中考数学分类汇编圆pdf含解析
专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)
专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。
弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。
2024年中考数学真题分类汇编(全国通用)(第一期)专题13 反比例函数及其应用(41题)(解析版)
专题13反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可【详解】解:∵反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,∴231y =-=-,∴13k-=,∴3k =-,故选:A2.(2024·重庆·中考真题)反比例函数10y x=-的图象一定经过的点是()A .()1,10B .()2,5-C .()2,5D .()2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =-=-,图象不经过()1,10,故A 不符合要求;当2x =-时,1052y =-=-,图象一定经过()2,5-,故B 符合要求;当2x =时,1052y =-=-,图象不经过()2,5,故C 不符合要求;当2x =时,1052y =-=-,图象不经过()2,8,故D 不符合要求;故选:B .3.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是()A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数y x=的图象上,若120x x <<,则有()A .120y y <<B .210y y <<C .120y y <<D .120y y <<5.(2024·浙江·中考真题)反比例函数y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是()A .当4t <-时,210y y <<B .当40t -<<时,210y y <<C .当40t -<<时,120y y <<D .当0t >时,120y y <<【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数4y x=,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出1y 与2y 的大小.【详解】解:根据反比例函数4y x=,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点,当40t t <+<,即4t <-时,120y y >>;当04t t <<+,即40t -<<时,120y y <<;当04t t <<+,即0t >时,120y y >>;故选:A .6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是()A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x 度,能使用y 天.∴500xy =,∴500y x=,当5x =时,100y =,故A 不符合题意;当125y =时,5004125x ==,故B 不符合题意;∵0x >,0y >,∴当x 减小,则y 增大,故C 符合题意;若x 减小一半,则y 增大一倍,表述正确,故D 不符合题意;故选:C .7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为()A .0B .1C .2D .38.(2024·重庆·中考真题)已知点()3,2-在反比例函数()0y k x=≠的图象上,则k 的值为()A .3-B .3C .6-D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是()A .25B .35C .45D .85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM OC ⊥,则EM AC ,设k E a a ⎛⎫⎪⎝⎭,,由OME OCA ∽,可得3322k OC a AC a ==⋅,,再由O O F OBD CF A OBAC D S S S S =++ 矩形四边形,列方程,即可得出k 的值.【详解】过点E 作EM OC ⊥,则EM AC ,∴OME OCA ∽,∴OM EM OEOC AC OA==设k E a a ⎛⎫ ⎪⎝⎭,,∵2OE AE =∴23OM EM OC AC ==,∴3322kOC a AC a==⋅,∴3322O OBD DAF OCF OBAC kS S S S a a=++=⋅⋅ 矩形四边形即3322222k k k a a++=⋅⋅,解得:85k =故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()0y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是()A .4.5B .3.5C .3D .2.5设12,A a a ⎛⎫⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥∴AF y ∥轴,DF =∴AFE ODE ∽,∴116394.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是()A .0B .1C .2D .4【答案】B【分析】根据函数表达式计算当0x =时y 的值,可得图像与y 轴的交点坐标;由于42x +的值不可能为0,即0y ≠,因此图像与x 轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当0x =时,422y ==,∴42=+y x 与y 轴的交点为()0,2;由于42x +是分式,且当2x ≠-时,402x ≠+,即0y ≠,∴42=+y x 与x 轴没有交点.∴函数42=+y x 的图像与坐标轴的交点个数是1个,故选:B .12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若5BC =,则点B 的坐标是()A .(5B .()0,3C .()0,4D .(0,5【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.∵()4,2A ,∴4OE =,222425OA =+=∴42sin 5525OE OAE OA ∠===∵()4,2A 在反比例函数的图象上,∴221BD BC CD =-=,∴413OB OD BD =-=-=,∴()0,3B 故选:B .13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0y k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为()A .13B .14C .15D .25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD BC ⊥,D 是BC 中点,设,k A a a ⎛⎫ ⎪⎝⎭,,k B b b ⎛⎫ ⎪⎝⎭,由BC 中点为D ,AB AC =,故等腰三角形ABC 中,∴BD DC a b ==-,二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y -,则12y y +的值是.15.(2024·云南·中考真题)已知点()2,P n 在反比例函数y x=的图象上,则n =.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点()2,P n 代入10y x=求值,即可解题.【详解】解: 点()2,P n 在反比例函数10y x=的图象上,1052n ∴==,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20y k x=≠交于点()1,A m -,()2,1B -.则满足12y y ≤的x 的取值范围.【答案】10x -≤<或2x ≥【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当10x -≤<或2x ≥时,12y y ≤,∴满足12y y ≤的x 的取值范围为10x -≤<或2x ≥,故答案为:10x -≤<或2x ≥.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把0.9l =,200f =代入kf l=求解即可.【详解】解:把0.9l =,200f =代入kf l =,得2000.9k =,解得180k =,故答案为:180.18.(2024·陕西·中考真题)已知点()12,A y -和点()2,B m y 均在反比例函数y x=-的图象上,若01m <<,则12y y +0.【答案】</小于19.(2024·湖北武汉·中考真题)某反比例函数y x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B -,3ABCO S = ,则实数k 的值为.【答案】6-【分析】本题考查了反比例函数,根据,A B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据3ABCO S = 列出一元一次方程求解即可.【详解】ABCO 是平行四边形,A B ∴纵坐标相同()1,3B - A ∴的纵坐标是3A 在反比例函数图象上∴将3y =代入函数中,得到3k x =,33k A ⎛⎫∴ ⎪⎝⎭13k AB ∴=--3,ABCO S B = 的纵坐标为333AB ∴⨯=即:1333k ⎛⎫--⨯= ⎪⎝⎭解得:6k =-故答案为:6-.21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=-,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入b a 进而得出答案.【详解】解: 函数12y x=,当13x ≤≤时,函数1y 随x 的增大而减小,最大值为a ,1x ∴=时,12y a ==,23y x =- ,当13x ≤≤时,函数2y 随x 的增大而减大,函数2y 的最大值为21y b =-=,1122b a -∴==.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数1k y x-=的图象在第一、三象限,则点()3k -,在第象限.【答案】四/423.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.∴33(13,),1,22B a a D a a ⎛⎫++ ⎪ ⎪⎝⎭,∵点B 的对应点D 落在该反比例函数的图像上,∴()3313122k a a a a ⎛⎫=+=⋅+ ⎪ ⎪⎝⎭,解得:233a =,∵反比例函数图象在第一象限,∴2321332333k ⎛⎫=+⨯= ⎪⎝⎭,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM x ⊥轴于M ,作DN x ⊥轴于N ,则DN BM ∥,由点A ,B 的坐标分别为()5,0,()2,6得2BC OM ==,6BM OC ==,3AM =,然后证明ADN ABM ∽△△得DN AN ADBM AM AB ==,求出2DN =,则4ON OA AN =-=,故有D 点坐标为()4,2,求出反比例函数解析式8y x =,再求出4,63E ⎛⎫⎪⎝⎭,最后根据∵点A ,B 的坐标分别为∴2BC OM ==,BM =∵DN BM ∥,∴ADN ABM ∽△△,∴DN AN ADBM AM AB==,25.(2024·四川广元·中考真题)已知y =与()0y x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为.【答案】()0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出()2,23A 以及()430y x x=>,根据解直角三角形得130∠=︒,根据折叠性质,330∠=︒,然后根据勾股定理进行列式,即()222324OB OC ==+=.【详解】解:如图所示:过点A 作AH y ⊥轴,过点C 作CD x ⊥轴,∵3y x =与()0ky x x=>的图象交于点()2,A m ,∴把()2,A m 代入3y x =,得出3223m =⨯=,∴()2,23A ,把()2,23A 代入()0ky x x=>,解得22343k =⨯=,∴()430y x x=>,设43C m m ⎛⎫ ⎪ ⎪⎝⎭,,在23Rt tan 1323AH AHO OH ∠=== ,,26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k =.∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点322A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,∴52AB OA ==,AB CO ∥,∴点()42B ,,∵点B 落在反比例函数()0ky k x=≠上,∴428k =⨯=,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E '2④B BD BB O ''∠=∠.其中正确的结论有.(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒,∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴2224224OD x x x x=+≥⋅⋅=,∴2OD ≥,∴A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,∴()1,2B n '+,∵反比例函数为2y x=,四边形A B CO ''为矩形,∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭,∴BB n '=,1OA n '=+,22211n B D n n '=-=++,2A B ''=,∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①3y x =-+;②2y x =;③221y x x =-+-.(2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为.(2)()33y mx m m x =-=-中,3x =时,0y =,∴图象恒过点()3,0,当直线过()1,1-时,()113m -=-,∴12m =,∴102m <≤;当直线过()1,1时,()113m =-,∴12m =-,∴102m -≤<;∴m 的取值范围为102m -≤<或102m <≤.故答案为:102m -≤<或102m <≤.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x =>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.∵()24A ,,∴()()11642622ACD A C S CD y y =⋅-=⨯⨯-=△.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =-+和反比例函数y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式9x b x-+>的解集.【答案】(1)()1,9A ,()9,1B ,10y x =-+(2)0x <或19x <<【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点()1,A m ,点(),1B n 代入9y x =,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点()1,A m 代入9y x =中,得:991m ==,∴点A 的坐标为()1,9,把点(),1B n 代入9y x =中,得:991n ==,∴点B 的坐标为()9,1,把1x =,9y =代入y x b =-+中得:19b -+=,∴10b =,∴一次函数的解析式为10y x =-+,(2)解:根据一次函数和反比例函数图象,得:当0x <或19x <<时,一次函数y x b =-+的图象位于反比例函数9y x=的图象的上方,31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:x72-a 12x b +a1________kx ________________7(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围.【答案】(1)25a b =-⎧⎨=⎩,补全表格见解析(2)x 的取值范围为702x -<<或1x >;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解,a b 的值,再求解k 的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当72x =-时,2x b a +=,即7b a -+=,当x a =时,21x b +=,即21a b +=,∴721a b a b -=-⎧⎨+=⎩,解得:25a b =-⎧⎨=⎩,∴一次函数为25y x =+,当1x =时,7y =,∵当1x =时,7k y x==,即7k =,∴反比例函数为:7y x =,当72x =-时,7722y ⎛⎫=÷-=- ⎪⎝⎭,当1y =时,2x a ==-,当2x =-时,72y =-,补全表格如下:x72-2-12x b +2-17∴当2y x b =+的图像在k y x =的图像上方时,33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A -,交反比例函数y x =于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围.∴304m n m -+=⎧⎨+=⎩,解得31m n =⎧⎨=⎩,∴点()1,4B ,∵反比例函数k y x=经过点()1,4B ,∴144k =⨯=;(2)解:∵点()30A -,,点()1,4B ,∴3AO =,∴1134622AOB B S AO y =⨯=⨯⨯=△,1322AOC C C S AO y y =⨯=△,由题意得362C y <,∴4C y <,∴1C x >,∴C 的横坐标a 的取值范围为1a >.34.(2024·四川凉山·中考真题)如图,正比例函数12y x =与反比例函数()20y x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式;(2)把直线112y x =向上平移3个单位长度与()20k y x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积.【答案】(1)28y x =(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.联立方程组8132yxy x⎧=⎪⎪⎨⎪=+⎪⎩,解得24xy=⎧⎨=⎩,81xy=-⎧⎨=-⎩(舍去),(2,4)B∴35.(2024·贵州·中考真题)已知点()1,3在反比例函数y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x=(2)a c b <<,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入ky x=可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把()1,3代入k y x =,得31k =,∴3k =,∴反比例函数的表达式为3y x=;(2)解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<,∴0a c b <<<,∴a c b <<.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.(3)解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=,解得32x =,∴平移距离为39622-=.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)3m =,3n =,21y x =+(2)点C 到线段AB 的距离为322【分析】(1)根据点()1,A m 、(),1B n 在反比例函数3y x=图象上,代入即可求得m 、n 的值;根据一次函数y kx b =+过点()1,3A ,()0,1C ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E ,可推出BC x ∥轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据1122ABC S BC AD AB CE =⋅=⋅ ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1) 点()1,A m 、(),1B n 在反比例函数3y x=图象上∴3m =,3n =又 一次函数y kx b =+过点()1,3A ,()0,1C ∴31k b b +=⎧⎨=⎩∴BC x ∥轴,3BC = 点()1,3A ,()3,1B ,AD ∴点()1,1D ,2AD =,DB 在Rt ADB 中,AB AD =38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P 在y 轴上,当PAB 的周长最小时,请直接写出点P 的坐标;(3)将直线AB 向下平移a 个单位长度后与x 轴,y 轴分别交于E ,F 两点,当12EF AB =时,求a 的值.