ASAP杂散光分析资料
杂散光产生的原因及减小杂散光的措施
杂散光产生的原因及减小杂散光的措施杂散光这东西啊,就像那不受欢迎的小捣蛋鬼,总是在不该出现的时候冒出来捣乱。
那它到底是怎么产生的呢?这可就有不少门道了。
咱先说说光学系统本身的问题吧。
你看啊,就像一件衣服有缝儿似的,光学元件之间的连接、组装要是不够精密,就会有小缝隙。
光线就像调皮的小虫子,一瞅见这些缝儿,就顺着钻进去乱窜,这不就变成杂散光了嘛。
比如说相机镜头,如果镜片的安装有点偏差或者密封不好,外界的光线就会偷偷溜进来,在照片上留下不该有的光斑或者光晕,就像在一幅漂亮的画上胡乱涂了几笔,多难看啊。
还有啊,光学元件表面的粗糙度也是个事儿。
这就好比人的脸,要是坑坑洼洼的,光线打上去就会乱反射。
哪怕是很细微的不平整,对于光线来说那也是一条条崎岖的小路,它就不会乖乖按照我们想要的方向走了,到处乱反射的光线就成了杂散光。
光学元件的内部结构也不省心呢。
有些材料内部可能有一些小缺陷,或者晶体结构不均匀。
这就像一块夹心饼干,要是里面的夹心不均匀,光线在里面传播的时候就会受到干扰,就像一个人在坑洼不平的路上走路,东倒西歪的,最后就偏离了原本的方向,变成杂散光了。
那怎么减小这些杂散光呢?这就像是给这个爱捣乱的小捣蛋鬼设下重重关卡,不让它得逞。
对于光学元件之间的缝隙问题,我们得把密封工作做到位。
这就好比把房子的门窗都关紧,不让外面的风沙进来。
使用一些好的密封材料,像在光学仪器的组装过程中,用那种高质量的橡胶密封圈,把各个元件之间的缝隙都堵得严严实实的,光线想钻都钻不进来。
光学元件表面的处理也很关键。
要把表面打磨得像镜子一样光滑,这就需要一些高精度的加工技术了。
你看那些高档的光学镜片,就像精心雕琢的艺术品一样。
表面光滑得很,光线打上去就规规矩矩地反射或者折射了,就像训练有素的士兵,按照命令整齐行进,而不是像没头的苍蝇到处乱撞。
在光学元件的材料选择和制造上也得下功夫。
就像盖房子要选好的建筑材料一样,选择内部结构均匀、质量好的光学材料。
光学合成孔径成像系统的杂散光分析与抑制
DOI:10.16185/j.jxatu.edu.cn.2021.04.008http://xb.xatu.edu.cn光学合成孔径成像系统的杂散光分析与抑制陈 靖,田爱玲(西安工业大学光电工程学院,西安710021)摘 要: 为了提高光学合成孔径成像系统的成像质量,减小杂散光对成像系统的影响,文中结合杂散光辐照度计算结果和相机参数对光学合成孔径系统进行了杂散光分析。
在杂散光分析软件TracePro中建立了系统的光机模型,对系统进行杂散光追迹,分析了杂散辐射主要来源。
仿真分析结果表明:设计的遮光罩,采用设置光阑、消杂光螺纹和发黑、涂消光漆等杂散光抑制措施,在光学系统太阳光与光学系统光轴夹角大于1°时,点源透过率均≤10-4,达到了杂散光抑制的要求,验证了文中杂散光抑制方法的有效性。
关键词: 光学合成孔径;杂散光分析;光线追迹;点源透过率中图号: O439 文献标志码: A文章编号: 1673 9965(2021)04 0432 06犃狀犪犾狔狊犻狊犪狀犱犛狌狆狆狉犲狊狊犻狅狀狅犳犛狋狉犪狔犔犻犵犺狋犻狀犪狀犗狆狋犻犮犪犾犛狔狀狋犺犲狋犻犮犃狆犲狉狋狌狉犲犐犿犪犵犻狀犵犛狔狊狋犲犿犆犎犈犖犑犻狀犵,犜犐犃犖犃犻犾犻狀犵(SchoolofOptoelectronicEngineering,Xi’anTechnologicalUniversity,Xi’an710021,China)犃犫狊狋狉犪犮狋: Inordertoimprovetheimagingqualityofanopticalsyntheticapertureimagingsystemandreducetheinfluenceofstraylightontheimagingsystem,ananalysisofstraylightoftheopticalsyntheticaperturesystemwasmadebasedonthecalculationresultsofstraylightirradianceandthecameraparameters.AnopticalmodelofthesystemwasestablishedinTracePro,astraylightanalysissoftware,totracestraylightandtoanalyzethemainsourcesofstrayradiation.Basedonthesimulationanalysisresults,ashieldwasdesigned,andothermeasuressuchassettingaperturesandeliminatingstraylightscrews,blackening,andapplyingextinctionpaint,wereadoptedtosuppressstraylight.Whentheanglebetweenthesunlightoftheopticalsystemandtheopticalaxiswasgreaterthan1°,thepointsourcetransmittancewaslessthanorequalto10-4,whichverifiesthestray?lightsuppressionmethodsadoptedinthispaperiseffective.犓犲狔狑狅狉犱狊: opticalsyntheticapertureimagingsystem;straylightanalysis;raytrace;pointsourcetransmittance(PST)第41卷第4期2021年8月 西 安 工 业 大 学 学 报JournalofXi’anTechnologicalUniversity Vol.41No.4Aug.2021 收稿日期:2021 06 28基金资助:陆军装备预研项目(30110222××××);西安市智能探视感知重点实验室项目(201805061ZD12CG45)。
ASAP在杂散光中的应用
slide 18
2014/4/10 武汉墨光科技有限公司 slide 11
Lens System with Ghost Image
2014/4/10
武汉墨光科技有限公司
slide 12
Digital Picture Object
2014/4/10
武汉墨光科技有限公司
slide 13
ASAP Ray Trace Image
slide 5
Ghost Image and Stray Light Analysis
2014/4/10
武汉墨光科技有限公司
slide 6
The Perfect World
2014/4/10
武汉墨光科技有限公司
slide 7
The Real World
Sorting Out Complex Ray Traces
2014/4/10
武汉墨光科技有限公司
slide 9
The History of Path 6
2014ide 10
Second-Order Scatter in Micro-Lithography Optics
Scatter from edges of retainer rings
2014/4/10
武汉墨光科技有限公司
slide 14
The Sun comes out …
Sunshade Diffracted light enters the baffle
Direct sunlight cannot enter the baffle
2014/4/10 武汉墨光科技有限公司 slide 15
ASAP Ray Trace Image with Ghost and Scatter light
杂散光原因与处理方式ppt课件
杂散光产生原因
由像面离焦或者 是由明亮的光源 成鬼影一样的像
透镜表面反射
鬼像
解决办法:镜片镀膜
上双胶合透镜:有镀膜 下双交合:无镀膜
杂散光产生原因
直接 入射
视场以外的光线直接越 过次镜,穿越主镜的开 孔,从而以杂散光的形 式直接照射到焦平面上
杂散光产生原因
多次 散射
杂散 光源
一次 散射
部分散射光线经过 光学系统之后,会 照射到焦平面
设计遮光罩
项Байду номын сангаас中淆杂措施总 结 1.聚光镜中光阑优化
B
B
A
A
(a) 优化前
(b) 优化后
C
项目中淆杂措施总结
2.分光元件消杂处理
CCD 物镜 成像光线 物面 a b 光源
杂散光线
项目中淆杂措施总结
3.光拦形状优化
杂散光线 成像光线 杂散光线
B
C A
尺寸A
光通量
衬度较差 边缘处均匀性差 “漂白”现象
尺寸B
杂光反射次数
项目中淆杂措施总结
杂散光线 D
成像光线
杂散光线 C
B
A
消杂原理:反射消杂光
项目中淆杂措施总结
4.机械工艺
结合实验室仪器 散光螺纹—考虑制造工艺与实 验效果 表面氧化处理—反射系数0.05
ASAP 高级光学系统分析软件简介
欧美光学行业标准软件ASAP(Advanced Systems Analysis Program)软件是美国 Breault Research Organization(BRO) 公司研发的一款在 3D空间通过非序列光线追迹来模拟光学系统表现度的软件。
多年以来,广泛应用在照明设计,杂散光分析,背光板设计,偏振光分析等领域。
其中尤以出众精准的照明和杂散光分析能力而闻名,这是 LED照明设计和高精度系统中必不可少的功能。
BRO 公司位于美国亚利桑那州图森市(Tuscon),在 1979 年由 Dr. Robert P. Breault 创建。
BRO 公司有三大业务:ASAP 软件销售和技术支持、ASAP 教育培训和承接工程项目。
ASAP 软件以其强大的功能,为美国政府和全球光学行业做出了巨大的服务。
BRO 公司承接众多美国军方对战机、军舰、战车的 LED 照明设计和改造项目。
ASAP功能之强,可见一斑。
ASAP主要特点功能强大、运算速度快鬼影起源:追迹杂散光的进化史,高端镜头系统分析必经之路,各种照明系统高精度分析必备之器!ASAP 成功修复哈勃望远镜,杂散光分析非ASAP莫属!背光源:汽车仪表、手机光源、室内照明、显示屏幕无所不能!让您的客户不再抱怨眼睛疲劳,让每一个细节都一览无遗!选择ASAP,您的光源专家!LED照明:ASAP 提供精准的 LED 光源,结合为 Lens 添加菲涅耳运算、散射模型,保证模拟结果的准确度。
ASAP 在 LED 设计过程中为工程师提供的强大自由度,保记您的每一个想法都不再是纸上谈兵!生物医学:精确模拟光与组织结构交互结果。
特有 RSM 模型一真实皮肤模型,采用 Henyey-Greenstein 近似值,Mante CarLo 光线追迹助您分析器官病变!每一款车灯,每一份设计,每一条光线,尽在您的掌握!SAE ECE和 FMVSS 标准测试,助您顺利通过法规!采用 ASAP 缩短研发时间,节约开模费用!您的财富您驾驭!严谨精确、可靠精准的模拟结果ASAP模拟结果实验室实际结果ASAP 的灯源模型在几何形状和发光度上非常精准,并包括了完整的光谱数据,同时包含了从灯源所得的实际光学和机械的几何模型。
