3.3 结构可靠度理论ppt课件
合集下载
3.3 结构可靠度理论ppt课件
– 极限状态方程
Z = g(S, R) = R – S = 0
S
2018/7/22
3
3.3.2 结构的可靠度
规定的 条件下 结构的 可靠度 结构在规定 的时间内
完成预定功能的概率Ps=可靠度,可靠概率 完不成预定功能的概率Pf为失效概率
Ps Pf 1
2018/7/22 4
设R、S 服从正态分布 平均值和标准差分别为:
– 按规定的可靠指标进行设计的准则 – 规定的可靠指标=目标可靠指标
• 承载力极限状态
– 建筑结构:安全等级 一
• 延性破怀 • 脆性破坏
Pf
2018/7/22
二
3.2 3.7
三
2.7 3.2
3.7 4.2
3.7 4.2
3.2
2.7
3.510-3
6.910-4
1.110-4
1.310-5
7
R , R
S , S
则Z =R-S 也 服从正态分布 平均值和标准差分别为:
z R S
2 2 z R S
2018/7/22
5
失效概率为
Pf P(Z 0) F (0) 0 z z z z
3.3 结构可靠度理论
3.3.1 结构极限状态方程
• 作用效应
– 定义:由作用引起的结构或构件的反应S – 效应体现
• 内力(轴力N、剪力V、弯矩M、扭矩T) • 变形(挠度、转角) • 混凝土结构的裂缝
2018/7/22
1
• 抗力
– 定义:结构或结构构件承受作用效应 的能力,用R表示 – 影响因素
– 桥梁结构
结构安全等级 一 • 延性破怀 4.7 • 脆性破坏 5.2 二 4.2 4.7 三 3.7 4.2
结构可靠性设计基础结构可靠性理论的基本概念PPT课件
1. 基本假定
(1) S 表示构件总的荷载效应,其PDF和CDF:
(2) R 表示构件的抗力,其PDF和CDF:
fS (s) , FS (s) fR (r) , FR (r)
(3) R 和 S 是统计独立的,则有:
fRS (r, s) fR (r) fS (s)
2. 概率积分方法
– 功能函数 Z R S
Z
2 R
2 S
第27页/共61页
3.2 结构的失效概率
fS (s)
fR (r)
fS (s)
fR (r)
s, r
S 1 R1
s, r
S 2 R2
Pf 1 (
R1 S )
2 R
2 S
R2 R1 a1 a2
Pf 2
(
R2 S )
2 R
2 S
R2 R1
R1 S R2 S
3.1 结构可靠度的定义
2. 安全概率 和P失s 效概率 的关系P:f
fZ (z)
Ps Pf 1
Pf 1 Ps Ps 1 Pf
Pf Z ≤0
3. 结构可靠指标 – 结构可靠指标的定义:
1(Pf )
式中 为1正态分布函数的反函数。
Pf
Ps
Z Z >0
Z(z)
Ps
第17页/共61页
0
Z
第3章 结构可靠度理论的基本概念
第3页/共61页
3.1 结构可靠度的定义
GB50068—2001规定:结构设计使用年限分类
类别 1 2 3 4
设计使用年限(年) 5 25 50
100
示例 临时性结构 易于替换的结构构件 普通房屋和构筑物 纪念性建筑和特别重要的建筑结构
结构可靠度-可靠性的基本理论
➢ 结构可靠与否是指结构本身而言,安全与否是指与 结构相关的生命财产而言
➢ 结构安全性的度量----安全度。主要与结构是否造 成生命财产不安全的破坏与倒塌联系;
➢ 可靠性的度量----可靠度。是针对各不同极限状态 而言。
➢ 可靠性比安全性概念更广泛、更科学
1.2 问题提出 研究结构可靠性理论是结构设计的需要
1、结构可靠性的基本概念 2、结构可靠性理论的数学基础 3、结构可靠度的分析方法 4、建筑结构作用与抗力的统计分析 5、结构体系可靠度 6、模糊可靠度理论 7、结构动力可靠性理论 8、结构时变可靠性理论
1.1 结构可靠性的定义
结构可靠性:结构在规定的时间内,在规定的条 件下,完成预定功能的能力。 结构可靠度:结构在规定的时间内,在规定的条 件下,完成预定功能的概率。
必要的稳定性 安全性、适用性、耐久性
可靠性 安全性 适用性 耐久性
安全性:
结构应能承受在正常施工和正常使用时可能出现 的各种作用;在偶然事件发生时和发生后应能保持整 体稳定性。
适用性: 结构在正常使用条件下应具有良好的工作性能。 耐久性: 结构在正常维护条件下应具有规定的耐久性能。
可靠性与安全性的区别
结构可靠性理论与应用
牛荻涛 2004.09
参考书