【答案】(1)一次函数的表达式为28y x =-+,反比例函数的表达式为6y x=(2)点P 的坐标为()0,5(3)6a =或10a =【分析】本题考查了待定系数法求函数的解析式,轴对称-最短路径问题,勾股定理,正确地求出函数的解析式是解题的关键.(1)根据已知条件列方程求得6m =,得到反比例函数的表达式为6y x=,求得()3,2B ,解方程组即可得到结论;(2)如图,作点A 关于y 轴的对称点E ,连接EB 交y 轴于P ,则此时,PAB 的周长最小,根据轴对称的性质得到()1,6E -,得到直线BE 的解析式为5y x =-+,当0x =时,5y =,于是得到点P 的坐标为()0,5;(3)将直线AB 向下平移a 个单位长度后得直线EF 的解析式为28y x a =-+-,得到()8,0082a E F a -⎛⎫- ⎪⎝⎭.,,根据勾股定理即可得到结论.【详解】(1)解: 一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,61m∴=,6m ∴=,∴反比例函数的表达式为6y x=,把(),2B n 代入6y x=得,62n=,3n ∴=,()3,2B ∴,把()1,6A ,()3,2B 代入y kx b =+得,632k b k b +=⎧⎨+=⎩,解得28k b =-⎧⎨=⎩,∴一次函数的表达式为28y x =-+;此时,PAB 的周长最小,点()1,6A ,()1,6E ∴-,39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=-交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=-在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值.【答案】(1)2,1a k =-=-(2)2m =【分析】(1)直接把点A 的坐标代入反比例函数解析式,求出a ,然后利用待定系数法即可求得k 的值;(2)根据直线y x =-向上平移m 个单位长度,可得直线CD 解析式为y x m =-+,根据三角形全等的判定和性质即可得到结论.【详解】(1)解:∵点A 在反比例函数图象上,∴42a=-,解得2a =-,将()2,2A -代入y kx =,1k ∴=-;(2)解:如图,过点C 作CF y ⊥轴于点F ,CF OE ∴∥,FCP OEP ∴∠=∠,CFP EOP ∠=∠,PE PC = ,()AAS CFP EOP ∴ ≌,CF OE\=,OP PF =,∵直线y x =-向上平移m 个单位长度得到y x m =-+,令0x =,得y m =,令0y =,得x m =,40.(2024·四川广元·中考真题)如图,已知反比例函数1y x=和一次函数2y mx n =+的图象相交于点()3,A a -,3,22B a ⎛⎫+- ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围;(3)求AOB 的面积.(1)根据题意可得3322a a ⎛⎫-=-+ ⎪⎝⎭,即有3a =,问题随之得解;(2)12y y >表示反比例函数1ky x=的图象在一次函数2y mx n =+的图象上方时,对应的自变量的取值范围,据此数形结合作答即可;(3)若AB 与y 轴相交于点C ,可得()0,1C ,则1OC =,根据()12AOB AOC BOC B A S S S OC x x =+=- ,问题即可得解.【详解】(1)由题知3322a a ⎛⎫-=-+ ⎪⎝⎭,∴3a =,∴()3,3A -,9,22B ⎛⎫- ⎪⎝⎭,∴19y x=-,把()3,3A -,9,22B ⎛⎫- ⎪⎝⎭代入2y mx n =+得33922m n m n -+=⎧⎪⎨+=-⎪⎩,∴231m n ⎧=-⎪⎨⎪=⎩,∴2213y x =-+;(2)由图象可知自变量x 的取值范围为30x -<<或92x >(3)若AB 与y 轴相交于点C ,当0x =时,22113y x =-+=,∴()0,1C ,即:1OC =,∴()11915132224AOB AOC BOC B A S S S OC x x ⎛⎫=+=-=⨯⨯+= ⎪⎝⎭ .41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N -,()30,2N -中,是点M 等和点的有_____;(2)若点()3,2M -的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1ky x=和直线22y x =-,满足12y y <的x 取值范围是4x >或20x -<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =-上,求点P 的坐标.故答案为:()14,2N 和()30,2N -;(2)解:设点N 的横坐标为a ,∵点N 是点()3,2M -的等和点,∴点N 的纵坐标为()325a a +--=+,∴点N 的坐标为(),5a a +,∵点N 在直线y x b =+上,∴5a a b +=+,∴5b =;(3)解:由题意可得,0k >,双曲线分布在一、三象限内,设直线与双曲线的交点分别为点A B 、,如图,由12y y <时x 的取值范围是4x >或20x -<<,可得点A 的横坐标为4,点B 的横坐标为2-,把4x =代入2y x =-得,422y =-=,∴()4,2A ,把()4,2A 代入1k y x =得,24k =,∴8k =,∴反比例函数解析式为18y x =,设8,P m m ⎛⎫ ⎪⎝⎭,点Q 的横坐标为n ,∵点Q 是点P 的等和点,∴点Q 的纵坐标为8m n m+-,∴8,Q n m n m ⎛⎫+- ⎪⎝⎭,∵点Q 在直线22y x =-上,∴82m n n m+-=-,整理得,820m m -+=,去分母得,2280m m +-=,解得14m =-,12m =,经检验,4,2m m =-=是原方程的解,∴点P 的坐标为()4,2--或()2,4.。
人教全国中考数学圆的综合的综合中考真题分类汇总含答案解析
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D 作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.【答案】详见解析【解析】【分析】(1)连接OD,由AB为⊙O的直径,根据圆周角定理得∠ACB=90°,再由∠ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB.(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD5222===;由△ACE为等腰直角三角形,得到AE CE3222====,在Rt△AED中利用勾股定理计算出DE=42,则CD=72,易证得∴△PDA∽△PCD,得到PD PA AD52PC PD CD72===,所以PA=57PD,PC=75PD,然后利用PC=PA+AC可计算出PD.【详解】解:(1)证明:如图,连接OD,∵AB为⊙O的直径,∴∠ACB=90°.∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°.∴∠DAB=∠ABD=45°.∴△DAB为等腰直角三角形.∴DO⊥AB.∵PD为⊙O的切线,∴OD⊥PD.∴DP∥AB.(2)在Rt△ACB中,,∵△DAB为等腰直角三角形,∴.∵AE⊥CD,∴△ACE为等腰直角三角形.∴.在Rt△AED中,,∴.∵AB∥PD,∴∠PDA=∠DAB=45°.∴∠PAD=∠PCD.又∵∠DPA=∠CPD,∴△PDA∽△PCD.∴.∴PA=75PD,PC=57PD.又∵PC=PA+AC,∴75PD+6=57PD,解得PD=.3.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.【答案】(1)2;(2)AD ﹣DC=2BD ;(3)BD=AD=2+1. 【解析】 【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系 (2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O , 证明CDB AEB ∆∆≌,得到CD AE =,EB BD =, 根据BED ∆为等腰直角三角形,得到2DE BD =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,由BD AD =即可得出答案. 【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌, ∴AE=CD ,BE=BD , ∴CD+AD=AD+AE=DE , ∵BDE ∆是等腰直角三角形, ∴2BD , ∴2BD , 2. (2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠, ∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠, ∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =, ∴CDB AEB ∆∆≌, ∴CD AE =,EB BD =, ∴BD ∆为等腰直角三角形,2DE BD =.∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==∴21BD AD ==+.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.4.如图,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =3D 作DF ∥BC ,交AB 的延长线于点F . (1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)93﹣2π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,OB=BD=23,根据勾股定理求出PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt △DBP 中,PD=12,, 在Rt △DEP 中,∵∴=2, ∵OP ⊥BC , ∴BP=CP=3, ∴CE=3﹣2=1,∵∠DBE=∠CAE ,∠BED=∠AEC , ∴△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1,∴∵BE ∥DF ,∴△ABE ∽△AFD ,∴BE AEDF AD=,即5DF = , 解得DF=12, 在Rt △BDH 中,BH=12, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=221601223604π⨯⨯-﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.5.已知:如图,在四边形ABCD 中,AD ∥BC .点E 为CD 边上一点,AE 与BE 分别为∠DAB 和∠CBA 的平分线.(1)请你添加一个适当的条件 ,使得四边形ABCD 是平行四边形,并证明你的结论;(2)作线段AB 的垂直平分线交AB 于点O ,并以AB 为直径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O 交边AD 于点F ,连接BF ,交AE 于点G ,若AE=4,sin ∠AGF=45,求⊙O 的半径.【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.【解析】分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45AE AB ,∵AE=4,∴AB=5,则圆O的半径为2.5.点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.6.如图,AB为⊙O的直径,且AB=m(m为常数),点C为AB的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.(1)当DC⊥AB时,则DA DBDC+=;(2)①当点D在AB上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;②设CD长为t,求△ADB的面积S与t的函数关系式;(3)当9220PDAC=时,求DEOA的值.【答案】(12;(2)①DA+DB2DC,②S=12t2﹣14m2;(3)24235DEOA=.【解析】【分析】(1)首先证明当DC⊥AB时,DC也为圆的直径,且△ADB为等腰直角三角形,即可求出结果;(2)①分别过点A,B作CD的垂线,连接AC,BC,分别构造△ADM和△BDN两个等腰直角三形及△NBC和△MCA两个全等的三角形,容易证出线段DA,DB,DC之间的数量关系;②通过完全平方公式(DA+DB)2=DA2+DB2+2DA•DB的变形及将已知条件AB=m代入即可求出结果;(3)通过设特殊值法,设出PD的长度,再通过相似及面积法求出相关线段的长度,即可求出结果.【详解】解:(1)如图1,∵AB为⊙O的直径,∴∠ADB=90°,∵C为AB的中点,∴AC BC=,∴∠ADC=∠BDC=45°,∵DC⊥AB,∴∠DEA=∠DEB=90°,∴∠DAE=∠DBE=45°,∴AE=BE,∴点E与点O重合,∴DC为⊙O的直径,∴DC=AB,在等腰直角三角形DAB中,DA=DB=2 AB,∴DA+DB=2AB=2CD,∴DA DBDC+=2;(2)①如图2,过点A作AM⊥DC于M,过点B作BN⊥CD于N,连接AC,BC,由(1)知AC BC=,∴AC=BC,∵AB为⊙O的直径,∴∠ACB=∠BNC=∠CMA=90°,∴∠NBC+∠BCN=90°,∠BCN+∠MCA=90°,∴∠NBC=∠MCA,在△NBC和△MCA中,BNC CMANBC MCABC CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NBC≌△MCA(AAS),∴CN=AM,由(1)知∠DAE=∠DBE=45°,AM2DA,DN2DB,∴DC=DN+NC22DA2(DB+DA),即DA+DB =2DC ;②在Rt △DAB 中,DA 2+DB 2=AB 2=m 2,∵(DA+DB )2=DA 2+DB 2+2DA•DB ,且由①知DA+DB 2DC 2t ,∴2t )2=m 2+2DA•DB ,∴DA•DB =t 2﹣12m 2, ∴S △ADB =12DA•DB =12t 2﹣14m 2, ∴△ADB 的面积S 与t 的函数关系式S =12t 2﹣14m 2; (3)如图3,过点E 作EH ⊥AD 于H ,EG ⊥DB 于G ,则NE =ME ,四边形DHEG 为正方形, 由(1)知AC BC =,∴AC =BC ,∴△ACB 为等腰直角三角形,∴AB 2AC , ∵220PD AC =, 设PD =2,则AC =20,AB =2,∵∠DBA =∠DBA ,∠PAB =∠ADB ,∴△ABD ∽△PBA ,∴AB BD AD PB AB PA ==, ∴20292202DB =+, ∴DB =2, ∴AD 22AB DB -=2, 设NE =ME =x , ∵S △ABD =12AD•BD =12AD •NE+12BD•ME ,∴12×122×162=12×122•x+12×162•x , ∴x =4827, ∴DE =2HE =2x =967, 又∵AO =12AB =102, ∴961242735102DE OA =⨯=.【点睛】本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.7.已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连结CB .[感知]如图①,点A 、B 在CD 同侧,且点B 在AC 右侧,在射线AM 上截取AE =BD ,连结CE ,可证△BCD ≌△ECA ,从而得出EC =BC ,∠ECB =90°,进而得出∠ABC = 度;[探究]如图②,当点A 、B 在CD 异侧时,[感知]得出的∠ABC 的大小是否改变?若不改变,给出证明;若改变,请求出∠ABC 的大小.[应用]在直线MN 绕点A 旋转的过程中,当∠BCD =30°,BD =时,直接写出BC 的长. 【答案】【感知】:45;【探究】:不改变,理由详见解析;【拓展】:BC 的长为+1或﹣1. 【解析】【分析】[感知]证明△BCD ≌△ECA (SAS ) 即可解决问题;[探究]结论不变,证明△BCD ≌△ECA (SAS ) 即可解决问题;[应用]分两种情形分别求解即可解决问题.【详解】解:【感知】,如图①中,在射线AM上截取AE=BD,连结CE.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°.∴∠CDB+∠CAB=180°,∵∠CAB+∠CAE=180°∴∠D=∠CAE,∵CD=AC,AE=BD,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.故答案为45【探究】不改变.理由如下:如图,如图②中,在射线AN上截取AE=BD,连接CE,设MN与CD交于点O.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°,∵∠AOC=∠DOB,∴∠D=∠EAC,CD=AC,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.【拓展】如图①﹣1中,连接AD.∴∠ACD+∠ABD=180°,∴A,C,D,B四点共圆,∴∠DAB=∠DCB=30°,∴AB =BD=,∴EB=AE+AB=+,∵△ECB是等腰直角三角形,如图②中,同法可得BC=﹣1.综上所述,BC的长为+1或﹣1.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.如图,四边形ABCD是⊙O的内接四边形,AC为直径,BD AD,DE⊥BC,垂足为E.(1)判断直线ED与⊙O的位置关系,并说明理由;(2)若CE=1,AC=4,求阴影部分的面积.【答案】(1)ED 与O 相切.理由见解析;(2)2=33S π-阴影. 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.9.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C .(1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.10.如图,AB为⊙O的直径,DA、DC分别切⊙O于点A,C,且AB=AD.(1)求tan∠AOD的值.(2)AC,OD交于点E,连结BE.①求∠AEB的度数;②连结BD交⊙O于点H,若BC=1,求CH的长.【答案】(1)2;(2)①∠AEB=135°;②22 CH=【解析】【分析】(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO,即可求tan∠AOD的值;(2)①根据切线长定理可得AD=CD,OD平分∠ADC,根据等腰三角形的性质可得DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;②由BC=1,可求AE=EC=1,BE2=∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.【详解】(1)∵DA是⊙O切线,∴∠BAD=90°.∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AODADAO==2;(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,AE=CE.∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2=.∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,∴△ABE∽△HBC,∴BC CHEB AE=,即12CH=,∴CH22=.【点睛】本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.。
2022年全国中考数学真题分类汇编专题16:圆(附答案解析)
(结果保留π).
23.一个扇形的面积为 7πcm2,半径为 6cm,则此扇形的圆心角是
度.
24.如图,A、B、C 是⊙O 上的点,OC⊥AB,垂足为点 D,且 D 为 OC 的中点,若 OA=7,
则 BC 的长为
.
25.如图,正六边形 ABCDEF 和正五边形 AHIJK 内接于⊙O,且有公共顶点 A,则∠BOH
AC 于点 E,F.若 AB=2,∠BAD=60°,则图中阴影部分的面积为
.(结果不
取近似值)
第 10 页 共 42 页
第 11 页 共 42 页
2022 年全国中考数学真题分类汇编专题 16:圆
参考答案与试题解析
一.填空题(共 46 小题) 1.如图是一个隧道的横截面,它的形状是以点 O 为圆心的圆的一部分,如果 C 是⊙O 中弦
两点,AC=2,则 昀的长是
.
第 2 页 共 42 页
10.将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中
心 O 重合,且两条直角边分别与量角器边缘所在的弧交于 A、B 两点.若 OA=5 厘米,
则 t的长度为
厘米.(结果保留π)
11.如图,点 A.B,C 在⊙O 上,∠AOB=62°,则∠ACB=
中阴影部分的面积为(结果保留π)
.
31.如图,在⊙O 中,AB 是⊙O 的弦,⊙O 的半径为 3cm.C 为⊙O 上一点,∠ACB=60°,
则 AB 的长为
cm.
