直线的参数方程【公开课教学PPT课件】

合集下载

选修4-4数学直线的参数方程【优质PPT】

选修4-4数学直线的参数方程【优质PPT】



参数方程为__________.
课 时
(2)由 α 为直线的倾斜角知 α∈__________,所以
作 业

sinα≥0,当 α∈(0,π)时,sinα>0.



第二讲 学案3 直线的参数方程
数学
人教A版·选修4-4 数学

前 预 习

(3)直线的参数方程中参数 t 的几何意义是:_____ 内
时 作 业
课 内
y=3+2
5 5 t.


第二讲 学案3 直线的参数方程
数学
人教A版·选修4-4 数学

前 预 习
经验证易知点
A(3,7)恰好在直线上,所以有
1+
5 5
课 内

t=3,即 t=2 5,即点 M 到点 A 的距离是 2 5.


而点 B(8,6)不在直线上,所以不能使用参数 t 的几
B.(-3,4)


C.(-3,4)或(-1,2)
D.(-4,5)或(0,1)
时 作

课 内 讲 练
第二讲 学案3 直线的参数方程
数学
人教A版·选修4-4 数学

前 预 习
[解析] d= -2- 2t-22+3+ 2t-32= 2, 课

∴t=±
2 2.
巩 固
自 主 演
当 t= 22时,对应点为(-3,4),

课 内 讲 练
第二讲 学案3 直线的参数方程
数学
人教A版·选修4-4 数学

前 预 习
[解析] (1)因为倾斜角 α=π6,所以 sinα=12,

直线的参数方程(用)ppt课件

直线的参数方程(用)ppt课件

x x0 t cos , y y0 t sin
即,x x0 t cos , y y0 t sin
e (cos,sin )
x
3
问题:已知一条直线过点M0(x0,y0 ),倾斜角,
求这条直线的方程.
即,x x0 t cos , y y0 t sin
y
所: 在直线上任取一点M(x,y),则
M0M (x, y) (x0 y0 ) (x x0, y y0 ) 设e是直线l的单位方向向量,则
M(x,y)
y
e (cos ,sin )
因为M 0M // e,所以存在实数t R,
M0(x0,y0)
使M 0M te,即
(x x0, y y0 ) t(cos,sin ) O
直线的参数方程
1
请同学们回忆:
我们学过的直线的普通方程都有哪些?
点斜式: y y0 k(x x0 )
斜截式: y kx b
两点式: y y1 x x1
y2 y1 x2 x1
截距式: x y 1
ab
一般式: Ax By C 0
2
问题:已知一条直线过点M0(x0,y0 ),倾斜角,
O
x=-1+tcos
3
4
y
2
t
sin
3
(t为参数)
B
x
17

x
1
2t 2 (t为参数)
A
y
2
2t 2
把它代入抛物线y=x2的方程,得
t2 2t 2 0
t1 t2 2, t1t2 2
由参数t的几何意义得
AB t1 t2 10 MA MB t1 t2 t1t2 2

优秀课件人教版直线的参数方程(共22张PPT)

优秀课件人教版直线的参数方程(共22张PPT)

二、新课讲授
问题:已知一条直线过点M 0(x0 ,y0 ),倾斜角,
sin 要注意 把它变成 y y0 : ( x x0 ) x0, y0 都是常 cos y y0 x x0 进一步整理,得: 数,t才是参 sin cos 数 y y0 x x0 t 令该比例式的比值为t ,即 sin cos x=x0 t cos 整理,得到 (t是参数) y y0 t sin
三、例题讲解 2 例 2 例1.已知直线l : x y 1 0与抛物线y x 交于
A,B两点,求线段AB的长度和点M(-1,2)到A,B 两点的距离之积。
分析: 1.用普通方程去解还 是用参数方程去解; 2.分别如何解. 3.点M是否在直线上 A
y
M(-1,2)
O
B
x
三、例题讲解
求这条直线的方程. 解: 直线的普通方程为y y0 tan ( x x0 )
求这条直线的方程. 解: 在直线上任取一点M(x,y),则 (x, y) ( x0 y0 ) ( x x0 , y y0 ) M 0M 设 e是直线l的单位方向向量,则 y M(x,y) e (cos ,sin ) 因为M 0 M // e, 所以存在实数t R, M0(x0,y0) 使M 0 M te,即 ( x x0 , y y0 ) t (cos ,sin ) e x x0 t cos , y y0 t sin 所以 即,x x0 t cos , y y0 t sin (cos ,sin ) 所以,该直线的参数方程为 O