星敏感器杂散光分析与抑制
摘要摘要在航空航天领域,用于确定飞行器姿态的星敏感器得到广泛的应用。
由于复杂的太空光环境导致进入星敏感器的杂散光较为复杂,杂散光的抑制水平决定了星敏感器的定姿精度。
杂散光对于暗弱目标的探测影响很大,到达探测器表面的杂散光会降低像面对比度,增加背景噪声,严重时使探测目标信号被湮没。
基于以上背景,在查阅大量文献的基础上,本文分析了复杂太空光环境的来源和路径,确定了杂散光分析的步骤,介绍了影响杂散光路径的散射模型并提出了杂散光抑制水平的评价函数。
在阅读大量文献后,开展了以下几个方面的研究工作:1)运用不同类型的遮光罩和挡光环设计原理,确定不同位置挡光环的分布。
利用MATLAB软件将遮光罩和挡光环设计程序化,根据设计要求快速得到相关参数并导入ASAP软件中建模。
利用消光比和点源透射率两种评价方式,对系统中三种不同类型的遮光罩进行分析,绘出消光比和点源透射率关于光线离轴角的变化曲线,为遮光罩的设计提供理论分析依据。
利用遮光罩程序设计一种新型遮光罩,设计参数与系统内的遮光罩参数相同,对比两种遮光罩的消光比和点源透射率,得出新型遮光罩优于原遮光罩的结论。
2)采用蒙特卡罗法和重点区域采样法仿真分析。
利用散射特性测量仪器对结构的散射特性进行实测并建立多项式散射模型,散射模型建立的准确与否严重影响杂散光仿真分析的准确性。
讨论了透镜散射模型的建立和结构件散射模型方程的选择。
利用ASAP软件对工作波段为可见光的简单星敏感器系统和复杂星敏感器系统进行杂散光分析,在验证建模准确、散射模型准确、重点区域选择准确等前提下仿真得到不同光线离轴角下点源透射率的数值,与设计要求进行对比。
3)利用基于双柱罐的点源透射率测试方法,这是一种国外测量点源透射率较为普遍的测试方法。
介绍了点源透射率测试的设备、方法和测试步骤。
对可见光简单星敏感器光学系统的点源透射率实测,得出点源透射率的实测数据并绘制曲线与仿真分析数值对比,分析误差。
通过对比后,利用验证分析的评价指标,仿真值与分析值相互验证,实测表明仿真分析的正确性。
杂散光的重要性——紫外可见分光光度计
杂散光的重要性——紫外可见分光光度计杂散光是紫外可见分光光度计非常重要的关键技术指标。
它是紫外可见分光光度计分析误差的主要来源,它直接限制被分析测试样品浓度的上限。
当一台紫外可见分光光度计的杂散光一定时,被分析的试样浓度越大,其分析误差就越大。
杂散光可能是光谱测量中主要误差的来源。
尤其对高浓度的分析测试时,杂散光更加重要。
有文献报道,在紫外可见光区的吸收光谱分析中,若仪器有1%的杂散光,则对2.0a的样品测试时,会引起2%的分析误差时,说明仪器中有这种杂散光存在。
但必须注意,当仪器存在零点误差时,有可能造成混淆。
如果在不透明的样品上涂上白色,则可增加样品本身反射和散射的效果,可以提高测量灵敏度。
第二种形式是指测试波长以外的、偏离正常光路而到达光电转换器的光线。
它通常是由光学系统的某些缺陷所引起的。
如光学元件的表面被擦伤、仪器的光学系统设计不好、机械零部件加工不良,使光路位置错移等。
目前,国际上许多紫外可见分光光度计的杂散光都在0.01%以下。
因此,我国的紫外可见分光光度计还需继续努力。
杂散光对分析测试结果的误差影响是随着吸光度值增大而增大的。
因此,吸光度值越大,对误差的影响也越大。
众所周知,紫外可见分光光度计在制药行业中使用较多。
并且各国的药典都明确要求许多药品一定要用紫外可见分光光度计来分析测试。
我国的药典规定对人用药品的检测时,许多药品的相对测试误差都不能超过1%。
如假设使用的紫外可见分光光度计的杂散光为0.5%,如果被检测药品的吸光度大于0.5bs,若为0.8abs,则测量误差就大于1%,达到1.42%,就不符合我国药典规定的相对误差为1%的要求,即不合格。
由此可见,不管是制造者还是使用者,都必须高度重视对仪器杂散光的控制和选择。
1。
ASAP杂散分析说明
格点光源在Z=-23.226平面上的位置
格点光源在空间内的矢量图
追迹光束
在这里我们主要探究的是ASAP在杂散光分析方面上的功能,因此,在光 线追迹之前,需要对系统的低通量阈值,以及光线的分裂代数提前进行 设定。
对于既有透射又有反射的光学系统ASAP不可能 对光线一直进行追迹,因此,我们需要对低光 通量进行设置。Halt命令控制相对光通量的最低 限值(系统内定为1X10^-6)。Split设置光线所 允许的分裂代数。 为了能够更加清楚的观察ASAP光线的追迹,我们这里设置光源为1X3 共3条。分裂代数为2。
图中第一行是几何物件的定义(位置,孔径,曲率,离轴,倾斜)。第 二行定义集合物件的光学性质,这里定义它的分界面为1%的反射99%透 射,分界面两侧介质为Air和PK2。 建立的几何模型如右图所示:
产生光源
光源的产生大致分三步: 1.光线的起始位置 2.光线的起始方向 3.光线的光通量
Grid定义光源为半径为2.5的圆形格子光源。 Source定义光线的方向为平行于X轴的平行光。 Flux定义了光线的光通量。
模型的建立
首先进入ASAP Builder界面。 如右图所示。
然后开始建模 1.定义系统设定值,如单位,波长等
2.定义光学材料及镀层。折射率,反射透射系数等。
PK2,SF2为两种玻璃材料, Pabsorb为完全吸收,所以设定 反射率投射率均为0, Ptransmit 为完全投射,Ttransmit为1%的 反射以及99%的投射,Tblack 为1%的反射99%的吸收。 3 为每一个物件定义几何形状 4 给定每个物件的光学性质
镜筒反射杂光分析
光线追迹操作界面
光 线 追 迹 二 维 图 示ห้องสมุดไป่ตู้
ASAP杂散分析说明
格点光源在Z=-23.226平面上的位置
格点光源在空间内的矢量图
追迹光束
在这里我们主要探究的是ASAP在杂散光分析方面上的功能,因此,在光 线追迹之前,需要对系统的低通量阈值,以及光线的分裂代数提前进行 设定。
对于既有透射又有反射的光学系统ASAP不可能 对光线一直进行追迹,因此,我们需要对低光 通量进行设置。Halt命令控制相对光通量的最低 限值(系统内定为1X10^-6)。Split设置光线所 允许的分裂代数。 为了能够更加清楚的观察ASAP光线的追迹,我们这里设置光源为1X3 共3条。分裂代数为2。
模型的建立
首先进入ASAP Builder界面。 如右图所示。
然后开始建模 1.定义系统设定值,如单位,波长等
2.定义光学材料及镀层。折射率,反射透射系数等。
PK2,SF2为两种玻璃材料, Pabsorb为完全吸收,所以设定 反射率投射率均为0, Ptransmit 为完全投射,Ttransmit为1%的 反射以及99%的投射,Tblack 为1%的反射99%的吸收。 3 为每一个物件定义几何形状 4 给定每个物件的光学性质
镜筒反射杂光分析
光线追迹操作界面
光 线 追 迹 二 维 图 示
光线追迹三维图
Байду номын сангаас 当光线分裂次数设置为3代时:
ASAP关于反射杂光
在上边建模的基础上,系统的几何结构不发生变化,添加镜筒,改变透 镜介质面上的参数即可。在这里我们将透镜设置为理想状态,即只发生 折射。镜筒内壁设置为99%的吸收以及1%的反射。
加上镜筒的几何图形
图中第一行是几何物件的定义(位置,孔径,曲率,离轴,倾斜)。第 二行定义集合物件的光学性质,这里定义它的分界面为1%的反射99%透 射,分界面两侧介质为Air和PK2。 建立的几何模型如右图所示:
ASAP物理光学与杂散光分析 - 20140708
将照片变成光源来进行成像系统评估
Light Source Model from CCD camera (.bmp file imported into ASAP)
ASAP Optical System Model
2015/3/2
Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd
2015/3/2 Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd slide 2
经历
• He received a B.S. in mathematics from Yale University, and M.S. and Ph.D. in optical sciences from the University of Arizona under Dr. Roland Shack. • APART™ 传承下来的。 ASAP 当年不少软件中,唯一
slide 11
赋予导入模型的光学属性(材料和膜层)
散射和菲涅耳公式 光线分裂
2015/3/2
Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd
slide 12
查看3D图形
2015/3/2
Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd
2015/3/2
Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd
slide 7
支持导入CAD文件
杂散光分析 Stray Light Analysis
5 - 12
Copyright © 2013 Radiant ZEMAX
Initial Power on Detector
Copyright © 2013 Radiant ZEMAX
5-8
Add The Sun
Model the Sun as a bright off-axis collimated source Insert a new object at the top of the NSCE Object #1: Source Ellipse – X = 0; Y =1; Z = -10 – Tilt About X = 5 (Sun is 5 deg off-axis; nominal FOV is 1 deg) – # Layout rays = 20 – # Analysis Rays = 100,000 – Power = 1 Watt » We could model the flux of the sun through the tube exactly » This will be good enough for a relative measure – X, Y Half Width = 6.1 » Just large enough to overfill the telescope barrel
5 - 10
Copyright © 2013 Radiant ZEMAX
Direct Paths
Light reaching the image directly from the source can be extremely dangerous! – Layout plots are very useful to see where baffles need to go, especially when using the Active Cursor