第 7 页 共 42 页
32.如图,△ABC 中,∠C=90°,AC=8,BC=6,O 为内心,过点 O 的直线分别与 AC、
AB 边相交于点 D、E.若 DE=CD+BE,则线段 CD 的长为
圆的有关性质(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)圆的有关性质(优选真题60道)一.选择题(共23小题)1.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70°B.105°C.125°D.155°【分析】利用圆周角定理求得∠BOC的度数,然后利用三角形外角性质及等边对等角求得∠BPC的范围,继而得出答案.【解答】解:如图,连接BC,∵∠BAC=70°,∴∠BOC=2∠BAC=140°,∵OB=OC,=20°,∴∠OBC=∠OCB=180°−140°2∵点P为OB上任意一点(点P不与点B重合),∴0°<∠OCP<20°,∵∠BPC=∠BOC+∠OCP=140°+∠OCP,∴140°<∠BPC<160°,故选:D.【点评】本题考查圆与三角形外角性质的综合应用,结合已知条件求得∠BPC的范围是解题的关键.2.(2023•赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25°B.30°C.35°D.40°【分析】利用圆内接四边形的性质及圆周角定理求得∠BOD的度数,再结合已知条件求得∠COD的度数,然后利用圆周角定理求得∠CBD的度数.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠BCD=105°,∴∠A=75°,∴∠BOD=2∠A=150°,∵∠BOC=2∠COD,∴∠BOD=3∠COD=150°,∴∠COD=50°,∠COD=25°,∴∠CBD=12故选:A.【点评】本题考查圆内接四边形性质及圆周角定理,结合已知条件求得∠BOD的度数是解题的关键.3.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB =2∠C ,∠C =55°,∴∠AOB =110°,故选:D .【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.4.(2023•广东)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A .20°B .40°C .50°D .80°【分析】由AB 是⊙O 的直径,得∠ACB =90°,而∠BAC =50°,即得∠ABC =40°,故∠D =∠ABC =40°,【解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC+∠ABC =90°,∵∠BAC =50°,∴∠ABC =40°,∵AĈ=AC ̂, ∴∠D =∠ABC =40°,故选:B .【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.5.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m【分析】设主桥拱半径R ,根据垂径定理得到AD =372,再利用勾股定理列方程求解,即可得到答案. 【解答】解:由题意可知,AB =37m ,CD =7m ,设主桥拱半径为Rm ,∴OD =OC ﹣CD =(R ﹣7)m ,∵OC 是半径,OC ⊥AB ,∴AD =BD =12AB =372m ,在RtADO 中,AD2+OD2=OA2,∴(372)2+(R ﹣7)2=R2, 解得R =156556≈28.故选:B .【点评】本题主要考查垂径定理的应用,涉及勾股定理,解题的关键是用勾股定理列出关于R 的方程解决问题.6.(2023•广元)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是( )A .56°B .33°C .28°D .23°【分析】先由平角定义求得∠AOD =56°,再利用圆周角定理可求∠ACD .【解答】解:∵∠BOD =124°,∴∠AOD =180°﹣124°=56°,∴∠ACD =12∠AOD =28°,【点评】本题主要考查的是圆周角定理的应用,利用平角定义求得∠AOD =56°是解决本题的关键.7.(2023•温州)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =√3,则∠CAO 的度数与BC 的长分别为( )A .10°,1B .10°,√2C .15°,1D .15°,√2【分析】由平行线的性质,圆周角定理,垂直的定义,推出∠AOB =∠COD =90°,∠CAD =∠BDA =45°,求出∠BOC =60°,得到△BOC 是等边三角形,得到BC =OB ,由等腰三角形的性质求出圆的半径长,求出∠OAD 的度数,即可得到BC 的长,∠CAO 的度数.【解答】解:∵BC ∥AD ,∴∠DBC =∠ADB ,∴AB̂=CD ̂, ∴∠AOB =∠COD ,∠CAD =∠∵DB ⊥AC ,∴∠AED =90°,∴∠CAD =∠BDA =45°,∴∠AOB =2∠ADB =90°,∠COD =2∠CAD =90°,∵∠AOD =120°,∴∠BOC =360°﹣90°﹣90°﹣120°=60°,∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB ,∵OA =OD ,∠AOD =120°,∴∠OAD =∠ODA =30°,∴AD =√3OA =√3,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.【点评】本题考查圆周角定理,平行线的性质,等边三角形的判定和性质,等腰三角形的性质,关键是由圆周角定理推出∠AOB=∠COD=90°,∠CAD=∠BDA=45°,证明△OBC是等边三角形.8.(2023•山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40°B.50°C.60°D.70°【分析】由圆周角定理可得∠BCD=90°,∠BDC=∠BAC=40°,再利用直角三角形的性质可求解.【解答】解:∵BD经过圆心O,∴∠BCD=90°,∵∠BDC=∠BAC=40°,∴∠DBC=90°﹣∠BDC=50°,故选:B.【点评】本题主要考查圆周角定理,直角三角形的性质,掌握圆周角定理是解题的关键.9.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A .5B .4C .3D .2【分析】根据垂径定理得OB ⊥AC ,在根据勾股定理得OA =√AD 2+OD 2=√82+62=10,即可求出答案.【解答】解:∵AD =CD =8,∴OB ⊥AC ,在Rt △AOD 中,OA =√AD 2+OD 2=√82+62=10,∴OB =10,∴BD =10﹣6=4.故选:B .【点评】本题考查了垂径定理和勾股定理,由垂径定理得OB ⊥AC 是解题的关键.10.(2023•枣庄)如图,在⊙O 中,弦AB ,CD 相交于点P .若∠A =48°,∠APD =80°,则∠B 的度数为( )A .32°B .42°C .48°D .52°【分析】根据外角∠APD ,求出∠C ,由同弧所对圆周角相等即可求出∠B .【解答】解:∵∠A =48°,∠APD =80°,∴∠C =80°﹣48°=32°,∵AD̂=AD ̂, ∴∠B =∠C =32°.故选:A .【点评】本题考查了圆周角的性质的应用,三角形外角的性质应用是解题关键.11.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC =()A.23°B.24°C.25°D.26°【分析】连接OC,根据圆周角定理可求解∠AOC的度数,结合垂直的定义可求解∠BOC 的度数,再利用圆周角定理可求解.【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=1∠BOC=26°,2故选:D.【点评】本题主要考查圆周角定理,掌握圆周角定理是解题的关键.12.(2023•湖北)如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC =70°,则∠ADC=()A.70°B.60°C.50°D.40°【分析】先根据外角性质得∠BAC=∠BPC﹣∠C=50°=∠BDC,,再由AB是⊙O的直径得∠ADB=90°即可求得∠ADC.【解答】解:∵∠C=20°,∠BPC=70°,∴∠BAC=∠BPC﹣∠C=50°=∠BDC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB﹣∠BDC=40°,故选:D.【点评】本题主要考查了三角形的外角性质以及直径所对的圆周角是直角,熟练掌握各知识点是解决本题的关键.13.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2√3B.3√2C.2√5D.√5【分析】根据圆周角定理及推论解答即可.【解答】解:方法一:连接CO并延长CO交⊙O于点E,连接AE,∵OA=OC,∴∠OAC=∠OCA,∵∠ACD=∠CAB,∴∠ACD=∠ACO,∴AE=AD=2,∵CE是直径,∴∠EAC=90°,在Rt△EAC中,AE=2,AC=4,∴EC=√22+42=2√5,∴⊙O 的半径为√5.方法二:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠ACD =∠CAB ,∴AD̂=BC ̂, ∴AD =BC =2,在Rt △ABC 中,AB =√AC 2+BC 2=2√5,∴圆O 的半径为√5.故选:D .【点评】本题主要考查了圆周角定理及推论,熟练掌握这些性质定理是解决本题的关键.14.(2022•贵阳)如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )A .5B .5√2C .5√3D .5√5【分析】解法一:根据题意和等边三角形的判定,可以得到BE 的长.解法二:先根据直径所对的圆周角是90°,然后根据直角三角形的性质和直角三角形中30°角所对的直角边是斜边的一半,可以求得BE的长.【解答】解:解法一:连接OE,BD=5,由已知可得,OE=OB=12∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.解法二:由题意可得,BD为⊙O的直径,∴∠BED=90°,∵∠ABC=60°,∴∠EDB=30°,∵BD=10,∴BE=5,故选:A.【点评】本题考查等边三角形的判定与性质、与圆相关的知识,解答本题的关键是明确题意,求出△OBE 的形状.15.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.【解答】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°﹣90°﹣90°﹣130°=50°,∴∠BOC=2∠BAC=100°,故选:B.【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是()A.40°B.45°C.50°D.55°【分析】根据直径所对的圆周角是直角得到∠ABC=90°,进而求出∠CAB,根据圆周角定理解答即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,∵∠ACB=40°,∴∠CAB=90°﹣40°=50°,由圆周角定理得:∠BPC=∠CAB=50°,故选:C.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是直角是解题的关键.17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F ̂上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()是劣弧DEA.115°B.118°C.120°D.125°【分析】根据圆的内接四边形对角互补及等边△ABC的每一个内角是60°,求出∠EFD=120°.【解答】解:四边形EFDA是⊙O内接四边形,∴∠EFD+∠A=180°,∵等边△ABC的顶点A在⊙O上,∴∠A=60°,∴∠EFD=120°,故选:C.【点评】本题考查了圆内接四边形的性质、等边三角形的性质,掌握两个性质定理的应用是解题关键.18.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD 的面积为()A.36√3B.24√3C.18√3D.72√3【分析】根据AB=12,BE=3,求出OE=3,OC=6,并利用勾股定理求出EC,根据垂径定理求出CD,即可求出四边形的面积.【解答】解:如图,连接OC,∵AB=12,BE=3,∴OB=OC=6,OE=3,∵AB⊥CD,在Rt△COE中,EC=√OC2−OE2=√36−9=3√3,∴CD=2CE=6√3,∴四边形ACBD的面积=12AB⋅CD=12×12×6√3=36√3.故选:A.【点评】本题考查了垂径定理,解题的关键是熟练运用定理.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.19.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8/分C.1.2厘米/分D.1.4厘米/分【分析】连接OA,过点O作OD⊥AB于D,由垂径定理求出AD的长,再由勾股定理求出OD的长,然后计算出太阳在海平线以下部分的高度,即可求解.【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=12AB=8(厘米),∵OA=10厘米,∴OD=√OA2−AD2=√102−82=6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.【点评】本题考查的是垂径定理的运用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.52C.3D.√10【分析】当A,M,C三点共线时,线段CM的长度最小,求出此时CM的长度即可.【解答】解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A为圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=√32+42=5,AM=AB=3,∴CM=5﹣3=2,故选:A.【点评】本题主要考查圆的性质,关键是要考虑到点M在以A为圆心,3为半径的圆上.21.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【分析】由圆内接四边形的性质得∠D度数为60°,再由∠APC为△PCD的外角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.22.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°【分析】根据圆内接四边形的性质得到∠BAD+∠BCD=180°,根据圆周角定理得到∠BOD=2∠BAD,根据菱形的性质得到∠BOD=∠BCD,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BAD+∠BCD =180°,由圆周角定理得:∠BOD =2∠BAD ,∵四边形OBCD 为菱形,∴∠BOD =∠BCD ,∴∠BAD+2∠BAD =180°,解得:∠BAD =60°,故选:B .【点评】本题考查的是圆内接四边形的性质、圆周角定理、菱形的性质,掌握圆内接四边形的对角互补是解题的关键.23.(2021•眉山)如图,在以AB 为直径的⊙O 中,点C 为圆上的一点,BĈ=3AC ̂,弦CD ⊥AB 于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则∠CBF 的度数为( )A .18°B .21°C .22.5°D .30°【分析】由圆周角定理可求∠ACB =90°,由弧的关系得出角的关系,进而可求∠ABC =22.5°,∠CAB =67.5CAH =∠ACE =22.5°,即可求解.【解答】解:∵AB 是直径,∴∠ACB =90°,∴∠ABC+∠CAB =90°,∵BĈ=3AC ̂, ∴∠CAB =3∠ABC ,∴∠ABC =22.5°,∠CAB =67.5°,∵CD ⊥AB ,∴∠ACE =22.5°,∵点H 是AG 的中点,∠ACB =90°,∴AH =CH =HG ,∴∠CAH =∠ACE =22.5°,∵∠CAF =∠CBF ,∴∠CBF =22.5°,故选:C .【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB 的度数是本题的关键.二.填空题(共25小题)24.(2023•长沙)如图,点A ,B ,C 在半径为2的⊙O 上,∠ACB =60°,OD ⊥AB ,垂足为E ,交⊙O 于点D ,连接OA ,则OE 的长度为 .【分析】连接OB ,利用圆周角定理及垂径定理易得∠AOD =60°,则∠OAE =30°,结合已知条件,利用直角三角形中30°角对的直角边等于斜边的一半即可求得答案.【解答】解:如图,连接OB ,∵∠ACB =60°,∴∠AOB =2∠ACB =120°,∵OD ⊥AB ,∴AD̂=BD ̂,∠OEA =90°, ∴∠AOD =∠BOD =12∠AOB =60°,∴∠OAE =90°﹣60°=30°,∴OE =12OA =12×2=1,故答案为:1.【点评】本题考查圆与直角三角形性质的综合应用,结合已知条件求得∠AOD =60°是解题的关键.25.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=°.【分析】先根据直径所对的圆周角是直角可得∠ACB=90°,再利用圆周角定理可得∠ADC=∠ABC=20°,然后利用直角三角形的两个锐角互余可得∠BAC=70°,从而利用角平分线的定义进行计算,即可解答.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ADC=20°,∴∠ADC=∠ABC=20°,∴∠BAC=90°﹣∠ABC=70°,∵AD平分∠BAC,∠BAC=35°,∴∠BAD=12故答案为:35.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.26.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为寸.【分析】连接OA ,设⊙O 的半径是r 寸,由垂径定理得到AE =12AB =5寸,由勾股定理得到r2=(r ﹣1)2+52,求出r ,即可得到圆的直径长.【解答】解:连接OA ,设⊙O 的半径是r 寸,∵直径CD ⊥AB ,∴AE =12AB =12×10=5寸,∵CE =1寸,∴OE =(r ﹣1)寸,∵OA2=OE2+AE2,∴r2=(r ﹣1)2+52,∴r =13,∴直径CD 的长度为2r =26寸.故答案为:26.【点评】本题考查垂径定理的应用,勾股定理的应用,关键是连接OA 构造直角三角形,应用垂径定理,勾股定理列出关于圆半径的方程.27.(2023•郴州)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器 台.【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半,得该圆周角所对的弧所对的圆心角是110°,则共需安装360°÷110°=3311≈4台.【解答】解:∵∠P=55°,∴∠P所对弧所对的圆心角是110°,,∵360°÷110°=3311∴最少需要在圆形边缘上共安装这样的监视器4台.故答案为:4.【点评】此题考查了要圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意把实际问题转化为数学问题,能够把数学和生活联系起来.28.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.【分析】由圆内接四边形的性质:圆内接四边形的对角互补,即可得到答案.【解答】解:∵四边形ABCD内接于圆O,∴∠B+∠D=180°,∵∠D=100°,∴∠B=80°.故答案为:80°.【点评】本题考查圆内接四边形的性质,关键是掌握圆内接四边形的性质.29.(2023•南充)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【分析】根据垂径定理得OM⊥AC,根据圆周角定理得∠C=90°,根据勾股定理得AB=√122+52=13,BC=2.5,OD∥BC,所以OD⊥AC,MD=OM﹣OD=6.5﹣2.5=4.根据三角形中位线定理得OD=12【解答】解:∵点M是弧AC的中点,∴OM⊥AC,∵AB是⊙O的直径,∴∠C=90°,∵AC=12,BC=5,∴AB=√122+52=13,∴OM=6.5,∵点D是弦AC的中点,∴OD=1BC=2.5,OD∥BC,2∴OD⊥AC,∴O、D、M三点共线,∴MD=OM﹣OD=6.5﹣2.5=4.故答案为:4.【点评】本题考查了垂径定理,圆周角定理,勾股定理,三角形中位线定理,熟练掌握和运用这些定理是解题的关键.30.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC 的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB =90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.【点评】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.31.(2022•上海)如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为 .