➢余安东、叶润修,建筑结构的安全性与可靠性,上海科技 文献出版社,1986 ➢赵国藩等,工程结构可靠度,水利水电出版社,1984 ➢吴世伟,结构可靠度分析.人民交通出版社 ,1990 ➢贡金鑫,工程结构可靠度计算方法,大连理工大学出版社, 2003 ➢李桂青,工程结构时变可靠度理论及其应用.科学出版社, 2001 ➢王光远,结构软设计理论,科学出版社,1998
Z 0 结构处于极限状态
Z gx x1, x2,, xn 0
➢ 结构安全性的度量----安全度。主要与结构是否造 成生命财产不安全的破坏与倒塌联系;
➢ 可靠性的度量----可靠度。是针对各不同极限状态 而言。
➢ 可靠性比安全性概念更广泛、更科学
1.2 问题提出 研究结构可靠性理论是结构设计的需要
1、结构可靠性的基本概念 2、结构可靠性理论的数学基础 3、结构可靠度的分析方法 4、建筑结构作用与抗力的统计分析 5、结构体系可靠度 6、模糊可靠度理论 7、结构动力可靠性理论 8、结构时变可靠性理论
1.1 结构可靠性的定义
结构可靠性:结构在规定的时间内,在规定的条 件下,完成预定功能的能力。 结构可靠度:结构在规定的时间内,在规定的条 件下,完成预定功能的概率。
必要的稳定性 安全性、适用性、耐久性
可靠性 安全性 适用性 耐久性
安全性:
结构应能承受在正常施工和正常使用时可能出现 的各种作用;在偶然事件发生时和发生后应能保持整 体稳定性。
适用性: 结构在正常使用条件下应具有良好的工作性能。 耐久性: 结构在正常维护条件下应具有规定的耐久性能。
可靠性与安全性的区别
结构可靠性理论与应用
牛荻涛 2004.09
参考书
➢余安东、叶润修,建筑结构的安全性与可靠性,上海科技 文献出版社,1986 ➢赵国藩等,工程结构可靠度,水利水电出版社,1984 ➢吴世伟,结构可靠度分析.人民交通出版社 ,1990 ➢贡金鑫,工程结构可靠度计算方法,大连理工大学出版社, 2003 ➢李桂青,工程结构时变可靠度理论及其应用.科学出版社, 2001 ➢王光远,结构软设计理论,科学出版社,1998
Z 0 结构处于极限状态
Z gx x1, x2,, xn 0
结构可靠度计算方法(一次二阶矩) ppt课件
ppt课件
(3-23) (3-24)
(3-25)
31
将(3-25)变为标准法线式直线方程
S cosS R cosR 0
式中
cosS
s
2 R
2 S
cosR
R
2 R
2 S
R S
2 R
2 S
ppt课件
(3-26) (3-27)
32
是坐标系O SR中原点 O 到极限状态直 线的距离 OP* (其中P*为垂足)。
法) 4. 映射变换法 5. 实用分析法
ppt课件
2
s o u t h w e s t j I a o t o n g w nIversIty
一、基本概念
ppt课件
西南交通大学
3 Southwest Jiaotong University
1、解决的问题
现代的结构可靠度理论是以概率论 和数理统计学为基础发展起来的,要解 决的中心问题是围绕着怎样描述和分析 可靠度,以及研究影响可靠度各基本变 量的概率模型。
P*(μX1,μX2,…μXn)到平面的距离为:
d g(X1 , X2 ,, Xn )
2
n g
i1 X i
2 Xi
ppt课件
(3-6)
(3-7)
14
显然,点P*(μX1,μX2,…,μXn)到平面的距离d, 就是所求的可靠指标值β,两者是相等的。
Z g(x1, x2 ,, xn )
将功能函数Z在平均值P*(μX1,μX2,…,μXn)处 展开且保留至一次项,即
Z
g(X1 , X2 ,, Xn )
(3-23) (3-24)
(3-25)
31
将(3-25)变为标准法线式直线方程
S cosS R cosR 0
式中
cosS
s
2 R
2 S
cosR
R
2 R
2 S
R S
2 R
2 S
ppt课件
(3-26) (3-27)
32
是坐标系O SR中原点 O 到极限状态直 线的距离 OP* (其中P*为垂足)。
法) 4. 映射变换法 5. 实用分析法
ppt课件
2
s o u t h w e s t j I a o t o n g w nIversIty
一、基本概念
ppt课件
西南交通大学
3 Southwest Jiaotong University
1、解决的问题
现代的结构可靠度理论是以概率论 和数理统计学为基础发展起来的,要解 决的中心问题是围绕着怎样描述和分析 可靠度,以及研究影响可靠度各基本变 量的概率模型。
