2008年全国大学生数学建模竞赛D题解题思路简介
数学建模竞赛思路分享
数学建模竞赛思路分享数学建模竞赛是一个考察学生数学建模能力和解决实际问题能力的重要平台。
在竞赛中,选手需要运用数学知识和技巧,分析和解决给定的问题。
本文将分享一些在数学建模竞赛中的思路和方法,希望对参赛选手有所帮助。
一、问题分析在数学建模竞赛中,首先要对问题进行全面的分析。
这包括对问题背景的理解、问题的要求和限制条件的明确。
通过仔细阅读问题描述和相关数据,可以帮助我们建立问题的数学模型,并确定解决问题的思路和方法。
二、建立数学模型建立数学模型是解决数学建模问题的关键步骤。
在建立模型时,我们需要将问题转化为数学语言,用数学符号和方程来描述问题。
常用的建模方法包括数学统计、优化模型、概率模型等。
根据问题的特点,选择合适的模型方法,并进行合理的假设和简化。
三、数据处理和分析在数学建模竞赛中,数据处理和分析是解决问题的重要环节。
通过对给定数据的整理、筛选和分析,可以得出有用的信息和结论。
常用的数据处理方法包括数据拟合、回归分析、统计推断等。
在进行数据处理时,要注意数据的准确性和可靠性,并合理运用数学工具和软件进行计算和分析。
四、解决问题和验证在建立数学模型和进行数据处理分析后,我们可以开始解决问题。
根据模型和数据的分析结果,运用数学方法和技巧,得出问题的解答和结论。
在解决问题时,要注意解题思路的合理性和逻辑性,并进行必要的验证和检验。
五、结果展示和报告撰写在数学建模竞赛中,结果展示和报告撰写是评委评判和评分的重要依据。
在展示结果时,要清晰地呈现问题的解答和结论,并用图表、表格等方式直观地展示数据和结果。
在撰写报告时,要注意语言表达的准确性和流畅性,结构的合理性和连贯性。
报告中要包括问题的分析、模型的建立、数据的处理和分析、问题的解决和结果的展示等内容。
六、团队合作和交流在数学建模竞赛中,团队合作和交流是非常重要的。
团队成员之间要相互配合,共同解决问题。
在交流中,要积极表达自己的观点和思路,并倾听他人的意见和建议。
数学建模常用的十种解题方法
数学建模常用的十种解题方法 摘要当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。
关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。
在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。
一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。
通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。
本文给出算例, 并用MA TA LA B 实现。
1蒙特卡罗计算重积分的最简算法-------均匀随机数法二重积分的蒙特卡罗方法(均匀随机数)实际计算中常常要遇到如的()dxdy y x f D ⎰⎰,二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。
数学建模D题的答案
2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)D题对学生宿舍设计方案的评价学生宿舍事关学生在校期间的生活品质, 直接或间接地影响到学生的生活、学习和健康成长。
学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理, 同时要考虑成本和收费的平衡, 这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。
因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。
经济性:建设成本、运行成本和收费标准等。
舒适性:人均面积、使用方便、互不干扰、采光和通风等。
安全性:人员疏散和防盗等。
附件是四种比较典型的学生宿舍的设计方案。
请你们用数学建模的方法就它们的经济性、舒适性和安全性作出综合量化评价和比较。
对学生宿舍设计方案的评价摘要本文主要从经济性、舒适性、安全性三个方面对四种学生宿舍的设计方案做出综合量化和比较。
在评价过程中,主要运用了模糊决策和层次分析法,并利用MATLAB 软件进行求解。
由于本问题的许多条件比较模糊,具有隐藏性,我们先对附件中的数据进行预处理,从中提取与评价相关的因素,然后利用层次分析法确定各准则对目标的权重,从而建立学生宿舍设计方案的评价模型。
具体结果为:(1)经济性方面:得出四种学生宿舍设计方案在此方面的的组合权向量为: )1668.0,2265.0,5627.0,0440.0(,根据指标越小,优先选择程度越大的准则得出:方案1是经济性最优的,其次为方案4、方案3,最后为方案2。
(2)舒适性方面:得到组合权向量为:)1999.0,1576.0,5301.0,1124.0(,根据指标越大,优先选择程度越大的准则得出:方案2是舒适度最高的,其次为方案4、方案3,最后为方案1。
(3)安全性方面:得到组合权向量为:)2223.0,2684.0,4158.0,0935.0(,利用和(2)同样的准则,得出了方案2是安全性最强的,其次为方案3、方案4,最后为方案1。
全国大学生数学建模大赛D题优秀论文(精)
会议筹备优化模型摘要能否成功举办一届全国性的大型会议,取决于会前的筹备工作是否到位。
本文为某会议筹备组,从经济、方便、满意度等方面,通过数学建模的方法制定了一个预订宾馆客房、租借会议室和租用客车的合理方案。
首先,通过对往届与会情况和本届住房信息有关数据的定量分析,预测到本届与会人数的均值是662人,波动范围在640至679之间。
拟预订各类客房475间。
其次,为便于管理、节省费用,所选宾馆应兼顾客房价位合适,宾馆数量少,距离近,租借的会议室集中等要素。
为此,依据附件4,借助EXCEL计算,得出7号宾馆为10个宾馆的中心。
然后,运用LINGO软件对选择宾馆和分配客房的0-1规划模型求解,得出分别在1、2、6、7、8号宾馆所预订的各类客房。
