹣2﹣或﹣2+.综上所述:存在点P,使得PM:MB=1:2,点P的横坐标为﹣2﹣或﹣2+.(3)∠CBA=2∠CAB,理由如下:作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,如图2所示.∵点B(,0),点C(0,2),∴OB=,OC=2,BC=.设OE=n,则CE=2﹣n,EF=n,由面积法,可知:OB•CE=BC•EF,即(2﹣n)=n,解得:n=.∵==,∠AOC=90°=∠BOE,∴△AOC∽△BOE,∴∠CAO=∠EBO,∴∠CBA=2∠EBO=2∠CAB.【点评】题考查了二次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积、勾股定理、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)由点A的坐标,利用二次函数图象上点的坐标特征求出b的值;(2)分B、P在直线AC的同侧和异侧两种情况找出点P的坐标;(3)构造相似三角形找出两角的数量关系.。
九年级下数学中考真题2018年烟台市中考数学试卷含答案解析(Word版)
2018年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。
1.(3分)﹣的倒数是()A.3 B.﹣3 C.D.﹣2.(3分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×10144.(3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.185.(3分)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(cm)177178178179方差0.9 1.6 1.10.6哪支仪仗队的身高更为整齐?()A.甲B.乙C.丙D.丁6.(3分)下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖7.(3分)利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b的大小关系为()A.a<b B.a>b C.a=b D.不能比较8.(3分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.319.(3分)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7 B.6 C.5 D.410.(3分)如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°11.(3分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④12.(3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s 的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)(π﹣3.14)0+tan60°=.14.(3分)与最简二次根式5是同类二次根式,则a=.15.(3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=.16.(3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.17.(3分)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.18.(3分)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O 为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简,再求值:(1+)÷,其中x满足x2﹣2x﹣5=0.20.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.21.(8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)22.(9分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?23.(10分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E 在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.24.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.25.(14分)如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.2018年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。
2018年贵州省贵阳市中考数学试卷(含答案解析版)
2018年贵州省贵阳市中考数学试卷一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1 . (3.00分)(2018?贵阳)当x= - 1时,代数式3x+1的值是()A.- 1B. - 2 C . 4 D. - 42.(3.00分)(2018?贵阳)如图,在^ABC中有四条线段DE, BE, EF, FG,其中有一条线段是^ABC的中线,则该线段是()A.线段DEB.线段BEC.线段EFD.线段FG3.(3.00分)(2018?贵阳)如图是一个几何体的主视图和俯视图,则这个几何体是(俯A.三棱柱B.正方体C.三棱锥D.长方体4.(3.00分)(2018狈阳)在生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是(A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查5.(3.00分)(2018独阳)如图,在菱形ABCD中,E是AC的中点,EF//CB, 交AB 丁点F,如果EF=3,那么菱形ABCD的周长为()A. 24B. 18C. 12D. 96.(3.00分)(2018?贵阳)如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A. - 2B. 0C. 1D. 47.(3.00分)(2018?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan /BAC的值为()8 . (3.00分)(2018?贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是(A. D.12 10 6 59. (3.00分)(2018?贵阳)一次函数y=kx - 1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (-5 , 3)B. (1, - 3)C. (2, 2) D . (5, - 1)10.(3.00分)(2018?贵阳)已知二次函数y= - x2+x+6及一次函数y= - x+m ,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y= - x+m与新图象有4个交点时,m的取值范围是()A. - -^―<c m < 3B. - < m < 2C. -2< m < 3 D . - 6 < m< - 2二、填空题(每小题4分,共20分)11. (4.00分)(2018?贵阳)某班50名学生在2018年适应性考试中,数学成绩在100? 110分这个分数段的频率为0.2,则该班在这个分数段的学生为12. (4.00分)(2018?贵阳)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数V弓(x>0), y=-号(x>0)的图象交丁A点和B点,若C取值范围是15 . (4.00分)(2018?贵阳)如图,在^ABC 中,BC=6 , BC 边上的高为4,在MBC 的内部作一个矩形EFGH ,使EF 在BC 边上,另外两个顶点分别在 AB 、AC 边上,则对角线EG 长的最小值为.、解答题(本大题10个小题,共100分)如图,点M 、N 分别是正五边形ABCDE 的两边 AB 、 BC 上的点.且AM=BN,点O 是正五边形的中心,则Z MON 的度数是14 . (4.00 分)(2018?贵阳) 已知关丁 x 的不等式组I*0 无解,贝U a 的(4.00 分)(2018?贵13 . 则AABC 的面积为度.16 . (10.00分)(2018?贵阳)在6.26国际禁蠹日到来之际,贵阳市教育局为了普及禁蠹知识,提高禁蠹意识,举办了关爱生命,拒绝蠹品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:初一:688810010079948985100881009098977794961009267初二:69979169981009910090100996997100999479999879(1)根据上述数据,将下列表格补充完成.整理、描述数据:分数段60 <x <69 70 <x<7980 <x <8990 <x <100初一人数 2 2412初二人数 2 2115分析数据:样本数据的平■均数、中位数、满分率如表:年级平■均教中位教满分率初一90.19325%初二92.820%得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共人;(3)你认为哪个年级掌握禁蠹知识的总体水平■较好,说明理由.17. (8.00分)(2018?贵阳)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为 n 的小正方形纸板后,将剩下的三块拼成新(1)用含m 或n 的代数式表示拼成矩形的周长;18 . (8.00分)(2018?贵阳)如图①,在 Rt 丛BC 中,以下是小亮探究之间关系的方法:19. (10.00分)(2018狈阳)某宵春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵 10元,用480元购买乙种树苗的棵数恰好与用 360元购买甲种树苗的棵数相同.sinA根据你掌握的三角函数知识. 在图②的锐角△ ABC 中,探究二土sinAsinB EinC(2) m=7 , n=4 ,求拼成矩形的面积.. sinA=旦,sinB=—之间的关系,并写出探究过程.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?20 . (10.00分)(2018?贵阳)如图,在平■行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关丁AE对称,AE与AF关丁AG对称.(1)求证:AAEF是等边三角形;(2)若AB=2,求AAFD的面积.A DB E Q c21. (10.00分)(2018?$阳)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1 , 2, 3, 4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外) 的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)达机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.22. (10.00分)(2018狈阳)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y (单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/cm 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m ,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平■移2个单位,再向上平■移5个单位,求平■移后的函数表达式.23. (10.00分)(2018?贵阳)如图,AB为③O的直径,且AB=4,点C在半圆上,OC ± AB ,垂足为点O , P为半圆上任意一点,过P点作PEL OC 丁点E, 设也PE的内心为M,连接OM、PM .(1)求ZOMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.24. (12.00 分)(2018?贵阳)如图,在矩形ABCD 中,AB —2, AD=扼,P是BC边上的一点,且BP=2CP .(1)用尺规在图①中作出CD边上的中点E,连接AE、BE (保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平■分ZAEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线丁点F,连接AP,不添加辅助线,APFB能否由都经过P点的两次变换与ZXPAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平■移距离)图①图②囹③25 . (12.00分)(2018?