2018年广州一模数学试题(文科)
【省级联考】2018年广东省高考数学一模试卷(文科)
2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. 若复数z满足(1+i)z=1,则复数z的虚部为()A. B. C. D.2. 已知集合A={x|x>0} , B={X|X2V 1},则A U B=()A. (0,+x)B. (0,1)C. (- 1,+x)D. (- 1,0)3. 常数m是2与8的等比中项”是“口=4勺()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()2 25. 已知F是双曲线C:「-' =1 (a>0, b>0)的一个焦点,点F到C的一a2 b2条渐近线的距离为2a,则双曲线C的离心率为()A. 2 :■:B. :■:C. 口D. 26. 等差数列log3 (2x),log3 (3x),log3 (4x+2),••的第四项等于()A. 3B. 4C. log318D. log3247. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. -B.-C D.兀20252520A . 48+8 nB . 96+8 n C. 96+16 n D . 48+16 n 8.已知曲线.i?,则下列结论正确的是()A .把C 向左平移鈴个单位长度,得到的曲线关于原点对称B •把C 向右平移丄个单位长度,得到的曲线关于y 轴对称12C •把C 向左平移芈个单位长度,得到的曲线关于原点对称3 D .把C 向右平移一个单位长度,得到的曲线关于y 轴对称69. 大衍数列,来源于《乾坤谱》中对易传 大衍之数五十”的推论.主要用于 解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中, 曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数 列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2, 4,8,12,18,24, 32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个 先后填入( )J-|_”中,可以A ,B 分别为切点,贝U ■- - r 1'■的最小值为( )I 2K +1 -1 I1二,若互不相等的实数a ,b ,c 满足f (a )-x+51 K ^2=f ( b ) =f (c ),则2a +2b +2c 的取值范围是()A . n 是偶数,n 》100 B. C. n 是偶数,n > 100 D . f(x) Kn 是奇数,n > 100 n 是奇数,n > 10010. 已知函数在其定义域上单调递减,则函数f (x )11.已知抛物线C : y 2=x , M 为x 轴负半轴上的动点, MA , MB 为抛物线的切线,1 .A.)A . (16, 32) B. (18, 34) C. (17, 35) D . (6, 7)、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知单位向量 石,&的夹角为30°则|石-體二| = ______________ .14. 设x , y 满足约束条件4x+5y<6,则z=x+y 的最大值为 ___________ .* 5K+4y^315. 已知数列{a n }的前n 项和为S n ,且「1二二“「二--.,则a 5= ___ .16. 如图,圆形纸片的圆心为 0,半径为6cm ,该纸片上的正方形ABCD 的中 心为O , E , F , G , H 为圆O 上的点,△ ABE △ BCF , △ CDQ △ ADH 分别是以 AB , BC, CD, DA 为底边的等腰三角形.沿虚线剪开后,分别以 AB , BC, CD, DA 为折痕折起△ ABE △ BCF △ CDQ △ ADH ,使得E, F , G, H 重合,得到一 个四棱锥.当该四棱锥的侧面积是底面积的 2倍时,该四棱锥的外接球的体积 为 .17. (12.00 分)在厶 ABC 中,角 A , B ,.....(1)证明:(2)若丄-—-■—,求厶ABC 的面积.18. (12.00分)微信运动”是一个类似计步数据库的公众账号.用户只需以运动 手环或手机协处理器的运动数据为介, 然后关注该公众号,就能看见自己与好友三、解答题:共70分.解答应写出文字说明、 证明过程或演算步骤.第17-21题为 必考题,每道试题考生都必须作答.第22、 (一)必考题:共60分.23题为选考题,考生根据要求作答• C 所对的边分别为 a , b , c ,已知每日行走的步数,并在同一排行榜上得以体现•现随机选取朋友圈中的50人, 记录了他们某一天的走路步数,并将数据整理如下:步数/步0 〜30003001〜6000 6001〜80008001 〜1000010000以上男生人数/127155人女性人数/03791人规定:人一天行走的步数超过8000步时被系统评定为积极性”否则为懈怠性”(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为评定类型与性别有关”男女总计积极性懈怠性总计附:P (K2》k0)0.100.050.0100.0050.001k0 2.706 3.841 6.6357.87910.828 n(ad-bc)2'(c+d) Cate) (fc+d)(2)为了进- 「步了解懈怠性”人群中每个人的生活习惯,从步行数在3001〜6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.19. (12.00 分)如图,在直角梯形ABCD 中,AD// BC, AB 丄BC,且BC=2AD=4 E, F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE丄CF,得到如下的立体图形.(1)证明:平面AEFDL平面EBCF(2)若BD丄EC,求点F到平面ABCD的距离.220. ( 12.00分)已知椭圆;—⑴字).(1) 求椭圆C 的方程;(2) 若直线I 与椭圆C 交于P, Q 两点(点P , Q 均在第一象限),且直线OP, l , OQ 的斜率成等比数列,证明:直线I 的斜率为定值. 21. (12.00 分)已知函数 f ( x ) =6"- x 2 — ax.(1) 证明:当a < 2 -2ln2时,函数f (x )在R 上是单调函数; (2) 当x >0时,f (x )> 1 - x 恒成立,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则 按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10.00分)在直角坐标系 xOy 中,圆G: (x - 2) 2+ (y -4) 2=20,以坐标 原点0为极点,x 轴的正半轴为极轴建立极坐标系,C2: B 斗(p€R ). (1) 求C 1的极坐标方程和C 2的平面直角坐标系方程;(2) 若直线C 3的极坐标方程为,设Q 与C 1的交点为0、M ,C 3| 6 与C 1的交点为0、”,求厶OMN 的面积.[选修4-5:不等式选讲]23. 已知函数 f (x ) =3| x - a|+| 3x+1|,g (x ) =| 4x - 1| - | x+2| . (1) 求不等式g (x )v 6的解集;(2) 若存在X 1,X 2€ R ,使得f (X 1)和g (x 2)互为相反数,求a 的取值范围.2018年广东省高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合题目要求的• 1.若复数z 满足(1+i ) z=1,则复数z 的虚部为()2 ______________________的离心率为一,且C 过点A.耳B•丄CD.丄2 1 2 2 1 2【分析】把已知等式变形,再利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=1,得___________ 旦______ 丄匚则复数z的虚部为一.故选:D.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2. 已知集合A={x|x>0},B={X|X2V 1},则A U B=()A. (0,+x)B. (0,1)C. (- 1,+x)D. (- 1,0)【分析】先求出集合A,B,由此能求出A U B.【解答】解:•集合A={x| x> 0},B={x| x2< 1}={x| - 1v x v 1},••• A U B={x|x>- 1}= (- 1,+x).故选:C.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力, 考查函数与方程思想,是基础题.3. 常数m是2与8的等比中项”是“m=4W()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】利用等比中项公式求解.【解答】解:t m 是两个正数2和8的等比中项, m=± : ;=±4.故m=± 4是m=4的必要不充分条件, 故选:B.【点评】本题考查两个正数的等比中项的求法,是基础题,解题时要注意两个正 数的等比中项有两个.4. 如图为射击使用的靶子,靶中最小的圆的半径为 1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()【分析】根据几何概型的定义分别求出满足条件的面积,作商即可. 【解答】解:由题意此点取自黑色部分的概率是: 16只-兀1 =3=100K 20,故选:A .【点评】本题主要考查几何概型的概率计算, 求出黑色阴影部分的面积是解决本 题的关键.条渐近线的距离为2a ,则双曲线C 的离心率为( )A. 2B. :C.!■ D. 2【分析】根据题意,由双曲线的几何性质,分析可得b=2a ,进而可得5. 已知F 是双曲线C :=1 (a >0,b >0)的一个焦点,点F 到C 的一2~2ac 二;-「:, = . ! a ,由双曲线的离心率公式计算可得答案. 【解答】解:根据题意,F 是双曲线C: 4^7=1(a >°,b >0)的一个焦点,b若点F 到C 的一条渐近线的距离为2a ,则b=2a ,故选:C.【点评】本题考查双曲线的几何性质,注意双曲线的焦点到渐近线的距离为 b .6. 等差数列 log 3 (2x ), log 3 (3x ), log 3 (4x+2), ••的第四项等于()A . 3 B. 4C. log 3l8 D . Iog 324【分析】由等差数列的性质得Iog 3 (2x ) +Iog 3 (4x+2) =2log (3x ),求出x=4 , 等差数列的前三项分别是Iog 38 , Iog 3l2 , Iog 3l8 ,由此能求出第四项. 【解答】解:•••等差数列 Iog 3 (2x ) , Iog 3 (3x ), Iog 3 (4x+2),…, ••• Iog 3 (2x ) +Iog 3 (4x+2) =2log 3 (3x ), ••• x (x - 4) =0 , 又 2x > 0, • x=4 ,•等差数列的前三项分别是Iog 38 , Iog 312 , Iog 318 , 3d=log 312 - Iog 38=l 口呂帀,•••第四项为 L og 3is+lo e 3|=log327=3. 故选:A .【点评】本题考查等差数列的第4项的求法,考查等差数列的性质等基础知识, 考查推运算求解能力,考查函数与方程思想,是基础题.7. 如图,网格纸上的小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的表面积为()则双曲线C 的离心率eA . 48+8 nB . 96+8 n C. 96+16 n D . 48+16 n【分析】由三视图可得,该几何体是长方体截去两个半圆柱,即可求解表面积. 【解答】解:由题意,该几何体是长方体截去两个半圆柱, •表面积为:4X 6 X 2+2 (4 X 6 - 4 n) +2X 2nX 4=96+8 n , 故选:B.【点评】本题考查了圆柱和长方体的三视图, 结构特征,面积计算,属于基础题.8.已知曲线C : y=sin,贝U 下列结论正确的是( )A .把C 向左平移卷个单位长度,得到的曲线关于原点对称B •把C 向右平移令个单位长度,得到的曲线关于y 轴对称 兀丨c •把C 向左平移 守个单位长度,得到的曲线关于原点对称 D .把C 向右平移——个单位长度,得到的曲线关于y 轴对称6 【分析】直接利用三角函数的图象平移逐一核对四个选项得答案. 