最后,建立租借会议室和客车的整数规划模型,求解结果为:某天上下午的会议,均在7、8号宾馆预订容纳人数分别为200、140、140、160、130、130人的6个会议室;租用45座客车2辆、33座客车2辆,客车在半天内须分别接送各两趟,行车路线见正文。
注:表中有下画线的数字,表示独住该类双人房间的个数。
关键词:均值综合满意度EXCEL 0-1规划LINGO软件1.问题的提出1.1基本情况某一会议服务公司负责承办某专业领域的一届全国性会议。
本着经济、方便和代表满意的原则,从备选10家宾馆中的地理位置、客房结构、会议室的规模(费用)等因素出发,同时,依据会议代表回执中的相关信息,初步确定代表总人数并预定宾馆和客房;会议期间在某一天上下午各安排6个分组会议,需合理分配和租借会议室;为保证代表按时参会,租用客车接送代表是必需的(现有45座、36座、33座三种类型的客车,租金分别是半天800元、700元和600元)。
1.2相关信息(见附录)附件1 10家备选宾馆的有关数据。
附件2 本届会议的代表回执中有关住房要求的信息(单位:人)。
附件3 以往几届会议代表回执和与会情况。
附件4 宾馆平面分布图。
全国大学生数学建模竞赛D题解析
汇报人:
CONTENTS
PRT ONE
PRT TWO
竞赛名称:全国大学生数学建模竞 赛
竞赛目的:培养大学生数学建模能 力提高解决实际问题的能力
添加标题
添加标题
竞赛级别:国家级
添加标题
添加标题
竞赛影响:促进大学生数学建模技 术的发展选拔优秀人才
竞赛起始于XXXX年 每年举办一次 参赛对象为全国大学生 竞赛目的是提高大学生数学建模能力和科技创新能力
组建合适的团队分工明确
制定详细的计划合理安排时间
充分准备所需的知识和技能
准备阶段:研究 题目收集资料建 立模型
实施阶段:编程 实现模拟实验优 化模型
总结阶段:撰写 论文整理思路提 炼经验
反思阶段:总结 得失分析原因改 进策略
赛题分析:对竞赛题目进行深入剖析明确解题思路和要点 经验教训:总结竞赛过程中遇到的问题和不足提出改进措施 团队协作:评估团队成员在竞赛中的表现和贡献提出优化建议 未来规划:根据竞赛经验和教训制定个人和团队未来的学习和发展计划
模型验证:通过对比实际数据和模型预测结果对模型的准确性和可靠性进行评估和改进
数据清洗:去除异常值、缺失值和重复值 数据筛选:根据需求筛选有效数据 数据转换:对数据进行必要的转换以适应分析需求 数据可视化:通过图表、图像等形式直观展示数据
确定问题类型和目 标函数
确定算法的输入和 输出
设计算法的流程图 和伪代码
培养团队协作精神 提升大学生数学应用能力
促进学科交叉融合
为国家和社会培养创新型人 才
PRT THREE
题目背景:全国大学生数学建模竞赛D题 题目要求:分析D题所涉及的数学建模方法和技巧 题目内容:对D题进行解析包括问题分析、模型建立、求解过程等 题目难度:对D题的难度进行评估并给出解题建议
数学建模2008年D题 (NBA赛程分析)[优质ppt]
问题分析:
题目要求分析赛程安排对球队的影响,并利用各因素建立最优的比赛分 配方案。而在分配队伍赛程是需要考虑到:如何确定各个因素对每个球队的 权重;在知道个因素的权重后,怎样建立目标函数值使每个球队间保持均衡; 比较原赛程的安排,如何建立最合适,最均衡的方法。
对于问题1,在分析选取各个球队不利因素的情况下,首先把所选因素 根据实际情况进行量化,并将量化的结果实行权重分配,然后分别加权求和, 以此可以得到赛程对每支球队的弊端指数,也就是量化后的数量指标。 在问题1的基础,考虑到弊端指数对每个球队的影响下,以量化后得出的数 量指标进行每个球队的排名,即可以得出哪只球队在此因素的影响下最有利, 而对于哪只球队最不利。同样的,对于姚明加盟的火箭队的利弊,是怎样的 一个情况。 对于问题3,在东、西部相对独立下,每个球队要与同部不同区的每一只球 队进行比赛,而每个球队总的主客场相同且同部3个区的球队间保持均衡。 为了使各队在比赛安排上相对的公平,我们可以把每个球队与自己比赛3场 的对手划分为一个单位,解出每个单位在各数量指标影响下的实力值,最终 以确定目标函数(综合实力差值),来实现最合适的方法.
后求和,则得到赛程弊端指数 Q iW iD iSi (1)
Q i 赛程弊端指数越大说明赛程安排对球队越不利,反之赛程对球队越有利。
球队实力排名
为了得到每个球队实力之间量化排名,根据2007—2008赛季NBA常规赛各 球队的成绩按以下两个原则排名: 一、排名先后以球队胜率大小确定,胜率越大排名越靠前; 二、当球队间胜率相同时,球队的分差值大的排名相对靠前; 并根据排名情况给予30到1的打分作为这个球队的实力因素值得到实力排名 (见如下表)
为了使每个球队的各因素在同一层次做统一的比较,对各因素的数值进行规范化处理, 设规范化处理后的各因素的值分别为 、 、 ,由于衡量球队利弊的三个因素,影响利弊
全国大学生数学建模竞赛赛题综合评析
社会热点
叶其孝、周义仓
开放性强、社会关注性强,突出数据来源的可靠性、结论解释的合理性
数据收集与处理、问题的分析与假设,初等数学方法、一般统计方法、多目标规划、回归分析、综合评价方法、灰色预测
2009年
A题:制动器试验台的控制方法分析
工业问题
方沛辰、刘笑羽
问题具体、专业性强,要花时间读懂、理解清楚问题
出版社的资源配置
孟大志
艾滋病疗法的评价及疗效的预测
边馥萍
易拉罐形状和尺寸的最优设计(C题)
叶其孝
煤矿瓦斯和煤尘的监测与控制(D题)
韩中庚
2007年
中国人口增长预测
唐云
乘公交,看奥运
方沛辰、吴孟达
手机“套餐”优惠几何(C题)
韩中庚
体能测试时间安排(D题)
刘雨林
2008年
数码相机定位
谭永基
高等教育学费标准探讨
叶其孝、周义仓
地面搜索(C题)
肖华勇
NBA赛程的分析与评价(D题)
姜启源
2009年
制动器试验台的控制方法分析
方沛辰、刘笑羽
眼科病床的合理安排
吴孟达、毛紫阳
卫星和飞船的跟踪测控(C题)
周义仓
会议筹备(D题)
王宏健
2010年
储油罐的变位识别与罐容表标定
韩中庚
2010年上海世博会影响力的定量评估