(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB ,过点O 作OD ⊥AB 于D ,∵OD ⊥AB ,OD 过圆心,AB 是弦,∴AD =BD =12AB =12(AC+BC )=12×(11+21)=16, ∴CD =BC ﹣BD =21﹣16=5,在Rt △COD 中,OD2=OC2﹣CD2=132﹣52=144,在Rt △BOD 中,OB2=OD2+BD2=144+256=400,∴S ⊙O =π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB =12cm ,BC =5cm ,则圆形镜面的半径为 .【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),所以圆形镜面的半径为13cm,2cm.故答案为:132【点评】本题考查了圆周角定理和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.33.(2022•阿坝州)如图,点A,B C在⊙O上,若∠ACB=30°,则∠AOB的大小为.【分析】根据圆周角定理即可得出答案.∠AOB,∠ACB=30°,【解答】解:∵∠ACB=12∴∠AOB=2∠ACB=2×30°=60°.故答案为:60°.【点评】本题主要考查了圆周角定理,熟练掌握圆周角定理是解题的关键.34.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O ̂所对的圆周角,则∠APD的度数是.于点D.若∠APD是AD【分析】由垂径定理得出AD̂=BD ̂,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =12∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴AD̂=BD ̂, ∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =12∠AOB =60°,∴∠APD =12∠AOD =12×60°=30°,故答案为:30°.【点评】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理,35.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为 厘米.【分析】根据题意,弦AB 长20厘米,弓形高CD 为2厘米,根据勾股定理和垂径定理可以求得圆的半径.【解答】解:如图,点O 是圆形玻璃镜面的圆心,连接OC ,则点C ,点D ,点O 三点共线,由题意可得:OC ⊥AB ,AC =12AB =10(厘米),设镜面半径为x 厘米,由题意可得:x2=102+(x ﹣2)2,∴x =26,∴镜面半径为26厘米,故答案为:26.【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,由勾股定理可求解.36.(2022•黄石)如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是 .【分析】根据已知,列出关于α,β的方程组,可解得α,β的度数,即可求出答案.【解答】解:根据题意得:{αβ=0.6α+=360°,解得{α=135°β=225°, ∴β﹣α=225°﹣135°=90°,故答案为:90°.【点评】本题考查圆心角,解题的关键是根据周角为360°和已知,列出方程组.37.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为 cm (玻璃瓶厚度忽略不计).【分析】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=1AD2=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解答】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),AD=6(cm),由垂径定理得:AM=DM=12在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.38.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是.【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=2√3,所以A(﹣2√3,0),B (0,2),然后利用线段的中点坐标公式得到D点坐标.【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∵∠ABO=60°,AB=2,∴OB=12∴OA=√3OB=2√3,∴A(﹣2√3,0),B(0,2),∴D点坐标为(−√3,1).故答案为(−√3,1).【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的90°的圆周角所对的弦是直径.也考查了坐标与图形性质.39.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC=30°,则⊙O 的半径为cm.【分析】连接OC,证明△AOC是等边三角形,可得结论.【解答】解:如图,连接OC.∵∠AOC=2∠ADC,∠ADC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=5(cm),∴⊙O的半径为5cm.故答案为:5.【点评】本题考查圆周角定理,等边三角形的判定和性质等知识,解题的关键是证明△AOC是等边三角形.40.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B 在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).【分析】(Ⅰ)利用勾股定理求解即可.(Ⅱ)取BC与网格线的交点D,连接OD延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC 交BE的延长线于F,连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC=√22+12=√5.故答案为:√5.(Ⅱ)如图,点P即为所求.故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE 交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BFA的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△FAP≌△BAC,则点P即为所求.【点评】本题考查圆周角定理,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.41.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为.【分析】延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小.【解答】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.∵CD⊥OB,∴∠DCB=90°,∵∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO,∴CDAO =BCBO,∴CD4=36,∴CD=2,在Rt△CDE中,DE=√CD2+CE2=√22+62=2√10,∴PC+PD的最小值为2√10.故答案为:2√10.【点评】本题考查圆周角定理,垂径定理,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.42.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是CD̂的中点,则∠ABE=.【分析】由∠ABC=90°,可得CD是⊙O的直径,由点B是CD̂的中点以及三角形的内角和,可得∠BDC=∠BCD=45°,利用三角形的内角和求出∠ACB,再根据角的和差关系求出∠DCE,由圆周角定理可得∠ABE =∠DCE得出答案.【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是CD̂的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【点评】本题考查圆周角定理,弦、弧、圆心角之间的关系以及三角形内角和定理,掌握圆周角定理和推论是正确计算的前提.43.(2021•成都)如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .【分析】设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,先求出A 、C 坐标,得到OA 、OC 长度,可得∠CAO =30°,Rt △AOD 中求出AD 长度,从而根据垂径定理可得答案.【解答】解:设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,如图:在y =√33x +2√33中,令x =0得y =2√33, ∴C(0,2√33),OC =2√33, 在y =√33x +2√33中令y =0得√33x +2√33=0,解得x =﹣2,∴A(﹣2,0),OA =2,Rt △AOC 中,tan ∠CAO =OC OA =2√332=√33,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×√3=√3,2∵OD⊥AB,∴AD=BD=√3,∴AB=2√3,故答案为:2√3.得到【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=OCOA∠CAO=30°.44.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.【点评】本题考查圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.45.(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC 的长为.【分析】连接OA,由AB⊥CD,设OC=5x,OM=3x,根据CD=10可得OC=5,OM=3,根据垂径定理得到AM=4,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解答】解:连接OA,∵OM:OC=3:5,设OC=5x,OM=3x,则OD=OC=5x,∵CD=10,∴OM=3,OA=OC=5,∵AB⊥CD,AB,∴AM=BM=12在Rt△OAM中,OA=5,AM=√OA2−OM2=√52−32=4,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=√AM2+CM2=√42+82=4√5;当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=√AM2+MC2=√42+22=2√5.综上所述,AC的长为4√5或2√5.故答案为:4√5或2√5.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.46.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB =6.4cm,很快求得圆形瓦片所在圆的半径为cm.【分析】先根据垂径定理的推论得到CD 过圆心,AD =BD =3.2cm ,设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,利用勾股定理得到(R ﹣1.6)2+3.22=R2,然后解方程即可.【解答】解:∵C 点是AB̂的中点,CD ⊥AB , ∴CD 过圆心,AD =BD =12AB =12×6.4=3.2(cm ),设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,在Rt △OAD 中,(R ﹣1.6)2+3.22=R2,解得R =4(cm ),所以圆形瓦片所在圆的半径为4cm .故答案为4.【点评】本题考查了垂径定理的应用:利用垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.47.(2021•德阳)在锐角三角形ABC 中,∠A =30°,BC =2,设BC 边上的高为h ,则h 的取值范围是 .【分析】如图,BC 为⊙O 的弦,OB =OC =2,证明△OBC 为等边三角形得到∠BOC =60°,则根据圆周角定理得到∠BAC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形,易得CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,根据垂径定理得到AH ⊥BC ,所以BH =CH =1,OH =√3,则AH =2+√3,然后写出h 的范围.【解答】解:如图,BC 为⊙O 的弦,OB =OC =2,∵BC =2,∴OB =OC =BC ,∴△OBC 为等边三角形,∴∠BOC =60°,∴∠BAC =12∠BOC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,∴当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形, 在Rt △BCD 中,∵∠D =∠BAC =30°,∴CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大, 延长AO 交BC 于H ,如图,∵A 点为DÊ的中点, ∴AB̂=AC ̂, ∴AH ⊥BC ,∴BH =CH =1,∴OH =√3BH =√3,∴AH =OA+OH =2+√3,∴h 的范围为2√3<h ≤2+√3.故答案为2√3<h ≤2+√3.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(π取3.14,√3取1.73)。
全国各地中考数学分类:圆的综合综合题汇编及答案
全国各地中考数学分类:圆的综合综合题汇编及答案一、圆的综合1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD 是直径,∴∠DBC=90°,∵CD=4,B 为弧CD 中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB ,∵∠DBE=∠DBA ,∴△DBE ∽△ABD , ∴,∴BE•AB=BD•BD=. 考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BGBF BA=,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知BC=26k,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=12BC=6k求得DM=22CD CM-=3k,可知OM=OD-DM=3-3k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC ﹣CF=BC ﹣AC 、BG=BC+CG=BC+AC ,BE=CE=AC ,∴(BC ﹣AC )(BC+AC )=AB•AC ,即BC 2﹣AC 2=AB•AC ;(3)设AB=5k 、AC=3k ,∵BC 2﹣AC 2=AB•AC ,∴k ,连接ED 交BC 于点M ,∵四边形BDCE 是菱形,∴DE 垂直平分BC ,则点E 、O 、M 、D 共线,在Rt △DMC 中,DC=AC=3k ,MC=12k , ∴=,∴OM=OD﹣DM=3k ,在Rt △COM 中,由OM 2+MC 2=OC 2得(3)2+k )2=32,解得:k=0(舍), ∴;②设OM=d ,则MD=3﹣d ,MC 2=OC 2﹣OM 2=9﹣d 2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272,∴,∴AB=4,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.3.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.4.如图,在ABC ∆中,90,BAC ∠=︒2,AB AC ==AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC =2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC 2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.5.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△BFD (ASA ),∴AE =BF ;(2)连接EF ,BG .∵△AED ≌△BFD ,∴DE =DF .∵∠EDF =90°,∴△EDF 是等腰直角三角形,∴∠DEF =45°.∵∠G =∠A =45°,∴∠G =∠DEF ,∴GB ∥EF ,∴∠FEB =∠GBA .∵∠GBA =∠GDA ,∴∠FEB =∠GDA ;(3)∵AE =BF ,AE =2,∴BF =2.在Rt △EBF 中,∠EBF =90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF =2242+=25. ∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DE EF . ∵EF =25,∴DE =25×22=10. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EB ED ,即GE •ED =AE •EB ,∴10•GE =8,即GE =410,则GD =GE +ED =910. ∴119101109222S GD DF GD DE =⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.6.如图,已知AB 为⊙O 直径,D 是»BC的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F .(1)求证:直线DE 与⊙O 相切;(2)已知DG ⊥AB 且DE =4,⊙O 的半径为5,求tan ∠F 的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴»»DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.7.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
2023中考数学真题汇编23 圆的有关性质(含答案与解析)
2023中考数学真题汇编·23圆的有关性质一、单选题1.(2023·江苏连云港)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是()A .只有甲是扇形B .只有乙是扇形C .只有丙是扇形D .只有乙、丙是扇形2.(2023·河南)如图,点A ,B ,C 在O 上,若55C ,则AOB 的度数为()A .95B .100C .105D .110 3.(2023·云南)如图,AB 是O 的直径,C 是O 上一点.若66BOC ,则A ()A .66B .33C .24D .30 4.(2023·广东)如图,AB 是O 的直径,50BAC ,则D ()A .20B .40C .50D .80 5.(2023·四川自贡)如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ,则ABC 的度数是()A .41B .45C .49D .59 6.(2023·四川)如图,AB 是O 的直径,点C ,D 在O 上,连接CD OD AC ,,,若124BOD ,则ACD 的度数是()A .56B .33C .28D .23 7.(2023·四川宜宾)如图,已知点A B C 、、在O 上,C 为 AB 的中点.若35BAC ,则AOB 等于()A .140B .120C .110D .70 8.(2023·安徽)如图,正五边形ABCDE 内接于O ,连接,OC OD ,则BAE COD ()A .60B .54C .48D .36 9.(2023·新疆)如图,在O 中,若30ACB ,6OA ,则扇形OAB (阴影部分)的面积是()A .12B .6C .4D .210.(2023·浙江温州)如图,四边形ABCD 内接于O ,BC AD ∥,AC BD .若120AOD ,AD ,则CAO 的度数与BC 的长分别为()A .10°,1B .10°C .15°,1D .15°11.(2023·内蒙古赤峰)如图,圆内接四边形ABCD 中,105BCD ,连接OB ,OC ,OD ,BD ,2BOC COD .则CBD 的度数是()A .25B .30C .35D .4012.(2023·四川凉山)如图,在O 中,30OA BC ADB BC ,,OC ()A .1B .2C .D .413.(2023·山东枣庄)如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ,,则B 的度数为()A .32B .42C .48D .5214.(2023·湖北十堰)如图,O 是ABC 的外接圆,弦BD 交AC 于点E ,AE DE ,BC CE ,过点O作OF AC 于点F ,延长FO 交BE 于点G ,若3DE ,2EG ,则AB 的长为()A .B .7C .8D .15.(2023·浙江杭州)如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ,则BAC ()A .23B .24C .25D .2616.(2023·湖北黄冈)如图,在O 中,直径AB 与弦CD 相交于点P ,连接AC AD BD ,,,若20C ,70BPC ,则ADC ()A .70B .60C .50D .4017.(2023·湖北宜昌)如图,OA OB OC ,,都是O 的半径,AC OB ,交于点D .若86AD CD OD ,,则BD 的长为().A .5B .4C .3D .218.