贵阳)如图,在平■面直角坐标系xOy中,点A是反比3_ 2例函数y=皿F(x>0, m >1)图象上一点,点A的横坐标为m,点B (0,x-m)是y轴负半轴上的一点,连接AB , AC±AB ,交y轴丁点C ,延长CA到点D,使得AD=AC,过点A作AE平行丁x轴,过点D作y轴平行线交AE 丁点E.(1)当m=3时,求点A的坐标;(2) DE=,设点D的坐标为(x, y),求y关丁x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交丁点F,当m 为何值时,以A、B、D、F为顶点的四边形是平■行四边形?-可编辑修改-2018年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1 . (3.00分)(2018?贵阳)当x= - 1时,代数式3x+1的值是()A.- 1B. - 2 C . 4 D. - 4【分析】把x的值代入解答即可.【解答】解:把x= - 1代入3x+1= - 3+1= - 2 ,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.2.(3.00分)(2018?贵阳)如图,在^ABC中有四条线段DE, BE, EF, FG,其中有一条线段是^ABC的中线,则该线段是()A.线段DEB.线段BEC.线段EFD.线段FG【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是z^BC的中线,故选:B.【点评】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.(3.00分)(2018?贵阳)如图是一个几何体的主视图和俯视图,则这个几何体是()主俯视A.三棱柱B.正方体C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.【解答】解:由主视图和俯视图可得几何体为三棱柱,故选:A.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:生视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.4.(3.00分)(2018狈阳)在生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查【分析】根据抽样调查的具体性和代表性解答即可.【解答】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调查最具有具体性和代表性,故选:D.【点评】此题考查抽样调查,关键是理解抽样调查的具体性和代表性.5.(3.00分)(2018独阳)如图,在菱形ABCD中,E是AC的中点,EF//CB, 交AB 丁点F,如果EF=3,那么菱形ABCD的周长为()A. 24B. 18C. 12D. 9【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解. 【解答】解::E是AC中点,.EF//BC,交AB 丁点F,•••EF是AABC的中位线,EF=3BC,. BC=6 ,.••菱形ABCD的周长是4 X6=24 .【点评】本题考查的是三角形中位线的性质及菱形的周长公式,题目比较简单.6.(3.00分)(2018?贵阳)如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A. - 2B. 0C. 1D. 4【分析】首先确定原点位置,进而可得C点对应的数.【解答】解:..•点A、B表示的数互为相反数,原点在线段AB的中点处,.••点C对应的数是1,故选:C.【点评】此题主要考查了数轴,关键是正确确定原点位置.7.(3.00分)(2018?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan /BAC的值为()CBA.志B. 1C.号D. |如【分析】连接BC,由网格求出AB , BC, AC的长,利用勾股定理的逆定理得到丛BC 为等腰直角三角形,即可求出所求.【解答】解:连接BC,由网格可得AB=BC= 妮,AC-而,即AB2+BC2=AC2,•••ZABC 为等腰直角三角形, ••• zBAC=45 °,贝U tan ZBAC=1 ,【点评】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练 掌握勾股定理是解本题的关键.8 . (3.00分)(2018?贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放 黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示 位置的概率是(D.【分析】先找出符合的所有情况,再得出选项即可.【解答】解:共有5+4+3=12 ,所以恰好摆放成如图所示位置的概率是 周,故选:A.【点评】本题考查了列表法与树形图法,能找出符合的所有情况是解此题的关键.9. (3.00分)(2018?贵阳)一次函数y=kx - 1的图象经过点P,且y 的值随x 值的增大而增大,则点P 的坐标可以为(A. (-5 , 3)B. (1, - 3)C. (2, 2) D . (5, - 1)故选:B.A.【分析】根据函数图象的性质判断系数k> 0,则该函数图象经过第一、三象限, 由函数图象与y轴交丁负半轴,则该函数图象经过第一、三、四象限,由此得到结论. 【解答】解:..•一次函数y=kx - 1的图象的y的值随x值的增大而增大,. k > 0, A、把点(-5 , 3)代入y=kx - 1得到:k= 0 ,不符合题意;5B、把点(1, - 3)代入y=kx - 1得到:k= - 2<0,不符合题意;C、把点(2, 2)代入y=kx - 1得到:k=3>0,符合题意;D、把点(5, - 1)代入y=kx - 1得到:k=0 ,不符合题意;故选:C.【点评】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键.10.(3.00分)(2018?贵阳)已知二次函数y= - x2+x+6及一次函数y= - x+m ,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y= - x+m与新图象有4个交点时,m的取值范围是()A. — Wv m < 3B.