杨力平
输油管的布置(C题)
1
6
8
付鹂
重庆大学
1
6
9
姜启源
清华大学
4
3
10
陈叔平
浙江大学、贵州大学
2
5
11
数模2008D分析
2008年D题
NBA赛程的 分析与评价
NBA是全世界篮球迷们最钟爱的赛事之一,姚易加盟以后 更是让中国球迷宠爱有加。NBA共有30支球队,西部联盟、东 部联盟各15支,大致按照地理位置,西部分西南、西北和太平 洋3个区,东部分东南、中部和大西洋3个区,每区5支球队。对 于2008~2009新赛季,常规赛阶段从2008年10月29日(北京时 间)直到2009年4月16日,在这5个多月中共有1230场赛事,每 支球队要进行82场比赛,附件1是30支球队2008~2009赛季常 规赛的赛程表,附件2是分部、分区和排名情况(2007~2008赛 季常规赛的结果),见/nba/ 对于NBA这样庞大的赛事,编制一个完整的、对各球队尽 可能公平的赛程是一件非常复杂的事情,赛程的安排对球队实 力的发挥和战绩有一定的影响,从报刊上经常看到球员、教练 和媒体对赛程的抱怨或评论。这个题目主要是要求用数学建模 方法对已有的赛程进行定量的分析与评价:
a max a i a max a min
然后可与极小型指标一起综合
四.关于选择赛3场的球队的方法
近年来参加NBA常规赛的30支球队是不变的,因而 每支球队在82场比赛中的对手也是固定的,每年是
赛程中唯一不确定之处是存在与同部不同区的每一
球队赛4场和赛3场(2主1客或2客1主)两种情况。 题目要求根据赛程找出选择赛3场的球队的方法 (未选择赛3场的球队自然是赛4场),并且可以 讨论其他做法。
有些球场由两支球队共用,时间要错开等。
结束语
• 题目希望同学中的球迷在关注比赛的同时,也尝 试用数学工具分析如赛程安排优劣之类的问题。 • 体育运动中有不少可以或者需要用数学方法研究 的课题,希望引起大家的兴趣,主动地去发现并 尝试解决它。 不管结果如何,都既会给你带来生活中的乐趣, 也可以锻炼“用数学”的能力!
全国数学建模大赛历年题目分析以及参赛成功方法
全国数学建模大赛历年题目分析以及参赛成功方法数学建模竞赛的赛题分析1. CUMCM历年赛题简析2. “彩票中的数学”问题3. 长江水质的评估、预测与控制问题4. 煤矿瓦斯和煤尘的监测与控制问题5. 其他几个数学建模的问题数学建模竞赛的规模越来越大,水平越来越高;竞赛的水平主要体现在赛题水平;赛题的水平主要体现:(1)综合性、实用性、创新性、即时性等;(2)多种解题方法的创造性、灵活性、开放性等;(3)海量数据的复杂性、数学模型的多样性、求解结果的不唯一性等。
纵览16年的本科组32个题目(专科组13个),从问题的实际意义、解决问题的方法和题型三个方面作一些简单的分析。
一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1992年:(A)作物生长的施肥效果问题(北理工:叶其孝)(B)化学试验室的实验数据分解问题(复旦:谭永基)1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁)(B)足球甲级联赛排名问题(清华:蔡大用)1994年:(A)山区修建公路的设计造价问题(西电大:何大可)(B)锁具的制造、销售和装箱问题(复旦:谭永基等)1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等)(B)天车与冶炼炉的作业调度问题(浙大:刘祥官等)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1996年:(A)最优捕鱼策略问题(北师大:刘来福)(B)节水洗衣机的程序设计问题(重大:付鹂)1997年:(A)零件参数优化设计问题(清华:姜启源)(B)金刚石截断切割问题(复旦:谭永基等)1998年:(A)投资的收益和风险问题(浙大:陈淑平)(B)灾情的巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化机床控制管理问题(北大:孙山泽)(B)地质堪探钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)一、CUMCM历年赛题的简析1.CUMCM 的历年赛题浏览:2000年:(A)DNA序列的分类问题(北工大:孟大志)(B)钢管的订购和运输问题(武大:费甫生)(C)飞越北极问题(复旦:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)三维血管的重建问题(浙大:汪国昭)(B)公交车的优化调度问题(清华:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)2002年:(A)汽车车灯的优化设计问题(复旦:谭永基等)(B)彩票中的数学问题(信息工程大学:韩中庚)(D) 球队的赛程安排问题(清华大学:姜启源)一、CUMCM历年赛题的简析1.CUMCM 的历年赛题浏览2003年:(A)SARS的传播问题(集体)(B)露天矿生产的车辆安排问题(吉林大:方沛辰)(D)抢渡长江问题(华中农大:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志)(B)电力市场的输电阻塞管理问题(浙大:刘康生)(C)酒后开车问题(清华大学:姜启源)(D)公务员的招聘问题(信息工程大学:韩中庚)2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚)(B)DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦:谭永基)一、CUMCM历年赛题的简析1.CUMCM 的历年赛题浏览2006年:(A)出版社的资源管理问题(北工大:孟大志)(B)艾滋病疗法的评价及预测问题(天大:边馥萍)(C)易拉罐形状和尺寸的设计问题(北理工:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)(B)“乘公交,看奥运”问题(吉大:方沛辰,国防科大:吴孟达)(C)“手机套餐”优惠几何问题(信息工程大学:韩中庚)(D)体能测试时间的安排问题(首都师大:刘雨林)一、CUMCM历年赛题的简析一、CUMCM历年赛题的简析1.CUMCM 