P*(μX1,μX2,…μXn)到平面的距离为:
d g(X1 , X2 ,, Xn )
2
n g
i1 X i
2 Xi
ppt课件
(3-6)
(3-7)
14
显然,点P*(μX1,μX2,…,μXn)到平面的距离d, 就是所求的可靠指标值β,两者是相等的。
Z g(x1, x2 ,, xn )
将功能函数Z在平均值P*(μX1,μX2,…,μXn)处 展开且保留至一次项,即
Z
g(X1 , X2 ,, Xn )
结构可靠度-体系可靠度
结构有 m 个失效模式,第 i 个失效模式的失效概率为:
Pfi i
i 1,2,, m
其中, i 为第 i 个失效模式的可靠指标。
结构体系失效概率的宽界限为
m
max
1im
Pfi
Pfs
1 1 Pfi i1
结构体系可靠度
上式左端对应于 m 个失效模式完全相关的情形, 而右端对应于 m 个失效模式完全不相关的情形。
i
j
2
yi , y j , ij
dyidy j
其中:
2 yi , y j ij
2
1
1
2 ij
exp
1 2
yi2
2ij yi y j
1
2 ij
-----二维标准正态概率密度函数
结构体系可靠度
窄界限法估计结构体系失效概率的步骤: ⑴、确定各失效模式的可靠指标及相关系数矩阵; ⑵、计算各失效模式的失效概率和两两失效模式都
失效的概率; ⑶、估计结构体系失效概率的界限。
结构模糊可靠度
在工程结构设计与分析中,常常会遇到结构失 效界限不明确或失效准则不清晰的情况,如:在结 构变形验算时,结构变形到何种程度就不再适用并 没有明确的标准;对混凝土结构进行裂缝控制时, 裂缝宽度是多少才能使人有不良的感觉也是不尽明 确的等等。这些失效都有程度问题,应考虑结构失 效的程度,将结构失效准则不明确的事件作为一个 模糊事件。
该式实质上没有真正考虑各失效模式间的相关 性,所得的上下限较宽,只适于大致估计结构体系 的失效概率。
若: Pfi 1.0
则:
m
max
1im
Pfi
Pfs
i 1
Pfi
结构体系可靠度
Pfi i
i 1,2,, m
其中, i 为第 i 个失效模式的可靠指标。
结构体系失效概率的宽界限为
m
max
1im
Pfi
Pfs
1 1 Pfi i1
结构体系可靠度
上式左端对应于 m 个失效模式完全相关的情形, 而右端对应于 m 个失效模式完全不相关的情形。
i
j
2
yi , y j , ij
dyidy j
其中:
2 yi , y j ij
2
1
1
2 ij
exp
1 2
yi2
2ij yi y j
1
2 ij
-----二维标准正态概率密度函数
结构体系可靠度
窄界限法估计结构体系失效概率的步骤: ⑴、确定各失效模式的可靠指标及相关系数矩阵; ⑵、计算各失效模式的失效概率和两两失效模式都
失效的概率; ⑶、估计结构体系失效概率的界限。
结构模糊可靠度
在工程结构设计与分析中,常常会遇到结构失 效界限不明确或失效准则不清晰的情况,如:在结 构变形验算时,结构变形到何种程度就不再适用并 没有明确的标准;对混凝土结构进行裂缝控制时, 裂缝宽度是多少才能使人有不良的感觉也是不尽明 确的等等。这些失效都有程度问题,应考虑结构失 效的程度,将结构失效准则不明确的事件作为一个 模糊事件。
该式实质上没有真正考虑各失效模式间的相关 性,所得的上下限较宽,只适于大致估计结构体系 的失效概率。
若: Pfi 1.0
则:
m
max
1im
Pfi
Pfs
i 1
Pfi
结构体系可靠度
第3章 结构可靠性设计理论基础
可见,是lnR和lnS的表达式。 根据概率论原理可以换算成R,S的统 计参数:
2 ln R ln 1 VR2
lnR=ln R ln 1 V lnS=ln S ln 1 V
2 R
1
2
2 ln S
ln V 1
2 S
2 S
1
2
所以得到:
如第一章所述,结构达到极限状态 的概率超过某一允许值,结构就失效。 所以极限状态是衡量结构是否失效的标 志,而极限状态可用极限状态方程来表 示:
Z=g(X1,X2,…,Xn)=0
Z=g(R,S)=R-S=0 当Z>0,结构处于可靠状态,当Z<0,结构处 于失效状态,当Z=0,结构恰处于极限状态。
从下图中可以清楚地看出,斜 线表示极限状态,即R=S;若点Z1 位于该线上面,即R1<S1,表示结构 失效;若点Z2位于该线下面,即 R2>S2,表示结构可靠。 Safe Region
Failure Region Limit State Surface (Failure Surface)