(2023·四川内江)如图,正六边形ABCDEF 内接于O ,点P 在 AF 上,Q 是 DE的中点,则CPQ 的度数为()A .30B .36C .45D .6019.(2023·河北)如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A .a bB .a bC .a bD .a ,b 大小无法比较20.(2023·浙江台州)如图,O 的圆心O 与正方形的中心重合,已知O 的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为().AB .2C .4D .4 21.(2023·四川宜宾)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB .“会圆术”给出 AB 的弧长l 的近似值计算公式:2MN l AB OA .当4OA ,60AOB 时,则l 的值为()A .11 B .11 C .8 D .8 22.(2023·广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A .20mB .28mC .35mD .40m23.(2023·山东聊城)如图,点O 是ABC 外接圆的圆心,点I 是ABC 的内心,连接OB ,IA .若35CAI ,则OBC 的度数为()A .15B .17.5C .20D .2524.(2023·福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率 的近似值为3.1416.如图,O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计O 的面积,可得 的估计值为2,若用圆内接正十二边形作近似估计,可得 的估计值为()AB .C .3D .25.(2023·全国)如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ,则BPC 的度数可能是()A .70B .105C .125D .155 26.(2023·甘肃兰州)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA OB ;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a b ∥.按以上作图顺序,若35MNO ,则AOC ()A .35B .30C .25D .20二、填空题27.(2023·四川南充)如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ,则MD 的长是________.28.(2023·湖南永州)如图,O 是一个盛有水的容器的横截面,O 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度为_______cm .29.(2023·广东深圳)如图,在O 中,AB 为直径,C 为圆上一点,BAC 的角平分线与O 交于点D ,若20ADC ,则BAD ______°.30.(2023·山东东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ,垂足为点E ,1CE 寸,10AB 寸,则直径CD 的长度是________寸.31.(2023·四川广安)如图,ABC 内接于O ,圆的半径为7,60BAC ,则弦BC 的长度为___________.32.(2023·浙江金华)如图,在ABC 中,6cm,50AB AC BAC ,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为__________cm .33.(2023·浙江绍兴)如图,四边形ABCD 内接于圆O ,若100D ,则B 的度数是________.34.(2023·山东烟台)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD 的度数为_______.35.(2023·湖南)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是________个.36.(2023·湖南)如图所示,点A 、B 、C 是O 上不同的三点,点O 在ABC 的内部,连接BO 、CO ,并延长线段BO 交线段AC 于点D .若6040A OCD ,,则ODC _______度.37.(2023·湖南郴州)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55 ,为了监控整个展区,最少..需要在圆形边缘上共安装这样的监视器___________台.38.(2023·浙江杭州)如图,六边形ABCDEF 是O 的内接正六边形,设正六边形ABCDEF 的面积为1S ,ACE △的面积为2S,则12S S _________.三、解答题39.(2023·甘肃武威)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知O ,A 是O 上一点,只用圆规将O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在O 上逆时针方向顺次截取 AB BCCD ;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于O 上方点E ;③以点A 为圆心,OE 长为半径作弧交O 于G ,H 两点.即点A ,G ,D ,H 将O 的圆周四等分.40.(2023·湖北武汉)如图,,,OA OB OC 都是O 的半径,2A CB BA C .(1)求证:2AOB BOC ;(2)若4,5AB BC ,求O 的半径.41.(2023·浙江金华)如图,点A 在第一象限内,A 与x 轴相切于点B ,与y 轴相交于点,C D .连接AB ,过点A 作AH CD 于点H .(1)求证:四边形ABOH 为矩形.(2)已知A 的半径为4,OB CD 的长.42.(2023·上海)如图,在O 中,弦AB 的长为8,点C 在BO 延长线上,且41cos ,52ABC OC OB .(1)求O 的半径;(2)求BAC 的正切值.43.(2023·贵州)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30 的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【参考答案与解析】1.【答案】B【解析】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .2.【答案】D【解析】解:∵55C ,∴由圆周角定理得:2110AOB C ∠∠,故选:D .3.【答案】B【解析】解:∵ BC BC ,66BOC ,∴1332A BOC ,故选:B .4.【答案】B【解析】解:∵AB 是O 的直径,∴90ACB ,∵50BAC ,∴9040ABC BAC ,∵ AC AC ,∴40D ABC ;故选:B .5.【答案】C【解析】解:∵CD 是O 的直径,∴90DBC ,∵ AD AD ,∴41ABD ACD ,∴904149ABC DBC DBA ,故选:C .6.【答案】C【解析】解:∵124BOD ,∴18012456AOD Ð=°-°=°,∴1282ACD AOD,故选:C .7.【答案】A 【解析】解:连接OC ,如图所示:∵点A B C 、、在O 上,C 为 AB 的中点, BCAC ,12BOC AOC AOB,∵35BAC ,根据圆周角定理可知270BOC BAC ,2140AOB BOC ,故选:A .8.【答案】D【解析】∵360360180,55BAE COD,∴3603601803655BAE COD ,故选:D .9.【答案】B 【解析】解:∵ AB AB ,30ACB ,∴60AOB ,∴260π66π360S.故选:B.10.【答案】C【解析】解:过点O 作OE AD 于点E ,如图所示:∵BC AD ∥,∴CBD ADB ,∵CBD CAD ,∴CAD ADB ,∵AC BD ,∴90AFD ,∴45CAD ADB CBD BCA ,∵120AOD ,OA OD ,AD ∴30OAD ODA ,1602ABD ACD AOD ,1322AE AD ,∴15CAO CAD OAD ,1cos30AE OA OC OD,105BCD BCA ACD ,∴290,18030COD CAD CDB BCD CBD ,∴12CD CF CD∴1BC ;故选:C .11.【答案】A【解析】解:∵圆内接四边形ABCD 中,105BCD ,∴18010575A∴2150BOD A∵2BOC COD ,∴1503COD BOD ,∵ CDCD ,∴11502522CBD COD ,故选:A .12.【答案】B 【解析】解:连接OB,如图所示,,30ADB ∵,223060AOB ADB ,∵OA BC ,60COE BOE,1122CE BE BC 在Rt OCE中,60COE CE ,2sin 60CE OC ,故选:B .13.【答案】A 【解析】解:48A D A ∵,,48D ,80APD APD B D ∵,,804832B APD D ,故选:A .14.【答案】B【解析】解:作BM AC 于点M,在AEB △和DEC 中,A D AE ED AEB DEC,∴ ASA AEB DEC ≌ ,∴EB EC ,又∵BC CE ,∴BE CE BC ,∴EBC 为等边三角形,∴60GEF ,BC EC ∴30EGF ,∵2EG ,OF AC ,30EGF ,∴112EF EG ,又∵3AE ED ,OF AC ,∴4CF AF AE EF ,∴285AC AF EC EF CF ,,∴5BC EC ,∵60BCM ,∴∠30MBC ,∴52CM,BM ∴112AM AC CM ,∴7AB .15.【答案】D【解析】解:如图,∵半径,OA OB 互相垂直, 90AOB ,ADB 所对的圆心角为270 ,ADB 所对的圆周角12701352ACB ,又∵19ABC , 18026BAC ACB ABC ,故选:D .16.【答案】D【解析】解:∵20C ,∴20B ,∵70BPC ,∴702050BDP BPC B ,又∵AB 为直径,即90ADB ,∴905040ADC ADB BDP ,故选:D .17.【答案】B【解析】解:∵8AD CD ,∴点D 为AC 的中点,∵,AO CO ∴OD AC ,由勾股定理得,10,OC ∴10,OB ∴1064,BD OB OD 故选:B .18.【答案】C【解析】如图,连接,,,OC OD OQ OE ,∵正六边形ABCDEF ,Q 是 DE的中点,∴360606COD DOE,1302DOQ EOQ DOE ,∴90COQ COD DOQ ,∴1452CPQ COQ ,故选:C.19.【答案】A【解析】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P ∴12233467PP P P P P P P , 464556781178P P P P P P P P P P PP∴4617P P PP 又∵137P P P 的周长为131737a PP PP P P ,四边形3467P P P P 的周长为34466737b P P P P P P P P ,∴ 34466737131737b a P P P P P P P P PP PP P P 12172337131737PP PP P P P P PP PP P P 122313PP P P PP 在123P P P 中有122313PP P P PP ,∴1223130b a PP P P PP 故选:A .20.【答案】D【解析】解:设正方形四个顶点分别为A B C D 、、、,连接OA 并延长,交O 于点E ,过点O 作OF AB ,如下图:则EA 的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:4OE AB ,122AF OF AB由勾股定理可得:OA ∴4AE ,故选:D.21.【答案】B【解析】连接ON ,根据题意, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ,得ON AB ,∴点M ,N ,O 三点共线,∵4OA ,60AOB ,∴OAB 是等边三角形,∴4,60sin 602OA AB OAN ON OA ,,∴4,60sin 602OA AB OAN ON OA ,∴ 2244114MN l AB OA故选:B .22.【答案】B【解析】解:如图,由题意可知,37m AB ,7m CD ,主桥拱半径R , 7m OD OC CD R ,OC ∵是半径,且OC AB ,137m 22AD BD AB,在Rt △ADO 中,222AD OD OA , 2223772R R ,解得:156528m 56R ,故选:B.23.【答案】C【解析】解:连接OC ,∵点I 是ABC 的内心,35CAI ,∴270BAC CAI ,∴2140BOC BAC ,∵OB OC ,∴1801801402022BOC OBC OCB,故选:C .24.【答案】C【解析】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30 ,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC OA 交OA 于点于点C ,∵30AOB ,∴1122BC OB ,则1111224OAB S ,故正十二边形的面积为1121234OAB S,圆的面积为113 ,用圆内接正十二边形面积近似估计O 的面积可得3 ,故选:C .25.【答案】D【解析】解:∵ BC BC ,70BAC ,∴2140BOC BAC ,∵140BPC BOC PCO ,∴BPC 的度数可能是15526.【答案】A【解析】解:∵35MNO ,MO NO ,∴35NMO MNO ,∴23570AOB ,∵OA OB ,C 为AB 的中点,∴35AOC BOC ,故选A .27.【答案】4【解析】解:∵AB 是O 的直径,∴90ACB ,∵12,5AC BC ,∴13AB ,∴11322AO AB ,∵点D ,M 分别是弦AC ,弧AC 的中点,∴OM AC ,且6AD CD ,∴52OD ,∴4MD OM OD AO OD ,故答案为:4.28.【答案】16【解析】解:如图所示,过点O 作OD AB 于点D ,交O 于点E ,则12AD DB AB ,∵水的最深处到水面AB 的距离为4cm ,O 的半径为10cm .∴1046OD cm ,在Rt AOD 中,8ADcm ∴216AB AD cm 故答案为:16.29.【答案】35【解析】解:∵AB 是O 的直径,∴90ACB ,∵ AC AC ,20ADC ,∴20ADC ABC ,∴70BAC ,∵AD 平分BAC ,∴1352BAD BAC;故答案为:35.30.【答案】26【解析】解:连接OA ,AB CD ∵,且10AB 寸,5AE BE 寸,设圆O 的半径OA 的长为x ,则OC OD x ,1CE Q ,1OE x ,在直角三角形AOE 中,根据勾股定理得:222(1)5x x ,化简得:222125x x x ,即226x ,26CD (寸).故答案为:26.31.【答案】【解析】解:如图,连接,OB OC ,过点O 作OD BC 于点D ,60BAC ∵,2120BOC BAC ,,OB OC OD BC Q ,1602BOD BOC ,2BC BD ,∵圆的半径为7,7OB ,sin 60BD OB ,2BC BD故答案为:32.【答案】56【解析】解:如图,连接AD ,OD ,OE ,∵AB 为直径,∴AD AB ,∵6cm,50AB AC BAC ,∴BD CD ,1252BAD CAD BAC,∴250DOE BAD ,113cm 22OD AB AC,∴弧DE 的长为 50351806cm ,故答案为:56 cm .33.【答案】80【解析】解:∵四边形ABCD 内接于O ,∴180B D �邪=,∵100D ,∴18080B D =﹣=.故答案为:80 .34.【答案】52.5【解析】方法一∶解:如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ,502525AOB ,15525130AOD ,∴ 118077.52OAB AOB , 1180252OAD AOB ,∴52.5OAB A BAD O D .故答案为52.5 .方法二∶解∶连接,OB OD ,由题意可得:15550105BAD ,根据圆周角定理,知1110552.522BAD BOD .故答案为:52.5 .35.【答案】10【解析】解:根据题意可得:∵正五边形的一个外角360725,∴1272 ,∴18072236AOB ,∴共需要正五边形的个数3601036(个),故答案为:10.36.【答案】80【解析】解:在O 中,2260120BOC A Q ,1204080ODC BOC OCD 故答案为:80.37.【答案】4【解析】解:∵55P ,∴P 对应的圆心角的度数为110 ,∵360110 3.27 ,∴最少..需要在圆形边缘上共安装这样的监视器4台;故答案为:438.【答案】2【解析】如图所示,连接,,OA OC OE ,∵六边形ABCDEF 是O 的内接正六边形,∴AC AE CE ,∴ACE △是O 的内接正三角形,∵120B ,AB BC ,∴ 1180302BAC BCA B ,∵60CAE ,∴30OAC OAE ,∴30BAC OAC ,同理可得,30BCA OCA ,又∵AC AC ,∴ ASA BAC OAC ≌ ,∴BAC OAC S S ,由圆和正六边形的性质可得,BAC AFE CDE S S S ,由圆和正三角形的性质可得,OAC OAE OCE S S S ,∵ 2122BAC AFE CDE OAC OAE OCE OAC OAE OCE S S S S S S S S S S S ,∴122S S .故答案为:2.39.【答案】解:如图所示:【解析】根据作图提示逐步完成作图即可.再根据图形基本性质进行证明即可.40.【答案】(1)证明:∵ AB AB ,∴12ACB AOB,∵ BC BC ,∴12BAC BOC ,2ACB BAC ∵,2AOB BOC .(2)解:过点O 作半径OD AB 于点E ,则1,2 DOB AOB AE BE ,2AOB BOC Ð=ÐQ ,∴DOB BOC ,BD BC ,4, ∵AB BC ,2, BE DB在Rt BDE △中,90DEB Q 1 DE ,在Rt BOE 中,90OEB ∵,222(1)2 OB OB ,52OB ,即O 的半径是52.【解析】(1)由圆周角定理得出,11,22ACB AOB BAC BOC ,再根据2A CB BA C ,即可得出结论;(2)过点O 作半径OD AB 于点E ,根据垂径定理得出1,2 DOB AOB AE BE ,证明DOB BOC ,得出BD BC ,在Rt BDE △中根据勾股定理得出1DE ,在Rt BOE 中,根据勾股定理得出222(1)2OB OB ,求出OB 即可.41.【答案】(1)证明:∵A 与x 轴相切于点B ,∴AB x 轴.∵,AH CD HO OB ,∴90AHO HOB OBA ,∴四边形AHOB 是矩形.(2)如图,连接AC .∵四边形AHOB 是矩形,AH OB在Rt AHC 中,222CH AC AH ,3CH .∵点A 为圆心,AH CD ,2CD CH 6 .【解析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.42.【答案】(1)解:如图,延长BC ,交O 于点D ,连接AD,由圆周角定理得:90BAD ,∵弦AB 的长为8,且4cos 5ABC ,845AB BD BD ,解得10BD ,O 的半径为152BD .(2)解:如图,过点C 作CE AB 于点E,O ∵ 的半径为5,5OB ,12OC OB ∵,31522BC OB ,4cos 5ABC ∵,45BE BC ,即41552BE ,解得6BE ,2AE AB BE,92CE ,则BAC 的正切值为99224CE AE .【解析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ,再解直角三角形可得10BD ,由此即可得;(2)过点C 作CE AB 于点E ,先解直角三角形可得6BE ,从而可得2AE ,再利用勾股定理可得92CE ,然后根据正切的定义即可得.43.【答案】(1)1 、2 、3 、4 ;BCD △(2)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB 的角平分线,60ACB ABC CAB ,∴1230 ,∵CE 是O 的直径,∴90CAE CBE ,∴3430 ,∵CO 是ACB 的角平分线,∴90ADC BDC ,56903060 ,又∵56 ,3=230 ,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ,5660 ,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ,∴四边形OAEB 是菱形;【解析】(1)根据外接圆得到CO 是ACB 的角平分线,即可得到30 的角,根据垂径定理得到90ADC BDC ,即可得到答案;(2)根据(1)得到3=2 ,根据垂径定理得到5660 ,即可得到证明;(3)连接OA ,OB ,结合5660 得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ,即可得到证明;。
2024年中考数学复习(全国版)第六章 圆(测试)(解析版)
在 Rt △ 푂� 中,∵ ∠푂 � = 90°,
∴ 푂�2 = � 2 + 푂 2,
∴ �2 = 122 + (� − 8)2,
∴ � = 13,
即⊙ 푂的半径푂�为 13cm. 故选:A. 【点睛】本题考查了垂径定理、勾股定理的应用,设⊙ 푂的半径푂�为�cm,列出关于�的方程是解题的关
键. 5.【创新题】如图,� 是⊙ 푂的直径,弦 则下列结论一定成立的是( )
��,
故选 A
【点睛】本题考查了三角形的内切圆与内心,掌握内切圆的性质是解题的关键.
