2016-2017学年八年级上期末教学质量检测数学试题及答案
人教版数学八年级上学期《期末检测题》含答案
人教版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣36.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.337.化简的结果为()A.1B.x+1C.D.8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.99.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b210.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.311.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.14.若关于x的分式方程+=2m无解,则m的值为.15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.19.已知,求的值.20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?答案与解析一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定[解答]解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.[知识点]多边形内角与外角2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度[解答]解:∵在直角坐标系中A(﹣2,3)点的横坐标乘以﹣1,纵坐标不变,∴B点的横坐标变为原数的相反数,纵坐标不变,∴A与B的关系是关于y轴对称.故选:C.[知识点]坐标与图形变化-平移、关于x轴、y轴对称的点的坐标3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)[解答]解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.[知识点]因式分解的意义、因式分解-提公因式法4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c[解答]解:∵a=8131=3124,b=2741=3123,c=961=3122,∴a>b>c.故选:C.[知识点]有理数大小比较、幂的乘方与积的乘方5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣3[解答]解:∵y2﹣(k+1)y+1为完全平方式,∴﹣(k+1)=±2,∴k=1或﹣3,故选:D.[知识点]完全平方式6.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.33[解答]解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.[知识点]完全平方公式7.化简的结果为()A.1B.x+1C.D.[解答]解:原式=÷=×=.故选:C.[知识点]分式的混合运算8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.9[解答]解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.[知识点]分式的加减法9.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b2[解答]解:A、形如(A、B为整式、B中含字母)的式子叫分式,故原题说法错误;B、分式是最简分式,故原题说法错误;C、当x≠3时,分式意义,故原题说法正确;D、分式与的最简公分母是a2b,故原题说法错误;故选:C.[知识点]最简分式、分式有意义的条件、最简公分母10.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3[解答]解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时, a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:0,1,2∴所有满足条件的整数a的值之积是0.故选:A.[知识点]解一元一次不等式、分式方程的解、解一元一次不等式组11.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.[解答]解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=.故选:D.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4[解答]解:∵△ABP≌△CDP,∴AB=CD,AP=DP,BP=CP.又∵△ABP与△CDP是两个等边三角形,∴∠P AB=∠PBA=∠APB=60°.①根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,故本选项正确;②∵∠ABC=60°+15°=75°,∵AP=DP,∴∠DAP=45°,∵∠BAP=60°,∴∠BAD=∠BAP+∠DAP=60°+45°=105°,∴∠BAD+∠ABC=105°+75°=180°,∴AD∥BC;故本选项正确;③延长CP交于AB于点O.∠APO=180°﹣(∠APD+∠CPD)=180°﹣(90°+60°)=180°﹣150°=30°,∵∠P AB=60°,∴∠AOP=30°+60°=90°,故本选项正确;④根据题意可得四边形ABCD是轴对称图形,故本选项正确.综上所述,以上四个命题都正确.故选:D.[知识点]等边三角形的性质、平行线的判定、轴对称图形、全等三角形的性质二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.[解答]解:∵x2﹣mx+n=(x﹣3)(x+4)=x2+x﹣12,∴m=﹣1,n=﹣12,∴(mn)m=12﹣1=.故答案为:[知识点]因式分解-十字相乘法等、幂的乘方与积的乘方14.若关于x的分式方程+=2m无解,则m的值为.[解答]解:方程两边同时乘以x﹣4,得x﹣4m=2m(x﹣4),解得:x=,∵方程无解,∴2m﹣1=0或x=4,m=或m=1,故答案为或1.[知识点]分式方程的解15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.[解答]解:(a+4)2﹣a2=8a+16,故答案为8a+16.[知识点]平方差公式的几何背景16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).