下面推导失效概率Pf和可靠概率Ps的 公式:
设fR,S(r,s)为随机变量(R,S)的联 合概率密度函数,FR,S(r,s)为相应的联 合概率分布函数, FR(x), FS(x), fS(x), fS(x)分别为边缘分布函数和边 缘概率密度函数。R,S统计独立。 则结构失效概率Pf应为(如图示)
1 FS x f R x dx
所以,有
Pf FR x f S x dx
1 FS x f R x dx
按相同原则,可求得可靠概率为
可靠性工程第三章
100 ×10 -6/h
N 1 G Q 1 N 5 G Q 5
1100 10 1 16 5 10 1 200 20 10 1
6
6
6
300 1.5 10 1 50 110 1
(100 16 5 200 20 300 1.5 50) 10
3-9
可靠性预计的一般程序 1、明确产品的目的、用途、任务、性能参数及失效条件 2、明确产品的组成成分和各个基本元件 3、绘制可靠性框图 4、确定产品所处环境 5、确定产品的应力 6、确定产品的失效分布 7、确定产品失效率 8、建立产品可靠性模型 9、预计产品可靠性 10、编写预计报告
3-10
可靠性预计分类
3-25
0.4856544
R
( 5) U
F1 F3 F2 F4 F1 F2 F3 F1 F2 F4 F1 F3 F4 R6 R7 (1 R1 R2 R3 R4 R5 ( R1 R3 R2 R4 R1 R2 R3 R1 R2 R4 R1 R3 R4 F1 F3 F5 F1 F4 F5 F2 F3 F4 F2 F3 F5 F3 F4 F5 F1 F2 F3 F4 R1 R3 R5 R1 R4 R5 R2 R3 R4 R2 R3 R5 R3 R4 R5 R1 R2 R3 R4 F1 F2 F3 F5 F1 F2 F4 F5 F1 F3 F4 F5 F2 F3 F4 F5 F1 F2 F3 F4 F5 )) R1 R2 R3 R5 R1 R2 R 43 R5 R1 R3 R4 R5 R2 R3 R4 R5 R1 R2 R3 R4 R5
考虑所有的单元均为串联,则系统可靠性下限的一级近似 为:
( RL1) n1 n 2 i 1
可靠度理论
2 2 Z R S
R R R
S S S
R R R 1 Z
S S S 1 Z
具体公式为:
f k (1 )
式中, fk——特征值; α——在特征值取值的保证率下所对应的系数。 保证率α——对应的可靠概率ω α=1 ω=84.13% α=1.645 ω=95% α=2 ω=97.72% α=3 ω=99.865%
结构可靠度指标的计算方法
(一)均值一次二阶矩法
中心点法是结构可靠度研究初期提出的一种方法,其 基本思想是首先将非线性功能函数在随机变量的平均 值(中心点)处进行泰勒展开并保留至一次项,然后近似 计算功能函数的平均值和标准差,进而求得可靠度指标。 该法的最大优点是计算简便,不需进行过多的数值计算, 但也存在明显的缺陷:1)不能考虑随机变量的分布概型, 只是直接取用随机变量的前一阶矩和二阶矩;2)将非线 性功能函数在随机变量均值处展开不合理,展开后的线 性极限状态平面可能较大程度地偏离原来的极限状态 曲面;3)可靠度指标会因选择不同的变量方程而发生变 化;4)当基本变量不服从正态或对数正态分布时,计算 结果常与实际偏差较大。故该法适用于基本变量,服从 正态或对数正态分布,且结构可靠度指标β=1~2的情 况。
验算点坐标
考虑到设计验算点p*应位于极限状态曲面上故g (X1*,…,Xn*)=0 因此
比较2-1求出的β。均值一次二阶矩法缺点是明显的。
(三)验算点法(JC法) 很多学者针对中心点法的弱点,提出了相应的改进措施。 验算点法,即Rackwitz和Fies-sler 提出后经hasofer 和 lind改进,被国际结构安全度联合委员会(JGSS)所推荐 的JC法就是其中的一种。作为中心点法的改进,主要 有两个特点:1)当功能函数Z为非线性时,不以通过中心 点的超切平面作为线性相似,而以通过Z=0上的某一点 x3( x31, x32, x33, …, x3n)的超切平面作为线性近似,以避 免中心点法的误差;2)当基本变量x3 具有分布类型的信 息时,将x3 分布在x31, x32, x33, …, x3n处以与正态分布等 价的条件变换为当量正态分布,这样可使所得的可靠指 标β与失效概率pf 之间有一个明确的对应关系,从而在 β中合理地反映分布类型的影响。该法能够考虑非正 态的随机变量,在计算工作量增加不多的条件下,可对 可靠度指标进行精度较高的近似计算,求得满足极限状 态方程的“验算点”设计值,便于根据规范给出的标准 值计算分项系数,以便于工作人员采用惯用的多系数表 达式。