杂散光
杂散光(Stray Light)
杂散光(Stray Light):指的是检测器在给定波长所接收的光线中杂有不属于入射光束或通带外部的光线。
杂散光直接影响分析的准确度,因为杂散光可使吸收光谱变形,吸光度变值。
杂散光对分析影响的大小,随杂散光的大小而变化,也因吸光度值的大小而影响程度不同。
杂散光来源:杂散光是仪器本身的缺陷造成的。
其中包括光学系统设计局限、光学元件被污染或受损、热辐射或荧光引起的二次电子发射。
一般的仪器系统误差是可以通过标准样品校正的。
但是杂散光往往不是固定值,很难作为系统误差校正。
尤其是有毒有害物质的检测大多不采用对环境带来二次污染的标准工作曲线法,而是采用K系数法进行定量分析,K系数法(以及物理性能测试等等)是不可能将杂散光的影响消除的。
因此,要根据应用需求选择杂散光的大小。
杂散光对分析的影响理论计算例:在同等吸光度值测量时,杂散光越小,仪器测定的吸光度相对误差就越小。
在同等杂散光测量时,吸光度越大,测定的吸光度相对误差也越大。
下表列举不同杂散光在不同吸光度引起的仪器测量误差。
以对人用药品检测为例,大多要求测试误差不能超过1%,蓝色越深的部分,杂散光所带来的测试误差越小,既是越佳的选择。
相反,红色则是已经超标的组合,要避免使用。
ASAP杂散光分析材料
ASAP杂散光分析材料_文档视界Stray light calculation methods with optical ray trace softwareGary L. PetersonBreault Research Organization6400 East Grant Road, Suite 350, Tucson, Arizona 85715 Copyright 1999, Society of Photo-Optical Instrumentation Engineers (SPIE). This paper will be published in the proceedings from the July 1999 SPIE Annual Conference held in Denver, Colorado, and is made available as a preprint with permission of SPIE. Single print or electronic copies for personal use only are allowed. Systematic or multiple reproduction, or distribution to multiple locations through an electronic listserver or other electronic means, or duplication of any material in this paper for a fee or for commercial purposes is prohibited. By choosing to view or print this document, you agree to all the provisions of the copyright law protecting it.ABSTRACTFaster, better, and cheaper computers make it seem as if any optical calculation can be performed. However, in most cases brute force stray light calculations are still impossible.This paper discusses why this is so, and why it is unlikely to change in the near future. Standard software techniques for solving this problem are then presented, along with a discussion of how old techniques are used to take advantage of the new features that are available in the latest generation of optical analysis software.Keywords: Stray light, scatter, optical analysis software, ray trace software1. INTRODUCTIONStray light calculations are done to find out how unwanted light propagates to a detector or focal plane and to determine if its irradiance is large enough to cause a problem. Faster, larger, and cheaper computers, as well as the advent of commercial optical analysis software have made these calculations faster and easier to perform. However, brute-force stray light calculations are still impossible. Fortunately, optical analysis software and standard stray light analysis techniques can be combined to simplify and automate identification of stray light paths. Importance sampling is then used to perform quantitative stray light calculations in a reasonable time.2. BRUTE-FORCE STRAY LIGHT CALCULATIONSOne way of performing a stray light calculation is to do a direct computer simulation of the way light propagates through an optical system. This direct, or brute-force simulation consists of1. constructing a computer model of the baffles, vanes, housings, struts, lenses, and mirrors of an optical system, and2. tracing lots of rays through the system, allowing them to scatter, reflect and generally rattle around inside until some of them make it to the detector.This approach has several attractive features:1. It requires minimal labor on the part of the stray light analyst. Labor is expensive. Computers are cheap, large, and fast. So this seems to be a good allocation of resource.2. It is a good simulation of the real world. Light really does scatter and reflect in all possible directions until a small fraction of it actually makes it to the detector.3. It requires little knowledge of optics. The computer performs all of the imaging, propagation, and scatter calculations, so personnel without formal training in optics can be employed in the task.4. It is unbiased. No preconceived ideas about what are the most important paths, or how light should propagate within thesystem are imposed on the calculation. The computer simply performs a random real-world simulation of how light actually propagates.There is only one problem with this method: it doesn't work! To see why, consider a stray light analysis of a simple Cassegrain telescope that is illustrated in Figure (1). As shown in the figure, it is usually necessary to model stray light paths that have as many as two bounces, or scatters, from the source to the detector. How much time is needed to perform such a calculation? To find out, assume an initial sampling of the entrance aperture with a 1000 ×1000 grid of rays. Furthermore, assume each time a ray hits a surface that enough scattered rays are generated to sample the hemisphere above that surface with a density of one ray for each square degree. How many rays are