[解答]解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠P AE=∠PCF,在△APE与△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,EF因不是中位线,则不等于BC的一半,故④不成立.故始终正确的是①②③.故答案为:①②③.[知识点]等腰直角三角形、旋转的性质、全等三角形的判定与性质三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)[解答]解:(1)原式=x4+x4=2x4;(2)原式=x2+6xy+9y2﹣x2+4y2=6xy+13y2.[知识点]同底数幂的乘法、完全平方公式、平方差公式18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.[解答]解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=×3×2=3.[知识点]作图-轴对称变换、三角形的面积19.已知,求的值.[解答]解:∵==,∴,解得:A=3,B=﹣1,∴=.[知识点]分式的加减法、分式的值20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.[解答](1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°﹣∠D,∠CGF=90°﹣∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.[知识点]矩形的判定、全等三角形的判定与性质21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.[解答]解:(1)由规律得:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1+1﹣1=x n﹣1,故答案为:x n﹣1,(2)原式=(2﹣1)(1+2+22+23+24+…+299+2100)=2101﹣1.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?[解答]解:(1)设泰州至南京的铁路里程是xkm,则,解得:x=160.答:泰州至南京的铁路里程是160 km;(2)设经过th两车相距40 km.①当相遇前相距两车相距40 km时,80t+1.5×80t+40=160,解得t=0.6;②当相遇后两车相距40 km时,80t+1.5×80t﹣40=160.解得t=1.综上所述,经过0.6h或1h两车相距40km.答:经过0.6h或1h两车相距40km.[知识点]分式方程的应用。
学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
2016—2017学年八年级上期末数学试题(含答案)
2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。
人教版八年级(上)期末数学试卷+答案解析
2016-2017学年北京市海淀区八年级(上)期末数学试卷一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7C.0.1×10﹣5D.1×1064.在分式中x的取值范围是()A.x>﹣2 B.x<﹣2 C.x≠0 D.x≠﹣25.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy6.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC7.下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5y B.98×102==9996C. D.(3x+1)(x﹣2)=3x2+x﹣28.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE 的度数是()A.62 B.31 C.28 D.259.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处 B.AD的中点处C.A点处D.D点处10.定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1 B. +=C.()2=D.=1二.填空题(本大题共24分,每小题3分)11.如图△ABC,在图中作出边AB上的高CD.12.分解因式:x2y﹣4xy+4y=.13.写出点M(﹣2,3)关于x轴对称的点N的坐标.14.如果等腰三角形的两边长分别是4、8,那么它的周长是.15.计算:﹣4(a2b﹣1)2÷8ab2=.16.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=°.17.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是;(2)∠ACB与∠ABC的数量关系为:.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(a﹣4b)(a+b)+3ab.20.如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.21.解下列方程:(1)=;(2)﹣1=.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知a+b=2,求(+)•的值.23.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.五.解答题(本大题共14分,第25、26题各7分)25.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有条对称轴,非正方形的长方形有条对称轴,等边三角形有条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.26.钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=°,∠BEA=°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:.2016-2017学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.【考点】利用轴对称设计图案.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7C.0.1×10﹣5D.1×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001=1×10﹣6,故选A.4.在分式中x的取值范围是()A.x>﹣2 B.x<﹣2 C.x≠0 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件可得x+2≠0,再解即可.【解答】解:由题意得:x+2≠0,解得:x≠﹣2,故选:D.5.