ch3结构可靠性理论的基本概念
S
ds
s, r
f R (r )
∞ S
fS (s)ds∫ fR (r)dr
结构的可靠度p 大于S的概率 任意值在全区间(- 结构的可靠度 s是R大于 的概率,即上式对 任意值在全区间(- ,∞) 大于 的概率,即上式对S任意值在全区间(-∞, ) 内均应成立, 内均应成立,所以 ∞ ∞ f (r)drds (3-16) ps = fS (s) R
–
这些基本变量的集合构成基本变量空间,也称状态空间 记为 这些基本变量的集合构成基本变量空间 也称状态空间,记为 也称状态空间
X = ( X 1 , X 2 ,L , X n )
Z = g ( X ) = g ( X 1 , X 2 ,L , X n )
则当: 则当:Z >0时, 表示结构处于可靠状态, 时 表示结构处于可靠状态, Z =0时, 表示结构处于极限状态。 时 表示结构处于极限状态。 Z <0时, 表示结构处于失效状态, 时 表示结构处于失效状态, 很明显,极限状态给出了结构“可靠” 失效” 很明显,极限状态给出了结构“可靠”与“失效”之间的界 限。 称方程 (3-2) Z = g ( X ) = g ( X 1 , X 2 ,L , X n ) = 0 为极限状态方程。 极限状态方程。
∫
−∞
∫
S
s, r
3.1 结构可靠度与失效概率…12 同样地, 可定义为作用S小于抗力 的概率,即先考虑R, 小于抗力R的概率 同样地,ps可定义为作用 小于抗力 的概率,即先考虑 ,
它落在dr区间的概率为: 区间的概率为:
Pf =
∫
z <0L
∫
f X (x1) f X (x2 )L f X (xn )dx1dx2 Ldxn (3-7)
结构可靠度理论ppt课件
16
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
17
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
29
3
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
均匀分布随机变量X的取值具有“均匀性” 均匀性特点:均匀分布随机变量X落在(a,b) 内任意子区间的概率只与子区间的长度有关, 而与子区间的位置无关. 可假设有这种特性的随机变量服从均匀分 布.
26
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
图 2.3 可靠度指标的几何意义及验算点
根据前面所 述,将结 构功能函 数 Z 在假 定验算 点 X*= (x1*, x2*,, xn* ) 处运用泰勒 级数展开且只 保留线 性项:
X * Xi
( X * Xi
2
xi*)
由可靠度指标 的几何 意义,验 算点和 可靠度指 标之间 具有如下 关系:
xi* Xi Xi cosi
28
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
24
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第二章-结构可靠性的基本概念和原理
若结构或结构构件达到正常使用或耐久性能的某项规
定限值,则认为其达到正常使用极限状态。如:影响正常
使用或外观的变形;影响正常使用或耐久性能的局部损坏。
(3)整体性极限状态(抗连续破坏极限状态)
结构由于局部损坏而达到其余部分将发生连续破坏(或
连续20倒21/塌4/)9状态限值。
5
2.2 可靠度基本概念
第二章:结构可靠性的基本概念和原理
2.2 可靠度基本概念
2.2.1 极限状态
1、工程结构的功能函数
无论是房屋、桥梁、隧道等工程结构设计时,应使其在
使用期内,力求在经济合理前提下满足下列各项要求:
(1)能承受正常施工和正常使用期间可能出现的各种作用
(包括荷载及外加变形或约束变形)—结构的安全性;
(2)在正常使用时具有良好的性能—结构的适用性;
N(S,S )
对R,S作标准化变
换
Sˆ
Rˆ
S S S
R R
R
显然, Sˆ , Rˆ 均服从 N (0 ,1分) 布.