一m < 2C. - 2< m < 3D. - 6 < m< — 2【分析】如图,解方程-x2+x+6=0得A (-2 , 0), B (3, 0),再利用折叠的性质求出折叠部分的解析式为y= (x+2 ) (x - 3),即y=x 2 - x- 6(- 2<x<3), 然后求出直线?y= - x+m经过点A (- 2, 0)时m 的值和当直线y= - x+m 与 抛物线y=x 2 - x-6 (-2 <x<3)有唯一公共点时m 的值,从而得到当直线y= -x+m 与新图象有4个交点时,m 的取值范围.【解答】解:如图,当y=0时,-x 2+x+6=0 ,解彳x i = - 2 , x 2=3,则A (- 2, 0), B (3, 0),将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为 y= (x+2 ) (x- 3),即 y=x 2 - x - 6 (- 2 <x <3),当直线?y= - x+m 经过点A (- 2, 0)时,2+m=0,解得m= - 2; 当直线y= - x+m 与抛物线y=x 2 - x - 6 (- 2孑V3)有唯一公共点时,方程x 2 -x- 6= - x+m 有相等的实数解,解得 m= - 6 ,所以当直线y= - x+m 与新图象有4个交点时,m 的取值范围为-6< m < - 2. 故选:D. 【点评】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a, b , c 是常数,a 冲)与x 轴的交点坐标问题转化为解关丁 x 的一元二次方程.也考 查了二次函数图象与几何变换.二、填空题(每小题4分,共20分)11 . (4.00分)(2018?贵阳)某班50名学生在2018年适应性考试中,数学成 绩在100 ? 110分这个分数段的频率为0.2,则该班在这个分数段的学生为 10 人.【分析】频率是指每个对象出现的次数与总次数的比值(或者白分比),即频率=频数士数据总数,进而得出即可.【解答】解:..•频数=总数X频率,可得此分数段的人数为:50 X0.2=10 .故答案为:10.【点评】此题主要考查了频数与频率,利用频率求法得出是解题关键.12. (4.00分)(2018?贵阳)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y= —(x>0), y= (x>0)的图象交丁A点和B点,若C为y轴任意一点.连接AB、BC,则MBC的面积为【分析】设出点P坐标,分别表示点AB坐标,表示^ABC面积.【解答】解:设点P坐标为(a, 0)则点A坐标为(a, *), B点坐标为(a,-。
2018年浙江省宁波市中考数学试卷真题含答案
2018年浙江省宁波市中考数学试卷真题含答案一、选择题(本大题共12小题,共48分)1.在,,0,1这四个数中,最小的数是A. B. C. 0 D. 1【答案】A【解析】解:由正数大于零,零大于负数,得,最小的数是,故选:A.根据正数大于零,零大于负数,可得答案.本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.2018中国宁波特色文化产业博览会于4月16日在宁波国际会展中心闭幕本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为A. B. C. D.【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是A.B.C.D.【答案】A 【解析】解:,选项A 符合题意;,选项B 不符合题意;,选项C 不符合题意;,选项D 不符合题意. 故选:A .根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:底数,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.【答案】C【解析】解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选:C.让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.已知正多边形的一个外角等于,那么这个正多边形的边数为A. 6B. 7C. 8D. 9【答案】D【解析】解:正多边形的一个外角等于,且外角和为,则这个正多边形的边数是:.故选:D.根据正多边形的外角和以及一个外角的度数,求得边数.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】解:从上边看是一个田字, “田”字是中心对称图形, 故选:C .根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7. 如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连结若,,则的度数为A.B.C.D.【答案】B 【解析】解:,,,对角线AC 与BD 相交于点O ,E 是边CD 的中点,是的中位线,,.故选:B .直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.8.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为A. 7B. 5C. 4D. 3【答案】C【解析】解:数据4,1,7,x,5的平均数为4,,解得:,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.先根据平均数为4求出x的值,然后根据中位数的概念求解.本题考查了中位数的概念:将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图,在中,,,,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为A. B. C. D.【答案】C【解析】解:,,,,的长为,故选:C . 先根据,,,得圆心角和半径的长,再根据弧长公式可得到弧CD 的长.本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:弧长为l ,圆心角度数为n ,圆的半径为.10. 如图,平行于x 轴的直线与函数,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若的面积为4,则的值为A. 8B.C. 4D.【答案】A 【解析】解:轴,,B 两点纵坐标相同. 设,,则,.,.故选:A . 