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy【考点】因式分解的意义.【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【解答】解:A、2a2﹣2a+1=2a(a﹣1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x﹣y)=x2﹣y2,这是整式的乘法,故此选项不符合题意;C、x2﹣6x+5=(x﹣5)(x﹣1),是因式分解,故此选项符合题意;D、x2+y2=(x﹣y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.6.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【考点】全等三角形的性质.【分析】根据全等三角形的性质可得到AD=AE、AB=AC,则可得到BD=CE,∠B=∠C,则可证明△BDF≌△CEF,可得DF=EF,可求得答案.【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选B.7.下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5y B.98×102==9996C. D.(3x+1)(x﹣2)=3x2+x﹣2【考点】分式的加减法;多项式乘多项式;平方差公式;整式的除法.【分析】根据分式的加减法,整式的除法,多项式乘多项式的运算方法和平方差公式,逐项判断即可.【解答】解:∵(15x2y﹣5xy2)÷5xy=3x﹣y,∴选项A不正确;∵98×102==9996,∴选项B正确;∵﹣1=﹣,∴选项C不正确;∵(3x+1)(x﹣2)=3x2﹣5x﹣2,∴选项D不正确.故选:B.8.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE 的度数是()A.62 B.31 C.28 D.25【考点】平行线的判定与性质;角平分线的定义.【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,最后求得∠ABE的度数.【解答】解:如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°﹣∠AED=62°,∴Rt△BCE中,∠CBE=28°,∴∠ABE=28°.故选:C.9.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处 B.AD的中点处C.A点处D.D点处【考点】三角形的重心;等边三角形的性质;轴对称﹣最短路线问题.【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【解答】解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,△PCE的周长=EC+EP+PC=EC+EP+BP,当B、E、E在同一直线上时,△PCE的周长最小,∵BE为中线,∴点P为△ABC的重心,故选:A.10.定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1 B. +=C.()2=D.=1【考点】分式的混合运算.【分析】根据定义:=,一一计算即可判断.【解答】解:A、正确.∵=,=.∴×=×=1.B、错误. +=+=.C、正确.∵()2=()2==.D、正确.==1.故选B.二.填空题(本大题共24分,每小题3分)11.如图△ABC,在图中作出边AB上的高CD.【考点】作图—基本作图.【分析】过点C作BA的延长线于点D即可.【解答】解:如图所示,CD即为所求.12.分解因式:x2y﹣4xy+4y=y(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:x2y﹣4xy+4y,=y(x2﹣4x+4),=y(x﹣2)2.13.写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可以直接写出答案.【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)14.如果等腰三角形的两边长分别是4、8,那么它的周长是20.【考点】等腰三角形的性质;三角形三边关系.【分析】解决本题要注意分为两种情况4为底或8为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2015.计算:﹣4(a2b﹣1)2÷8ab2=﹣.【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【分析】原式利用幂的乘方与积的乘方运算法则,以及整式的除法法则计算即可得到结果.【解答】解:原式=﹣4a4b﹣2÷8ab2=﹣2a3b﹣4=﹣,故答案为:﹣16.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=36°.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x+x+x+2x=180°,解得:x=36°,故答案为:3617.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法正确.(填“正确”或“不正确”)【考点】全等三角形的判定.【分析】小明的说法正确.如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.首先证明△ACG≌△DFH,推出AG=DH,再证明△ABG≌△DEH,推出∠B=∠E,由此即可证明△ABC≌△DEF.【解答】解:小明的说法正确.理由:如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.∵∠ACB=∠DFE,∴∠ACG=∠DFH,在△ACG和△DFH中,,∴△ACG≌△DFH,∴AG=DH,在Rt△ABG和Rt△DEH中,,∴△ABG≌△DEH,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF.(当△ABC和△DEF是锐角三角形时,证明方法类似).故答案为正确.18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是SAS;(2)∠ACB与∠ABC的数量关系为:∠ACB=2∠ABC.【考点】等腰三角形的性质;全等三角形的判定.【分析】(1)根据已知条件即可得到结论;(2)根据全等三角形的性质和等腰三角形的性质即可得到结论.【解答】解:(1)SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠CDE=∠E,∴∠ACB=2∠E,∴∠ACB=2∠ABC.故答案为:SAS,∠ACB=2∠ABC.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(a﹣4b)(a+b)+3ab.