Z R ˆR R (S ˆSS ) 0
c
o
s
S
用
2 R
2除上式得
S
S ˆcosSR ˆcosˆR0
c
o
s
R
S
2 R
2 S
R
2 R
2 S
2021/4/9
14
由解析几何知,在标准正态化坐标系SˆOˆ Rˆ 中,上式为极 限状态直线的标准法线式方程。 为原点 O ˆ 到极限状态 直线的法线距离 Oˆ p (见图2-4)。cosS,cosR为法线对各 坐标向量的方向余弦。 的几何意义为标准正态坐标 系中原点 O ˆ 到极限状态直线的最短距离。对结构极限 状态方程为若干相互独立、正态变量构成非线性方程 情况,同样可证明 的合理近似取值为标准正态坐标 系中原点 O ˆ 到极限状态曲面的最短距离。
结构可靠性理论(全套课件209P)
Chap.0 绪 论
0.1 引言
结构可靠性理论课程是接着《结构力学》等结构类课程的后 续课程,是很多专业课(如结构设计原理等)中公式系数的来 源、可靠度取值的基础,故它是一门基础课,比较偏重于数学 方面,故其难度相对比较大。 工程结构可靠性理论是一门涉及多学科并与工程应用有着密 切关系的学科,对结构设计能否符合安全可靠、耐久适用、经 济合理、技术先进、确保质量的要求,起着重要的作用。结构 可靠性与下面几个方面有关:
2 )胡云昌,郭振邦。 《结构系统可靠性分析原理及应用》. 天津大学出版社,1992
3 )徐雪玲,王善著。 《结构可靠性原理导论》. 中国船舶工 业总公司可靠性中心,1996 4 )何水清,王善著。 《结构可靠性分析与设计》. 国防工业 出版社,1993 5 )赵国藩,金伟良,贡金鑫著。 《结构可靠性理论》. 建筑 工业出版社,2000 6 )李守仁 .《可靠性工程》. 哈尔滨船舶工程学院出版社, 1991
0.1.2 工程结构的设计步骤
1)选择合理的结构方案和型式
第一步:是调查研究、分析对比,在满预定功能的条 件下,选择合理的结构方案和型式;
2)根据选定的结构型式设计结构或构件的截面
第二步:包括结构或构件截面内力或应力的分析,以及 根据截面的内力或应力,选择截面尺寸、确定材料用量等。 通常称为结构计算。
3)李国强,黄宏伟,郑步权。 《工程结构荷载与结构可靠度设 计原理》(第二版)中国建筑工业出版社(China Architecture and Building Press),2001。(面向21世纪课程教材-高校土 木工程学科专业指导委员会规划推荐教材)
参考文献:
1 ) 《Application of Structural System Reliability Theory》Pallle Thoft -Christensen and Yoshisada Murotsu 。 Springer-Verlag Berlin Heidelberg New York Tokyo,1985
结构构件可靠度的计算方法讲解
式中:ai (i 0,1, 2,L , n) 是常系数;
X i 是相互独立的随机变量,其相应的均值和标准差为Xi
和 Xi 。
2. 功能函数的概率特征值
n
Z a0 ai Xi i 1
Z
n
2
ai Xi
i 1
3.1 均值一次二阶矩法
可靠指标:
n
Z
计算过程:
(1) 建立功能函数 a、按截面塑性弯矩极限状态
3.1 均值一次二阶矩法
Z1 Wf y M Wf y 128800(N·m)
b、材料屈服应力极限状态。
Z2
f
y
M W
fy
128800 W
(Pa)
(2)对功能函数在均值点进行线性化
Z1 fy W 128800 w ( f y fy ) fy (W W )
g
(
X
* 1
,
X
* 2
,L
,
X
* n
)
0
非正态随机变量的当量正态化
改进均值一次二阶法的不足
在极限状态曲面 g(X )寻 找0 验算点 P* ,x1*,并x2*在,...,此xn*基础上
进行泰勒级数展开,应用随机变量的前二阶矩,采用非正态 随机变量的当量正态化,迭代求解结构的失效概率的一种方 法,该方法简称验算点法,后被JCSS推荐使用,又称JC法。
– 随机变量由 X空间向 U 空间变换
X (X1, X 2,L , X n )
U (U1,U2 ,L ,Un )