【解答】解:把C 向左平移」个单位长度,12 可得函数解析式为 y=sin[2 (x+^—)] =sin (2x^^) =cos2x, 1 z ! 丄得到的曲线关于y 轴对称,故A 错误; 把C 向右平移——个单位长度, I X 可得函数解析式为y=sin[2 (x —-)得到的曲线关于y 轴对称,故B 正确;-T-] =sin (2x-=-cos2x,把C向左平移一个单位长度,3可得函数解析式为y=sin[2 (x+ ) ] =sin (2x^—),3 3 3取x=0,得y=」,得到的曲线既不关于原点对称也不关于y轴对称,故C错误;把C向右平移——个单位长度,可得函数解析式为y=sir(2 (x-丄)-—]=sin& & 3(2x_寻忑),取x=0,得y=- —,得到的曲线既不关于原点对称也不关于y轴对称,故D错2误.•••正确的结论是B.故选:B.【点评】本题考查y=Asin (^x©)型函数的图象变换,考查y=Asin (^x©)的图象和性质,是基础题.9. 大衍数列,来源于《乾坤谱》中对易传大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2, 其前10项依次是0, 2, 4, 8, 12, 18, 24, 32, 40, 50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入( )A. n是偶数,n》100B. n是奇数,n > 100C. n是偶数,n> 100D. n是奇数,n> 100【分析】模拟程序的运行过程,结合退出循环的条件,判断即可.【解答】解:n=1,s=0,n=2,s=2,n=3,s=4,992-In=99, s=—.n=100, s=—' n=101> 100,结束循环,故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程, 以便得出正确的结论,是基础题.10. 已知函数在其定义域上单调递减,贝U函数f(x)的图象可能是()e可得[e但不恒等于0, 即f (x )> f ( x )恒成立, 对于A , f (x )>0恒成立,且f (x )< 0, 则f (x )> f ( x )恒成立;对于B ,由f (x )与x 轴的交点设为(m , 0), (m >0), 可得 f (m ) =0, f'(m )>0, f (x )>f'(x )不成立;对于 C ,可令 f (x ) =t (t v 0), f'(x ) =0, f (x )> f ( x )不成立; 对于D , f (x )在x >0时的极小值点设为n ,则 f (n )v 0, f (n ) =0, f (x )>f (x )不成立. 则A 可能成立, 故选:A .【点评】本题考查导数的运用:求单调性,考查数形结合思想方法,以及分析判 断能力,属于中档题.11. 已知抛物线C : y 2=x , M 为x 轴负半轴上的动点,MA , MB 为抛物线的切0,结合选项即可得【解答】解:函数在其定义域R 上单调递减,Ce到所求图象.但不恒等于线,A , B 分别为切点,则八-r 】的最小值为( )性质,属于中档题(|I 匕专12.设函数■ <: ":,若互不相等的实数a ,b ,c 满足f (a )卜計5, K >2=f ( b ) =f (c ),则2a +2b +2c 的取值范围是( )A . (16,32) B. (18,34) C. (17,35) D . (6,7)【分析】不妨设a v b v c ,利用f (a ) =f (b ) =f (c ),结合图象可得c 的范围,即可 2a +2b =2【解答】解:不妨设a v b v c ,则1- 2a =2b - 1,则2a +2b =2, 结合图象可知c €( 4, 5), 则 2a +2b +2c €( 18, 34),A .B.C -D .4【分析】设切线MA 的方程为x=ty+m ,代入抛物线方程得y 2- ty - m=0,由直线 与抛物线相切可得△ =t 2+4m=0,分别求出A ,B ,M 的坐标,根据向量的数量积 和二次函数的性质即可求出【解答】解:设切线MA 的方程为x=ty+m ,代入抛物线方程得y 2- ty - m=0, 由直线与抛物线相切可得△ =t 2+4m=0,£ 4,号 一 异将点A 的坐标代入x=ty+m ,得m=-,4--M (- —, ), • •页而=(牙,寸)?号,冷)21 2 故选:C.则当t 2.1 4 4 1 - 1 1【点评】本题考查了直线和抛物线的位置关系, 以及向量的数量积和二次函数的,即 t= ±=-故选:B.【点评】本题考查代数式取值范围的求法,考查函数性质等基础知识,考查、运算求解能力,考查函数与方程思想,是中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知单位向量石,耳的夹角为30°则|石-齒q 1= 1 .【分析】根据单位向量"「的夹角为30。
2018年广州市普通高中毕业班综合测试(一)文科试题及答案
2018届广州市普通高中毕业班综合测试(一)数学(文科)本试卷共5页,23小题.满分考试用时120分钟*注意事项:1.答卷前,着生务必将自己的姓名和考生号、试室号、殛位号填写在答题卡上,用2B 笔在答題卡的相应位置壞涂考生号,并将试基类型(A〉填涂在答题卡相应位置上。
2.作答选挣题时’选出每小题答案后,用铅笔在答题卡上对应题目选项的寥案信息点涂黑]如需改动,用祿皮擦干净后,再逸潦算他答案。
答案不能答在试卷上。
3.非逸择题必须用黑莒字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位査上;如需改动*先划掉原来的答案,然后再写上新尊案;不准使用勰笔和漆改液円不按以上要求作答无效口4.考生蛊须僅证答题卡的整洁纽考试结朿后’将试卷和答题卡一并丸回。
一、选择题:本题共12小题,每小题5分,共测分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.设复数乞満足刃= (1-i)S则复数E的共规复数云二仏-2 B. 2 C.-2i D. 2i2.设集合川二{0丄2,3,4,5,6] + B={*=2耳』w/},则/D/ =A. {0,2,4}B. {2,4,6}C. {0,2,4,6}D. {0,2,4,6,8.10,12)3.己知向量03-(2?2)t OB =(5,3),则网—丽卜A” 10B, TlO C 血D, 24.等差数列{陽}的各项均不为零.其前用项和为若a n+l ~ a tt+2 + a n * 则$亦1=A. 4社+ 2 B* 4丹 C. 2n+ ) D. 2/15.执行如图所示的程序框图,则输出的S二□42 9A, — B. - C- - D.—-20 9 9 40J在四面体A BCD中,E, F分别为AD 的中点,AB二CD *HR丄CD,则异面直线EF与/百所成角的大小为A. - B, - C. - D.-6 4 3 21L 己知数列{%}满足“严2, 2^+|=^ + 1,设瓦=纟匚二则数列{*}是暫+ 1如图,在梯形ABCD 中,已^\AB\^2\CD\t AE^-AC,双曲线过C, D, £三点,且以",0为焦点,则双曲线的离心率为A+ 41 B. 2^2D. J1O7.已划某个函数的部分图象如图所示,则这个函数的解析式可能是B + y = xlnx-x4-l D. y- lux 4-x-lx8.椭圆y + ^=l± 一动点P 到定点A/(1,O )的距离的議小值为D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为A. 10 + 4V2 + 2V3 C. 44-4V2+2V3吐14 + 4运D, 4A.A.常数列B.摆动数列C.递增数列D.递减数列12. C. 310.己知函数f(x) =上单调递增,则血的取值范围为「I『侧:本题共4小题,每小题5分,共2U分.匚L⑷咯IQI」小学学生人数如图所示.为了解该区学生参加某项社会实践活动的盘I;施拥采用分层抽样的方法来进行调查.若高中需抽取20名学生,聊小学9初中共需抽取的学生人数为_______ 名.2工-y + 3W0,4.y满足约束条件JY-IW0,则2二-x + y的绘小值为_______y-GO,I"15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在汀"形中的一种几何排列,俗称“杨辉三角形”’该数表的规律是每行首尾数字均为1,从①三行开始,其余的数字是它“上方”左右两个数字之和.现将畅辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第川行各数字的和为如^=1,绩=2, E=2, 54=4f……,则S垃二________________________________________ .I II 0 I1 J i I10 0 0 1110 0】10 10 10图②图①g(x) = x'-2兀一4.设0为实数,若存在实数a,hi(x + 2), x^-L使得/何+号何=1成立”则b的取值范围为____________乙解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须做答+第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(本小题满分12分)△ ABC的内角, C1的对边分别为口,b , c,已知口二历,c-b = \ , £\ABC 的外接圆半径为J7-(1)求角虫的值:(2)求的面积.U,(本小题满分]2分)某地!TO岁男童年龄%(岁)与身高的中位数兀(cm)卩匸1,2*…,10)如下表:JC (岁)i2456 f 78-------,101 y (cm)76.588396,8io4a111.3117.7124,0150.0135.4140 2对上表的数据作初步处理,得到下面的散点图及~些统计量的值.4 y(cm)140130120H01009080,70j r 工f2 3 4 5 6 7r y如)25.5 |112曲82.503947.71566.85(O求y关于x的线性回归方程(回归方程系数精确到o.oi):(2)某同学认为,y^px2+qx + r更适宜作为p关于工的回归方程类型,他求得的回归方程是7 = -0、30# + 10」4 + 6&0匸经调查,该地11岁男重身高的中位数145.3cm.与(I)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y = a^rbx中的斜率和截距的最小二乘估计公式分别为:19.(本小题满分门分)如图,四棱锥尸-/1BCD中,底面ABCD为矩形,(J)求证:AE=PE;(2》若是等边三角形,AB^2AD. 平面只4D丄平面彳BCD,四棱锥P-4BCD的体积为gJL求点F到平面0CD的距裔.20.(本小题满分12分)已知两个定点A/(L0)和N(2,0),动点P满足\PN\ = ^2\PM\rU)求动点P的轨迹C的方程;(2)若B为(1)中轨迹C上两个不同的点.O为坐标原点+设直线0/1, OB, AB 的斜率分别为耐,k2t k,当k.k2=3时,求jt的取值范围.2L (本小题满分12分)已知函数/*(X)= e r - ax + a -1.(1)若fO)的极值为e —1,求。
2018年广东省高考数学一模试卷(文科)