( 3 ) AB 、 MA MB 与t1,t 2有什么关系?

课件高中数学人教A版选修-节直线的参数方程PPT课件_优秀版

课件高中数学人教A版选修-节直线的参数方程PPT课件_优秀版
t表示有向线段M0P的数量。
求这条直线的方程.
设A,B为直线上任意两点,它们所对应的参数值分别为t1,t2. 求这条直线的方程.
x x at 0 若t=0,则M与点M0重合.
设A,B为直线上任意两点,它们所对应的参数值分别为t1,t2.
(t为参数) 此时,若t>0,则 的方向向上;
直线的参数方程可以写成这样的形式:
y M(x,y)
M0(x0,y0)
e
O
x
B
· y
· A M(x,y)x x0 t cos
·· M0(x0,y0)
y
y0
t
sin
(t是参数)
O
x
若M

0

点,
t
0
t1+t2
0
•t表示有向线段M0P的数量。|t|=| M0M|
•t只有在标准式中才有上述几何意义
设A,B为直线上任意两点,它们所对应的参
请同学们回忆:
我们学过的直线的普通方程都有哪些?
点斜式: y y0 k(x x0 )
斜截式: y kx b
两点式: y y1 x x1
y2 y1 x2 x1
截距式: x y 1
ab
一般式: Ax By C 0
问题:已知一条直线过点M0(x0,y0 ),倾斜角,
求这条直线的方程.
普通方程为y y k ( x x )或x x 。 3<0因此t不具有参数方程标准式中t的几何意
若t<0,则 的点方向向下;
直线方程后,符合直线方程,
0
0
0
设A,B为直线上任意两点,它们所对应的参数值分别为t1,t2.
t表示几何意义: 把它代入抛物线y=x2的方程,得

高中数学《参数方程-直线的参数方程》课件

高中数学《参数方程-直线的参数方程》课件
§2 直线和圆锥曲线的参数方程
-1-
2.1
直线的参数方程
-2-
首 页
课程目标
1.掌握直线参数方程的标准形
式,理解参数 t 的几何意义.
2.能依据直线的几何性质,写出
它的两种形式的参数方程,体会
参数的几何意义.
3.能利用直线的参数方程解决
简单的实际问题.
学习脉络
J 基础知识 Z 重点难点
ICHU ZHISHI

4

= -1 + cos ,
4
3π (t
= 2 + sin
4
解:因为 l 过定点 M,且 l 的倾斜角为 ,
所以它的参数方程是

2
t,
2
(t
2
+ t
2
= -1=2
为参数).
为参数).①
把①代入抛物线方程,得 t2+ 2t-2=0.
解得 t1=
- 2+ 10
- 2- 10
,t2=
5
= 1 + t,
=
为参数).
因为 3×5-4×4+1=0,所以点 M 在直线 l 上.
4
5
由 1+ t=5,得 t=5,即点 P 到点 M 的距离为 5.
因为 3×(-2)-4×6+1≠0,所以点 N 不在直线 l 上.
由两点间距离公式得|PN|= (1 + 2)2 + (1-6)2 = 34.
π
6
即 α= 或