– 功能函数由X空间向 U 空间变换 Z g( X ) g( X1, X 2 ,L , X n ) Zˆ G(U) G(U1,U2,L ,Un)
X i 是相互独立的随机变量,其相应的均值和标准差为Xi
和 Xi 。
2. 功能函数的概率特征值
n
Z a0 ai Xi i 1
Z
n
2
ai Xi
i 1
3.1 均值一次二阶矩法
可靠指标:
n
Z
计算过程:
(1) 建立功能函数 a、按截面塑性弯矩极限状态
3.1 均值一次二阶矩法
Z1 Wf y M Wf y 128800(N·m)
b、材料屈服应力极限状态。
Z2
f
y
M W
fy
128800 W
(Pa)
(2)对功能函数在均值点进行线性化
Z1 fy W 128800 w ( f y fy ) fy (W W )
g
(
X
* 1
,
X
* 2
,L
,
X
* n
)
0
非正态随机变量的当量正态化
改进均值一次二阶法的不足
在极限状态曲面 g(X )寻 找0 验算点 P* ,x1*,并x2*在,...,此xn*基础上
进行泰勒级数展开,应用随机变量的前二阶矩,采用非正态 随机变量的当量正态化,迭代求解结构的失效概率的一种方 法,该方法简称验算点法,后被JCSS推荐使用,又称JC法。
– 随机变量由 X空间向 U 空间变换
X (X1, X 2,L , X n )
U (U1,U2 ,L ,Un )
– 功能函数由X空间向 U 空间变换 Z g( X ) g( X1, X 2 ,L , X n ) Zˆ G(U) G(U1,U2,L ,Un)
《结构体系可靠度》课件
模糊分析法可以采用模糊概率、 模糊集合、模糊推理等方法进行 计算和评估。
灰色分析法
灰色分析法是一种基于灰色 系统理论的可靠度分析方法 ,通过建立灰色模型和灰色 关联度分析,评估结构体系
的安全性和可靠性。
灰色分析法可以处理不完全 信息和不精确数据,采用灰 色系统理论的方法进行数据
处理和预测分析。
灰色分析法可以采用灰色预 测、灰色决策、灰色评估等 方法进行计算和评估。
人工智能方法
利用人工智能和机器学习技术, 通过对大量历史数据进行分析和 学习,实现对结构体系可靠性的 智能评估。
02
结构体系可靠度分析方法
概率分析法
概率分析法是一种基于概率论和数理统计的方法,通过计算结构体系在各 种可能情况下的可靠度指标,评估结构体系的安全性和可靠性。
概率分析法需要考虑各种不确定性因素,如材料性能、几何参数、环境条 件等,通过概率分布描述这些不确定性因素的概率特性。
03
结构体系可靠度影响因素
材料性能
材料性能是影响结构体系可靠度的关键 因素之一
材料性能包括强度、刚度、稳定性等,这些 性能指标直接影响结构的承载能力和耐久性 。例如,钢材的强度和耐腐蚀性,混凝土的 抗压和抗弯能力等。
材料性能的可靠性取决于其生产、 加工、运输和存储过程中的质量控 制,以及材料的物理和化学性质。
施工质量和维护条件
施工质量和维护条件对结构体系可靠 度具有长期影响
VS
施工质量包括施工方法的合理性、施 工质量的控制等,维护条件包括定期 检查、维修和保养等。良好的施工质 量和维护条件可以保证结构的长期稳 定性和可靠性,而不良的施工和维护 可能导致结构性能的下降。
04
结构体系可靠度设计
基于可靠度的结构设计原则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 按规定的可靠指标进行设计的准则 – 规定的可靠指标=目标可靠指标
• 承载力极限状态
– 建筑结构:安全等级 一
• 延性破怀 • 脆性破坏
Pf
2018/7/22
二
3.2 3.7
三
2.7 3.2
3.7 4.2
3.7 4.2
3.2
10-4
1.310-5
7
令
设计时采用可靠 指标代替可靠度
R S z 2 2 z R S
可靠指标大, 可靠度就大。
可靠指标 则有 Pf ( )
2018/7/22
可靠指标和失效概 率一一对应,表3-3 失效概率和可靠度相对应
6
3.3.3 按可靠指标的设计准则
• 按可靠指标的设计准则
3.3 结构可靠度理论
3.3.1 结构极限状态方程
• 作用效应
