沪科版九年级上册数学全册教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学期:2012至2013学年度第一学期学科:初中数学
年级:九年级(上册)
授课班级:九(2)
授课教师:
2013年9月
曹店中学电子教案模板
曹店中学电子教案模板
第单元.第课时.总第课课
题
22.2 二次函数y=ax2的图象和性质
教学目标1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯
重点难点
重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教法教具问题探究法直尺
课时
安排
一课时
课前准备
复习上节课的内容并预习二次函数的画法,同一次函数的相关内容相联系
教学过程一、提出问题
1,同学们可以回想一下,一次函数的性质是如何研究的?
(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)
2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?
(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)
3.一次函数的图象是什么?二次函数的图象是什么?
二、范例
例1、画二次函数y=ax2的图象。
解:(1)列表:在x的取值范围内列出
函数对应值表:
x …-3 -2 -1 0 1 2 3 …
y …9 4 1 0 1 4 9 …
(2)在直角坐标系中描点:用表里各组对
应值作为点的坐标,在平面直角坐标系中描点
(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?
让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.
三、做一做
1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?
2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?
3.将所画的四个函数的图象作比较,你又能发现什么?
对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
对于2,教师要继续巡视,指导学生画函数图象,两个函数的图象的特点;教师可引导学生类比1得出。
对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,
0).
四、归纳、概括
函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:
函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标是______。
如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?
让学生观察y=x2、y=2x2的图象,填空;
当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
图象的这些特点反映了函数的什么性
质?
先让学生观察下图,回答以下问题;
(1)X
A 、X
B
大小关系如何?是否都小于
0?
(2)y
A 、y
B
大小关系如何?
(3)X
C 、X
D
大小关系如何?是否都大于0?
(4)y
C 、y
D
大小关系如何?
(X
A B ,且X A <0,X B <0;y A >y B ;X C D ,且X C >0,X D >0,y C D ) 曹店中学电子教案模板 曹店中学电子教案模板 曹店中学电子教案模板 曹店中学电子教案模板 曹店中学电子教案模板 第单元.第课时.总第课课 题 22.4二次函数与一元二次方程 第一课时 教学目标1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。 2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。 3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。 重点难点1、体会方程与函数之间的联系. 2、理解何时方程有两个不等的实根,两个相等的实数和没有实根. 3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标. 教法教具情境引入法直尺 课 时 安 排 一课时 课 前 准 备 对一元二次方程有全面的认识和了解 教学过一、复习 1、一元二次方程-5x2+40x=0的根为:。 2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△ = 。 当△﹥0方程根的情况是:;当△=0时,方程;当△﹤0时,方程。 3、二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)图像是一条,它与x轴的交点有几种可能的情况? 二、创设问题情境,引入新课