的历年赛题浏览2001年夏令营三个题:(A)三峡工程高坡开挖优化设计(三峡大学:李建林等)(B)城市交通拥阻的分析与治理(北京理工大学:叶其孝)(C)乳房癌的诊断问题(复旦大学:谭永基)2006年夏令营三个题:(A)教材出版业的市场调查、评估和预测方法问题(北工大:孟大志)(B)铁路大提速下的京沪线列车调度问题(信息工程大学:韩中庚)(C)旅游需求的预测预报问题(北京理工:叶其孝)2、从问题的实际意义分析32个问题从实际意义分析大体上可分为:工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等七个大类。
全国大学生数学建模竞赛国家一等奖论文D题——机器人避障问题
上顶点坐标(150, 435),右下顶点坐标(235, 300)
7 长方形
(0, 470)
长220,宽60
8 平行四边形 (150, 600)
底边长90,左上顶点坐标(180, 680)
9 长方形
(370, 680)
长60,宽120
10 正方形
(540, 600)
边长130
11 正方形
(640, 520)
机器人避障问题
摘要
针对机器人避障问题,本文分别建立了机器人从区域中一点到达另一点的避障的最 短路径、最短时间路径的非线性 0-1 整数规划模型。同时,本文为求带有 NP 属性的非 线性 0-1 整数规划模型,构建了有效启发式算法,利用 MATLAB 软件编程,求得了 O→A、 O→B、O→C、O→A→B→A→C 的最短路径,同时得到了 O→A 的最短时间路径,求得的各 类最短路径均是全局最优。
二、问题分析
2.1 求取最短路径的分析 本问题要求机器人从区域中一点到达另一点的避障最短路径。机器人只要做到转弯
时的圆弧半径最小为 10 个单位、与障碍物最近距离单时刻保持大于 10 个单位,那么可 行走的路径就有无数条,若想求得机器人从区域中一点到达另一点的避障最短路径,则 需要建立避障的最短路径模型,而建立避障的最短路径模型有一定难度。根据对问题的 分析,我们认为可以从简单做起,先确定小范围内最短路径条件,如圆弧位置的影响, 圆弧半径的大小,避免与障碍物碰撞条件等,通过确定最短路径条件来建立避障的最短 路径模型。对于最短路径的求取,我们可以通过确定穷举原则,利用穷举法来求解,当 然也可以通过构建启发式算法的进行求解。 2.2 最短时间路径的分析
边长80
12 长方形
(500, 140)
数学建模历年竞赛试题d
469
560
636
1871 1459
8:00-9:00 上 2064 322 305 235 477 549 271 486 439 157 275 234 60 0
下 0 106 123 169 300 634 621 971 440 245 339 408 1132 759
9:00-10:00 上 1186 205 166 147 281 304 172 324 267 78 143 162 36 0
该条公交线路上行方向共 14 站,下行方向共 13 站,第 3—4 页给出的是典 型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路 同一型号的大客车,每辆标准载客 100 人,据统计客车在该线路上运行的平均 速度为 20 公里/小时。运营调度要求,乘客候车时间一般不要超过 10 分钟,早 高峰时一般不要超过 5 分钟,车辆满载率不应超过 120%,一般也不要低于 50%。
-3-
数学与建模协会整理(昌大数模)
某路公交汽车各时组每站上下车人数统计表……上行方向:A13 开往 A0
站名
A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
站间距(公 里)
1.6 0.5
1
0.7 2.0 1.2 2.2 3469
1
1.2 0.4Biblioteka 11.03 0.53
试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公 交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以 怎样的程度照顾到了乘客和公交公司双方的利益;等等。
如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方 法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。
1992—2008年全国大学生数学建模竞赛获奖论文
1992—2008年全国大学生数学建模竞赛获奖论文序号年份试题名称11992A题施肥效果分析(论文下载地址)B题试验数据分解(论文下载地址)21993A题非线性交调的频率设计(论文下载地址)B题足球队排名次(论文下载地址)31994A题逢山开路(论文下载地址)B题锁具装箱(论文下载地址)41995A题一个飞行管理问题(论文下载地址)B题天车与冶炼炉的作业调度(论文下载地址)51996A题最优捕鱼策略(论文下载地址)B题节水洗衣机(论文下载地址)61997A题零件的参数设计(论文下载地址)B题截断切割(论文下载地址)71998A题投资的收益和风险(论文下载地址)B题灾情巡视路线(论文下载地址)81999A题自动化车床管理(论文下载地址)B题钻井布局(论文下载地址)C题煤矸石堆积(论文下载地址)D题钻井布局(论文下载地址)92000B题钢管订购和运输(论文下载地址)C题飞跃北极(论文下载地址)D题空洞探测(论文下载地址)102001A题血管的三维重建(论文下载地址)B题公交车调度(论文下载地址)C题基金使用计划(论文下载地址)D题公交车调度(论文下载地址)112002A题车灯线光源的优化设计(论文下载地址)B题彩票中数学(论文下载地址)C题车灯线光源的计算(论文下载地址)D题赛程安排(论文下载地址)122003A题 