设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,求出.本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式也考查了三角形的面积.11.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A.B.C.D.【答案】D【解析】解:由二次函数的图象可知,,,当时,,的图象在第二、三、四象限,故选:D.根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12. 在矩形ABCD 内,将两张边长分别为a 和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2aB. 2bC.D.【答案】B 【解析】解:,,.故选:B .利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来也考查了正方形的性质.二、填空题(本大题共6小题,共24分) 13. 计算:______.【答案】2018【解析】解:.故答案为:2018.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.要使分式有意义,x的取值应满足______.【答案】【解析】解:要使分式有意义,则:.解得:,故x的取值应满足:.故答案为:.直接利用分式有意义则分母不能为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.已知x,y满足方程组,则的值为______.【答案】【解析】解:原式故答案为:根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16. 如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为和若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米结果保留根号. 【答案】【解析】解:由于,,在中,米,在,米.米故答案为:在和中,利用锐角三角函数,用CH 表示出AH 、BH 的长,然后计算出AB 的长.本题考查了锐角三角函数的仰角、俯角问题题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .17.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.【答案】3或【解析】解:如图1中,当与直线CD相切时,设.在中,,,,,.如图2中当与直线AD相切时设切点为K,连接PK,则,四边形PKDC是矩形.,,,在中,.综上所述,BP的长为3或.分两种情形分别求解:如图1中,当与直线CD相切时;如图2中当与直线AD相切时设切点为K,连接PK ,则,四边形PKDC是矩形;本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.中点,连结MD ,若,则的值为______.【答案】【解析】解:延长DM交CB的延长线于点H.四边形ABCD是菱形,,,,,,≌,,,,设,,,,,或舍弃,,故答案为.延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、计算题(本大题共1小题,共6分)19.已知抛物线经过点,求该抛物线的函数表达式;将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函【答案】解:把,代入抛物线解析式得:,解得:,则抛物线解析式为;抛物线解析式为,将抛物线向右平移一个单位,向下平移2个单位,解析式变为.【解析】把已知点的坐标代入抛物线解析式求出b与c的值即可;指出满足题意的平移方法,并写出平移后的解析式即可.此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.四、解答题(本大题共7小题,共72分)20.先化简,再求值:,其中.【答案】解:原式,当时,原式.【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.21.在的方格纸中,的三个顶点都在格点上.在图1中画出线段BD,使,其中D是格点;在图2中画出线段BE,使,其中E是格点.【答案】解:如图所示,线段BD即为所求;如图所示,线段BE即为所求.【解析】将线段AC沿着AB方向平移2个单位,即可得到线段BD;利用的长方形的对角线,即可得到线段.本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数.【答案】解:由条形图知,A 级的人数为20人,由扇形图知:A 级人数占总调查人数的所以:人即本次调查的学生人数为200人;由条形图知:C 级的人数为60人 所以C 级所占的百分比为:,B 级所占的百分比为:,B 级的人数为人 D 级的人数为:人B 所在扇形的圆心角为:.因为C 级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人答:全校每周课外阅读时间满足的约有360人.【解析】由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.总人数课外阅读时间满足的百分比即得所求.本题考查了扇形图和条形图的相关知识题目难度不大扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.23.如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.求证:≌;当时,求的度数.【答案】解:由题意可知:,,,,,,在与中,≌,,,由可知:,,,【解析】由题意可知:,,由于,所以,,所以,从而可证明≌由≌可知:,,从而可求出的度数.本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】解:设甲种商品的每件进价为x 元,则乙种商品的每件进价为元.根据题意,得,,解得.经检验,是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为.设甲种商品按原销售单价销售a件,则,解得.答:甲种商品按原销售单价至少销售20件.【解析】设甲种商品的每件进价为x元,乙种商品的每件进价为y元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.