7.【创新题】如图,△ � 的内切圆⊙ �与 , �,� 分别相切于点 D,E,F,若⊙ �的半径为 r,∠� = �,
在�푡훥 푂中,푂 = ,∠�푂 = ∠�
D.�△ 푂 =
∴tan�= 푂
∴푂 = tan� = 2tan�,故选项 A 错误,不符合题意;
又 sin� = 푂
∴ = 푂 ·sin�
∴ = 2 = 2 ·sin�,故选项 B 正确,符合题意;
又
cos�
=
푂 푂
∴푂 = 푂 ·cos� = ·cos�
径定理和锐角三角函数的定义.
6.已知△ � 的周长为�,其内切圆的面积为��2,则△ � 的面积为( )
A.12 ��
B.12 ���
C.��
D.���
【答案】A
【分析】由题意可得�△�푂
=
1 2
�
×푂
=
1 2
�
× �,�△ 푂
=
1 2
× �,�△�푂
=
1 2
�
× �,由面
积关系可求解.
【详解】解:如图,设内切圆푂与△ � 相切于点 ,点 ,点�,连接푂�,푂 ,푂 ,푂 ,푂�,푂 ,
2022年中考数学真题分项汇编(全国通用):圆与正多边形(第2期)(原卷版)
专题12圆与正多边形一.选择题1.(2022·湖北鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A 、B 、E 三个接触点,该球的大小就符合要求.图(2)是过球心及A 、B 、E 三点的截面示意图,已知⊙O 的直径就是铁球的直径,AB 是⊙O 的弦,CD 切⊙O 于点E ,AC ⊥CD 、BD ⊥CD ,若CD =16cm ,AC =BD =4cm ,则这种铁球的直径为()A .10cmB .15cmC .20cmD .24cm2.(2022·湖南娄底)如图,等边ABC 内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边ABC 的内心成中心对称,则圆中的黑色部分的面积与ABC 的面积之比是()A .318B .18C .9D .393.(2022·山东聊城)如图,AB ,CD 是O 的弦,延长AB ,CD 相交于点P .已知30P ,80AOC ,则 BD 的度数是()A.30°B.25°C.20°D.10°4.(2022·湖北黄冈)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则弧AD的长为()A. B.43 C.53 D.2,分别以点A,B,C为圆5.(2022·四川达州)如图所示的曲边三角形可按下述方法作出:作等边ABCBC, AC, AB,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周心,以AB长为半径作长为2π,则此曲边三角形的面积为()A.6.(2022·江苏无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π7.(2022·湖北荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是()A4B .C . 63D 28.(2022·广西贺州)如图,在等腰直角OAB 中,点E 在OA 上,以点O 为圆心、OE 为半径作圆弧交OB 于点F ,连接EF ,已知阴影部分面积为π2 ,则EF 的长度为()AB .2C .D .9.(2022·江苏无锡)如图,AB 是圆O 的直径,弦AD 平分∠BAC ,过点D 的切线交AC 于点E ,∠EAD =25°,则下列结论错误的是()A .AE ⊥DEB .AE //ODC .DE =OD D .∠BOD =50°10.(2022·黑龙江大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A .60πB .65πC .90πD .120π11.(2022·内蒙古包头)如图,,AB CD 是O 的两条直径,E 是劣弧 BC 的中点,连接BC ,DE .若22ABC ,则CDE 的度数为()A .22B .32C .34D .4412.(2022·辽宁锦州)如图,线段AB 是半圆O 的直径。
山东省2019年、2020年数学中考试题分类(11)——圆(含解析)
A.6
B.9
C.12
D.15
8.(2020•泰安)如图,△ABC 是⊙O 的内接三角形,AB=BC,∠BAC=30°,AD 是直径,AD=8,则 AC
的长为( )
A.4
B.4
C.
D.2
9.(2020•聊城)如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为点 M,连接 OC,DB.如果 OC∥DB,OC =2 ,那么图中阴影部分的面积是( )
37.(2020•菏泽)如图,在△ABC 中,AB=AC,以 AB 为直径的⊙O 与 BC 相交于点 D,过点 D 作⊙O 的 切线交 AC 于点 E. (1)求证:DE⊥AC; (2)若⊙O 的半径为 5,BC=16,求 DE 的长.
38.(2020•枣庄)如图,在△ABC 中,AB=AC,以 AB 为直径的⊙O 分别交 AC、BC 于点 D、E,点 F 在 AC 的延长线上,且∠BAC=2∠CBF. (1)求证:BF 是⊙O 的切线; (2)若⊙O 的直径为 4,CF=6,求 tan∠CBF.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
山东省 2019 年、2020 年数学中考试题分类(11)——圆
一.选择题(共 20 小题) 1.(2020•东营)用一个半径为 3,面积为 3π 的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底
面半径为( )
A.π
B.2π
C.2Biblioteka D.12.(2020•临沂)如图,在⊙O 中,AB 为直径,∠AOC=80°.点 D 为弦 AC 的中点,点 E 为 上任意一 点.则∠CED 的大小可能是( )
4 / 37
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
ADC 的度数是( )
圆的有关性质(共46题)(解析版)--2023年中考数学真题分项汇编
圆的有关性质(46题)一、单选题1(2023·四川自贡·统考中考真题)如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,连接BD ,∠DCA =41°,则∠ABC 的度数是()A.41°B.45°C.49°D.59°【答案】C 【分析】由CD 是⊙O 的直径,得出∠DBC =90°,进而根据同弧所对的圆周角相等,得出∠ABD =∠ACD =41°,进而即可求解.【详解】解:∵CD 是⊙O 的直径,∴∠DBC =90°,∵AD =AD,∴∠ABD =∠ACD =41°,∴∠ABC =∠DBC -∠DBA =90°-41°=49°,故选:C .【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.2(2023·四川凉山·统考中考真题)如图,在⊙O 中,OA ⊥BC ,∠ADB =30°,BC =23,则OC =()A.1B.2C.23D.4【答案】B【分析】连接OB ,由圆周角定理得∠AOB =60°,由OA ⊥BC 得,∠COE =∠BOE =60°,CE =BE =3,在Rt △OCE 中,由OC =CE sin60°,计算即可得到答案.【详解】解:连接OB ,如图所示,,∵∠ADB =30°,∴∠AOB =2∠ADB =2×30°=60°,∵OA ⊥BC ,∴∠COE =∠BOE =60°,CE =BE =12BC =12×23=3,在Rt △OCE 中,∠COE =60°,CE =3,∴OC =CE sin60°=332=2,故选:B .【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.3(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB .“会圆术”给出AB 的弧长l 的近似值计算公式:l =AB +MN 2OA .当OA =4,∠AOB =60°时,则l 的值为()A.11-23B.11-43C.8-23D.8-43【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB ,得ON ⊥AB ,∴点M ,N ,O 三点共线,∵OA =4,∠AOB =60°,∴△OAB 是等边三角形,∴OA =AB =4,∠OAN =60°,ON =OA sin60°=23,∴OA =AB =4,∠OAN =60°,ON =OA sin60°=23∴l =AB +MN 2OA=4+4-23 24=11-43.故选:B .【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.4(2023·四川宜宾·统考中考真题)如图,已知点A 、B 、C 在⊙O 上,C 为AB的中点.若∠BAC =35°,则∠AOB 等于()A.140°B.120°C.110°D.70°【答案】A【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:∵点A 、B 、C 在⊙O 上,C 为AB的中点,∴BC =AC ,∴∠BOC =∠AOC =12∠AOB ,∵∠BAC =35°,根据圆周角定理可知∠BOC =2∠BAC =70°,∴∠AOB =2∠BOC =140°,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.5(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于⊙O ,连接OC ,OD ,则∠BAE -∠COD =()A.60°B.54°C.48°D.36°【答案】D【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵∠BAE =180°-360°5,∠COD =360°5,∴∠BAE -∠COD =180°-360°5-360°5=36°,故选:D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.6(2023·江苏连云港·统考中考真题)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形【答案】B 【分析】根据扇形的定义,即可求解.扇形,是圆的一部分,由两个半径和和一段弧围成.【详解】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .【点睛】本题考查了扇形的定义,熟练掌握扇形的定义是解题的关键.7(2023·云南·统考中考真题)如图,AB 是⊙O 的直径,C 是⊙O 上一点.若∠BOC =66°,则∠A =()A.66°B.33°C.24°D.30°【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵BC =BC,∠BOC =66°,∴∠A =12∠BOC =33°,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.8(2023·新疆·统考中考真题)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B【分析】根据圆周角定理求得∠AOB =60°,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB =AB ,∠ACB =30°,∴∠AOB =60°,∴S =60360π×62=6π.故选:B .【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.9(2023·浙江温州·统考中考真题)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =3,则∠CAO 的度数与BC 的长分别为()A.10°,1B.10°,2C.15°,1D.15°,2【答案】C【分析】过点O 作OE ⊥AD 于点E ,由题意易得∠CAD =∠ADB =45°=∠CBD =∠BCA ,然后可得∠OAD =∠ODA =30°,∠ABD =∠ACD =12∠AOD =60°,AE =12AD =32,进而可得CD =2OC =2,CF =12CD =22,最后问题可求解.【详解】解:过点O 作OE ⊥AD 于点E ,如图所示:∵BC∥AD,∴∠CBD=∠ADB,∵∠CBD=∠CAD,∴∠CAD=∠ADB,∵AC⊥BD,∴∠AFD=90°,∴∠CAD=∠ADB=45°=∠CBD=∠BCA,∵∠AOD=120°,OA=OD,AD=3,∴∠OAD=∠ODA=30°,∠ABD=∠ACD=12∠AOD=60°,AE=12AD=32,∴∠CAO=∠CAD-∠OAD=15°,OA=AEcos30°=1=OC=OD,∠BCD=∠BCA+∠ACD=105°,∴∠COD=2∠CAD=90°,∠CDB=180°-∠BCD-∠CBD=30°,∴CD=2OC=2,CF=12CD=22,∴BC=2CF=1;故选:C.【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.10(2023·浙江台州·统考中考真题)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为( ).A.2B.2C.4+22D.4-22【答案】D【分析】设正方形四个顶点分别为A、B、C、D,连接OA并延长,交⊙O于点E,由题意可得,EA的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.【详解】解:设正方形四个顶点分别为A、B、C、D,连接OA并延长,交⊙O于点E,过点O作OF⊥AB,如下图:则EA的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:OE=AB=4,AF=OF=12AB=2由勾股定理可得:OA=OF2+AF2=22,∴AE =4-22,故选:D .【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.11(2023·山东枣庄·统考中考真题)如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A =48°,∠APD =80°,则∠B 的度数为()A.32°B.42°C.48°D.52°【答案】A【分析】根据圆周角定理,可以得到∠D 的度数,再根据三角形外角的性质,可以求出∠B 的度数.【详解】解:∵∠A =∠D ,∠A =48°,∴∠D =48°,∵∠APD =80°,∠APD =∠B +∠D ,∴∠B =∠APD -∠D =80°-48°=32°,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出∠D 的度数.12(2023·四川内江·统考中考真题)如图,正六边形ABCDEF 内接于⊙O ,点P 在AF 上,Q 是DE 的中点,则∠CPQ 的度数为()A.30°B.36°C.45°D.60°【答案】C 【分析】先计算正六边形的中心角,再利用同圆或等圆中,等弧对的圆心角相等,圆周角定理计算即可.【详解】如图,连接OC ,OD ,OQ ,OE ,∵正六边形ABCDEF ,Q 是DE的中点,∴∠COD =∠DOE =360°6=60°,∠DOQ =∠EOQ =12∠DOE =30°,∴∠COQ =∠COD +∠DOQ =90°,∴∠CPQ =12∠COQ =45°,故选:C .【点睛】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形中心角计算,圆周角定理是解题的关键.13(2023·湖北十堰·统考中考真题)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为()A.43B.7C.8D.45【答案】B【分析】作BM⊥AC于点M,由题意可得出△AEB≌△DEC,从而可得出△EBC为等边三角形,从而得到∠GEF=60°,∠EGF=30°,再由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.【详解】解:作BM⊥AC于点M,在△AEB和△DEC中,∠A=∠DAE=ED∠AEB=∠DEC,∴△AEB≌△DEC ASA,∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠GEF=60°,BC=EC∴∠EGF=30°,∵EG=2,OF⊥AC,∠EGF=30°∴EF=12EG=1,又∵AE=ED=3,OF⊥AC∴CF=AF=AE+EF=4,∴AC=2AF=8,EC=EF+CF=5,∴BC=EC=5,∵∠BCM=60°,∴∠MBC=30°,∴CM=52,BM=BC 2-CM2=532,∴AM=AC-CM=112,∴AB=AM2+BM2=7.故选:B.【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、三角形的外接圆与外心、勾股定理等知识点,综合性较强,掌握基本图形的性质,熟练运用勾股定理是解题关键.14(2023·山西·统考中考真题)如图,四边形ABCD 内接于⊙O ,AC ,BD 为对角线,BD 经过圆心O .若∠BAC =40°,则∠DBC 的度数为()A.40°B.50°C.60°D.70°【答案】B【分析】由同弧所对圆周角相等及直角三角形的性质即可求解.【详解】解:∵BC =BC ,∴∠BDC =∠BAC =40°,∵BD 为圆的直径,∴∠BCD =90°,∴∠DBC =90°-∠BDC =50°;故选:B .【点睛】本题考查了直径所对的圆周角是直角,同圆中同弧所对的圆周角相等,直角三角形两锐角互余,掌握它们是关键.15(2023·湖北宜昌·统考中考真题)如图,OA ,OB ,OC 都是⊙O 的半径,AC ,OB 交于点D .若AD =CD =8,OD =6,则BD 的长为( ).A.5B.4C.3D.2【答案】B 【分析】根据等腰三角形的性质得出OD ⊥AC ,根据勾股定理求出OC =10,进一步可求出BD 的长.【详解】解:∵AD =CD =8,∴点D 为AC 的中点,∵AO =CO ,∴OD ⊥AC ,由勾股定理得,OC =CD 2+OD 2=62+82=10,∴OB =10,∴BD =OB -OD =10-6=4,故选:B .【点睛】本题主要考查了等腰三角形的性质,勾股定理以及圆的有关性质,正确掌握相关性质是解答本题的关键16(2023·河北·统考中考真题)如图,点P 1~P 8是⊙O 的八等分点.若△P 1P 3P 7,四边形P 3P 4P 6P 7的周长分别为a ,b ,则下列正确的是()A.a <bB.a =bC.a >bD.a ,b 大小无法比较【答案】A【分析】连接P 1P 2,P 2P 3,依题意得P 1P 2=P 2P 3=P 3P 4=P 6P 7,P 4P 6=P 1P 7,△P 1P 3P 7的周长为a =P 1P 3+P 1P 7+P 3P 7,四边形P 3P 4P 6P 7的周长为b =P 3P 4+P 4P 6+P 6P 7+P 3P 7,故b -a =P 1P 2+P 2P 3-P 1P 3,根据△P 1P 2P 3的三边关系即可得解.