SARS的传播(论文下载地址)B题露天矿生产的车辆安排(论文下载地址)C题 SARS的传播(论文下载地址)D题抢度长江(论文下载地址)132004A题奥运会临时超市网点设计(论文下载地址)B题电力市场的输电阻塞管理(论文下载地址)C题饮酒驾车(论文下载地址)D题公务员招聘(论文下载地址)142005A题长江水质的评价和预测(论文下载地址)B题 DVD在线租赁(论文下载地址)C题雨量预报方法的评价(论文下载地址)152006A题出版社的资源配置(论文下载地址)B题艾滋病疗法的评价及疗效的预测(论文下载地址)C题易拉罐形状和尺寸的最优设计(论文下载地址)D题煤矿瓦斯和煤尘的监测与控制(论文下载地址)162007A题中国人口增长预测(论文下载地址)B题乘公交,看奥运(论文下载地址)C题手机“套餐”优惠几何(论文下载地址)D题体能测试时间安排(论文下载地址)172008A题数码相机定位(论文下载地址【1】【2】)B题高等教育学费标准探讨(下载地址【1】【2】)C题地面搜索(论文下载地址)D题 NBA赛程的分析与评价(论文下载地址)。
全国大学生数学建模竞赛赛题基本解法
• 总结 • 数学建模竞赛常用方法和手段主要是下面几类:
• 1.分析类 如最优捕鱼策略 SARS的传播 微分方程 • 2.运筹学 图论 规划等 • 3.数理统计 统计分析、数据处理等 • 4.计算机 模式识别、Fisher判别、人工神经网
络、仿真模拟等 • 5.常用软件 • Matlab Mathematica Lingo SAS系统等
全国大学生数学建模竞赛贵州赛区组委会93a非线性交调的频率设计拟合规划93b足球队排名图论层次分析整数规划94a逢山开路图论插值动态规划94b锁具装箱问题图论组合数学95a飞行管理问题非线性规划线性规划95b天车与冶炼炉的作业调度动态规划排队论图论96a最优捕鱼策略微分方程优化96b节水洗衣机非线性规划97a零件的参数设计非线性规划97b截断切割的最优排列随机模拟图论98a一类投资组合问题多目标优化非线性规划98b灾情巡视的最佳路线图论组合优化99a自动化车床管理随机优化计算机模拟99b钻井布局01规划图论00adna序列分类模式识别fisher判别人工神经网络00b钢管订购和运输组合优化运输问题01a血管三维重建曲线拟合曲面重建01b工交车调度问题多目标规划02a车灯线光源的优化非线性规划02b彩票问题单目标决策仿真模拟03asars的传播微分方程差分方程时间序列03b露天矿生产的车辆安排整数规划运输问题04a奥运会临时超市网点设计统计分析数据处理优化04b电力市场的输电阻塞管理数据拟合优化05a长江水质的评价和预测统计分析数据处理预测1
• 其包括许多模块,如统计分析模块、绘图模块、 质量控制模块、SAS/ETS(经济计量学和时间 序列分析模块)、SAS/OR(运筹学模块)、 SAS/FSP(快速数据处理的交互式菜单系统模 块)、SAS/AF(交互式全屏幕软件应用系统模 块)等等。
高教社杯全国大学生数学建模竞赛D题
学生宿舍设计方案的评价摘 要本题是一个典型的对于多指标(或多因素)的对象进行综合测评问题,就是要通过建立合适的综合测评数学模型将多个评价指标综合成为一个整体的综合评价指标作为一个恶综合评价的依据,从而得到相应的评价结果。
针对本题,,我们进行研究并做了以下工作:1.由于在评价过程中,涉及到一些定性和定量的指标,使决策具有明显的模糊性和不确定性,因此我们应用模糊决策法和层次分析法进行综合评价。
2.经过对平面设计图的分析和整理,我们选择建设成本1P 、运行成本2P 、收费标准3P 、人均面积4P 、使用方便5P 、互不干扰6P 、采光和通风7P 、人员疏散8P 和防盗9P 作为评价要素。
3.对于定性的指标我们采用线性隶属度来确定指标评语集合特征值;对于定量的指标我们采用最大最优min max minij i ij i i x x y x x -=-和最小最优max max mini ij ij i i x x y x x -=-的原则确定指标的特征值。
4.利用层次分析求出评价因素指标的权重向量,在层次分析方法求权重的过程中,我们建立目标层、准则层和指标层三个层次,通过同一层目标之间的重要性的两两比较,得到判断矩阵,求出判断矩阵的特征向量,用方根法求出它们的最大特征根()max 1nii iPw nw λ==∑和特征向量()ij n nP p ⨯=,作为各指标相对上层指标的权重()121......T j n Q q q q ⨯=。
5.确定评价指标的特征值矩阵和评价指标的相对优属度矩阵,最后计算系统的综合评价判值。
6.结合模糊决策方法,我们将与宿舍有关的主要因素及其相对重要性进行量化,得到模糊关系矩阵Y ,从而得到宿舍设计方案的综合评价模型:121(,,)()()T m ij m n j n Z z z z Y Q y q ⨯⨯==⨯=⨯L 根据四种设计方案给出的数据,利用Matlab 对上述模型和算法进行实践求 解得到()0.21500.10750.10750.16770.16770.06450.03010.09380.0462Q = Z ()0.37430.40110.49400.5799T=。
历年全国数学建模试题及其解法归纳
历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建赛题解法01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化08B 大学学费问题数据收集和处理、统计分析、回归分析2009年A题制动器试验台的控制方法分析工程控制2009年B题眼科病床的合理安排排队论,优化,仿真,综合评价2009年C题卫星监控几何问题,搜集数据2009年D题会议筹备优化赛题发展的特点: 1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。
数学建模题的解题思路与方法备课教案
数学建模题的解题思路与方法备课教案导言:数学建模是通过数学方法来解决实际问题的一种应用数学方法。