【考点】因式分解﹣运用公式法.【分析】原式整理后,利用平方差公式分解即可.【解答】解:原式=a2﹣3ab﹣4b2+3ab=a2﹣4b2=(a﹣2b)(a+2b).20.如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【考点】全等三角形的判定与性质.【分析】欲证明DE=CB,只要证明△ADE≌△ACB即可.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.21.解下列方程:(1)=;(2)﹣1=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:5x+2=3x,解得:x=﹣1,经检验x=﹣1是增根,原方程无解;(2)去分母得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=,经检验x=是分式方程的解.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知a+b=2,求(+)•的值.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将a+b的值代入化简后的式子即可解答本题.【解答】解:===,当a+b=2时,原式=.23.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】只要证明△ADF≌△BED,得AD=BE,同理可证:BE=CF,由此即可证明.【解答】解:在等边三角形ABC中,∠A=∠B=60°.∴∠AFD+∠ADF=120°.∵△DEF为等边三角形,∴∠FDE=60°,DF=ED.∵∠BDE+∠EDF+∠ADF=180°,∴∠BDE+∠ADF=120°.∴∠BDE=∠AFD.在△ADF和△BED中,,∴△ADF≌△BED.∴AD=BE,同理可证:BE=CF.∴AD=BE=CF.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约3千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.【考点】分式方程的应用.【分析】根据题意列出分式方程进行解答即可.【解答】解:这段路长约60×=3千米;由题意可得:.解方程得:a=15.经检验:a=15满足题意.答:a的值是15.故答案为:3五.解答题(本大题共14分,第25、26题各7分)25.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.【考点】四边形综合题;等腰三角形的性质;等边三角形的性质;矩形的性质;轴对称图形.【分析】(1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可;(2)中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,在图1﹣4和图1﹣5中,分别仿照类似的修改方式进行画图即可;(3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形;(4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形.【解答】解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,故答案为:1,2,3;(2)恰好有1条对称轴的凸五边形如图中所示.(3)恰好有2条对称轴的凸六边形如图所示.(4)恰好有3条对称轴的凸六边形如图所示.26.钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=60°,∠BEA= 30°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.【考点】全等三角形的判定与性质.【分析】(1)①只要证明AE⊥BC,△BCE是等边三角形即可解决问题.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN ⊥AE于N.只要证明Rt△BMF≌Rt△BNE,推出∠BEA=∠F,由BF=BC,推出∠F=∠C=α,推出∠BEA=α即可.(2)如图3中,连接EC,由△ADC∽△BDE,推出=,推出=,由∠ADB=∠CDE,推出△ADB∽△CDE,推出∠BAD=∠DCE,∠ABD=∠DEC=β,由BC=BE,推出∠BCE=∠BEC,推出∠BAE=∠BEC=∠BEA+∠DEC=α+β.【解答】解:(1)①补全图1,如图所示.∵AB=AC,BD=DC,∴AE⊥BC,∴EB=EC,∠ADB=90°,∵∠ABC=30°,∴∠BAE=60°∵BC=BE,∴△BCE是等边三角形,∠DEB=∠DEC,∴∠BEC=60°,∠BEA=30°故答案为60,30.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN⊥AE于N.∵AB=AC,∴∠ABC=∠C=α,∴∠MAB=2α,∵∠BAN=2α,∴∠BAM=∠BAN,∴BM=BN,在Rt△BMF和Rt△BNE中,,∴Rt△BMF≌Rt△BNE.∴∠BEA=∠F,∵BF=BC,∴∠F=∠C=α,∴∠BEA=α.(2)结论:∠BAE=α+β.理由如下,如图3中,连接EC,∵∠ACD=∠BED=α,∠ADC=∠BDE,∴△ADC∽△BDE,∴=,∴=,∵∠ADB=∠CDE,∴△ADB∽△CDE,∴∠BAD=∠DCE,∠ABD=∠DEC=β,∵BC=BE,∴∠BCE=∠BEC,∴∠BAE=∠BEC=∠BEA+∠DEC=α+β.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:对称轴的条数是多边形边数的约数.【考点】作图﹣轴对称变换.【分析】(1)根据凸六边形进行画图,然后猜想即可;(2)根据题意画出图形,再结合轴对称图形的定义进行分析即可;(3)根据(1)中所得的数据可得答案.【解答】解:(1)凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴,故答案为:1,2,3或6;(2)不可以.理由如下:根据轴对称图形的定义,若一个凸多边形是轴对称图形,则对称轴与多边形的交点是多边形的顶点或一条边的中点.若多边形的边数是奇数,则对称轴必经过一个顶点和一条边的中点.如图1,设凸五边形ABCDE是轴对称图形,恰好有两条对称轴l1,l2,其中l1经过A和CD的中点.若l2⊥l1,则l2与五边形ABCDE的两个交点关于l1对称,与对称轴必经过一个顶点和一条边的中点矛盾;若l2不垂直于l1,则l2关于l1的对称直线也是五边形ABCDE的对称轴,与恰好有两条对称轴矛盾.所以,凸五边形不可以恰好有两条对称轴.(3)对称轴的条数是多边形边数的约数.2017年3月17日。
【最新】2016-2017学年北师大版八年级上册期末数学试卷及答案
,
结论是 13.如果 a、 b 同号,则点 P(a,b)在
. 象限.