【详解】连接P 1P 2,P 2P 3,∵点P 1~P 8是⊙O 的八等分点,即P 1P 2 =P 2P 3 =P 3P 4=P 4P 5 =P 5P 6 =P 6P 7 =P 7P 8=P 8P 1∴P 1P 2=P 2P 3=P 3P 4=P 6P 7,P 4P 6 =P 4P 5 +P 5P 6 =P 7P 8+P 8P 1 =P 1P 7∴P 4P 6=P 1P 7又∵△P 1P 3P 7的周长为a =P 1P 3+P 1P 7+P 3P 7,四边形P 3P 4P 6P 7的周长为b =P 3P 4+P 4P 6+P 6P 7+P 3P 7,∴b -a =P 3P 4+P 4P 6+P 6P 7+P 3P 7 -P 1P 3+P 1P 7+P 3P 7 =P 1P 2+P 1P 7+P 2P 3+P 3P 7 -P 1P 3+P 1P 7+P 3P 7 =P 1P 2+P 2P 3-P 1P 3在△P 1P 2P 3中有P 1P 2+P 2P 3>P 1P 3∴b -a =P 1P 2+P 2P 3-P 1P 3>0故选:A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.17(2023·浙江杭州·统考中考真题)如图,在⊙O 中,半径OA ,OB 互相垂直,点C 在劣弧AB 上.若∠ABC =19°,则∠BAC =()A.23°B.24°C.25°D.26°【答案】D【分析】根据OA ,OB 互相垂直可得ADB 所对的圆心角为270°,根据圆周角定理可得∠ACB =12×270°=135°,再根据三角形内角和定理即可求解.【详解】解:如图,∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴ADB 所对的圆心角为270°,∴ADB 所对的圆周角∠ACB =12×270°=135°,又∵∠ABC =19°,∴∠BAC =180°-∠ACB -∠ABC =26°,故选:D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.18(2023·湖北黄冈·统考中考真题)如图,在⊙O 中,直径AB 与弦CD 相交于点P ,连接AC ,AD ,BD ,若∠C =20°,∠BPC =70°,则∠ADC =()A.70°B.60°C.50°D.40°【答案】D【分析】先根据圆周角定理得出∠B =∠C =20°,再由三角形外角和定理可知∠BDP =∠BPC -∠B =70°-20°=50°,再根据直径所对的圆周角是直角,即∠ADB =90°,然后利用∠ADB =∠ADC +∠BDP 进而可求出∠ADC .【详解】解:∵∠C =20°,∴∠B =20°,∵∠BPC =70°,∴∠BDP =∠BPC -∠B =70°-20°=50°,又∵AB 为直径,即∠ADB =90°,∴∠ADC =∠ADB -∠BDP =90°-50°=40°,故选:D .【点睛】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.19(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28mC.35mD.40m【答案】B【分析】由题意可知,AB =37m ,CD =7m ,主桥拱半径R ,根据垂径定理,得到AD =372m ,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,AB =37m ,CD =7m ,主桥拱半径R ,∴OD =OC -CD =R -7 m ,∵OC 是半径,且OC ⊥AB ,∴AD =BD =12AB =372m ,在Rt △ADO 中,AD 2+OD 2=OA 2,∴372 2+R -7 2=R 2,解得:R =156556≈28m ,故选:B .【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.20(2023·四川·统考中考真题)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是()A.56°B.33°C.28°D.23°【答案】C 【分析】根据圆周角定理计算即可.【详解】解:∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°,故选:C .【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键.21(2023·山东聊城·统考中考真题)如图,点O 是△ABC 外接圆的圆心,点I 是△ABC 的内心,连接OB ,IA .若∠CAI =35°,则∠OBC 的度数为()A.15°B.17.5°C.20°D.25°【答案】C【分析】根据三角形内心的定义可得∠BAC 的度数,然后由圆周角定理求出∠BOC ,再根据三角形内角和定理以及等腰三角形的性质得出答案.【详解】解:连接OC ,∵点I 是△ABC 的内心,∠CAI =35°,∴∠BAC =2∠CAI =70°,∴∠BOC =2∠BAC =140°,∵OB =OC ,∴∠OBC =∠OCB =180°-∠BOC 2=180°-140°2=20°,故选:C .【点睛】本题主要考查了三角形内心的定义和圆周角定理,熟知三角形的内心是三角形三个内角平分线的交点是解题的关键.22(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.23(2023·广东·统考中考真题)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =()A.20°B.40°C.50°D.80°【答案】B【分析】根据圆周角定理可进行求解.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠BAC =50°,∴∠ABC =90°-∠BAC =40°,∵AC =AC ,∴∠D =∠ABC =40°;故选:B .【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.24(2023·河南·统考中考真题)如图,点A ,B ,C 在⊙O 上,若∠C =55°,则∠AOB 的度数为()A.95°B.100°C.105°D.110°【答案】D【分析】直接根据圆周角定理即可得.【详解】解:∵∠C =55°,∴由圆周角定理得:∠AOB =2∠C =110°,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.25(2023·全国·统考中考真题)如图,AB ,AC 是⊙O 的弦,OB ,OC 是⊙O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若∠BAC =70°,则∠BPC 的度数可能是()A.70°B.105°C.125°D.155°【答案】D【分析】根据圆周角定理得出∠BOC =2∠BAC =140°,进而根据三角形的外角的性质即可求解.【详解】解:∵BC =BC ,∠BAC =70°,∴∠BOC =2∠BAC =140°,∵∠BPC =∠BOC +∠PCO ≥140°,∴∠BPC 的度数可能是155°故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.26(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,∠BCD =105°,连接OB ,OC ,OD ,BD ,∠BOC =2∠COD .则∠CBD 的度数是()A.25°B.30°C.35°D.40°【答案】A【分析】根据圆内接四边形对角互补得出∠A =180°-105°=75°,根据圆周角定理得出∠BOD =2∠A =150°,根据已知条件得出∠COD =13∠BOD =50°,进而根据圆周角定理即可求解.【详解】解:∵圆内接四边形ABCD 中,∠BCD =105°,∴∠A =180°-105°=75°∴∠BOD =2∠A =150°∵∠BOC =2∠COD∴∠COD =13∠BOD =50°,∵CD =CD∴∠CBD =12∠COD =12×50°=25°,故选:A .【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.27(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA =OB ;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a ∥b .按以上作图顺序,若∠MNO =35°,则∠AOC =()A.35°B.30°C.25°D.20°【答案】A【分析】证明∠NMO=∠MNO=35°,可得∠AOB=2×35°=70°,结合OA=OB,C为AB的中点,可得∠AOC=∠BOC=35°.【详解】解:∵∠MNO=35°,MO=NO,∴∠NMO=∠MNO=35°,∴∠AOB=2×35°=70°,∵OA=OB,C为AB的中点,∴∠AOC=∠BOC=35°,故选A.【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.二、填空题28(2023·四川南充·统考中考真题)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【答案】4【分析】根据圆周角定理得出∠ACB=90°,再由勾股定理确定AB=13,半径为132,利用垂径定理确定OM⊥AC,且AD=CD=6,再由勾股定理求解即可.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=12,BC=5,∴AB=13,∴AO=12AB=132,∵点D,M分别是弦AC,弧AC的中点,∴OM⊥AC,且AD=CD=6,∴OD=AO2-AD2=52,∴MD=OM-OD=AO-OD=4,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.29(2023·浙江金华·统考中考真题)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为cm.【答案】5π6【分析】连接AD ,OD ,OE ,根据等腰三角形三线合一性质,圆周角定理,中位线定理,弧长公式计算即可.【详解】解:如图,连接AD ,OD ,OE ,∵AB 为直径,∴AD ⊥AB ,∵AB =AC =6cm ,∠BAC =50°,∴BD =CD ,∠BAD =∠CAD =12∠BAC =25°,∴∠DOE =2∠BAD =50°,OD =12AB =12AC =3cm ,∴弧DE 的长为50×π×3180=5π6cm ,故答案为:5π6cm .【点睛】本题考查了等腰三角形三线合一性质,中位线定理,弧长公式,熟练掌握三线合一性质,弧长公式,圆周角定理是解题的关键.30(2023·四川广安·统考中考真题)如图,△ABC 内接于⊙O ,圆的半径为7,∠BAC =60°,则弦BC 的长度为.【答案】73【分析】连接OB ,OC ,过点O 作OD ⊥BC 于点D ,先根据圆周角定理可得∠BOC =2∠BAC =120°,再根据等腰三角形的三线合一可得∠BOD =60°,BC =2BD ,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接OB ,OC ,过点O 作OD ⊥BC 于点D ,∵∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,OD ⊥BC ,∴∠BOD =12∠BOC =60°,BC =2BD ,∵圆的半径为7,∴OB =7,∴BD =OB ⋅sin60°=723,∴BC =2BD =73,故答案为:73.【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.31(2023·甘肃武威·统考中考真题)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 是⊙O 上一点,∠CDB =55°,则∠ABC =°.【答案】35【分析】由同弧所对的圆周角相等,得∠A =∠CDB =55°,再根据直径所对的圆周角为直角,得∠ACB =90°,然后由直角三角形的性质即可得出结果.【详解】解:∵∠A ,∠CDB 是BC所对的圆周角,∴∠A =∠CDB =55°,∵AB 是⊙O 的直径,∵∠ACB =90°,在Rt △ACB 中,∠ABC =90°-∠A =90°-55°=35°,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.32(2023·浙江绍兴·统考中考真题)如图,四边形ABCD 内接于圆O ,若∠D =100°,则∠B 的度数是.【答案】80°【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B+∠D=180°,∵∠D=100°,∴∠B=180°-∠D=80°.故答案为:80°.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.33(2023·山东烟台·统考中考真题)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为.【答案】52.5°【分析】方法一∶如图:连接OA,OB,OC,OD,AD,AB,由题意可得:OA=OB=OC=OD,∠AOB=50°-25°=25°,然后再根据等腰三角形的性质求得∠OAB=65°、∠OAD=25°,最后根据角的和差即可解答.方法二∶连接OB,OD,由题意可得:∠BAD=105°,然后根据圆周角定理即可求解.【详解】方法一∶解:如图:连接OA,OB,OC,OD,AD,AB,由题意可得:OA=OB=OC=OD,∠AOB=50°-25°=25°,∠AOD=155°-25°=130°,∴∠OAB=12180°-∠AOB=77.5°,∠OAD=12180°-∠AOB=25°,∴∠BAD=∠OAB-∠OAD=52.5°.故答案为52.5°.方法二∶解∶连接OB,OD,由题意可得:∠BAD=155°-50°=105°,根据圆周角定理,知∠BAD=12∠BOD=12×105°=52.5°.故答案为:52.5°.【点睛】本题主要考查了角的度量、圆周角定理等知识点,掌握圆周角的度数等于它所对弧上的圆心角度数的一半是解答本题的关键.34(2023·湖南·统考中考真题)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是个.【答案】10【分析】先求出正五边形的外角为72°,则∠1=∠2=72°,进而得出∠AOB=36°,即可求解.【详解】解:根据题意可得:∵正五边形的一个外角=360°5=72°,∴∠1=∠2=72°,∴∠AOB=180°-72°×2=36°,∴共需要正五边形的个数=360°36°=10(个),故答案为:10.【点睛】本题主要考查了圆的基本性质,正多边形的外角,解题的关键是掌握正多边形的外角的求法.35(2023·湖南永州·统考中考真题)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm.水的最深处到水面AB的距离为4cm,则水面AB的宽度为cm.【答案】16【分析】过点O作OD⊥AB于点D,交⊙O于点E,则AD=DB=12AB,依题意,得出OD=6,进而在Rt△AOD中,勾股定理即可求解.【详解】解:如图所示,过点O作OD⊥AB于点D,交⊙O于点E,则AD=DB=12 AB,∵水的最深处到水面AB 的距离为4cm ,⊙O 的半径为10cm .∴OD =10-4=6cm ,在Rt △AOD 中,AD =AO 2-OD 2=102-62=8cm∴AB =2AD =16cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.36(2023·湖北随州·统考中考真题)如图,在⊙O 中,OA ⊥BC ,∠AOB =60°,则∠ADC 的度数为.【答案】30°【分析】根据垂径定理得到AB =AC,根据圆周角定理解答即可.【详解】解:∵OA ⊥BC ,∴AB =AC ,∴∠ADC =12∠AOB =30°,故答案为:30°.【点睛】本题考查的是垂径定理和圆周角定理,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.37(2023·湖南·统考中考真题)如图所示,点A 、B 、C 是⊙O 上不同的三点,点O 在△ABC 的内部,连接BO 、CO ,并延长线段BO 交线段AC 于点D .若∠A =60°,∠OCD =40°,则∠ODC =度.【答案】80【分析】先根据圆周角定理求出∠BOC 的度数,再根据三角形的外角定理即可得出结果.【详解】解:在⊙O 中,∵∠BOC =2∠A =2×60°=120°,∴∠ODC =∠BOC -∠OCD =120°-40°=80°故答案为:80.【点睛】本题考查了圆周角定理,三角形的外角定理,熟练掌握圆周角定理是本题的关键.38(2023·湖南郴州·统考中考真题)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器台.【答案】4【分析】圆周角定理求出∠P 对应的圆心角的度数,利用360°÷圆心角的度数即可得解.【详解】解:∵∠P =55°,∴∠P 对应的圆心角的度数为110°,∵360°÷110°≈3.27,∴最少需要在圆形边缘上共安装这样的监视器4台;故答案为:4【点睛】本题考查圆周角定理,熟练掌握同弧所对的圆周角是圆心角的一半,是解题的关键.39(2023·浙江杭州·统考中考真题)如图,六边形ABCDEF 是⊙O 的内接正六边形,设正六边形ABCDEF 的面积为S 1,△ACE 的面积为S 2,则S 1S 2=.【答案】2【分析】连接OA ,OC ,OE ,首先证明出△ACE 是⊙O 的内接正三角形,然后证明出△BAC ≌△OAC ASA ,得到S △BAC =S △AFE =S △CDE ,S △OAC =S △OAE =S △OCE ,进而求解即可.【详解】如图所示,连接OA ,OC ,OE ,∵六边形ABCDEF 是⊙O 的内接正六边形,∴AC =AE =CE ,∴△ACE 是⊙O 的内接正三角形,∵∠B =120°,AB =BC ,∴∠BAC =∠BCA =12180°-∠B =30°,∵∠CAE =60°,∴∠OAC =∠OAE =30°,∴∠BAC =∠OAC =30°,同理可得,∠BCA =∠OCA =30°,又∵AC =AC ,∴△BAC ≌△OAC ASA ,∴S △BAC =S △OAC ,由圆和正六边形的性质可得,S △BAC =S △AFE =S △CDE ,由圆和正三角形的性质可得,S △OAC =S △OAE =S △OCE ,∵S 1=S △BAC +S △AFE +S △CDE +S △OAC +S △OAE +S △OCE =2S △OAC +S △OAE +S △OCE =2S 2,∴S 1S 2=2.故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.40(2023·广东深圳·统考中考真题)如图,在⊙O 中,AB 为直径,C 为圆上一点,∠BAC 的角平分线与⊙O 交于点D ,若∠ADC =20°,则∠BAD =°.【答案】35【分析】由题意易得∠ACB =90°,∠ADC =∠ABC =20°,则有∠BAC =70°,然后问题可求解.