needed and how long will it take to trace them? There are one million initial rays, and there a 20,600 square degrees in a hemisphere. So when each of the one million initial rays strikes a surface it generates 20,600 rays. Furthermore, since we want include as many as two scatters, each scattered ray generates 20,600 additional rays when it strikes a surface. Therefore, an estimate for the total number of rays required to perform this calculation is1 million × (20,600)2 = 4 × 1014 rays,or 400 million million. A the present time, a typical ray trace speed through a complex system on a Pentium TM class computer is 1 million rays per hour. Dividing the number of rays by this rate gives a total ray trace time of 4 × 108 hours, or 46,000 years! And that is for only one source located at a single position or direction. Clearly, the brute-force approach is not a practical method.Figure 1: Example of two scatters inside a Cassegrain telescope.3. SYSTEMATIC STRAY LIGHT CALCULATIONSIn practice, the time required for a stray light calculation is greatly reduced by abandoning the brute-force approach and applying two tools: 1. systematic identification of stray light paths, and 2.importance sampling (or directed scatter). Both of these tools have been used in the stray light community for over twenty years, but modern computers and software allow even novice stray light analysts to apply them reliably.1Systematic identification of stray light paths starts atthe detector to identify the critical objects. A critical object is any object or surface that is seen from the detector, including objects that are seen as images in mirrors and lenses. Critical objects are important in stray light analysis because 100% of the stray light comes from these objects. If the detector cannot see an object, then no stray light comes from it.Critical objects are identified by tracing rays backward from the detector. This is illustrated in Figure (2). Any object or surface that is intersected by a ray is a critical object. The figure shows an in-plane ray trace (for clarity), but in practice a full three-dimensional ray trace is done to obtain a complete list of critical objects. Furthermore, an actual ray trace should include a series of point sources across the detector, or rays should be randomly distributed within the detector area and within the hemisphere above the detector. After the ray trace, a list of all of the objects intersected by rays is made for later reference.Note that using a computer to find critical objects preserves some of the advantages of the brute-force approach. It is unbiased. Given an accurate and complete model of thesystem and a dense collection of rays on the detector, the computer will find all objects that are visible from the detector without regard to the analyst's preconceptions about what should or should not be seen. The calculation can also be performed without an extensive knowledge of optics, as the computer handles all of the imaging during the ray trace. After identifying the critical objects, the next step is to identify illuminated objects. For a given source and source location, an illuminated object is any object or surface that receives power from the source, either directly, or after reflection and refraction by the mirrors and lenses. Objects that are illuminated indirectly by scattered light are not included in this list.Illuminated objects are identified by doing a forward ray trace through the system. Rays are traced forward from the source through the entrance of the optical system. Any object or surface that is struck by a ray is an illuminated object. This is again a fully three-dimensional ray trace so that all objects are identified. After the ray trace, a complete list of illuminated objects is made. In general, the list of illuminated objects changes with source position, so there are usually several of these lists: one for each source and sourcelocation. As with the backward ray trace that was used to identify critical objects, using a computer to identify illuminated objects is unbiased and does not require an extensive knowledge of optics.Systematic identification of stray light paths is done by comparing the lists of critical and illuminated objects. Any object or surface that is on both the critical object list and the illuminated object list defines a first order stray light path. That is, the source and detector are connected by scatter from a single surface. At this time there is enough information to make design changes that will reduce the stray light background. In most cases, if first order stray light paths exist they are the dominant source of stray light. Stray light is reduced by either moving the object