xy5
14.方程组
的解是
.
2x y 1
得 分 评卷人 三、解答题 (本大题共有 9 个小题,满分 58 分)
15.(本小题 4 分)计算: 3 ( 12 48 )
八年级数学试卷
第小题 5 分)已知
19.(本小题 5 分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场 调查榕树的单价比香樟树少 20 元,购买 3 棵榕树和 2 棵香樟树共需 340 元.请问榕树和香樟树的单价各多少?
八年级数学试卷
第5 页
(共 8 页)
19.(本小题 5 分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场 调查榕树的单价比香樟树少 20 元,购买 3 棵榕树和 2 棵香樟树共需 340 元.请问榕树和香樟树的单价各多少?
八年级数学试卷
第5 页
(共 8 页)
18.(本小题 5 分)长方形的两条边长分别为 4, 6,建立适当的直角坐标系, 使它的一个顶点的坐标为( - 2, - 3).请你写出另外三个顶点的坐标.
2016-2017 学年上学期末综合素质测评 八年级数学试卷
(全卷满分 100 分,考试时间 120 分钟)
题号
一
二
三
总分
得分
得分
评卷人
一、选择题 (本大题共 8 个小题,每小题只有一个正
确选项,每小题 3 分,满分 24 分)
1.计算 - 32 的结果是(
)
A.- 3
B. 3
C. - 9
D.9
2.下列几组数能作为直角三角形的三边长的是(
第2 页
(共 8 页)
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。
1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。
5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。
6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。
7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。
8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。
10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。
11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016-2017东城区八年级上学期数学期末考试卷
东城区2016—2017学年第一学期期末统一测试初二数学2017.1学校班级姓名考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1。
的相反数是A.B.C.D.2.用科学记数法表示0。
000 567正确的是A.B.C.D.3. 在下列图形中,对称轴最多的图形是A。
等腰直角三角形B。
等边三角形 C. 长方形D。
正方形4。
以下各式一定成立的是A.B.C.D.5 。
下列各式中,成立的是A.B.C.D.6. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B.C。
D.7. 若分式的值为正,则x的取值范围是A.B.C.D.且8. 如图,是等边三角形,,分别是,上的点,且,,相交于点,则∠BOE的度数为A。
30° B. 45°C。
60° D. 75°9。
某公司准备铺设一条长的道路,由于采用新技术,实际每天铺路的速度比原计划快10%,结果提前天完成任务.设原计划每天铺设道路,根据题意可列方程为A. B.C. D。
10.关于的方程的解为非负数,则的取值范围是A。
B。
C。
且D。
且二、填空题(本题共24分,每小题3分)11。
当有意义时,实数的取值范围是.12。
计算的结果是。
13。
当x= 时,式子的值为0。
14。
如图,在平面直角坐标系中,已知点A(0,,1),B(6,2)。
在x轴上找一点P,使得P A+PB最小,则点P的坐标是,此时△P AB的面积是.15。
方程的解为.16。
若等腰三角形的一个角是30°,则其它两个角的度数分别是.17. 如图,∠AOB=60°,点P在∠AOB的平分线上,PC⊥OA于点C,点D在边OB上,且OD=DP=4.则线段OC的长度为.18. 在△ABC中,∠ABC<20°,三边长分别为a,b,c。