3
时,|PA||PB|最小,其最小值为
1
6
2 1+4
6

直线的参数方程 课件

直线的参数方程 课件
在直线参数方程的标准形式下,直线上两点之间的距离可用|t1-t2|来求.直线的
参数方程和普通方程可以进行互化.特别是要求直线上某一定点到直线与曲线的
交点的距离和直线与曲线相交的弦长时,通常要使用参数的几何意义,宜用参数方
程形式.
典例提升2
已知直线的参数方程为ቊ
= 1 + 2,
(t为参数),求该直线被圆x2+y2=9截得的弦
5 1 2
64
12 5
+
16
=
.
5
5
2
1
+ 2 + ′ =9,
5
探究三错辨析
易错点:错用参数的几何意义而致误
典例提升3

= 2− 2 ,
2+y2=4交于A,B两点,求
已知过点M(2,-1)的直线l:൞
(t为参数),l与圆x

= −1 + 2
|AB|及|AM|·|BM|.
错解:把直线方程代入圆的方程,化简得t2-6t+2=0.设A,B两点对应的参数分别为
其中t'是点M(2,-1)到直线l上的一点P(x,y)的有向线段的数量,将其代入圆的方程
x2+y2=4,化简得t'2-3 2t'+1=0.因为Δ>0,可设t1',t2'是方程的两个根,由根与系数的
关系,得t1'+t2'=3 2,t1't2'=1.由参数t'的几何意义得|MA|=|t1'|,|MB|=|t2'|,
数).
1
= 3− 2 ,
(2)把൞
代入x-y+1=0,

参数方程直线的参数方程ppt

参数方程直线的参数方程ppt
设定参数方程
对于直线,可以设定参数方程为 `x = tcosθ + ysinθ`,其中θ 为直线的倾斜角。
绘制直线
通过MATLAB的plot函数,将参数方程带入,即可绘制出直 线。
MATLAB实现两直线的交点求解
设定两直线参数方程
对于两条直线,可以设定各自的参数方程为 `x = tcosθ1 + ysinθ1` 和 `x = tcosθ2 + ysinθ2`,其中θ1和θ2分别为两条直线的倾 斜角。
06
总结与展望
总结本文主要贡献
详细阐述了直线参数方程的求解方法和步骤 ,并给出了具体的计算示例。
对直线参数方程在不同领域中的实际应用进 行了分析和探讨,并给出了相应的案例分析

引入了直线参数方程的概念和应用场景介绍 。
讨论了直线参数方程在计算机图形学、机器 人学等领域中的应用和实现。
展望未来研究方向
利用参数方程求解直线的长度
总结词
利用参数方程求解直线的长度,可以将其转化为求解 两点间距离的问题,通过代入参数方程计算得到直线 长度。
详细描述
已知直线的一般式方程为Ax+By+C=0,其中A和B不 全为0。设该直线上任意两点的坐标分别为(x1,y1)和 (x2,y2),将其代入直线方程,得到两个等式 {(x1)A+(y1)B+C=0和(x2)A+(y2)B+C=0}。通过减法 运算,得到(x1-x2)A+(y1-y2)B=0,并将其变形为 B{(y1-y2)/(x1-x2)=-A}
03
利用参数方程求解直线相关问题
利用参数方程求解两直线的交点
总结词
利用参数方程求解两直线的交点,可以将其转化为联立 直线方程组的问题,通过消元得到方程组的解,从而得 到两直线的交点坐标。