2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z满足(1+i)z=1,则复数z的虚部为()A.1 2iB.12C.−12i D.−122. 已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0, +∞)B.(0, 1)C.(−1, +∞)D.(−1, 0)3. “常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.3 20B.3π25C.325D.π205. 已知F是双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为( )A.2√2B.√3C.√5D.26. 等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log3247. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()),则下列结论正确的是()8. 已知曲线C:y=sin(2x−π3A.把C向左平移5π个单位长度,得到的曲线关于原点对称12B.把C向右平移π个单位长度,得到的曲线关于y轴对称12C.把C向左平移π个单位长度,得到的曲线关于原点对称3D.把C向右平移π个单位长度,得到的曲线关于y轴对称69. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>10010. 已知函数f(x)在其定义域上单调递减,则函数f(x)的图象可能是()eA.C.D.11. 已知抛物线C:y 2=x ,M 为x 轴负半轴上的动点,MA ,MB 为抛物线的切线,A ,B 分别为切点,则MA →⋅MB →的最小值为( )A.−14B.−18C.−116D.−1212. 设函数f(x)={|2x −1|,x ≤2−x +5,x >2,若互不相等的实数a ,b ,c 满足f(a)=f(b)=f(c),则2a +2b +2c 的取值范围是( )A.(16, 32)B.(18, 34)C.(17, 35)D.(6, 7)二、填空题(每题5分,满分20分,将答案填在答题纸上)已知单位向量e 1→,e 2→的夹角为30∘,则|e 1→−√3e 2→|=________.设x ,y 满足约束条件{x −y ≤64x +5y ≤65x +4y ≥3,则z =x +y 的最大值为________.已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,则a 5=________.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE ,△BCF ,△CDG ,△ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE ,△BCF ,△CDG ,△ADH ,使得E ,F ,G ,H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b2+c2=a(√33bc+a).(1)证明:a=2√3cosA;(2)若A=π3,B=π6,求△ABC的面积.“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001∼6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.如图,在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求点F到平面ABCD的距离.已知椭圆C:x2a +y2b=1(a>b>0)的离心率为√32,且C过点(1,√32).(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.已知函数f(x)=e x−x2−ax.(1)证明:当a≤2−2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1−x恒成立,求实数a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,圆C1:(x−2)2+(y−4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=π3(ρ∈R).(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=π6(ρ∈R),设C2与C1的交点为O,M,C3与C1的交点为O,N,求△OMN的面积.[选修4-5:不等式选讲]已知函数f(x)=3|x−a|+|3x+1|,g(x)=|4x−1|−|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.参考答案与试题解析2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】复数的运算【解析】把已知等式变形,再利用复数代数形式的乘除运算化简得答案.【解答】由(1+i)z=1,得z=11+i=1−i(1+i)(1−i)=12−12i,则复数z的虚部为−12.2.【答案】C【考点】并集及其运算【解析】先求出集合A,B,由此能求出A∪B.【解答】∵集合A={x|x>0},B={x|x2<1}={x|−1<x<1},∴A∪B={x|x>−1}=(−1, +∞).3.【答案】B【考点】必要条件、充分条件与充要条件的判断【解析】利用等比中项公式求解.【解答】∵m是两个正数2和8的等比中项,∴m=±√2×8=±4.故m=±4是m=4的必要不充分条件,4.【答案】A【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)根据几何概型的定义分别求出满足条件的面积,作商即可.【解答】解:根据题意可得,黑色部分的面积为S1=π(42−1)=15π,圆靶的面积为S=102π=100π,由题意此点取自黑色部分的概率是:P=15π100π=320.故选A.5.【答案】C【考点】双曲线的离心率双曲线的特性【解析】根据题意,由双曲线的几何性质,分析可得b=2a,进而可得c=√a2+b2=√5a,由双曲线的离心率公式计算可得答案.【解答】解:根据题意,F是双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c=√a2+b2=√5a,则双曲线C的离心率e=ca=√5.故选C.6.【答案】A【考点】等差数列的通项公式【解析】由等差数列的性质得log3(2x)+log3(4x+2)=2log3(3x),求出x=4,等差数列的前三项分别是log38,log312,log318,由此能求出第四项.【解答】∵等差数列log3(2x),log3(3x),log3(4x+2),…,∴log3(2x)+log3(4x+2)=2log3(3x),∴x(x−4)=0,又2x>0,∴x=4,∴等差数列的前三项分别是log38,log312,log318,d=log312−log38=log332,∴第四项为log318+log332=log327=3.7.B【考点】由三视图求体积【解析】由三视图可得,该几何体是长方体截去两个半圆柱,即可求解表面积.【解答】由题意,该几何体是长方体截去两个半圆柱,∴ 表面积为:4×6×2+2(4×6−4π)+2×2π×4=96+8π,8.【答案】B【考点】函数y=Asin (ωx+φ)的图象变换【解析】直接利用三角函数的图象平移逐一核对四个选项得答案.【解答】把C 向左平移5π12个单位长度,可得函数解析式为y =sin[2(x +5π12)−π3]=sin(2x +π2)=cos2x ,得到的曲线关于y 轴对称,故A 错误;把C 向右平移π12个单位长度,可得函数解析式为y =sin[2(x −π12)−π3]=sin(2x −π2)=−cos2x ,得到的曲线关于y 轴对称,故B 正确;把C 向左平移π3个单位长度,可得函数解析式为y =sin[2(x +π3)−π3]=sin(2x +π3),取x =0,得y =√32,得到的曲线既不关于原点对称也不关于y 轴对称,故C 错误; 把C 向右平移π6个单位长度,可得函数解析式为y =sin[2(x −π6)−π3]=sin(2x −23π), 取x =0,得y =−√32,得到的曲线既不关于原点对称也不关于y 轴对称,故D 错误. ∴ 正确的结论是B .9.【答案】D【考点】程序框图【解析】模拟程序的运行过程,结合退出循环的条件,判断即可.【解答】n =1,s =0,n=3,s=4,…,n=99,s=992−12,n=100,s=10022,n=101>100,结束循环,10.【答案】A【考点】函数的图象变化【解析】由题意可得[f(x)e ]′=f′(x)−f(x)e≤0,但不恒等于0,结合选项即可得到所求图象.【解答】函数f(x)e x在其定义域R上单调递减,可得[f(x)e ]′=f′(x)−f(x)e≤0,但不恒等于0,即f(x)≥f′(x)恒成立,对于A,f(x)>0恒成立,且f′(x)≤0,则f(x)≥f′(x)恒成立;对于B,由f(x)与x轴的交点设为(m, 0),(m>0),可得f(m)=0,f′(m)>0,f(x)≥f′(x)不成立;对于C,可令f(x)=t(t<0),f′(x)=0,f(x)≥f′(x)不成立;对于D,f(x)在x>0时的极小值点设为n,则f(n)<0,f′(n)=0,f(x)≥f′(x)不成立.则A可能成立,11.【答案】C【考点】抛物线的性质【解析】设切线MA的方程为x=ty+m,代入抛物线方程得y2−ty−m=0,由直线与抛物线相切可得△=t2+4m=0,分别求出A,B,M的坐标,根据向量的数量积和二次函数的性质即可求出【解答】设切线MA的方程为x=ty+m,代入抛物线方程得y2−ty−m=0,由直线与抛物线相切可得△=t2+4m=0,则A(t24, t2),B(t24, −t2),∴ M(−t 24, 0), ∴ MA →⋅MB →=(t 22, t 2)⋅(t 22, −t 2)=t 44−t 24=14(t 2−12)2−116,则当t 2=12,即t =±√22时,MA →⋅MB →的最小值为−116 12.【答案】B【考点】分段函数的应用【解析】不妨设a <b <c ,利用f(a)=f(b)=f(c),结合图象可得a ,b ,c 的范围,即可1求出【解答】互不相等的实数a ,b ,c满足f(a)=f(b)=f(c),可得a ∈(−∞, 0),b ∈(0, 1),c ∈(4, 5),则0<2a <1,0<2b <1,16<2c <32,2a +2b +2c ∈(18, 34)二、填空题(每题5分,满分20分,将答案填在答题纸上)【答案】1【考点】平面向量数量积的性质及其运算律【解析】根据单位向量e 1→,e 2→的夹角为30∘即可求出e 1→∗e 2→的值,从而可求出(e 1→−√3e 2→)2的值,进而得出|e 1→−√3e 2→|的值.【解答】单位向量e 1→,e 2→的夹角为30∘;∴ e 1→∗e 2→=cos30∘=√32,e 1→2=e 2→2=1; ∴ (e 1→−√3e 2→)2=e 1→2−2√3e 1→∗e 2→+3e 2→2=1−2√3×√32+3=1; ∴ |e 1→−√3e 2→|=1.【答案】2【考点】简单线性规划【解析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可.【解答】x ,y 满足约束条件{x −y ≤64x +5y ≤65x +4y ≥3的可行域如图,则z =x +y 经过可行域的A 时,目标函数取得最大值,由{x −y =64x +5y =6解得A(4, −2),【答案】14【考点】等差数列的前n项和【解析】利用a5=S5−S4即可得出.【解答】a5=S5−S4=32×52+12×5−(32×42+12×4)=14,【答案】500√3π27【考点】球的体积和表面积【解析】根据题意,设正方形ABCD的边长为x,E,F,G,H重合,得到一个正四棱锥,四棱锥的侧面积是底面积的2倍时,即可求解x,从而求解四棱锥的外接球的体积.【解答】连接OE交AB与I,E,F,G,H重合为P,得到一个正四棱锥,设正方形ABCD的边长为x.则OI=x2,IE=6−x2.由四棱锥的侧面积是底面积的2倍,可得4∗x2(6−x2)=2x2,解得:x=4.设外接球的球心为Q,半径为R,可得OC=2√2,OP=√42−22=2√3,R2= (2√3−R)2+(2√2)2.∴R=√3该四棱锥的外接球的体积V=43πR3=500√3π27.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.【答案】在△ABC中,角A,B,C所对的边分别为a,b,c,b2+c2=a(√33bc+a),则:b2+c2=√33abc+a2,整理得:b2+c2−a2=√33abc,由于:b2+c2−a2=2bccosA,则:2bccosA=√33abc,即:a=2√3cosA.由于:A=π3,所以:a=2√3cosA=√3.由正弦定理得:asinA =bsinB,解得:b=1.C=π−A−B=π2,所以:S△ABC=12absinC=√32.【考点】三角形求面积【解析】(1)直接利用已知条件和余弦定理求出结论.(2)利用(1)的结论,进一步利用正弦定理求出结果.【解答】在△ABC中,角A,B,C所对的边分别为a,b,c,b2+c2=a(√33bc+a),则:b2+c2=√33abc+a2,整理得:b2+c2−a2=√33abc,由于:b2+c2−a2=2bccosA,则:2bccosA=√33abc,即:a=2√3cosA.由于:A=π3,所以:a=2√3cosA=√3.由正弦定理得:asinA =bsinB,解得:b=1.C=π−A−B=π2,所以:S△ABC=12absinC=√32.