or surface so it is no longer seen from the detector or directly illuminated, or by inserting a baffle that blocks the detector's view of the object or blocks illumination of the object.Second order, or two-scatter, stray light paths are found by connecting objects on the list of illuminated objects with the list of critical objects. That is, if an object on the critical-object list is seen from an illuminated object, then a second order path exists in which light from the source isscattered from the illuminated object to the critical object, and then scattered from the critical object to the detector. In most cases, it is obvious whether or not an optical path exists from the illuminated object to the critical object. But if there is doubt, ray tracing can be performed to find out. An extended source is placed over the illuminated object (or critical object) and a three dimensional ray trace is performed. If rays from the illuminated object strike the critical object (or vice versa), then a second order path exists. In general, the list of second order stray light paths consists of all possible connections between objects on the list of critical objects and objects on the list of illuminated objects. While the number of second order stray light paths is often large, the above procedure for identifying them is easy to apply and the chances of overlooking an important stray light path are small.Note that no scatter calculations have been performed yet. The backward and forward ray traces consist entirely of refractions and reflections from the lenses and mirrors, and straight line transfers from one object to another. Because of this, a dense sampling of the system in the critical and illuminated object ray traces is practical: again, typicallya million rays can be traced on Pentium TM class computers in about an hour.Now that a complete list of first and second order stray light paths exists, it is time to perform quantitative stray light calculations. These calculations are made practical by using importance sampling or directed scatter. The vast majority of light that strikes an illuminated object never makes it to a critical object or the detector. Because of this, simulating scatter by tracing rays in all possible directions is a tremendous waste of computer time on rays the contribute absolutely nothing to the stray light calculation. The idea behind importance sampling is to avoid this waste by tracing only rays that propagate in interesting, or important directions. That is, towards critical objects or the detector. This idea is illustrated for first and second order scatter in Figures (3) and (4). In Figure (3), rays from a source that strike the front surface of three vanes next to the primary mirror are scattered towards the image of the detector in the secondary mirror, which causes them to propagate directly to the detector. In Figure (4), rays that strike the housing around the secondary mirror are scattered towards the primary mirror, and are then scattered again towards the image of the detectorin the secondary mirror. Vast savings in computer time are obtained by tracing only a small number of rays towards the areas of interest.Naturally, in order to get the right answer it is not sufficient to simply send all of the scattered rays in interesting directions. The quantitative aspects of this approach must be accounted for. In particular, each ray must be assigned a power, and the power of scattered rays must be scaled in proportion to the power of the incident rays, the solid angle subtended by the important area, the scatter properties (Bidirectional Scatter Distribution Function, or BSDF) of the surface, and the cosine obliquity factor of the scattering surface. Fortunately, this quantitative aspect of the ray trace is generally handled entirely by the optical ray trace software.Importance sampling works well when combined with the stray light paths that were identified in the backward and forward ray traces. For each first order stray light path, an important area is defined over the image of the detector as seen from each object that is both an illuminated and a critical object. Foreach second order stray light path, an important area is placed over each critical object (or image of the critical object) in addition to an important area over the detector image.Once the important areas are defined quantitative stray light calculations begin. Rays are traced from the source into the system. Then rays are scattered from each illuminated object towards the image of the detector (first order stray light paths) or towards the critical objects (second order stray light paths), and from critical objects to the detector image. The end