本题考查了分式方程的应用,一元一次不等式的应用本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润售价进价.25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.已知是比例三角形,,,请直接写出所有满足条件的AC的长;如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.如图2,在的条件下,当时,求的值.【答案】解:是比例三角形,且、,当时,得:,解得:;当时,得:,解得:;当时,得:,解得:负值舍去;所以当或或时,是比例三角形;,,又,∽,,即,,,平分,,,,,是比例三角形;如图,过点A 作于点H,,,,,又,∽,,即,,又,,.【解析】根据比例三角形的定义分、、三种情况分别代入计算可得;先证∽得,再由知即可得;作,由知,再证∽得,即,结合知,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE 并延长交于点F.求直线l的函数表达式和的值;如图2,连结CE,当时,求证:∽;求点E的坐标;当点C在线段OA 上运动时,求的最大值.【答案】解:直线l :与x 轴交于点,,,直线l 的函数表达式,,,,在中,;如图2,连接DF ,,,,,四边形CEFD 是的圆内接四边形,,,∽,过点于M,由知,,设,则,,,,,,由知,∽,,,,,,舍或,,,,如图,设的半径为r,过点O作于G,,,,,,,,,,连接FH,是直径,,,,∽,,,时,最大值为.【解析】利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;先判断出,进而得出,即可得出结论;设出,,进而得出点E坐标,即可得出OE的平方,再根据的相似得出比例式得出OE的平方,建立方程即可得出结论;利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.。
2018年吉林省中考数学试卷(含答案与解析)
数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前吉林省2018年初中毕业生学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(1)(2)-⨯-的结果是( ) A .2B .1C .2-D .3- 2.图是由4个相同的小正方体组成的立体图形,它的主视图是( )ABCD 3.下列计算结果为6a 的是( )A .23a a B .122a a ÷ C .23()aD .23()a -4.如图,将木条a ,b 与c 钉在一起,170︒=∠,250︒∠=,要使木条a 与b 平行,木条a 旋转的度数至少是 ( )A .10︒B .20︒C .50︒D .70︒5.如图,将ABC △折叠,使点A 与BC 边中点D 重合,折痕为MN ,若9AB =,6BC =,则DNB △的周长为( )A .12B .13C .14D .156.国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .35,2294x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .35,4494x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 第Ⅱ卷(非选择题 共108分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 7..8.买单价3元的圆珠笔m 支,应付 元.9.若4a b +=,1ab =,则22a b ab += .10.若关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值为 .11.如图,在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为 .12.如图是测量河宽的示意图,AE 与BC 相交于点D ,90B C ︒==∠∠,测得120 mBD =,60 m DC =,50 m EC =,求得河宽AB = m .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)13.如图,A ,B ,C ,D 是O 上的四个点,AB BC =,若58AOB ︒=∠,则BDC =∠ 度.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k .若12k =,则该等腰三角形的顶角为 度.三、解答题(本大题共12小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分5分)某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下: 原式222()2a ab a b =+--(第一步)2222a a b a b=--+(第二步) 22a b b =-(第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出此题正确的解答过程. 16.(本小题满分5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE CF =. 求证:ABE BCF △≌△.17.(本小题满分5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(本小题满分5分)在平面直角坐标系中,反比例函数(0)ky k x=≠图象与一次函数2y x =+图象的一个交点为P ,且点P 的横坐标为1,求该反比例函数的解析式.19.(本小题满分7分)根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示 ,庆庆同学所列方程中的y 表示 ; (2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题.数学试卷 第5页(共46页) 数学试卷 第6页(共46页)20.(本小题满分7分)如图是由边长为1的小正方形组成的84⨯网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180︒得到点1D ; 第二步:点1D 绕点B 顺时针旋转得90︒到点2D ; 第三步:点2D 绕点C 顺时针旋转90︒回到点D . (1)请用圆规画出点12D D D D →→→经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π).21.(本小题满分7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺.请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平22.(本小题满分7分)为了调查甲、乙两台包装机分装标准质量为400 g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g )如下: 甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据:表一分析数据:表二-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共46页) 数学试卷 第8页(共46页)得出结论:包装机分装情况比较好的是 (填甲或乙),说明你的理由. 23.(本小题满分8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min .小东骑自行车以300 m/min 的速度直接回家,两人离家的路程(m)y 与各自离开出发地的时间(min)x 之间的函数图象如图所示 (1)家与图书馆之间的路程为 m ,小玲步行的速度为 m/min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.24.(本小题满分8分)如图1,在ABC △中,AB AC =,过AB 上一点D 作DE AC ∥交BC 于点E ,以E 为顶点,ED 为一边,作DEF A =∠∠,另一边EF 交AC 于点F . (1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图1中的DE 到点G ,使EG DE =,连接AE ,AG ,FG ,得到图2,若AD AG =,判断四边形AEGF 的形状,并说明理由.图1图225.(本小题满分10分)如图,在矩形ABCD 中, 2 cm AB =,30ADB ︒=∠.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB BC -运动,在AB 上的速度是2 cm/s ,在BC 上的速度是;点Q 在BD 上以2 cm/s 的速度向终点D 运动,过点P 作PN AD ⊥,垂足为点N .连接PQ ,以PQ ,PN 为邻边作□PQMN .设运动的时间为(s)x ,□PQMN 与矩形ABCD 重叠部分的图形面积为2)(cm y(1)当PQ AB ⊥时,x = ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.备用图26.(本小题满分10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a a =+-<与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当1a =-时,抛物线顶点D 的坐标为 ,OE = ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设DEO β=∠,4560β︒︒≤≤,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设(,)P m n ,直接写出n关于m的函数解析式及自变量m的取值范围.数学试卷第9页(共46页)数学试卷第10页(共46页)6吉林省2018年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】(1)(2)2-⨯-= 故选A . 【考点】有理数的运算. 2.【答案】B【解析】从正面看已知几何体,得到的平面图形是,故选B .【考点】几何体的主视图. 3.【答案】C【解析】23235 a a a a +==,12210122=a a a a -=÷,36223)=(a a a ⨯=,236()a a -=-,故选C . 【考点】整式的运算. 4.【答案】B【解析】根据题意,若使木条a 与b 平行,且木条a 旋转度数最少,则木条a 应按顺时针方向旋转的度数为1220︒-=∠∠,故选B .【考点】平行线的性质、旋转的性质. 5.【答案】A【解析】由翻折可知AN DN =,∴DNB △的周长为DN NB BD AN NB BD AB BD ++=++=+,∵9AB =,6BC =,点D 是BC 的中点,∴3BD =,∴DNB △的周长为9312+=,故选A .【考点】轴对称的性质、中点定义. 6.【答案】D【解析】根据题意,因为每只鸡有1个头和2只脚,每只免有1个头和4只脚,由“鸡兔共有35个头”得35x y +=,由“鸡兔共有94只脚”得2494x y +=,列出方程组为35,2494,x y x y +=⎧⎨+=⎩故选D .【考点】列方程组解应用题.第Ⅱ卷二.填空题7.【答案】4.【考点】二次根式的运算.8.【答案】3m【解析】根据题意,每支圆珠笔3元,m支圆珠笔3m元,则应付3m元.【考点】列代数式表示数.9.【答案】4【解析】∵4a b+=,1ab=,∴22()144a b ab ab a b+=+=⨯=.【考点】分解因式,求代数式的值.10.【答案】1-【解析】由题意知2241(=)0m⨯⨯--=∆,解得1m=-,即m的值为1-.【考点】]一元二次方程的根的判别式.11.【答案】(1,0)-【解析】根据题意,由点A的坐标(4,0)得4OA=,由点B的坐标(0,3)得3OB=,在Rt OAB△中,由勾股定理可得5AB=,∴5AC=,∴1OC AC OA=-=,又∵点C在x轴的负半轴上,∴点C的坐标为(1,0)-.【考点】勾股定理、平面直角坐标系内点的坐标.12.【答案】100【解析】∵90B C︒==∠∠,ADB EDC=∠∠,∴ABD ECD△∽△,∵AB BDEC CD=,又120 mBD=,60 mDC=,50 mEC=,则可得100 mAB=,即河宽AB为100 m.【考点】相似三角形的判定和性质.13.【答案】29【解析】如图,作AB所对的圆周角AEB∠,则1=2AEB AOB∠∠,∵°=58AOB∠,°=29AEB∠,又∵AB BC=,∴°29BDC AEB==∠∠.7 / 238【考点】圆周角定理及其推论. 14.【答案】36【解析】由题意可知当12k =时,设这个等腰三角形的顶角为°x .则它的一个底角为°(2)x ,根据三角形的内角和定理得22180x x x ++=,解得36x =,则这个等腰三角形的顶角是°36. 【考点】新定义、等腰三角形的性质、三角形的内角和定理. 三、解答题 15.【答案】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+【解析】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+评分说明:第(1)题,与“去括号法则用错”等同的说法均给分. 