【答案】根据题意,由频率分布表分析可得:则K2=50×(20×10−10×10)230×20×30×20≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1, 2, a),(1, 2, b),(1, 2, c),(1, a, b),(1, a, c),(1, b, c),(2, a, b),(2, a, c),(2, b, c),(a, b, c);共10种情况,其中男性人数超过女性人数的情况有:(1, 2, a),(1, 2, b),(1, 2, c),共3种,则选中的人中男性人数超过女性人数的概率P=310.【考点】独立性检验【解析】(1)根据题意,由频率分布表分析可得2×2列联表,由独立性检验计算公式计算K2的值,结合独立性检验的意义可得答案;(2)根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,由列举法分析可得从中任选3人和男性人数超过女性人数的情况数目,由古典概型计算公式计算可得答案.【解答】根据题意,由频率分布表分析可得:则K2=50×(20×10−10×10)230×20×30×20≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1, 2, a),(1, 2, b),(1, 2, c),(1, a, b),(1, a, c),(1, b, c),(2, a, b),(2, a, c),(2, b, c),(a, b, c);共10种情况,其中男性人数超过女性人数的情况有:(1, 2, a),(1, 2, b),(1, 2, c),共3种,则选中的人中男性人数超过女性人数的概率P=310.【答案】∵在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF // AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.如图,过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴EGEB =EBBC,∴EB=√BC∗EG=√4×2=2√2,设点F到平面ABCD的距离为ℎ,∵V F−ABC=V A−BCF,∴S△ABC⋅ℎ=S△BCF⋅AE,AB=4,S△ABC=12×4×4=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵S△BCF=12×4×2√2=4√2,AE=EB=2√2,∴ℎ=4√2×2√28=2,∴点F到平面ABCD的距离为2.【考点】平面与平面垂直点、线、面间的距离计算【解析】(1)推导出EF // AD,AE⊥EF,AE⊥CF,从而AE⊥平面EBCF,由此能证明平面AEFD⊥平面EBCF.(2)过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,设点F到平面ABCD的距离为ℎ,由V F−ABC=V A−BCF,能求出点F到平面ABCD的距离.【解答】∵在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF // AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.如图,过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴EGEB =EBBC,∴EB=√BC∗EG=√4×2=2√2,设点F到平面ABCD的距离为ℎ,∵V F−ABC=V A−BCF,∴S△ABC⋅ℎ=S△BCF⋅AE,AB=4,S△ABC=12×4×4=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵S△BCF=12×4×2√2=4√2,AE=EB=2√2,∴ℎ=4√2×2√28=2,∴点F到平面ABCD的距离为2.【答案】由题意可得{ca =√321 a2+34b2=1a2=b2+c2,解得a =2,b =1,c =√3, 故椭圆C 的方程为x 24+y 2=1,证明::设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0). 联立{y =kx +tx 2+4y 2=4, 化为(1+4k 2)x 2+8ktx +4t 2−4=0.△=64k 2t 2−4(4t 2−4)(1+4k 2)>0,化为1+4k 2>t 2. ∴ x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k 2,∴ y 1y 2=(kx 1+t)(kx 2+t)=k 2x 1x 2+kt(x 1+x 2)+t 2, ∵ 直线OP ,l ,OQ 的斜率成等比数列,∴ y 1x 1⋅y2x 2=k 2,即k 2x 1x 2+kt(x 1+x 2)+t 2=kx 1x 2, ∴−8k 2t 21+4k 2+t 2=0,∵ t ≠0, ∴ 4k 2=1,结合图形可知k =−12, ∴ 直线l 的斜率为定值为−12. 【考点】 椭圆的离心率 【解析】(1)由题意可得{ c a =√321a +34b =1a 2=b 2+c 2,解得即可;(2)设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0).与椭圆的方程联立可得(1+4k 2)x 2+8ktx +4t 2−4=0.由△>0,可得1+4k 2>t 2.得到根与系数的关系.可得y 1x 1⋅y2x 2=k 2,直线OP ,l ,OQ 的斜率成等比数列,化为4k 2=1,即可证明 【解答】由题意可得{ ca =√321a 2+34b 2=1a 2=b 2+c 2 ,解得a =2,b =1,c =√3, 故椭圆C 的方程为x 24+y 2=1,证明::设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0).联立{y =kx +tx 2+4y 2=4, 化为(1+4k 2)x 2+8ktx +4t 2−4=0.△=64k 2t 2−4(4t 2−4)(1+4k 2)>0,化为1+4k 2>t 2. ∴ x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k 2,∴ y 1y 2=(kx 1+t)(kx 2+t)=k 2x 1x 2+kt(x 1+x 2)+t 2, ∵ 直线OP ,l ,OQ 的斜率成等比数列,∴ y 1x 1⋅y2x 2=k 2,即k 2x 1x 2+kt(x 1+x 2)+t 2=kx 1x 2, ∴−8k 2t 21+4k 2+t 2=0,∵ t ≠0, ∴ 4k 2=1,结合图形可知k =−12, ∴ 直线l 的斜率为定值为−12.【答案】(1)证明:f′(x)=e x −2x −a ,令g(x)=e x −2x −a ,则g′(x)=e x −2, 则当x ∈(−∞, ln2)时,g′(x)<0, x ∈(ln2, +∞)时,g′(x)>0,故函数g(x)在x =ln2时取最小值g(ln2)=2−2ln2−a , 当a ≤2−2ln2时,g(x)≥0.故f′(x)≥0,即函数f(x)在R 上单调递增; (2)解:当x >0时,e x −x 2−ax ≥1−x , 即a ≤e x x−x −1x +1,令ℎ(x)=e x x−x −1x +1(x >0),则ℎ′(x)=(x−1)(e x −x−1)x 2,令φ(x)=e x −x −1,(x >0), 则φ′(x)=e x −1>0,x ∈(0, +∞)时,φ(x)单调递增,φ(x)>φ(0)=0, x ∈(0, 1)时,ℎ′(x)<0,所以ℎ(x)单调递减, x ∈(1, +∞)时,ℎ′(x)>0,所以ℎ(x)单调递增, 故ℎ(x)min =ℎ(1)=e −1, 故a ∈(−∞, e −1]. 【考点】利用导数研究不等式恒成立问题 利用导数研究函数的单调性 【解析】(1)求出函数的导数,求出函数的单调区间,得到函数的最小值,从而证明结论;(2)问题转化为a≤e xx −x−1x+1,令ℎ(x)=e xx−x−1x+1(x>0),根据函数的单调性求出ℎ(x)的最小值,从而求出a的范围.【解答】(1)证明:f′(x)=e x−2x−a,令g(x)=e x−2x−a,则g′(x)=e x−2,则当x∈(−∞, ln2)时,g′(x)<0,x∈(ln2, +∞)时,g′(x)>0,故函数g(x)在x=ln2时取最小值g(ln2)=2−2ln2−a,当a≤2−2ln2时,g(x)≥0.故f′(x)≥0,即函数f(x)在R上单调递增;(2)解:当x>0时,e x−x2−ax≥1−x,即a≤e xx −x−1x+1,令ℎ(x)=e xx −x−1x+1(x>0),则ℎ′(x)=(x−1)(e x−x−1)x2,令φ(x)=e x−x−1,(x>0),则φ′(x)=e x−1>0,x∈(0, +∞)时,φ(x)单调递增,φ(x)>φ(0)=0,x∈(0, 1)时,ℎ′(x)<0,所以ℎ(x)单调递减,x∈(1, +∞)时,ℎ′(x)>0,所以ℎ(x)单调递增,故ℎ(x)min=ℎ(1)=e−1,故a∈(−∞, e−1].(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]【答案】解:(1)∵圆C1的普通方程为x2+y2−4x−8y=0,把x=ρcosθ,y=ρsinθ代入方程得ρ2−4ρcosθ−8ρsinθ=0,故C1的极坐标方程是ρ=4cosθ+8sinθ,C2的平面直角坐标系方程是y=√3x;(2)分别将θ=π3,θ=π6代入ρ=4cosθ+8sinθ,得ρ1=2+4√3,ρ2=4+2√3,S△OMN=12×(2+4√3)×(4+2√3)×sin(π3−π6)=8+5√3.【考点】直线的极坐标方程圆的极坐标方程极坐标刻画点的位置【解析】此题暂无解析【解答】解:(1)∵ 圆C 1的普通方程为x 2+y 2−4x −8y =0,把x =ρcosθ,y =ρsinθ代入方程得ρ2−4ρcosθ−8ρsinθ=0, 故C 1的极坐标方程是ρ=4cosθ+8sinθ, C 2的平面直角坐标系方程是y =√3x ;(2)分别将θ=π3,θ=π6代入ρ=4cosθ+8sinθ, 得ρ1=2+4√3,ρ2=4+2√3,S △OMN =12×(2+4√3)×(4+2√3)×sin(π3−π6)=8+5√3.[选修4-5:不等式选讲] 【答案】g(x)=|4x −1|−|x +2|.g(x)={−3x +3,x ≤2−5x −1,2<x <14−3x −3,x ≥14,不等式g(x)<6,x ≤−2时,4x −1−x −2<6,解得:x >−1,不等式无解; −2<x <14时,1−4x −x −2<6,解得:−75<x <14,x ≥14时,4x −1−x −2<6,解得:3>x ≥14, 综上,不等式的解集是(−75, 3);因为存在x 1∈R ,存在x 2∈R ,使得f(x 1)=−g(x 2)成立,所以{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,又f(x)=3|x −a|+|3x +1|≥|(3x −3a)−(3x +1)|=|3a +1|, 故g(x)的最小值是−94,可知−g(x)max =94,所以|3a +1|≤94,解得−1312≤a ≤512, 所以实数a 的取值范围为[−1312, 512]. 【考点】函数与方程的综合运用绝对值不等式的解法与证明 绝对值三角不等式 【解析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题转化为{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,求出f(x)的最小值和g(x)的最小值,得到关于a 的不等式,解出即可. 【解答】g(x)=|4x −1|−|x +2|.g(x)={−3x +3,x ≤2−5x −1,2<x <14−3x −3,x ≥14 ,不等式g(x)<6,x≤−2时,4x−1−x−2<6,解得:x>−1,不等式无解;−2<x<14时,1−4x−x−2<6,解得:−75<x<14,x≥14时,4x−1−x−2<6,解得:3>x≥14,综上,不等式的解集是(−75, 3);因为存在x1∈R,存在x2∈R,使得f(x1)=−g(x2)成立,所以{y|y=f(x), x∈R}∩{y|y=−g(x), x∈R}≠⌀,又f(x)=3|x−a|+|3x+1|≥|(3x−3a)−(3x+1)|=|3a+1|,故g(x)的最小值是−94,可知−g(x)max=94,所以|3a+1|≤94,解得−1312≤a≤512,所以实数a的取值范围为[−1312, 512].。