直线的参数方程 课件

直线的参数方程  课件

由 ρ= 2cosθ-π4得 ρ=cos θ+sin θ,
所以 ρ2=ρcos θ+ρsin θ, 得 x2+y2=x+y, 即圆 C 的直角坐标方程为x-122+y-122=12.(5 分)
(2)把yx==112++122t3t,代入x-122+y-122=12, 得 t2+12t-14=0,(7 分) 设 A、B 两点对应的参数分别为 t1,t2,
(1)求直线的普通方程; (2)化参数方程为标准形式.
10-y 解:(1)由 y=10-4t,得 t= 4 ,代入 x=5+3t,
10-y 得 x=5+3× 4 . 化简得普通方程为 4x+3y-50=0. (2)把方程变形为 x=5+3t=5-35×(-5t), y=10+45×(-5t).
令 cos α=-35,sin α=45. u=-5t,则参数方程的标准形式为: x=5-35u, y=10+45u (u 为参数).
(t 为参数)
y=y0+bt
化标准形式的公式,非标准形式中的 a2+b2t 具有标准
x=x0+tcos α,
形式参数方程
(α 为参数)中参数 t 的几何
y=y0+tsin α
意义,故可以直接利用非标准形式的参数方程解题.
解:由题意知 F(1,0),
x=1- 22t,
则直线的参数方程为
(t 为参数),
y=
2 2t
代入抛物线方程得( 22t)2=4(1- 22t), 整理得 t2+4 2t-8=0,由一元二次方程根与系数的 关系可得 t1+t2=-4 2,t1t2=-8,由参数 t 的几何意义 得 |AB|=|t1-t2|= (t1+t2)2-4t1t2= 64=8.
(t 为参数)是非标准形式,参数 t 不具有上

直线的参数方程及弦长公式pppt课件

直线的参数方程及弦长公式pppt课件

2
2
2
2
最新版整理ppt
5
35 3542
(1)如何写出l的 直参 线数方程?

( 2 )如何A 求 , B 所 出对 交应 点 t1, 的 t2? 参数

t1t22,t1t22
( 3)AB 、 MA M与 Bt1, t2有 什 么 关 系 ?
由参数的几何意义得: |A B||t1t2|t1t224t1t210
A B 1 k 2( x 1 x 2 ) 2 4 x 1 x 2 2 5 10
பைடு நூலகம்
由 (* 解 ) x 得 1 1 2 : 5 , x 2 1 25
y13 25, y23 25
记直线与 坐 抛 A (标 1 物 5,线 35 的 ), B ( 交 15 点 ,35)
22
22
则 M M A ( 1 B 1 5 ) 2 ( 2 3 5 ) 2 ( 1 1 5 ) 2 ( 2 3 5 ) 2
(t为参数)
3、t的几何意义。
4、利用直线的参数方程解决问题
教学目标: 推导直线的参数方程。掌握直
线参数方程的设法。理解直线参数 方程中t的几何意义。
教学重难点: 理解直线参数方程中t的几何意义。 巧妙利用直线的参数方程解决问
题。
最新版整理ppt
21
|M A 最|新|版M 整B 理|p p|t t1t2|2
6
( 1 ) M 1M 2t1t2 (2)t t1 t2
2
特 别 地 , 若 中 点 为 M 0 , 最则 新版t 整理 ppt t 1 2 t 2 0 , 即 t 1 2 70
直线
x
y
2 1t 2
1 1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2且

y

3
经过点M(x0,y0),倾斜角为 的直线l的
参数方程:
x

y

x0 y0
t cos t sin
(t为参数)
参数t的几|t何||M0M意| 义是什么? y
| t || M0M |
l
M (x, y)
若t 0,则M 0M方向向上
若t 0,则M 0M方向向下
若t

0, 则点M与M

t
(cos

,
sin

)
M0(x0,y0)
e
即所,以xxxx00


t
t
cos ,
cos ,
y
y


y0
y0
t sin
t sin

(cos , sin )
所以,该直线的参数方程的标准形O式为
x

x y

x0 y0
t cos(t为参数) t sin

x0 y0

at bt
(t为参数)
当a、b满足什么条件,
可使t有上述的几何意义?
重要结论:
直线的参数方程可以写成这样的形式:

x y

x0 y0

at bt
(t为参数)
当a 2 b2 1且b 0时,t=M 0M
此时我们可以认为a cos,b sin;
重合
0
e M0 (x0, y0 )