2016-2017学年度第一学期期末八年级质量检测数学试题答案
2016—2017学年度第一学期期末质量检测八年级数学试题参考答案及评分标准一、选择题:(本题满分36分,每小题3分)A D D A D D CB DCD D二、填空题:(本题满分18分)13. (6,-9) 14. 10 15. 4 16.8 17. 5或7 18.③④三、解答题:(本题满分69分)19.(本题满分8分)(1)解:原方程可变形为:1)2)(2(162)2(-=-++-+-x x x x 方程两边同乘以)2)(2(-+x x ,得:)2)(2(16)2(2-+-=++-x x x ……………………………………2分解这个方程得:2=x ……………………………………3分检验:当2=x 时,)2)(2(-+x x =0,∴2=x 是增根∴原分式方程无解。
……………………………………4分(2)解:原式=1+x x ……………………………………2分 ∵当1,01x =-,时,题中分式无意义,∴23x =或 ∴当2=x 时,原式=32;当3=x 时,原式=43 以上三种情况只选一种即可. ………………………………………4分20. (本题共3个小题,每小题3分,满分9分)(1)30—126(2)4+6(3)23-≥≥x ,此不等式组的正整数解为x=1、2、321.(本题满分9分)证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC∴DE =DF …………………………3分∵点D 是BC 的中点∴BD =CD …………………………5分在Rt △BDE 与Rt △CDF 中⎩⎨⎧==CDBD DF DE ∴Rt △BDE ≌Rt △CDF (HL )…………………………8分∴∠B=∠C …………………………9分22.(本题满分7分)(1)m=3x+8;-------------2分(2)根据题意得:3)1(5831)1(5+-<+≤+-x x x .-----------------4分解得56>≥x∴有6名学生获奖---------6分m=3*6+8=26 该校买了26本课外读物------7分23.(本题满分12分)(1)证明:∵△ABE 为等边三角形∴AB=EA …………………1分又∵EF ⊥AB∴ 3021=∠=∠AEB AEF ………2分 在△ACB 与△EF A 中⎪⎩⎪⎨⎧=∠=∠∠=∠EA AB EFA ACB AEF BAC∴△ACB ≌△EF A ……………………………………4分∴AC =EF ……………………………………5分(2)证明:∵△ACD 为等边三角形∴∠D A C=60°,AC =AD∵AC =EF∴AD =EF ……………………………………7分又∵∠BAC =30°∴∠DAF =60°+30°=90°=∠EF A∴AD ∥EF ……………………………………9分∴四边形ADFE 是平行四边形. …………………10分(3)EF=3---------------------------------------------12分24.(本题满分9分)(1)解:2.4千米=2400米设小明步行的速度是x 米/分钟,则骑自行车的速度是x 3米/分钟,根据题意,得:20324002400=-xx ………………………………3分 解这个方程,得:80=x …………………………………4分 经检验,80=x 是原分式方程的解,且符合题意. 答:小明步行的速度是80米/分钟. …………………………5分(2)4238024002802400=⨯++分钟 …………………………7分 42分钟<45分钟所以,小明能在球赛开始前赶到体育馆. ………………………9分25.(本题满分12分)证明:取AB 的中点M ,连接ME .∵四边形ABCD 是正方形,E 为BC 中点,M 为AB 中点∴AM =MB =BE =EC∴Rt △MBE 为等腰直角三角形∴∠BME =45°∴∠AME =135°∵CF 平分∠DCG∴∠ECF =135°∴∠AME =∠ECF …………………………1分∵∠AEF =90°∴∠CEF +∠AEB =90°又∵∠MAE +∠AEB =90°∴∠MAE =∠CEF …………………………2分在△AME 与△ECF 中⎪⎩⎪⎨⎧∠=∠=∠=∠ECF AME ECAM CEF MAE ∴△AME ≌△ECF (ASA )…………………………3分∴AE =EF ……………………………………………4分【拓展】(1)情况一:当点E 在线段BC 上时,结论成立。