result is an accurate stray light calculation that avoids tracing rays propagating in uninteresting directions, and thereby reduces the computer time required by many orders of magnitude.4. CONCLUSIONIn most cases, brute-force stray light calculations are still well beyond the capabilities of computers that are currently available. However, using computers and optical ray trace software to implement standard stray light techniques allows systematic identification of stray light paths to be performed without an extensive knowledge of optics. In addition, importance sampling vastly reduces the computer time required to perform quantitative stray light calculations so that anaccurate stray light irradiance can be obtained.ACKNOWLEDGMENTThe author gratefully acknowledges Robert P. Breault for introducing him to the use of critical and illuminated objects to identify stray light paths.REFERENCE1. Robert P. Breault, "Control of Stray Light", in Handbook of Optics, Volume 1 (McGraw-Hill,New York, 1995), Chapter 38.。
杂散光与色散
光的传播:光在不同介质中传播速度不同,导致光的传播方向发生变化
光的折射:光从一种介质进入另一种介质时,传播方向发生变化,形成折射现象
光的色散:不同颜色的光在折射时,传播方向发生变化的程度不同,导致光的色散
光的波长:光的颜色与光的波长有关,不同颜色的光波长不同,导致光的色散
色散对成像的影响
色散导致图像模糊,影响清晰度
影响色彩还原:杂散光会导致色彩失真,影响图像的真实性
影响成像速度:杂散光会增加曝光时间,降低成像速度
影响光学系统设计:杂散光需要特殊的光学系统设计来消除或减小其影响
降低杂散光的措施
使用高质量的光学元件,如低色散玻璃、非球面镜等。
在光学系统中加入抗反射膜,以减少反射光的影响。
采用特殊涂层,如增透膜、减反射膜等,以提高光学元件的透光率。
汇报人:XX
感谢您的观看
优化光学系统设计,如采用消色差设计、减少镜片数量等。
2
色散
色散的定义
色散是指光线通过介质时,不同颜色的光波长不同,导致传播速度不同,从而产生色散现象。
单色光色散是指单一颜色的光通过介质时产生的色散现象。
复色光色散是指多种颜色的光通过介质时产生的色散现象。
色散可以分为单色光色散和复色光色散两种。
色散的原理
色散使图像颜色失真,影响色彩还原
色散导致图像边缘出现彩色条纹,影响图像美观
色散影响光学系统的性能,降低成像质量
减小色散的方法
使用低色散材料:如使用低色散玻璃、塑料等材料制作光学元件。
增加光圈:通过增加光圈,减小色散。
使用多片光学元件:通过使用多片光学元件,减小色散。
采用非球面设计:通过改变光学元件的形状,减小色散。
汇报人:XX
半导体激光器件中的杂散光抑制与衰减技术研究
半导体激光器件中的杂散光抑制与衰减技术研究引言:在半导体激光器件的应用中,杂散光的抑制与衰减技术是一个重要的研究方向。
随着激光器件的不断发展和应用领域的扩大,如光通信、激光雷达、光学传感等,对激光器件的杂散光抑制和衰减技术的需求也越来越高。
本文将围绕半导体激光器件中的杂散光抑制与衰减技术展开详细的探讨。
1. 杂散光的来源与特性杂散光,是指在激光器件中产生的除了主要激光光束之外,具有杂散角度分布、波长差异或相位差异的光线。
杂散光的产生主要包括以下几个方面:首先,由于激光器件的制造工艺存在不完美性,例如晶体生长过程中的杂质、材料的应力、晶格缺陷等,会在激光器件中引入一些非辐射性的能级,从而导致杂散光的产生。
其次,激光器件中的非线性光学效应也会导致杂散光的产生。
在高功率激光器件中,由于材料的非线性特性,会出现光学失效现象,进而产生杂散光。
此外,激光器件的热效应也是杂散光产生的重要原因之一。
激光器件在工作过程中会产生大量的热,而这些热量如果无法迅速散走,会导致材料结构的变化,从而产生杂散光。
2. 杂散光抑制技术为了降低杂散光的影响,提高半导体激光器件的性能,科学家们开展了大量的研究,并取得了一系列的突破与进展。
以下将介绍几种常见的杂散光抑制技术。
(1)材料优化技术材料的优化是抑制杂散光的关键。
通过对激光器件中使用的材料进行优化选择,可以降低杂散光的产生。
例如,选择具有较高光学均匀性和较低杂质含量的材料来替代传统材料,可以有效减少杂散光的产生。
此外,在材料的生长与加工过程中,采用合适的工艺条件也可以降低杂散光的产生。
例如,通过优化晶体生长过程中的温度、压力、速度等参数,可以优化材料的结晶质量,从而减少杂散光。
(2)光学设计技术光学设计技术是抑制杂散光的另一种关键手段。
通过采用一系列的光学元件来控制激光光束的传播和聚焦过程,可以最大程度地抑制杂散光的产生。
例如,利用光学透镜、棱镜等元件来控制激光的传输路径,可以减少杂散光的产生。
杂散光点源透过率
杂散光点源透过率摘要:一、引言二、杂散光点源的定义与特点三、杂散光点透过率的计算方法四、影响杂散光点透过率的因素五、提高杂散光点透过率的措施六、总结正文:一、引言杂散光点源透过率是光学领域中的一个重要概念,对于光学设备的性能和应用有着重要影响。
本文将对杂散光点源透过率进行详细介绍,包括其定义、计算方法以及影响因素等。
二、杂散光点源的定义与特点杂散光点源是指在光学系统中,除所需光学信号外的其他光源。
它们可能来自光源本身、光学元件表面或者光学系统的其他部分。
杂散光点源的特点是强度低、分布广、光谱复杂,对光学设备的性能产生负面影响。
三、杂散光点透过率的计算方法杂散光点透过率的计算方法主要包括以下两种:1.传输法:通过测量杂散光点光源通过特定光学系统后的光强,与光源原始光强之比来计算透过率。
2.反演法:根据光学系统的传输矩阵和光源的光谱分布,通过数值反演计算出杂散光点透过率。
四、影响杂散光点透过率的因素杂散光点透过率受以下因素影响:1.光源特性:包括光源强度、光谱分布和空间分布等。
2.光学系统结构:包括光学元件的形状、尺寸、材料和光学表面质量等。
3.光学系统传输特性:包括传输矩阵、光学系统的像差等。
4.探测器和测量条件:包括探测器的灵敏度、动态范围和测量方法等。
五、提高杂散光点透过率的措施针对影响因素,可以采取以下措施提高杂散光点透过率:1.优化光源设计:选择合适的光源类型和分布,降低杂散光产生。
2.提高光学元件质量:选用高质量的光学材料和加工工艺,减少光学元件表面的粗糙度和污染。
3.改进光学系统设计:采用特殊光学元件或结构,如消杂散光器等,降低杂散光的影响。
4.优化探测器和测量条件:选用高灵敏度、高动态范围的探测器,采用适当的测量方法,提高杂散光检测的准确性。
六、总结杂散光点源透过率是光学领域中的一个重要概念,影响光学设备的性能和应用。
光学系统杂散光分析
上随机发出很多 条 光 线 !当 某 条 光 线 到 达 一 个 透 射 面 之 后 !其 透 射 或 反 射 的 概 率 是 由 透 过 率 决 定 !当 追 迹 了大量光线之后 !统 计 出 到 达 像 面 的 光 线 数 量 和 分 布 情况! 就可以了解在像面上的杂散光的能量分布情 况 !这 种 方 法 必 须 追 迹 相 当 数 量 的 光 线 !否 则 结 果 就 不具备统计意义!特别是当系统比较复杂 #面数 比 较 多时光线数就必然以几何级数增加" 计算量的问题就 非常突出" 为 此 !采 用 光 线 光 学 方 法 设 计 了 专 用 杂 散 光 分 析 软 件 !为 了 避 免 重 复 计 算 !使 用 以 下 处 理 方 法 $
基 金 项 目 ! 国 家 自 然 科 学 基 金 委 与 中 国 工 程 物 理 研 究 院 联 合 基 金 资 助 项 目 # ’"()#"(* $ 作 者 简 介 ! 岑 兆 丰 % ’&+) ! & ’ 男 ’ 浙 江 慈 溪 人 ’ 教 授 ’ 主 要 从 事 光 学 仪 器 ( 光 学 设 计 及 软 件 开 发 ) ,-./0 ! 12345647892:8913
;<=
图 < 光线二叉树结构图
#$%&< >(? 3$,(+? /+**
当光线到 达 某 个 透 射 面 时 !在 该 面 上 建 立 二 叉 树 结 点 !记 录 了 光 线 在 面 上 的 坐 标 和 入 射 光 线 的 方 向 余 弦以及光线的 能 量 因 子 !光 线 的 透 射 部 分 和 反 射 部 分 可以用二叉树 的 两 个 分 枝 分 别 描 述 !计 算 时 先 沿 着 其 中一个分枝 光追到底!再回到某个面的结点处 !以 此 为起 点再追另 一 路!直 到 追 完 所 有 的 分 枝" 由 此 可 以 看出二叉树数据结构存储了光追过程中光线在各面 上的基本信息!避免了重复计算 !而且递归处 理 使 软 件 简 洁 #可 靠 性 高 !一 棵 二 叉 树 随 一 条 光 线 追 迹 而 建 立 !虽 然 当 光 学 系 统 面 数 很 多 时 !要 占 用 很 大 的 内 存 ! 但是由于 其动态 存 储 特 性 !一 旦 追 完 一 条 光 线 并 将 结 果 记 录!二 叉 树 就 可 以 删 除 !将 占 用 的 内 存 释 放@以 备 下一条光线使用" 如果研究像面上的能量分布情况!可以事先在 像 面 上 划 分 格 子 !当 一 条 光 线 到 达 像 面 时 !看 其 落 入 哪
荧光检测器杂散光抑制研究
荧光检测器杂散光抑制研究
金玉希;黄梅珍;吴平;王尧;黄鹏飞
【期刊名称】《上海交通大学学报》
【年(卷),期】2011(45)11
【摘要】以液相色谱荧光检测器中的单色器为研究对象,分析了单色器杂散光的主要来源;通过ASAP软件建模,对单色器中杂散光的分布进行了模拟,提出了抑制杂散光的几种结构设计,包括光阑、叶片和挡板,研究比较了它们对杂散光的抑制效果;在单色器中同时加上这3种结构后,杂散光抑制比到达了80%以上.通过实验对模拟结果进行了验证,实验结果与模拟结果基本吻合.