2018年广东省高考一模数学试卷(文科)【解析版】
2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足(1+i)z=1,则复数z的虚部为()A.B.C.D.2.(5分)已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0,+∞)B.(0,1)C.(﹣1,+∞)D.(﹣1,0)3.(5分)“常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.5.(5分)已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F 到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2B.C.D.26.(5分)等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log3247.(5分)如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π8.(5分)已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称9.(5分)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>10010.(5分)已知函数在其定义域上单调递减,则函数f(x)的图象可能是()A.B.C.D.11.(5分)已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.12.(5分)设函数,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知单位向量,的夹角为30°,则|﹣|=.14.(5分)设x,y满足约束条件,则z=x+y的最大值为.15.(5分)已知数列{a n}的前n项和为S n,且,则a5=.16.(5分)如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD 的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH 分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)证明:;(2)若,求△ABC的面积.18.(12分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,且BC =2AD =4,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE ⊥CF ,得到如下的立体图形.(1)证明:平面AEFD ⊥平面EBCF ;(2)若BD ⊥EC ,求点F 到平面ABCD 的距离.20.(12分)已知椭圆的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.21.(12分)已知函数f(x)=e x﹣x2﹣ax.(1)证明:当a≤2﹣2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1﹣x恒成立,求实数a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.2018年广东省高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足(1+i)z=1,则复数z的虚部为()A.B.C.D.【解答】解:由(1+i)z=1,得,则复数z的虚部为.故选:D.2.(5分)已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0,+∞)B.(0,1)C.(﹣1,+∞)D.(﹣1,0)【解答】解:∵集合A={x|x>0},B={x|x2<1}={x|﹣1<x<1},∴A∪B={x|x>﹣1}=(﹣1,+∞).故选:C.3.(5分)“常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵m是两个正数2和8的等比中项,∴m=±=±4.故m=±4是m=4的必要不充分条件,故选:B.4.(5分)如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.【解答】解:由题意此点取自黑色部分的概率是:P==,故选:A.5.(5分)已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F 到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2B.C.D.2【解答】解:根据题意,F是双曲线C:﹣=1(a>0,b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c==a,则双曲线C的离心率e==,故选:C.6.(5分)等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log324【解答】解:∵等差数列log3(2x),log3(3x),log3(4x+2),…,∴log3(2x)+log3(4x+2)=2log3(3x),∴x(x﹣4)=0,又2x>0,∴x=4,∴等差数列的前三项分别是log38,log312,log318,d=log312﹣log38=,∴第四项为=log327=3.故选:A.7.(5分)如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π【解答】解:由题意,该几何体是长方体截去两个半圆柱,∴表面积为:4×6×2+2(4×6﹣4π)+2×2π×4=96+8π,故选:B.8.(5分)已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称【解答】解:把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+)=cos2x,得到的曲线关于y轴对称,故A错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin(2x﹣)=﹣cos2x,得到的曲线关于y轴对称,故B正确;把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+),取x=0,得y=,得到的曲线既不关于原点对称也不关于y轴对称,故C错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin (2x﹣),取x=0,得y=﹣,得到的曲线既不关于原点对称也不关于y轴对称,故D 错误.∴正确的结论是B.故选:B.9.(5分)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>100【解答】解:n=1,s=0,n=2,s=2,n=3,s=4,…,n=99,s=,n=100,s=,n=101>100,结束循环,故选:D.10.(5分)已知函数在其定义域上单调递减,则函数f(x)的图象可能是()A.B.C.D.【解答】解:函数在其定义域R上单调递减,可得[]′=≤0,但不恒等于0,即f(x)≥f′(x)恒成立,对于A,f(x)>0恒成立,且f′(x)≤0,则f(x)≥f′(x)恒成立;对于B,由f(x)与x轴的交点设为(m,0),(m>0),可得f(m)=0,f′(m)>0,f(x)≥f′(x)不成立;对于C,可令f(x)=t(t<0),f′(x)=0,f(x)≥f′(x)不成立;对于D,f(x)在x>0时的极小值点设为n,则f(n)<0,f′(n)=0,f(x)≥f′(x)不成立.则A可能成立,故选:A.11.(5分)已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.【解答】解:设切线MA的方程为x=ty+m,代入抛物线方程得y2﹣ty﹣m=0,由直线与抛物线相切可得△=t2+4m=0,则A(,),B(,﹣),将点A的坐标代入x=ty+m,得m=﹣,∴M(﹣,0),∴=(,)•(,﹣)=﹣=(t2﹣)2﹣,则当t2=,即t=±时,的最小值为﹣故选:C.12.(5分)设函数,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)【解答】解:互不相等的实数a,b,c满足f(a)=f(b)=f(c),可得a∈(﹣∞,﹣1),b∈(﹣1,0),c∈(4,5),对应的函数值接近1时,函数趋向最小值:1+1+24=18,当函数值趋向0时,表达式趋向最大值:1+1+25=34.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知单位向量,的夹角为30°,则|﹣|=1.【解答】解:单位向量的夹角为30°;∴,;∴=;∴.故答案为:1.14.(5分)设x,y满足约束条件,则z=x+y的最大值为2.【解答】解:x,y满足约束条件的可行域如图,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(4,﹣2),所以z=x+y的最大值为:2.故答案为:2.15.(5分)已知数列{a n}的前n项和为S n,且,则a5=14.【解答】解:a5=S5﹣S4=﹣=14,故答案为:14.16.(5分)如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD 的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH 分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.【解答】解:连接OE交AB与I,E,F,G,H重合为P,得到一个正四棱锥,设正方形ABCD的边长为x.则OI=,IE=6﹣.由四棱锥的侧面积是底面积的2倍,可得,解得:x=4.设外接球的球心为Q,半径为R,可得OC=,OP=,.∴.该四棱锥的外接球的体积V=.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)证明:;(2)若,求△ABC的面积.【解答】证明:(1)在△ABC中,角A,B,C所对的边分别为a,b,c,,则:,整理得:,由于:b2+c2﹣a2=2bc cos A,则:2bc cos A=,即:a=2cos A.解:(2)由于:A =,所以:.由正弦定理得:,解得:b=1.C =,所以:.18.(12分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.【解答】解:(1)根据题意,由频率分布表分析可得:则K2=≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;(2)根据题意,设步行数在3001~6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1,2,a),(1,2,b),(1,2,c),(1,a,b),(1,a,c),(1,b,c),(2,a,b),(2,a,c),(2,b,c),(a,b,c);共10种情况,其中男性人数超过女性人数的情况有:(1,2,a),(1,2,b),(1,2,c),共3种,则选中的人中男性人数超过女性人数的概率P=.19.(12分)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求点F到平面ABCD的距离.【解答】证明:(1)∵在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD =4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF∥AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.解:(2)如图,过点D作DG∥AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴,∴EB===2,设点F到平面ABCD的距离为h,∵V F﹣ABC =V A﹣BCF,∴S△ABC•h=S△BCF•AE,AB=4,=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵=4,AE=EB=2,∴h==2,∴点F到平面ABCD的距离为2.20.