– 定义:由作用引起的结构或构件的反应S – 效应体现
• 内力(轴力N、剪力V、弯矩M、扭矩T) • 变形(挠度、转角) • 混凝土结构的裂缝
2018/7/22
1
• 抗力
– 定义:结构或结构构件承受作用效应 的能力,用R表示 – 影响因素
2018/7/22
8
R , R
S , S
则Z =R-S 也 服从正态分布 平均值和标准差分别为:
z R S
2 2 z R S
2018/7/22
5
失效概率为
Pf P(Z 0) F (0) 0 z z z z
– 极限状态方程
Z = g(S, R) = R – S = 0
S
2018/7/22
3
3.3.2 结构的可靠度
规定的 条件下 结构的 可靠度 结构在规定 的时间内
完成预定功能的概率Ps=可靠度,可靠概率 完不成预定功能的概率Pf为失效概率
Ps Pf 1
2018/7/22 4
设R、S 服从正态分布 平均值和标准差分别为:
– 桥梁结构
结构安全等级 一 • 延性破怀 4.7 • 脆性破坏 5.2 二 4.2 4.7 三 3.7 4.2
• 正常使用极限状态
– 根据可逆程度取0~1.5
• 可逆程度较高的结构构件取值较低 • 可逆程度较低的结构构件取值较高
– 可逆极限状态
• 产生超越状态的作用移掉后,将不再保持超越状 态的一种极限状态 = 可逆状态。
• 结构的几何参数(尺寸) • 材料性能 几何尺寸具有变异性、材料性能也具有变异性, 所以抗力R具有随机性。
2018/7/22
2
• 结构极限状态方程
– 结构的功能函数z
Z = g(S, R) = R – S Z>0 可靠状态 (R>S) Z<0 失效状态 (R<S) Z=0 可靠状态 (R=S)
R Z>0 可靠区 Z<0 失效区 O A
• 承载力极限状态
– 建筑结构:安全等级 一
• 延性破怀 • 脆性破坏
Pf
2018/7/22
二
3.2 3.7
三
2.7 3.2
3.7 4.2
3.7 4.2
3.2
10-4
1.310-5
7
令
设计时采用可靠 指标代替可靠度
R S z 2 2 z R S
可靠指标大, 可靠度就大。
可靠指标 则有 Pf ( )
2018/7/22
可靠指标和失效概 率一一对应,表3-3 失效概率和可靠度相对应
6
3.3.3 按可靠指标的设计准则
• 按可靠指标的设计准则
3.3 结构可靠度理论
3.3.1 结构极限状态方程
• 作用效应
– 定义:由作用引起的结构或构件的反应S – 效应体现
• 内力(轴力N、剪力V、弯矩M、扭矩T) • 变形(挠度、转角) • 混凝土结构的裂缝
2018/7/22
1
• 抗力
– 定义:结构或结构构件承受作用效应 的能力,用R表示 – 影响因素
2018/7/22
8
R , R
S , S
则Z =R-S 也 服从正态分布 平均值和标准差分别为:
z R S
2 2 z R S
2018/7/22
5
失效概率为
Pf P(Z 0) F (0) 0 z z z z
– 极限状态方程
Z = g(S, R) = R – S = 0
S
2018/7/22
3
3.3.2 结构的可靠度
规定的 条件下 结构的 可靠度 结构在规定 的时间内
完成预定功能的概率Ps=可靠度,可靠概率 完不成预定功能的概率Pf为失效概率
Ps Pf 1
2018/7/22 4
设R、S 服从正态分布 平均值和标准差分别为:
– 桥梁结构
结构安全等级 一 • 延性破怀 4.7 • 脆性破坏 5.2 二 4.2 4.7 三 3.7 4.2
• 正常使用极限状态
– 根据可逆程度取0~1.5
• 可逆程度较高的结构构件取值较低 • 可逆程度较低的结构构件取值较高
– 可逆极限状态
• 产生超越状态的作用移掉后,将不再保持超越状 态的一种极限状态 = 可逆状态。
• 结构的几何参数(尺寸) • 材料性能 几何尺寸具有变异性、材料性能也具有变异性, 所以抗力R具有随机性。
2018/7/22
2
• 结构极限状态方程
– 结构的功能函数z
Z = g(S, R) = R – S Z>0 可靠状态 (R>S) Z<0 失效状态 (R<S) Z=0 可靠状态 (R=S)
R Z>0 可靠区 Z<0 失效区 O A