在数学建模题中,解题思路和方法的选择将直接影响到解答的准确性和效率。
本备课教案旨在介绍数学建模题的解题思路与方法,让学生能够理解和掌握解题的基本技巧,提高解题能力。
一、理解问题:在解题之前,我们首先要对问题进行深入的理解。
这包括阅读问题描述、搞清问题的背景和要求等。
通过细致入微的了解问题,我们才能够准确地把握问题的实质,为后续解题提供有效的思路和方法。
二、分析问题:分析问题可以帮助我们梳理问题的关键信息和主要要素,进一步确定问题的解题方向。
在分析问题时,我们可以运用以下方法:1. 列出问题的关键信息和已知条件;2. 确定问题的目标和要求;3. 通过画图、建立模型等方法,发现问题的规律和内在联系;4. 将问题进行简化,找出问题的本质。
三、建立模型:建立模型是解决数学建模题的关键步骤。
模型是解题的基础,决定了问题的解决途径和方法。
根据问题的特点,我们可以采用以下模型:1. 数学模型:通过数学公式和方程式来描述问题,并通过求解方程组的方法获得问题的解答;2. 统计模型:通过统计分析数据,发现问题的规律和关系,并运用概率、回归等方法进行预测和推断;3. 图论模型:通过图的表示和运算,分析问题的结构和特性,从而得到问题的解决方案;4. 优化模型:通过数学规划和优化方法,寻找问题的最优解。
四、求解问题:在建立好模型之后,我们就可以开始求解问题了。
求解问题的方法因题而异,下面介绍一些常用的方法:1. 数值计算方法:通过数值计算的方法,获得问题的近似解;2. 迭代方法:通过逐步逼近的方法,不断优化问题的解答;3. 算法方法:通过编写计算机程序,实现问题的解决过程;4. 优化方法:通过优化算法,找到问题的最优解。
五、检验解答:在得到问题的答案之后,我们需要对解答进行检验,确保解答的准确性和合理性。
检验解答的方法可以采用以下几种:1. 数学验证:通过代入原问题进行验证;2. 实际应用:将解答应用到实际情境中,检验解答是否合理;3. 结果对比:与已知的结果进行对比,进行结果的核对。
2008年全国数学建模竞赛C题
10人组 人组 转向31次 直穿” 转向 次,“直穿”69 格 1号外拐 次,内拐 次;10号外拐 ,内拐 次 号外拐17次 内拐14次 号外拐14,内拐17次 号外拐 号外拐 1号搜索用时: 号搜索用时: 号搜索用时 69 × 400 + 17 × 1287.38 + 14 × 87.38 = 69108.72秒 0. 0.6 = 19.197小时 1号“空走”用时: 号 空走”用时: 1号总用时: 号总用时: 号总用时 380 + 800 + 20 = 1000秒 = 0.278小时 19.475小时 小时 1.2 综上讨论,全部50名队员中 人组的1号最 综上讨论,全部 名队员中10人组的 号最 名队员中 人组的 后到达,总用时: 后到达,总用时:19.475小时 小时
∑x
k =1
4
(k ) ij
=2
(1) ij + 1
x x
(3) ij
(1) ij + 1+ (1 x Nhomakorabea)(1 x
(3) ij
) = 1 (1 ≤ j ≤ 13)
(2) (2) xij xi(4) j + (1 xij )(1 xi(4) j ) = 1 (1 ≤ i ≤ 8) + 1, + 1,
2、问题的分析 、 (1)搜索时间下限的估计 ) 需要搜索的面积为11200米×7200米=8064ⅹ104平方米, 需要搜索的面积为 米 米 ⅹ10 平方米, 一个队员的搜索半径为20米 一个队员的搜索半径为 米,若将上述矩形区域划分成 40ⅹ40的小正方形,共有 的小正方形, 个小正方形, 个队员 个队员, ⅹ 的小正方形 共有50400个小正方形,20个队员, 个小正方形 平均每个队员要搜索2520个小正方形 个小正方形. 平均每个队员要搜索 个小正方形 一个队员搜索一个小正方形的最短用时 “直穿” 40/0.6=66.67秒 直穿” 直穿 秒 “转向” 66.67秒 +“扫角” 转向” 扫角” 转向 秒 扫角 “扫角” 扫角” 扫角 1 20( 2 1)( + 1.2) = 20.71秒 0.6
数学建模解题思路与方法
2、方法的选择
我们的选择:
关于排序:
层次分析法(我们的数据层次感不强,且层次 分析要主观确定权重)
主成分,因子(KMO检验没通过) ——多目标决策分析方法:TOPSIS 法。
关于预测:
回归分析差较小,但有时
有过拟合的现象——模糊粒子化)
3、数学建模常用的方法
遗传算法,神经网络)
推荐接触的方法
4、数学建模示例 例 出版社的资源配置问题
目标:获取最大总利润(数学中的最值,即最优化 问题) 出版社的总利润就等于各分社的利润之和。 Max(sum(分社的利润))
机理分析:
分社的利润=销售总额×C/(1+C)(由于本 文中的各课程书目具有同一的利润率C)
销售总额=卖出的书本数(销售量)×书本的 平均定价(单价)
2、方法的选择
层次分析法 统计分析 (主成分,因子,聚类) 判别分析 回归分析 模糊建模(GM(1,1)) 图论(略) 遗传算法(略) BP神经网络
2、方法的选择
大家已了解的方法: 层次分析法 统计分析 (主成分,因子,聚类) 判别分析 回归分析 模糊建模(GM(1,1)) 图论(略) 遗传算法(略) BP神经网络
整体思路的形成
对前两步形成的思路结合可得数据进行进一步细 化
——纵横比较(大方向) ——横向:经济影响(数据基本可得或 替代);纵向:由于时间的久远,举办 城市的经济数据难以查询,从世博会网 站可查阅世博会本身的数据,因而转为 考虑世博会自身的总体影响力(注意数 据指标要可以解释总体影响力——见原 文,排序)
分社的利润=分得的书号数×平均单位书号书 本数(单位销量)×书本的平均定价×C/ (1+C)
测试分析:确定来年的单位销量
2008年全国数模大赛B题解析
2. 生均培养费用(成本)
招生规模
专业类别(理工、文史、农医、艺术等)
高校所处的地理位置(成本) 办学水平 基建投资 ……
3.
家庭年人均收入
1.
2.
所处地区
决定家庭承受能力
恩格尔系数(%)= 食品支出总额 /家庭或个人消 费支出总额×100%
4. 毕业生的预期收入
1.