(12分)已知椭圆的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.【解答】解:(1)由题意可得,解得a=2,b=1,c=,故椭圆C的方程为+y2=1,证明:(2):设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx+t(t≠0).联立,化为(1+4k2)x2+8ktx+4t2﹣4=0.△=64k2t2﹣4(4t2﹣4)(1+4k2)>0,化为1+4k2>t2.∴x1+x2=﹣,x1x2=,∴y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2,∵直线OP,l,OQ的斜率成等比数列,∴•=k2,即k2x1x2+kt(x1+x2)+t2=kx1x2,∴+t2=0,∵t≠0,∴4k2=1,结合图形可知k=﹣,∴直线l的斜率为定值为﹣.21.(12分)已知函数f(x)=e x﹣x2﹣ax.(1)证明:当a≤2﹣2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1﹣x恒成立,求实数a的取值范围.【解答】解:(1)证明:f′(x)=e x﹣2x﹣a,令g(x)=e x﹣2x﹣a,则g′(x)=e x﹣2,则x∈(﹣∞,ln2]时,g′(x)<0,x∈(ln2,+∞)时,g′(x)>0,故函数g(x)在x=ln2时取最小值g(ln2)=2﹣2ln2﹣a≥0,故f′(x)≥0,即函数f(x)在R递增;(2)当x>0时,e x﹣x2﹣ax≥1﹣x,即a≤﹣x﹣+1,令h(x)=﹣x﹣+1(x>0),则h′(x)=,令φ(x)=e x﹣x﹣1,(x>0),则φ′(x)=e x﹣1>0,x∈(0,+∞)时,φ(x)递增,φ(x)>φ(0)=0,x∈(0,1)时,h′(x)<0,h(x)递减,x∈(1,+∞)时,h′(x)>0,h(x)递增,故h(x)min=h(1)=e﹣1,故a∈(﹣∞,e﹣1].(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.【解答】解:(1)∵圆C1的普通方程为x2+y2﹣4x﹣8y=0,把x=ρcosθ,y=ρsinθ代入方程得ρ2﹣4ρcosθ﹣8ρsinθ=0,故C1的极坐标方程是ρ=4cosθ+8sinθ,C2的平面直角坐标系方程是y =x;(2)分别将θ=,θ=代入ρ=4cosθ+8sinθ,得ρ1=2+4,ρ2=4+2,则△OMN 的面积为×(2+4)×(4+2)×sin (﹣)=8+5.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.【解答】解:(1)g(x)=|4x﹣1|﹣|x+2|.g(x )=,不等式g(x)<6,x≤﹣2时,4x﹣1﹣x﹣2<6,解得:x>﹣1,不等式无解;﹣2<x <时,1﹣4x﹣x﹣2<6,解得:﹣<x <,x ≥时,4x﹣1﹣x﹣2<6,解得:3>x,综上,不等式的解集是(﹣,3);(2)因为存在x1∈R,存在x2∈R,使得f(x1)=﹣g(x2)成立,所以{y|y=f(x),x∈R}∩{y|y=﹣g(x),x∈R}≠∅,又f(x)=3|x﹣a|+|3x+1|≥|(3x﹣3a)﹣(3x+1)|=|3a+1|,故g(x )的最小值是﹣,可知﹣g(x)max =,所以|3a+1|≤,解得﹣≤a ≤,所以实数a的取值范围为[﹣,].第21页(共21页)。
(2018年广州一模文科-)有答案
2018年广州市普通高中毕业班综合测试(一)文科数学2018. 3本试卷共5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用 在答题卡的相应位置填涂考生号,并将试卷类型( A )填涂在答题卡相应位置上。
2 .作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答, 答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4 .考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12小题,每小题 是符合题目要求的.秘密★启用前试卷类型:A1•设复数 Z 满足zi = 1i2,则复数 Z 的共轭复数z AC . 2iD .2i2•设集合 A= 0,123,4,5,6 , B= x |x 2n,n A ,则 AI BA . 0,2,4B . 2,4,6C . 0,2,4,6 D . 0,2,4,6,8,10,12uu 3.已知向量OA uu u 2,2 , OB 5,3 uuu uuu,贝y OA AB C A . 10 D .4 .等差数列 an 的各项均不为零,其前n 项和为 S n ,an 1 an 2an ,则 Sn 1= A A . 4n 2 5.执行如图所示的程序框图, A. 2 20 4n 则输出的 4 9 C . S C .2n 1 D .D .2n9 406.在四面体ABCD 中,E , F 分别为 AD ,BC 的中点, AB=CD ,ABA CD ,则异面直线EF 与AB 所成角的大小为 号, 2B 铅笔 5分,共60分.在每小题给出的四个选项中,只有一项xC . 3D .7107. 已知某个函数的部分图象如图所示,则这个函数的解析式可能是xinB . y xlnx8. 9. C . y in x in x D . y —2 x 椭圆—— 9 1上一动点P 到定点M1,0的距离的最小值为4^5B.—5C . 1 如图,网格纸上小正方形的边长为 1,粗线画出的是某个几何体的三视图, 则该几何体的表 面积为A A . 10 4J 22晶B .C . 4 4迈2^3 D . 已知函数f x sin x —60在区间BA . 0,83 B -,2C .a ; 10. 丄82'311 •已知数列 a n 满足31 2 , 2a n a n 1A .常数列B •摆动数列12.如图,在梯形 ABCD 中,已知|A B上单调递增,则 的取值范围为1,设bnOHC .递增数列D - 8'2,则数列b n 是DD •递减数列uuu 2 uuu 2CD , AE= —AC ,双曲线 5 过C , D , E 三点,且以 A , B 为焦点,则双曲线的离心率为 A二、填空题:本题共 4小题,每小题5分,共20分.13.已知某区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动的意向,拟采用分层抽样的方法来进行调查•若高中需抽取 20名学生,则小学与初中共需抽取的学生人数为85 名.15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在 三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为 第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成解答应写出文字说明、证明过程或演算步骤.第 17〜21题为必考题, 22、23题为选考题,考生根据要求做答.(一)必考题:共 60分. 17.(本小题满分12 分)△ ABC 的内角A , B , C 的对边分别为a , b , c ,已知a , c b 1 , △ ABC的外接圆半径为.(1) 求角A 的值; (2) 求^ ABC 的面积.2x 14 .若x ,y 满足约束条件xy y 3<0,1^0,则z x y 的最小值为_01> 0,1,从1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第 n 行S 3St 4 ,……,则S3232f)'&(]■ 10 (J图②16.已知函数fx 1~,x In x 2,x >1,g x1,2x 4 .设b 为实数,若存在实数a ,使得f a1成立, 则b 的取值范围为3 7 2'270分.三、解答题:共 每个试题考生都必须做答.第 各数字的和为S n ,如S 1 1, S 22T :图①+附:回归方程$ $ $x 中的斜率和截距的最小二乘估计公式分别为:八i x ii 1 Jx y i y x 19.(本小题满分12 分)如图,四棱锥 P ABCD 中,底面ABCD 为矩形,点AE PE ;(2)若^ PAD 是等边三角形, AB 2AD ,(1)求证:平面PAD 平面ABCD ,四棱锥P ABCD 的18.(本小题满分12分)(岁)与身高的中位数 y cm i某地1~10岁男童年龄X i 1,2,L ,10如下表:140 130 120110 100的£0 70O 12 xy10 2 i1x i x10 2 .4 M yi 110.4 Xj X yi y i 15.5 112.45 82.503947.71566.85(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01 );(2) 某同学认为,y px 2方程是y 0.30x 210.17x68.07 •经调查,该地11岁男童身高的中位数为(1 )中的线性回归方程比较,哪个回归方程的拟合效果更好?x (岁) 1 2 3 4 5678910y cm76.588.596.8104.1 111.3 117.7 124.0 130.0 135.4 140.2对上表的数据作初步处理,得到下面的散点图及一些统计量的值.y (cm) qx r 更适宜作为y 关于x 的回归方程类型,他求得的回归145.3cm .与体积为9j 3,求点E 到平面PCD 的距离.20 •(本小题满分12 分)已知两个定点M 1,0和N 2,0,动点P 满足PN J 2 PM • (1)求动点P 的轨迹C 的方程;(2)若A , B 为(1)中轨迹C 上两个不同的点, 0为坐标原点.设直线OA , OB , AB21 •(本小题满分12分)已知函数f(x) e xax(2)若X [a,)时,f(x)>0恒成立,求a 的取值范围.(二)选考题:共10分•请考生在第22、23题中任选一题作答•如果多做,则按所做的第一题计分.已知函数f (X) 2 X a 3x b •(1)当a 1, b 0时,求不等式f X >3 X 1的解集;(2)若a 0 , b 0 ,且函数f X 的最小值为2,求3a b 的值.的斜率分别为k 1 , k 2, k •当k i k 2 3时,求k 的取值范围.(1)若f(X)的极值为e1,求a 的值;22.(本小题满分10分)选修4 — 4 :坐标系与参数方程已知过点PXm,0的直线l 的参数方程是m 退,(t 为参数),以平面直角坐标系的原点为极点,X 轴的正半轴为极轴,建立极坐标系, C 的极坐标方程为 2cos •(1)求直线 l 的普通方程和曲线 C 的直角坐标方程; (2)若直线l 和曲线C 交于A , B 两点,且P A |PB 2,求实数m 的值.23 •(本小题满分 10分)选修4 — 5 :不等式选讲。
2018年广州市普通高中毕业班综合测试(一)文科试题及答案
2018届广州市普通高中毕业班综合测试(一)数学(文科)本试卷共5页,23小题.满分考试用时120分钟*注意事项:1.答卷前,着生务必将自己的姓名和考生号、试室号、殛位号填写在答题卡上,用2B 笔在答題卡的相应位置壞涂考生号,并将试基类型(A〉填涂在答题卡相应位置上。
2.作答选挣题时’选出每小题答案后,用铅笔在答题卡上对应题目选项的寥案信息点涂黑]如需改动,用祿皮擦干净后,再逸潦算他答案。
答案不能答在试卷上。
3.非逸择题必须用黑莒字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位査上;如需改动*先划掉原来的答案,然后再写上新尊案;不准使用勰笔和漆改液円不按以上要求作答无效口4.考生蛊须僅证答题卡的整洁纽考试结朿后’将试卷和答题卡一并丸回。