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =AC,∠ADC =20°,∴∠ADC =∠ABC =20°,∴∠BAC =70°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =35°;故答案为:35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.41(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为点E ,CE =1寸,AB =10寸,则直径CD 的长度是寸.【答案】26【分析】连接OA 构成直角三角形,先根据垂径定理,由DE 垂直AB 得到点E 为AB 的中点,由AB =6可求出AE 的长,再设出圆的半径OA 为x ,表示出OE ,根据勾股定理建立关于x 的方程,求解方程可得2x 的值,即为圆的直径.【详解】解:连接OA ,∵AB ⊥CD ,且AB =10寸,∴AE =BE =5寸,设圆O 的半径OA 的长为x ,则OC =OD =x ,∵CE =1,∴OE =x -1,在直角三角形AOE 中,根据勾股定理得:x 2-(x -1)2=52,化简得:x 2-x 2+2x -1=25,即2x =26,∴CD =26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.三、解答题42(2023·浙江金华·统考中考真题)如图,点A 在第一象限内,⊙A 与x 轴相切于点B ,与y 轴相交于点C ,D .连接AB ,过点A 作AH ⊥CD 于点H .(1)求证:四边形ABOH 为矩形.(2)已知⊙A 的半径为4,OB =7,求弦CD 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵⊙A 与x 轴相切于点B ,∴AB ⊥x 轴.∵AH ⊥CD ,HO ⊥OB ,∴∠AHO =∠HOB =∠OBA =90°,∴四边形AHOB 是矩形.(2)如图,连接AC .∵四边形AHOB 是矩形,∴AH =OB =7.在Rt △AHC 中,CH 2=AC 2-AH 2,∴CH =42-(7)2=3.∵点A 为圆心,AH ⊥CD ,∴CD =2CH =6.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.43(2023·甘肃武威·统考中考真题)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知⊙O ,A 是⊙O 上一点,只用圆规将⊙O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在⊙O 上逆时针方向顺次截取AB =BC =CD;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于⊙O 上方点E ;③以点A 为圆心,OE 长为半径作弧交⊙O 于G ,H 两点.即点A ,G ,D ,H 将⊙O 的圆周四等分.【答案】见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008~2019 北京中考数学分类(圆)一.解答题(共12 小题)1.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O 到点A,B,C 的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G 于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D 作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF 交图形G 于点M,连接CM.若AD=CM,求直线DE 与图形G 的公共点个数.2.如图,AB 是⊙O 的直径,过⊙O 外一点P 作⊙O 的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP 的长.3.如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC⊥OA 于点C,过点B 作⊙O的切线交CE 的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.4.如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交于点D,过点D 作⊙O 的切线,交BA 的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE 面积的思路.5.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM,弦CD∥BM,交AB 于点F,且=,连接AC,AD,延长AD 交BM 于点E.(1)求证:△ACD 是等边三角形;(2)连接OE,若DE=2,求OE 的长.6.如图,AB 是⊙O 的直径,C 是的中点,⊙O 的切线BD 交AC 的延长线于点D,E 是OB 的中点,CE 的延长线交切线BD 于点F,AF 交⊙O 于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH 的长.7.如图AB 是⊙O 的直径,PA,PC 与⊙O 分别相切于点A,C,PC 交AB 的延长线于点D,DE⊥PO 交PO 的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=6,tan∠PDA=,求OE 的长.8.已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD⊥BC 于点D,过点C 作⊙O 的切线,交OD 的延长线于点E,连接BE.(1)求证:BE 与⊙O 相切;(2)连接AD 并延长交BE 于点F,若OB=9,sin∠ABC=,求BF 的长.9.如图,在△ABC,AB=AC,以AB 为直径的⊙O 分别交AC、BC 于点D、E,点F 在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF 是⊙O 的切线;(2)若AB=5,sin∠CBF=,求BC 和BF 的长.10.已知:如图,在△ABC 中,D 是AB 边上一点,圆O 过D、B、C 三点,∠DOC=2∠ACD=90°.(1)求证:直线AC 是圆O 的切线;(2)如果∠ACB=75°,圆O 的半径为2,求BD 的长.11.已知:如图,在△ABC 中,AB=AC,AE 是角平分线,BM 平分∠ABC 交AE 于点M,经过B,M 两点的⊙O 交BC 于点G,交AB 于点F,FB 恰为⊙O 的直径.(1)求证:AE 与⊙O 相切;(2)当BC=4,cos C=时,求⊙O 的半径.12.已知:如图,在Rt△ABC 中,∠C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC,AB 分别交于点D,E,且∠CBD=∠A.(1)判断直线BD 与⊙O 的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD 的长.2008~2019 北京中考数学分类(圆)参考答案与试题解析一.解答题(共12 小题)1.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O 到点A,B,C 的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G 于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D 作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF 交图形G 于点M,连接CM.若AD=CM,求直线DE 与图形G 的公共点个数.【解答】(1)证明:∵到点O 的距离等于a 的所有点组成图形G,∴图形G 为△ABC 的外接圆⊙O,∵BD 平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC 垂直平分DM,∴BC 为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∴OD⊥DE,∴DE 为⊙O 的切线,∴直线DE 与图形G 的公共点个数为1.2.如图,AB 是⊙O 的直径,过⊙O 外一点P 作⊙O 的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP 的长.【解答】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC 是⊙O 的切线,∵∠ODP=∠OCP=90°,在Rt△ODP 和Rt△OCP 中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∴OP⊥CD;方法2、∵PD,PC 是⊙O 的切线,∴PD=PC,∵OD=OC,∴P,O 在CD 的中垂线上,∴OP⊥CD(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD 是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP 中,OP==.3.如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC⊥OA 于点C,过点B 作⊙O的切线交CE 的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.【解答】(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD 是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB 于F,连接OE.∵DB=DE,AE=EB=6,∴EF=BE=3,OE⊥AB,在Rt△EDF 中,DE=BD=5,EF=3,∴DF==4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE==,∵AE=6,∴AO=.∴⊙O 的半径为.4.如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交于点D,过点D 作⊙O 的切线,交BA 的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE 面积的思路.【解答】(1)证明:∵ED 与⊙O 相切于D,∴OD⊥DE,∵F 为弦AC 中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA 于M,连接CD,CO,AD.首先证明四边形ACDE 是平行四边形,根据S 平行四边形ACDE=AE•DM,只要求出DM 即可.(方法二:证明△ADE的面积等于四边形ACDE的面积的一半)∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO 是等边三角形,同理△CDO 也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,∴AO∥CD,又AE=CD,∴四边形ACDE 是平行四边形,易知DM=a,∴平行四边形ACDE 面积=a2.5.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM,弦CD∥BM,交AB 于点F,且=,连接AC,AD,延长AD 交BM 于点E.(1)求证:△ACD 是等边三角形;(2)连接OE,若DE=2,求OE 的长.【解答】(1)证明:∵AB 是⊙O 的直径,BM 是⊙O 的切线,∴AB⊥BE,∵CD∥BE,∴CD⊥AB,∴,∵=,∴,∴AD=AC=CD,∴△ACD 是等边三角形;(2)解:连接OE,过O 作ON⊥AD 于N,由(1)知,△ACD 是等边三角形,∴∠DAC=60°∵AD=AC,CD⊥AB,∴∠DAB=30°,∴BE=AE,ON=AO,设⊙O 的半径为:r,∴ON=r,AN=DN=r,∴EN=2+ ,BE=AE=,在R t△NEO 与R t△BEO 中,OE2=ON2+NE2=OB2+BE2,即()2+(2+ )2=r2+ ,∴r=2,∴OE2=+25=28,∴OE=2 .6.如图,AB 是⊙O 的直径,C 是的中点,⊙O 的切线BD 交AC 的延长线于点D,E 是OB 的中点,CE 的延长线交切线BD 于点F,AF 交⊙O 于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH 的长.【解答】(1)证明:连接OC,∵C 是的中点,AB 是⊙O 的直径,∴CO⊥AB,∵BD 是⊙O 的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E 是OB 的中点,∴OE=BE,在△COE 和△FBE 中,,∴△COE≌△FBE(ASA),∴BF=CO,∵OB=2,∴BF=2,∴AF==2 ,∵AB 是直径,∴BH⊥AF,∴△ABF∽△BHF,∴ = ,∴AB •BF =AF •BH ,.7. 如图 AB 是⊙O 的直径,PA ,PC 与⊙O 分别相切于点 A ,C ,PC 交 AB 的延长线于点 D , DE ⊥PO 交 PO 的延长线于点 E .(1) 求证:∠EPD =∠EDO ;(2) 若 PC =6,tan ∠PDA =,求 OE 的长.【解答】(1)证明:PA ,PC 与⊙O 分别相切于点 A ,C ,∴∠APO =∠EPD 且 PA ⊥AO ,∴∠PAO =90°,∵∠AOP =∠EOD ,∠PAO =∠E =90°,∴∠APO =∠EDO ,∴∠EPD =∠EDO ;(2)解:连接 OC ,∴PA =PC =6,∵tan ∠PDA = ,∴BH == =∴在Rt△PAD 中,AD=8,PD=10,∴CD=4,∵tan∠PDA=,∴在Rt△OCD 中,OC=OA=3,OD=5,∵∠EPD=∠ODE,∴△DEP∽△OED,∴===2,∴DE=2OE在Rt△OED 中,OE2+DE2=OD2,即5OE2=52,∴OE=.8.已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD⊥BC 于点D,过点C 作⊙O 的切线,交OD 的延长线于点E,连接BE.(1)求证:BE 与⊙O 相切;(2)连接AD 并延长交BE 于点F,若OB=9,sin∠ABC=,求BF 的长.【解答】证明:(1)连接OC,∵OD⊥BC,∴∠COE=∠BOE,在△OCE 和△OBE 中,∵,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,即OB⊥BE,∵OB 是⊙O 半径,∴BE 与⊙O 相切.(2)过点D 作DH⊥AB,连接AD 并延长交BE 于点F,∵∠DOH=∠BOD,∠DHO=∠BDO=90°,∴△ODH∽△OBD,∴==又∵sin∠ABC=,OB=9,∴OD=6,易得∠ABC=∠ODH,∴sin∠ODH=,即=,∴OH=4,∴DH==2 ,又∵△ADH∽△AFB,∴=,=,∴FB=.9.如图,在△ABC,AB=AC,以AB 为直径的⊙O 分别交AC、BC 于点D、E,点F 在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF 是⊙O 的切线;(2)若AB=5,sin∠CBF=,求BC 和BF 的长.【解答】(1)证明:连接AE,∵AB 是⊙O 的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线.(2)解:过点C 作CG⊥AB 于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB 中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2 ,在Rt△ABE 中,由勾股定理得AE==2 ,∴sin∠2===,cos∠2===,在Rt△CBG 中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴∴BF==10.已知:如图,在△ABC 中,D 是AB 边上一点,圆O 过D、B、C 三点,∠DOC=2∠ACD=90°.(1)求证:直线AC 是圆O 的切线;(2)如果∠ACB=75°,圆O 的半径为2,求BD 的长.【解答】(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C 在圆O 上,∴直线AC 是圆O 的切线.(2)解:方法1:∵OD=OC=2,∠DOC=90°,∴CD=2 .∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,作DE⊥BC 于点E,则∠DEC=90°,∴DE=DC sin30°=.∵∠B=45°,∴DB=2.方法2:连接BO∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,∴∠BOD=60°∵OD=OB=2∴△BOD 是等边三角形∴BD=OD=2.11.已知:如图,在△ABC 中,AB=AC,AE 是角平分线,BM 平分∠ABC 交AE 于点M,经过B,M 两点的⊙O 交BC 于点G,交AB 于点F,FB 恰为⊙O 的直径.(1)求证:AE 与⊙O 相切;(2)当BC=4,cos C=时,求⊙O 的半径.【解答】(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM 平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC 中,AB=AC,AE 是角平分线∴AE⊥BC∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M 在圆O 上,∴AE 与⊙O 相切;(2)解:在△ABC 中,AB=AC,AE 是角平分线∴BE=BC,∠ABC=∠C∵BC=4,cos C=∴BE=2,cos∠ABC=在△ABE 中,∠AEB=90°∴AB==6设⊙O 的半径为r,则AO=6﹣r∵OM∥BC∴△AOM∽△ABE∴∴解得∴⊙O 的半径为.12.已知:如图,在Rt△ABC 中,∠C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC,AB 分别交于点D,E,且∠CBD=∠A.(1)判断直线BD 与⊙O 的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD 的长.【解答】解:(1)直线BD与⊙O相切.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=90°∴直线BD 与⊙O 相切.(2)解法一:如图,连接DE.∵AE 是⊙O 的直径,∴∠ADE=90°∵AD:AO=8:5∴∵∠C=90°,∠CBD=∠A∵BC=2,∴解法二:如图,过点O 作OH⊥AD 于点H.∴AH=DH=∵AD:AO=8:5∴cos A=∵∠C=90°,∠CBD=∠A∴∵BC=2∴。