就读高校
评价模型
基于学费对于家庭生活水平冲击最小,学
校满意度最大的原则
基于评价函数指标的评价模型
基于大学学费标准:按照每名学生培养成 本25%来收取的准则
四、结论与报告(10分)
分类研究(分类适当) 数据详实、方法合理、与现实数据比较 报告:具体建议(基于模型、分析)
建议收费的标准(普遍偏高、高职高专的学费普遍偏高 ,最高限价 ,杜绝教育 “致贫”现象 ) 国家加大高等教育的投入力度 建立合理的收费标准 ,增加科学性和透明度,实现高等教育机会公平
学费收入等几部分组成。对适合接受高等教育的经济困难的学生,一
般可通过贷款和学费减、免、补等方式获得资助,品学兼优者还能享 受政府、学校、企业等给予的奖学金。
学费问题涉及到每一个大学生及其家庭,是一个敏感而又复杂的
问题:过高的学费会使很多学生无力支付,过低的学费又使学校财力
不足而无法保证质量。学费问题近来在各种媒体上引起了热烈的讨论。 请你们根据中国国情,收集诸如国家生均拨款、培养费用、家庭 收入等相关数据,并据此通过数学建模的方法,就几类学校或专业的 学费标准进行定量分析,得出明确、有说服力的结论。数据的收集和 分析是你们建模分析的基础和重要组成部分。你们的论文必须观点鲜 明、分析有据、结论明确。 最后,根据你们建模分析的结果,给有关部门写一份报告,提出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国大学生数学建模竞赛D题解题思路简介2008年D题:NBA赛程的分析与评价NBA是全世界篮球迷们最钟爱的赛事之一,姚易加盟以后更是让中国球迷宠爱有加。
NBA共有30支球队,西部联盟、东部联盟各15支,大致按照地理位置,西部分西南、西北和太平洋3个区,东部分东南、中部和大西洋3个区,每区5支球队。
对于2008~2009新赛季,常规赛阶段从2008年10月29日(北京时间)直到2009年4月16日,在这5个多月中共有1230场赛事,每支球队要进行82场比赛,附件1是30支球队2008~2009赛季常规赛的赛程表,附件2是分部、分区和排名情况(排名是2007~2008赛季常规赛的结果),见/nba/。
对于NBA这样庞大的赛事,编制一个完整的、对各球队尽可能公平的赛程是一件非常复杂的事情,赛程的安排对球队实力的发挥和战绩有一定的影响,从报刊上经常看到球员、教练和媒体对赛程的抱怨或评论。
这个题目主要是要求用数学建模方法对已有的赛程进行定量的分析与评价:1)为了分析赛程对某一支球队的利弊,你认为有哪些要考虑的因素,根据这些因素将赛程转换为便于进行数学处理的数字格式,并给出评价赛程利弊的数量指标。
2)按照1)的结果计算、分析赛程对姚明加盟的火箭队的利弊,并找出赛程对30支球队最有利和最不利的球队。
3)分析赛程可以发现,每支球队与同区的每一球队赛4场(主客各2场),与不同部的每一球队赛2场(主客各1场),与同部不同区的每一球队有赛4场和赛3场(2主1客或2客1主)两种情况,每支球队的主客场数量相同且同部3个区的球队间保持均衡。
试根据赛程找出与同部不同区球队比赛中,选取赛3场的球队的方法。
这种方法如何实现,对该方法给予评价,也可以给出你认为合适的方法。
一.先谈谈评分标准的划分和理由1. 摘要、格式及整体(15分)。
2. 第一问(40分):这是问题关键(1) 因素的列举(15分);要说出理由,即为什么这些因素对比赛的胜负起作用,有多大的作用?(2) 因素的量化(10分):要用数学表达式表示各因素的量值。
(3) 因素综合评价(15)分。
3. 第二问(10分)。
4. 第三问(35分):(1) 均衡性(15分);(2) 具体均衡方案(20分)。
二. 打分范围(一) 一等奖80分以上;(二) 二等奖60分—80分;(三) 淘汰的60分以下。
三. 阅卷中出现较大的一些问题1. 题意理解不清:(1) 过分强调赛程安排对一个球队在比赛中胜负的作用。
决定球队比赛胜负的主要因素是球队球员的水平、团体合作配合的好坏、教练的指挥等,赛程安排只是起辅助作用。
(2) 有极少数队答非所问(3) 有少数队对题意理解不全面,看成是对赛程安排好坏的评估。
(4) 把2008年的这道题和2002年的D题-赛程的安排等同起来。
2. 所用数学方法不当:数学建模竞赛题虽然可以用多种数学方法求解,但不是任何问题都可以用任何数学方法去求解。
在本题中有以下两种情况似乎不妥:(1) 用线性或非线性回归法,或是概率统计法。
本题似乎与概率统计、回归法没有多大关系。
错误认识的原因可能是凡是出现大量数据的都可用数理统计方法,但本题中并没出现大量数据,只有30支球体2460场比赛的赛程表。
不能算作是某事件发生的调查数据表。
其次对于NBA这样的球赛一支球队过去的成绩对现在的卜胜负没有因果关系,何况他们还经常变换球员。
因此用回归法似乎不恰当。
(2) 本题有相当多的队都用层次分析法,这是可以的,但也有用不妥的地方。
有的队建立了以下的层次模型:大家看看,这个模型有没有问题?我们知道,层次分析法的关键是构造成对比较矩阵。
而比较的因素不能太多,一般不能多于9个。
而这个模型最底层有30个球队,这样成对比较阵无法建立。
四. 比较合理的解法1. 提取合理的因素,说出充分的理由,因素也不要过多,个人认为最好不超过5个,各因素之间应是相互独立的;有些因素虽然对赛程的安排的有重要影响,例如主、客场比赛的场次数,但本赛程主、客场次数相等,所以没有作用,不能做为一个因素。
2. 将赛程转换为便于进行数学处理的数字格式;将各因素量化,并给出权值。
权值可直接判断给出,也可用层次分析法(大多数队用层次分析法),有一个队采用问卷调查的方法,有一定的创意。
3. 给出综合指标,确定综合指标的计算公式;综合指标是各因素指标的综合,一但有了计算公式,就可计算各球队的分数,从而确定赛程对各球队的利弊。
4. 第3问的解答:(1) 只从赛程本身很难发现规律,所以应该是随机的。
有一份答卷查阅了几年的NBA赛程发现了规律,这有可能。
(2) 给出你认为合适的方法:有很多:有强队和弱队合理配答的;有的认为NBA比赛有很强的商业性,因此必须考虑可观赏性。