一、选择题:本题共12小题,每小题5分,共测分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.设复数乞満足刃= (1-i)S则复数E的共规复数云二仏-2 B. 2 C.-2i D. 2i2.设集合川二{0丄2,3,4,5,6] + B={*=2耳』w/},则/D/ =A. {0,2,4}B. {2,4,6}C. {0,2,4,6}D. {0,2,4,6,8.10,12)3.己知向量03-(2?2)t OB =(5,3),则网—丽卜A” 10B, TlO C 血D, 24.等差数列{陽}的各项均不为零.其前用项和为若a n+l ~ a tt+2 + a n * 则$亦1=A. 4社+ 2 B* 4丹 C. 2n+ ) D. 2/15.执行如图所示的程序框图,则输出的S二□42 9A, — B. - C- - D.—-20 9 9 40J在四面体A BCD中,E, F分别为AD 的中点,AB二CD *HR丄CD,则异面直线EF与/百所成角的大小为A. - B, - C. - D.-6 4 3 21L 己知数列{%}满足“严2, 2^+|=^ + 1,设瓦=纟匚二则数列{*}是暫+ 1如图,在梯形ABCD 中,已^\AB\^2\CD\t AE^-AC,双曲线过C, D, £三点,且以",0为焦点,则双曲线的离心率为A+ 41 B. 2^2D. J1O7.已划某个函数的部分图象如图所示,则这个函数的解析式可能是B + y = xlnx-x4-l D. y- lux 4-x-lx8.椭圆y + ^=l± 一动点P 到定点A/(1,O )的距离的議小值为D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为A. 10 + 4V2 + 2V3 C. 44-4V2+2V3吐14 + 4运D, 4A.A.常数列B.摆动数列C.递增数列D.递减数列12. C. 310.己知函数f(x) =上单调递增,则血的取值范围为「I『侧:本题共4小题,每小题5分,共2U分.匚L⑷咯IQI」小学学生人数如图所示.为了解该区学生参加某项社会实践活动的盘I;施拥采用分层抽样的方法来进行调查.若高中需抽取20名学生,聊小学9初中共需抽取的学生人数为_______ 名.2工-y + 3W0,4.y满足约束条件JY-IW0,则2二-x + y的绘小值为_______y-GO,I"15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在汀"形中的一种几何排列,俗称“杨辉三角形”’该数表的规律是每行首尾数字均为1,从①三行开始,其余的数字是它“上方”左右两个数字之和.现将畅辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第川行各数字的和为如^=1,绩=2, E=2, 54=4f……,则S垃二________________________________________ .I II 0 I1 J i I10 0 0 1110 0】10 10 10图②图①g(x) = x'-2兀一4.设0为实数,若存在实数a,hi(x + 2), x^-L使得/何+号何=1成立”则b的取值范围为____________乙解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须做答+第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(本小题满分12分)△ ABC的内角, C1的对边分别为口,b , c,已知口二历,c-b = \ , £\ABC 的外接圆半径为J7-(1)求角虫的值:(2)求的面积.U,(本小题满分]2分)某地!TO岁男童年龄%(岁)与身高的中位数兀(cm)卩匸1,2*…,10)如下表:JC (岁)i2456 f 78-------,101 y (cm)76.588396,8io4a111.3117.7124,0150.0135.4140 2对上表的数据作初步处理,得到下面的散点图及~些统计量的值.4 y(cm)140130120H01009080,70j r 工f2 3 4 5 6 7r y如)25.5 |112曲82.503947.71566.85(O求y关于x的线性回归方程(回归方程系数精确到o.oi):(2)某同学认为,y^px2+qx + r更适宜作为p关于工的回归方程类型,他求得的回归方程是7 = -0、30# + 10」4 + 6&0匸经调查,该地11岁男重身高的中位数145.3cm.与(I)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y = a^rbx中的斜率和截距的最小二乘估计公式分别为:19.(本小题满分门分)如图,四棱锥尸-/1BCD中,底面ABCD为矩形,(J)求证:AE=PE;(2》若是等边三角形,AB^2AD. 平面只4D丄平面彳BCD,四棱锥P-4BCD的体积为gJL求点F到平面0CD的距裔.20.(本小题满分12分)已知两个定点A/(L0)和N(2,0),动点P满足\PN\ = ^2\PM\rU)求动点P的轨迹C的方程;(2)若B为(1)中轨迹C上两个不同的点.O为坐标原点+设直线0/1, OB, AB 的斜率分别为耐,k2t k,当k.k2=3时,求jt的取值范围.2L (本小题满分12分)已知函数/*(X)= e r - ax + a -1.(1)若fO)的极值为e —1,求。
2018年广东省广州市一测数学试题文科数学试题
秘密★启用前 试卷类型: A2018年广州市普通高中毕业班综合测试(一)文科数学2018.3本试卷共5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(A)填涂在答题卡相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足()2i =1i z -,则复数z 的共轭复数z =A.2-B.2C.2i -D.2i2.设集合{}=0,1,2,3,4,5,6A ,{}=2,B x x n n A =∈,则A B =IA.{}0,2,4B.{}2,4,6C.{}0,2,4,6D.{}0,2,4,6,8,10,123.已知向量()2,2OA =uu r ,()5,3OB =uu u r ,则OA AB =-uuu r uuu rA.10D.24.等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S + A.42n +B.4nC.21n +D.2n5.执行如图所示的程序框图,则输出的S =A.920B.49C.29D.9406.在四面体ABCD 中,E F ,分别为AD BC ,的中点,AB CD =, A B C D^,则异面直线EF 与AB 所成角的大小为 A.π6 B.π4 C.π3 D.π27.已知某个函数的部分图象如图所示,则这个函数的解析式可能是A.ln y x x =B.ln 1y x x x =-+C.1ln 1y x x =+-D.ln 1xy x x=-+- 8.椭圆22194x y +=上一动点P 到定点()1,0M 的距离的最小值为A.2C.19.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为A.10+B.14+C.4+D.410.已知函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为 A.80,3⎛⎤ ⎥⎝⎦B.10,2⎛⎤ ⎥⎝⎦C.18,23⎡⎤⎢⎥⎣⎦D.3,28⎡⎤⎢⎥⎣⎦11.已知数列{}n a 满足12a =,2121n n n a a a +=+,设11n n n a b a -=+,则数列{}n b 是 A.常数列B.摆动数列C.递增数列D.递减数列12.如图,在梯形ABCD 中,已知2AB CD =,2=5AE AC uu u r uuu r,双曲线过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为B.C.3D C ABE图②图① 二、填空题:本题共4小题,每小题5分,共20分.13.已知某区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动的意向,拟采用分层抽样的方法来进行调查.若高中需抽取20名学生, 则小学与初中共需抽取的学生人数为 名.14.若x ,y 满足约束条件230,10,10x y x y -+--⎧⎪⎨⎪⎩≤≤≥,则z x y =-+的最小值为 .15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如11S =,22S =,32S =,44S =,……,则32S = .16.已知函数()()21,1,ln 2,1x x xf x x x +⎧<-⎪=⎨⎪+-⎩≥,()224g x x x =--.设b 为实数,若存在实数a ,使得()()1f a g b +=成立,则b 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知21=a,1=-b c ,△ABC 的外(1)求角A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表:对上表的数据作初步处理,得到下面的散点图及一些统计量的值.(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01);(2)某同学认为,2y px qx r =++更适宜作为y 关于x 的回归方程类型,他求得的回归方程是20.3010.1768.07y x x=-++.经调查,该地11岁男童身高的中位数为145.3cm .与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y a bx =+$$$中的斜率和截距的最小二乘估计公式分别为: ,a y bx =-$$.19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,点E 在线段PA 上,PC P 平面BDE . (1)求证:AE PE =;(2)若△PAD 是等边三角形,2AB AD =, 平面PAD ⊥平面ABCD ,四棱锥P ABCD -的 体积为求点E 到平面PCD 的距离.()()()121nx x y yi i i b n x x i i =--∑=-∑=$20.(本小题满分12分)已知两个定点()1,0M 和()2,0N ,动点P满足PN =.(1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为1k ,2k ,k .当123k k =时,求k 的取值范围. 21.(本小题满分12分)已知函数()e 1x f x ax a =-+-. (1)若()f x 的极值为e 1-,求a 的值;(2)若),[+∞∈a x 时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知过点(),0P m 的直线l的参数方程是,1,2x m y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()f x =23x a x b ++-.(1)当1a =,0b =时,求不等式()31f x x +≥的解集; (2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.。
广州一模文科数学试题
2018年广州市普通高中毕业班综合测试(一)文科数学2018.3一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足()2i =1i z -,则复数z 的共轭复数z =A .2-B .2C .2i -D .2i2.设集合{}=0,1,2,3,4,5,6A ,{}=2,B x x n n A =∈,则A B =IA .{}0,2,4B .{}2,4,6C .{}0,2,4,6D .{}0,2,4,6,8,10,123.已知向量()2,2OA =uu r ,()5,3OB =uu u r ,则OA AB =-uuu r uuu rA .10B .10C .2D .24.等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S +A .42n +B .4nC .21n +D .2n5.执行如图所示的程序框图,则输出的S =A .920B .49C .29D .9406.在四面体ABCD 中,E F ,分别为AD BC ,的中点,AB CD =, AB CD ^,则异面直线EF 与AB 所成角的大小为A .π6B .π4C .π3D .π27.已知某个函数的部分图象如图所示,则这个函数的解析式可能是A .ln y x x=B .ln 1y x x x =-+C .1ln 1y x x =+-D .ln 1xy x x=-+- 8.椭圆22194x y +=上一动点P 到定点()1,0M 的距离的最小值为是 否开始结束输出S19?n ≥2,0n S ==2n n =+()1+2S S n n =+A.2B.455C.1D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为A.104223++B.1442+C.44223++D.410.