0
x
辨析:

x y
1 1
9t 12t
(t为参数)
没有
请思考:此时 的t有没有前 述的几何意义?
特征分析:
若把直线的参数方程的标准形式

x y

x0 y0
t cos t sin
(t为参数,
[0,))
改写为: xy
a2 b2
x x0
y

y0

a ( a2 b2 t)
a2 b2
(t为参数)
b ( a2 b2 t)
a2 b2
设: a = cos; b sin ; a2 b2 t t,则
a2 b2
a2 b2

x y

x0 y0
tcos(t为参数) tsin
M(-1,2)
B
t2 2t 2 0
O
x
解得t1
2 2
10 ,t2
2 2
10
由参数t的几何意义得
AB t1 t2 10
MA MB t1 t2 t1t2 2
练习与作业

1.
直线

x

2

2t 2
(t 为参数)上到点 M(2,3)距离为
若 [0,),则为倾斜角。

x y

x0 y0
at bt
(t为参数)
当a 2 b2 1时,t没有上述的几何意义,
我们称起为非标准形式。

x

x0


y

y0

如何将其化为
标准形式?
a ( a2 b2 t)
a2 b2
(t为参数)
b ( a2 b2 t)
y
程后,符合直线方程,所以点M A
在直线上.
3
M(-1,2)
易知直线的倾斜角为 4
所以直线的参数方程可以写成
B
x=-1+tcos
3
4

y

2

t
sin
3
4
(t为参数)
O
x
即x 1
2t 2 (t为参数)A
y
把它代入抛y物 线2 y=x222的t 方程,得
x x0 )

(
x

x0
)
进一步整理,得:y y0 x x0
sin cos
令该比例式的比值为t,即 y y0 x x0 t sin cos
整理,得到
x=x0

y

y0
t cos t sin
(t是参数)
问题:已知一条直线过点M0(x0,y0 ),倾斜角,
(t为参数)
(2)
x

y
1 9t 1-12t
(t为参倾斜数角 )
(3)
x

y
1-9t 1-12t
(t为参数)
4:将下列直线的倾斜角
(1)

x y

3 t cos 20o 2+t sin 20o(为参数)(2)
x y

3-t cos 20o 2+t sin 20o
(t为参数)
(3)

x y

3t 2t
cos sin
20o 20o
(t为参数)
(4)

x y

3t 2t
sin 20o cos 20o
(t为参数)
例2.已知直线l : x y 1 0与抛物线y x2交于
A,B两点,求线段AB的长度和点M(-1,2)到A,B
两点的距离之积。
分析: 1.用普通方程去解还 是用参数方程去解;
y
A
M(-1,2)
2.分别如何解. 3.点M是否在直线上
B
O
x
例2.已知直线l : x y 1 0与抛物线y x2交于
A,B两点,求线段AB的长度和点M(-1,2)到A,B
两点的距离之积。
解: 因为把点M的坐标代入直线方
直线的参数方程
预备知识: 1.向量共线的条件
b // a(a 0) b a
2.直线l的方向向量是指: 与直线l平行的非零向量
问题:已知一条直线过点M0(x0,y0 ),倾斜角,
求这条直线的方程.
解: 直线的普通方程为y
把它x变0 y成0 y

y0

sin cos
(
y0 tan
当b 0时,t有上述的几何意义。
基础训练
1
直线

x y

2t 1
sin 200 t cos 200
(t
为参数),
经过定点
(2, - 1,)
倾斜角为 110°
2
直线

x

31t 2
(t 为参数)方程中,t 的几何意义是


y

1
3t 2
B)
(A) 一条有向线段的长度
(B) 定点 P0( 3 ,1)到直线上动点 P(x,y)的有向线段的数量 (C) 动点 P(x,y) 到定点 P0( 3 ,1)的线段的长 (D) 直线上动点 P(x,y) 到定点 P0( 3 ,1)的有向线段的数量
3:将下列直线的参数方程化为标准形式
(1)
x

y
1 9t 112t
求这条直线的方程.
解: 在直线上任取一点M(x,y),则
设Me0是M直( 线x,ly的) 单(x位0 方y向0)向(量x ,x0则, y

y0
)
y
e (cos,sin )
M(x,y)
因为M0M // e,所以存在实数t R,
使M
(x
x0 M0 ,
te,即
y y0 )
相关文档
最新文档