【总页数】5页(P1602-1606)
【关键词】荧光检测器;单色器;杂散光;叶片结构
【作者】金玉希;黄梅珍;吴平;王尧;黄鹏飞
【作者单位】上海交通大学物理系光科学与工程研究中心;上海交通大学电子信息与电气工程学院
【正文语种】中文
【中图分类】TH741
【相关文献】
1.“高分四号”卫星相机杂散光分析与抑制技术研究 [J], 石栋梁;肖琴;练敏隆
2.基于杂散光抑制要求的光学表面粗糙度控制方法研究 [J], 宋延松;杨建峰;李福;马小龙;王红
3.风云二号辐射计百叶窗式遮光罩杂散光抑制研究 [J], 李欣耀;陈福春;陈桂林
4.小型化全景系统的杂散光分析与抑制方法研究 [J], 李禹衡; 刘智颖; 黄蕴涵; 王旭
5.激光通信终端光学系统杂散光抑制技术研究 [J], 赵迎;接长伟
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Stray light calculation methods with optical ray trace softwareGary L. PetersonBreault Research Organization6400 East Grant Road, Suite 350, Tucson, Arizona 85715Copyright 1999, Society of Photo-Optical Instrumentation Engineers (SPIE). This paper will be published in the proceedings from the July 1999 SPIE Annual Conference held in Denver, Colorado, and is made available as a preprint with permission of SPIE. Single print or electronic copies for personal use only are allowed. Systematic or multiple reproduction, or distribution to multiple locations through an electronic listserver or other electronic means, or duplication of any material in this paper for a fee or for commercial purposes is prohibited. By choosing to view or print this document, you agree to all the provisions of the copyright law protecting it.ABSTRACTFaster, better, and cheaper computers make it seem as if any optical calculation can be performed. However, in most cases brute force stray light calculations are still impossible. This paper discusses why this is so, and why it is unlikely to change in the near future. Standard software techniques for solving this problem are then presented, along with a discussion of how old techniques are used to take advantage of the new features that are available in the latest generation of optical analysis software.Keywords: Stray light, scatter, optical analysis software, ray trace software1. INTRODUCTIONStray light calculations are done to find out how unwanted light propagates to a detector or focal plane and to determine if its irradiance is large enough to cause a problem. Faster, larger, and cheaper computers, as well as the advent of commercial optical analysis software have made these calculations faster and easier to perform. However, brute-force stray light calculations are still impossible. Fortunately, optical analysis software and standard stray light analysis techniques can be combined to simplify and automate identification of stray light paths. Importance sampling is then used to perform quantitative stray light calculations in a reasonable time.2. BRUTE-FORCE STRAY LIGHT CALCULATIONSOne way of performing a stray light calculation is to do a direct computer simulation of the way light propagates through an optical system. This direct, or brute-force simulation consists of1. constructing a computer model of the baffles, vanes, housings, struts, lenses, and mirrors of an optical system, and2. tracing lots of rays through the system, allowing them to scatter, reflect and generally rattle around inside until some of them make it to the detector.This approach has several attractive features:1. It requires minimal labor on the part of the stray light analyst. Labor is expensive. Computers are cheap, large, and fast. So this seems to be a good allocation of resource.2. It is a good simulation of the real world. Light really does scatter and reflect in all possible directions until a small fraction of it actually makes it to the detector.3. It requires little knowledge of optics. The computer performs all of the imaging, propagation, and scatter calculations, so personnel without formal training in optics can be employed in the task.4. It is unbiased. No preconceived ideas about what are the most important paths, or how light should propagate within the system are imposed on the calculation. The computer simply performs a random real-world simulation of how light actually propagates.There is only one problem with this method: it doesn't work! To see why, consider a stray light analysis of a simple Cassegrain telescope that is illustrated in Figure (1). As shown in the figure, it is usually necessary to model stray light paths that have as many as two bounces, or scatters, from the source to the detector. How much time is needed to perform such a calculation? To find out, assume an initial sampling of the entrance aperture with a 1000 × 1000 grid of rays. Furthermore, assume each time a ray hits a surface that enough scattered rays are generated to sample the hemisphere above that surface with a density of one ray for each square degree. How many rays are needed and how long will it take to trace them? There are one million initial rays, and there a 20,600 square degrees in a hemisphere. So when each of the one million initial rays strikes a surface it generates 20,600 rays. Furthermore, since we want include as many as two scatters, each scattered ray generates 20,600 additional rays when it strikes a surface. Therefore, an estimate for the total number of rays required to perform this calculation is1 million × (20,600)2 = 4 × 1014 rays,or 400 million million. A the present time, a typical ray trace speed through a complex system on a Pentium TM class computer is 1 million rays per hour. Dividing the number of rays by this rate gives a total ray trace time of 4 × 108 hours, or 46,000 years! And that is for only one source located at a single position or direction. Clearly, the brute-force approach is not a practical method.Figure 1: Example of two scatters inside a Cassegrain telescope.3. SYSTEMATIC STRAY LIGHT CALCULATIONSIn practice, the time required for a stray light calculation is greatly reduced by abandoning the brute-force approach and applying two tools: 1. systematic identification of stray light paths, and 2.importance sampling (or directed scatter). Both of these tools have been used in the stray light community for over twenty years, but modern computers and software allow even novice stray light analysts to apply them reliably.1Systematic identification of stray light paths starts at the detector to identify the critical objects. A critical object is any object or surface that is seen from the detector, including objects that are seen as images in mirrors and lenses. Critical objects are important in stray light analysis because 100% of the stray light comes from these objects. If the detector cannot see an object, then no stray light comes from it.Critical objects are identified by tracing rays backward from the detector. This is illustrated in Figure (2). Any object or surface that is intersected by a ray is a critical object. The figure shows an in-plane ray trace (for clarity), but in practice a full three-dimensional ray trace is done to obtain a complete list of critical objects. Furthermore, an actual ray trace should include a series of point sources across the detector, or rays should be randomly distributed within the detector area and within the hemisphere above the detector. After the ray trace, a list of all of the objects intersected by rays is made for later reference.Note that using a computer to find critical objects preserves some of the advantages of the brute-force approach. It is unbiased. Given an accurate and complete model of the system and a dense collection of rays on the detector, the computer will find all objects that are visible from the detector without regard to the analyst's preconceptions about what should or should not be seen. The calculation can also be performed without an extensive knowledge of optics, as the computer