已知函数()sin6f x xωπ⎛⎫=+⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为A.80,3⎛⎤⎥⎝⎦B.10,2⎛⎤⎥⎝⎦C.18,23⎡⎤⎢⎥⎣⎦D.3,28⎡⎤⎢⎥⎣⎦11.已知数列{}n a满足12a=,2121n n na a a+=+,设11nnnaba-=+,则数列{}n b是A.常数列B.摆动数列C.递增数列D.递减数列12.如图,在梯形ABCD中,已知2AB CD=,2=5AE ACuu u r uuu r,双曲线过C,D,E三点,且以A,B 为焦点,则双曲线的离心率为A.7B.22C.3D.10二、填空题:本题共4小题,每小题5分,共20分.13.已知某区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动的意向,拟采用分层抽样14.若x,y满足约束条件230,10,10x yxy-+--⎧⎪⎨⎪⎩≤≤≥,则z x y=-+的最小值为.15.我国南宋数学家杨辉所着的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为n S,如11S=,22S=,32S=,44S=,……,则32S=.16.已知函数()()21,1,ln2,1xxxf xx x+⎧<-⎪=⎨⎪+-⎩≥,()224g x x x=--.设b为实数,若存在实数a,使得()()1f ag b+=成立,则b的取值范围为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知21=a,1=-bc,△ABC的外接圆7.(1)求角A的值;(2)求△ABC的面积.18.(本小题满分12分)某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表:x (岁)12 3 4 5 6 7 8 9 10 y()cm对上表的数据作初步处理,得到下面的散点图及一些统计量的值.x y()1021x x i i ∑-= ()1021y y i i ∑-= ()()101x x y y ii i ∑--=(1)求y 关于x 的线性回归方程(回归方程系数精确到); (2)某同学认为,2y px qx r =++更适宜作为y 关于x 的回归方程类型,他求得的回归方程是20.3010.1768.07y x x =-++.经调查,该地11岁男童身高的中位数为145.3cm .与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y a bx =+$$$中的斜率和截距的最小二乘估计公式分别为: ,a y bx =-$$.19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,点E 在线段PA 上,PC P 平面BDE . (1)求证:AE PE =;(2)若△PAD 是等边三角形,2AB AD =,平面PAD ⊥平面ABCD ,四棱锥P ABCD -的 体积为93,求点E 到平面PCD 的距离.()()()121nx x y yi i i b n x x i i =--∑=-∑=$20.(本小题满分12分)已知两个定点()1,0M 和()2,0N ,动点P满足PN =.(1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为1k ,2k ,k .当123k k =时,求k 的取值范围.21.(本小题满分12分)已知函数()e 1x f x ax a =-+-. (1)若()f x 的极值为e 1-,求a 的值;(2)若),[+∞∈a x 时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知过点(),0P m 的直线l的参数方程是,21,2x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()f x =23x a x b ++-.(1)当1a =,0b =时,求不等式()31f x x +≥的解集;(2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.数学文答案1-5:ACCAD6-10:BDBAB11-12:DA13、8514、015、3216、[-32,72]17、18、19、20、21、22、23、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秘密★启用前 试卷类型: A
2018年广州市普通高中毕业班综合测试(一)
文科数学
2018.3
本试卷共5页,23小题,满分150分。
考试用时120分钟。
注意事项:
1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(A )填涂在答题卡相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项
是符合题目要求的. 1.设复数z 满足()2
i =1i z -,则复数z 的共轭复数z =
A .2-
B .2
C .2i -
D .2i
2.设集合{}=0,1,2,3,4,5,6A ,{}=2,B x x n n A =∈,则A B =I
A .{}
0,2,4
B .{}
2,4,6
C .{}
0,2,4,6
D .{}0,2,4,6,8,10,12
3.已知向量()2,2OA =uu r ,()5,3OB =uu u r ,则OA AB =-uuu r uuu r
A .10
B
C
D .2
4.等差数列{}n a 的各项均不为零,其前n 项和为n S ,若
212n n n a
a a ++=+,则21=n S +
A .42n +
B .4n
C .21n +
D .2n
5.执行如图所示的程序框图,则输出的S =
A .920
B .4
9 C .
29
D .
9
40
6.在四面体ABCD 中,E F ,分别为AD BC ,的中点,AB CD =, AB CD ^,则异面直线EF 与AB 所成角的大小为
A .π6
B .π4
C .π3
D .
π
2
7.已知某个函数的部分图象如图所示,则这个函数的解析式可能是
A .ln y x x =
B .ln 1y x x x =-+
C .1ln 1y x x =+
-
D .ln 1x
y x x
=-
+- 8.椭圆22
194
x y +=上一动点P 到定点()1,0M 的距离的最小值为
A .2
B .
45
5
C .1
D .
25
5
9.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为 A .104223++ B .1442+ C .44
223++
D .4
10.已知函数()sin 6f x x ωπ⎛⎫=+
⎪⎝
⎭()0ω>在区间43π2π⎡⎤
-⎢⎥⎣⎦,上单调递增,则ω的取值范围为 A .80,3
⎛⎤
⎥
⎝
⎦
B .10,2
⎛
⎤
⎥
⎝⎦
C .18,23
⎡⎤⎢⎥
⎣⎦
D .3,28
⎡⎤⎢⎥⎣⎦
11.已知数列{}n a 满足12a =,2
121n n n
a a a +=+,设1
1
n n n a b a -=
+,则数列{}n b 是 A .常数列
B .摆动数列
C .递增数列
D .递减数列
12.如图,在梯形ABCD 中,已知2AB CD =,2=5
AE AC uu u r uuu r
,双曲线
过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为
A .7
B .22
C .3
D .10
D
C A
B
E
图②
图①
二、填空题:本题共4小题,每小题5分,共20
分.
13.已知某区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动
的意向,拟采用分层抽样的方法来进行调查.若高中需抽取20名学生, 则小学与初中共需抽取的学生人数为 名.
14.若x ,y 满足约束条件230,10,10x y x y -+--⎧⎪
⎨⎪⎩≤≤≥,
则z x y =-+的最小值为 .
15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在
三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成
1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行
各数字的和为n S ,如11S =,22S =,32S =,44S =,……,则32S = .
16.已知函数()()21
,
1,ln 2,1x x x
f x x x +⎧<-⎪=⎨⎪+-⎩
≥,()224g x x x =--.设b 为实数,若存在实数a ,使得
()()1f a g b +=成立,则b 的取值范围为 .
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,
每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17.(本小题满分12分)
△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知21=a ,1=-b c ,△ABC
的外接圆半径为7. (1)求角A 的值; (2)求△ABC 的面积.
18.(本小题满分12分)
某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表:
x (岁)
1 2 3 4 5 6
7 8 9 10 y ()cm
76.5
88.5
96.8
104.1
111.3
117.7
124.0
130.0
135.4
140.2
对上表的数据作初步处理,得到下面的散点图及一些统计量的值.
x
y
()1021x x i i ∑-= ()
1021
y y i i ∑-= (
)()10
1x x y y i
i i ∑--=
5.5 112.45 82.50 3947.71 56
6.85
(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01);
(2)某同学认为,2y px qx r =++更适宜作为y 关于x 的回归方程类型,他求得的回归方程是20.3010.1768.07y x x =-++.经调查,该地11岁男童身高的中位数为145.3cm .与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?
附:回归方程y a bx =+$$$中的斜率和截距的最小二乘估计公式分别为: ,a y bx =-$$.
19.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 为矩形,点E 在线段PA 上,PC P 平面BDE . (1)求证:AE PE =;
(2)若△PAD 是等边三角形,2AB AD =, 平面PAD ⊥平面ABCD ,四棱锥P ABCD -的 体积为93,求点E 到平面PCD 的距离.
P A
B
C
D
E
()()
()
121
n
x x y y
i i i b n x x i i =
--∑=-∑=$
20.(本小题满分12分)
已知两个定点()1,0M 和()2,0N ,动点P
满足PN =. (1)求动点P 的轨迹C 的方程;
(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为1k ,2k ,k .当123k k =时,求k 的取值范围. 21.(本小题满分12分)
已知函数()e 1x
f x ax a =-+-.
(1)若()f x 的极值为e 1-,求a 的值;
(2)若),[+∞∈a x 时,()0f x ≥恒成立,求a 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程
已知过点(),0P m 的直线l
的参数方程是,21,2
x m y t ⎧=+⎪⎪⎨
⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρ
θ=.
(1)求直线l 的普通方程和曲线C 的直角坐标方程;
(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.
23.(本小题满分10分)选修4-5:不等式选讲
已知函数
()f x =23x a x b ++-.
(1)当1a =,0b =时,求不等式()31f x x +≥的解集;
(2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.。