即要好看才能吸引观众,实力相近的队进行比赛,紧张、刺激才好看;实力相差太大的队进行比赛,一边倒,没有玄念,不好看。
所以应安排实力相近的球队进行比赛。
附录以下是两篇优秀论文,供大家参看。
附录1NBA赛程的分析与评价摘要本文首先综合考虑了NBA上个赛季的赛程、赛绩和本赛季的赛程确定出赛程对球队利弊的三个主要影响因素,并对其进行了定量分析。
其次利用偏大型柯西分部隶属函数确定主要影响因素的权值,给出了一个利弊的评价指标——利弊指数,并计算了各球队的利弊指数值。
从得到的结果看本次赛程对火箭队而言是比较有利的,其中最有利的球队是凯尔特人队,最不利的是快船队。
对于问题三,基于公平性和观赏性考虑,同部不同区球队实力尽可能悬殊的队尽可能少赛(赛3场)。
由此建立0-1规划模型,并利用LINDO软件求解出了赛3场球队的最优选取方案。
关键词:隶属函数利弊指数 0-1规划一.问题的重述NBA赛程的安排对球队实力的发挥和战绩存在着客观的影响,但编制一个完整的、对各球队尽可能公平的赛程是一件非常复杂的事情。
为了更直观的体现出这些客观因素的存在,利用数学建模方法对2008~2009年的赛季安排表进行定量的分析与评价:1)确定出赛程对某一支球队的利弊的主要影响因素,根据所确定的因素将赛程转换为便于进行数学处理的数字格式,同时给出评价赛程利弊的数量指标。
2)按照1)的结果计算、分析赛程对火箭队的利弊,并找出赛程对30支球队最有利和最不利的球队。
3)对2008~2009年的赛季安排表进行分析可以发现,每支球队与同区的每一支球队赛4场(主客各2场),与不同部的每一球队赛2场(主客各1场),与同部不同区的每一球队有赛4场和赛3场(2主1客或2客1主)两种情况,每支球队的主客场数量相同且同部3个区的球队间保持均衡。
试根据赛程找出与同部不同区球队比赛中,选取赛3场的球队的方法。
这种方法如何实现,对该方法给予评价,也可以给出认为合适的方法。
二.问题分析问题1首先应综合分析上一赛季的赛绩和本次赛季的赛程确定赛程对球队利弊的主要影响因素,其次要确定影响因素权值;根据本次赛场各球队的影响指标,对东西联盟的30支球队进行排序。
问题2根据上一问所得的结果,重点分析赛程对火箭队的利弊及赛程对那个队是最有利的,对那个队是最不利的。
问题3要对本季赛程进行分析,选取与同部不同区球队比赛中,赛3场的球队的方法,同时也可以给出认为合适的方法。
通过对赛程安排的统计,发现赛3场的4个球队是平均分部在同部不同区的,根据对对手实力的分析发现差异较大,所以可以说是随机安排赛3场的球队双方。
这在考虑每年球队实力有所变化的前提下也是合理的。
而以一般规律赛3场对对手双方是最不公平的,若安排实力相当的球队打3场,则必对某一方不利,若安排实力相差较大的球队赛3场就可以把此不利因素降到最底,毕竟影响胜负的关键还是实力。
因此,我们采用0-1规划法给出一种选取方法,重新安排赛3场的球队。
最后对所得的结果进行评价。
三.模型假设1)假设2008-2009赛季各队的实力不发生改变;2)假设两球队在比赛时,客队赶往赛场的这一过程对实力不产生影响;3)假设不考虑连续两场在客场比赛和连续两场同强队比赛对赛绩所产生的影响;4)假设东西部之间整体实力相等;5)假设赛程是在一些公平的约束下产生的,不存在人为偏袒因素。
四.符号说明A表示第j个球队连续两天内都有比赛的次数。
jB表示第j个球队连续在客场比赛三场或三场以上的次数。
jj C 表示第j 个球队连续同三个或三个以上的强队比赛的次数。
i ω表示第i 个影响因素权重。
S 表示赛程对球队利弊的数量指标——利弊指数i S 表示某球队第i 个影响因素值。
ij S 表示第i 个球队第j 个影响因素值i a 表示东南区第i 个球队的胜率。
j b 表示大西洋区第i 个球队的胜率。
j c 表示中部区第i 个球队的胜率。
ij x 表示选取东南区球队i 和大西洋区球队j 比赛的场次。
ij y 表示选取东南区球队i 和中部区球队j 比赛的场次。
55i j k ⨯⎡⎤⎣⎦表示东南区每个球员对大西洋区每个球员的实力差矩阵。
55ij m ⨯⎡⎤⎣⎦表示东南区每个球员对中部区每个球员的实力差矩阵。
z 表示东南区的每个球队对大西洋区和中部区每个球队赛3场的实力差之和。
五.模型的建立与求解5.1.1确定主要影响因素通过对NBA 以往比赛的赛程和赛绩进行分析[1],认为NBA 赛程对30支球队的影响是客观存在的事实,通过对以往赛程和赛绩的分析确定主要的客观影响因素包括三个方面,即连续客场的次数、背靠背的次数及连续同强队比赛的次数。
1、 连续客场的次数客场指的是球队在其他球队场地上比赛考虑到天时地利及人和的关系,连续3场或3场以上在客场比赛必定对球队的利弊存在影响。
2、背靠背的次数背靠背指的是连续两天都参加比赛,考虑到球员们的体质、体力的关系,背靠背的多少必定影响到球队最终的赛绩。
3、连续同强队比赛的次数连续同强队比赛指的是连续3场或3场以上同强队比赛,考虑到队员们心理、体力等因素的关系,对手强弱对球队的实力发挥和今后的赛事存在客观的影响。
5.1.2 球队实力的确定根据各球队2007-2008的赛绩表中的胜率指标,对球队实力按从强到弱依次排列表1,为了使球队的强弱指标便于量化,将排列名次进行简化(前15只球队分为强队,后15个球队分为弱队),来做为连续同强队比赛的次数的衡量尺度。
5.1.3赛程格式转换及球队各影响因素值确定为了把附录1(2008—2009)赛程转换为便于进行数学处理的数字格式,首先把赛期进行数字替换再将球队进行编号(具体的编号按照表2),我们就可以将赛程进行数字转换,再利用EXCEL对影响因素值进行统计得到表2(各球队各影响因素值的统计表);应的影响因素值作相应的规范化处理,背靠背的次数规范化后:130'130130min 14max min 2214j jj jj j j j j A A A A A A ≤≤≤≤≤≤--==-- (1,2,..,30)j = (1)其中j A 表示第j 个球队连续两天内都有比赛的次数。