【考点】整式的化简16.【答案】证明:在正方形ABCD 中,9 / 23AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【解析】证明:在正方形ABCD 中,AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【考点】正方形的性质、全等三角形的判定. 17.【答案】13【解析】解法一:根据题意.可以画出如下树状图:从树状图可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同.10从表中可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同. 【考点】随机事件发生的概率.18.【答案】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【解析】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【考点】]一次函数、反比例函数的图象与性质. 19.【答案】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:11 / 2360040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米.【解析】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:60040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米. 【考点】列分式方程解应用题. 20.【答案】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【解析】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 21.【答案】【解析】测量步骤:(1)测角仪. (2)皮尺.计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AE ADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米). 【解析】测量步骤:(1)测角仪. (2)皮尺.13 / 23计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AEADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米).【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 22.【答案】表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g . 乙,理由:从方差角度说,乙的方差小,分装情况更稳定 从平均数角度说,乙的平均数更接近标准质量400 g.【解析】表一表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g.乙,理由:从方差角度说,乙的方差小,分装情况更稳定从平均数角度说,乙的平均数更接近标准质量400 g【考点】数据的整理、统计知识的应用.23.【答案】(1)4 000100(2)如图,∵小东从图书馆到家的时间4 00040(h)3003x==,∴40(,0)3D.15 / 23设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点. ∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩答:两人出发后8分钟相遇. 【解析】(1)4 000 100(2)如图,∵小东从图书馆到家的时间 4 00040(h)3003x ==,∴40(,0)3D .设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点.∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩ 答:两人出发后8分钟相遇. 【考点】一次函数的应用.24.【答案】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =,17 / 23∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【解析】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =, ∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【考点】平行线的性质、特殊四边形的判定. 25.【答案】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴2y图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+19 / 23(3)25或47(如图4,如图5)图4图5【解析】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴22y x =图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+ (3)25或47(如图4,如图5)图4图5【考点】矩形的性质、函数的应用、图形的面积. 26.【答案】(1)(1,4)- 3(2)OE 的长与a 值无关21 / 23理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)22图1【解析】(1)(1,4)-3(2)OE 的长与a 值无关理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,23 / 23∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)图1【考点】在二次函数的图象与性质行分三角函数的运用、等腰直角三角形的性质、数形结合思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学真题知识分类汇编:代数式(含答案)一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。