handles all of the imaging during the ray trace.After identifying the critical objects, the next step is to identify illuminated objects. For a given source and source location, an illuminated object is any object or surface that receives power from the source, either directly, or after reflection and refraction by the mirrors and lenses. Objects that are illuminated indirectly by scattered light are not included in this list.Illuminated objects are identified by doing a forward ray trace through the system. Rays are traced forward from the source through the entrance of the optical system. Any object or surface that is struck by a ray is an illuminated object. This is again a fully three-dimensional ray trace so that all objects are identified. After the ray trace, a complete list of illuminated objects is made. In general, the list of illuminated objects changes with source position, so there are usually several of these lists: one for each source and source location. As with the backward ray trace that was used to identify critical objects, using a computer to identify illuminated objects is unbiased and does not require an extensive knowledge of optics.Systematic identification of stray light paths is done by comparing the lists of critical and illuminated objects. Any object or surface that is on both the critical object list and the illuminated object list defines a first order stray light path. That is, the source and detector are connected by scatter from a single surface. At this time there is enough information to make design changes that will reduce the stray light background. In most cases, if first order stray light paths exist they are the dominant source of stray light. Stray light is reduced by either moving the object or surface so it is no longer seen from the detector or directly illuminated, or by inserting a baffle that blocks the detector's view of the object or blocks illumination of the object.Second order, or two-scatter, stray light paths are found by connecting objects on the list of illuminated objects with the list of critical objects. That is, if an object on the critical-object list is seen from an illuminated object, then a second order path exists in which light from the source is scattered from the illuminated object to the critical object, and then scattered from the critical object to the detector. In most cases, it is obvious whether or not an optical path exists from the illuminated object to the critical object. But if there is doubt, ray tracing can be performed to find out. An extended source is placed over the illuminated object (or critical object) and a three dimensional ray trace is performed. If rays from the illuminated object strike the critical object (or vice versa), then a second order path exists. In general, the list of second order stray light paths consists of all possible connections between objects on the list of critical objects and objects on the list of illuminated objects. While the number of second order stray light paths is often large, the above procedure for identifying them is easy to apply and the chances of overlooking an important stray light path are small.Note that no scatter calculations have been performed yet. The backward and forward ray traces consist entirely of refractions and reflections from the lenses and mirrors, and straight line transfers from one object to another. Because of this, a dense sampling of the system in the critical and illuminated object ray traces is practical: again, typically a million rays can be traced on Pentium TM class computers in about an hour.Now that a complete list of first and second order stray light paths exists, it is time to perform quantitative stray light calculations. These calculations are made practical by using importance sampling or directed scatter. The vast majority of light that strikes an illuminated object never makes it to a critical object or the detector. Because of this, simulating scatter by tracing rays in all possible directions is a tremendous waste of computer time on rays the contribute absolutely nothing to the stray light calculation. The idea behind importance sampling is to avoid this waste by tracing only rays that propagate in interesting, or important directions. That is, towards critical objects or the detector.This idea is illustrated for first and second order scatter in Figures (3) and (4). In Figure (3), rays from a source that strike the front surface of three vanes next to the primary mirror are scattered towards the image of the detector in the secondary mirror, which causes them to propagate directly to the detector. In Figure (4), rays that strike the housing around the secondary mirror are scattered towards the primary mirror, and are then scattered again towards the image of the detector in the secondary mirror. Vast savings in computer time are obtained by tracing only a small number of rays towards the areas of interest.Naturally, in order to get the right answer it is not sufficient to simply send all of the scattered rays in interesting directions. The quantitative aspects of this approach must be accounted for. In particular, each ray must be assigned a power, and the power of scattered rays must be scaled in proportion to the power of the incident rays, the solid angle subtended by the important area, the scatter properties (Bidirectional Scatter Distribution Function, or BSDF) of the surface, and the cosine obliquity factor of the scattering surface. Fortunately, this quantitative aspect of the ray trace is generally handled entirely by the optical ray trace software.Importance sampling works well when combined with the stray light paths that were identified in the backward and forward ray traces. For each first order stray light path, an important area is defined over the image of the detector as seen from each object that is both an illuminated and a critical object. For each second order stray light path, an important area is placed over each critical object (or image of the critical object) in addition to an important area over the detector image.Once the important areas are defined quantitative stray light calculations begin. Rays are traced from the source into the system. Then rays are scattered from each illuminated object towards the image of the detector (first order stray light paths) or towards the critical objects (second order stray light paths), and from critical objects to the detector image. The end result is an accurate stray light calculation that avoids tracing rays propagating in uninteresting directions, and thereby reduces the computer time required by many orders of magnitude.4. CONCLUSIONIn most cases, brute-force stray light calculations are still well beyond the capabilities of computers that are currently available. However, using computers and optical ray trace software to implement standard stray light techniques allows systematic identification of stray light paths to be performed without an extensive knowledge of optics. In addition, importance sampling vastly reduces the computer time required to perform quantitative stray light calculations so that an accurate stray light irradiance can be obtained.ACKNOWLEDGMENTThe author gratefully acknowledges Robert P. Breault for introducing him to the use of critical and illuminated objects to identify stray light paths.REFERENCE1. Robert P. Breault, "Control of Stray Light", in Handbook of Optics, Volume 1 (McGraw-Hill,New York, 1995), Chapter 38.。