江苏省盐城市东台市八年级(上)期末数学试卷
江苏省盐城市东台市八年级(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,每小题只有一个正确答案,请把你认为正确答案的代号填入表中相应空格内.1.(3分)下列“QQ表情”中属于轴对称图形的是()A.B.ﻩC.ﻩD.2.(3分)下列各点中,位于直角坐标系第二象限的点是()A.(2,1)ﻩB.(﹣2,﹣1)ﻩC.(2,﹣1)ﻩD.(﹣2,1)3.(3分)在实数、、﹣3.121221222、、3.14、中,无理数共有()A.2个B.3个ﻩC.4个D.5个4.(3分)满足下列条件的△ABC,不是直角三角形的是()A.BC=1,AC=2,AB= B.BC:AC:AB=12:13:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:55.(3分)下列事件为必然事件的是()A.打开电视,正在播放东台新闻B.下雨后天空出现彩虹C.抛掷一枚质地均匀的硬币,落地后正面朝上D.早晨太阳从东方升起6.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BCA=∠DCAﻩC.∠BAC=∠DAC D.∠B=∠D=90°7.(3分)下列命题:①无理数都是无限小数;②的平方根是±4;③等腰三角形的对称轴是它顶角的平分线;④三角形三边垂直平分线的交点一定在这个三角形的内部,正确的有()A.1个 B.2个C.3个ﻩD.4个8.(3分)若A(x1,y1),B(x2,y2)是一次函数y=ax﹣3x+5图象上的不同的两个点,记W=(x1﹣x2)(y1﹣y2),则当W<0时,a的取值范围是()A.a<0ﻩB.a>0 C.a<3 D.a>3二、填空题:本大题共10小题,每小题2分,共20分.9.(2分)﹣8的立方根是.10.(2分)P(3,﹣4)到x轴的距离是.11.(2分)在一个不透明的摇奖箱内装有25个现状、大小、质地等完全相同的小球,其中只有5个球标有中奖标志,那么随机抽取一个小球中奖的概率是.12.(2分)直线y=2x﹣2不经过第象限.13.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.14.(2分)等腰三角形中,如果有一个角等于110°,则它的底角是°.15.(2分)如图所示的象棋盘上,若帅位于点(1,﹣2)上,相位于点(3,﹣2)上,则炮所在点的坐标是.16.(2分)已知一次函数y=kx+b的图象如图所示.当x<2时,y的取值范围是.17.(2分)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边B C等于.18.(2分)如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接D E、DF、EF,在此运动变化的过程中,△CEF周长的最小值是.三、解答题:本大题共7小题,共56分,解答要求写出文字说明、证明过程或演算步骤.19.(8分)(1)计算:+﹣20160;(2)解方程:4x2﹣25=0.20.(6分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷150份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图所示的两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数;(2)把条形统计图补充完整;(3)若将“从来不管”和“稍加询问”视为“管理不严”,已知全校共1200名学生,请估计该校对孩子使用手机“管理不严”的家长有多少人.21.(6分)已知:如图:△ABC是等边三角形,点D、E分别是边BC、CA上的点,且BD=CE,AD、BE相交于点O.(1)求证:△ACD≌△BAE;(2)求∠AOB的度数.22.(8分)为了倡导低碳交通,方便市民出行,某市推出了公共自行车系统,收费以小时为单位,每次使用不超过1小时的免费,超过1小时后,不足1小时的部分按1小时收费,小聪同学通过调查得知,自行车使用时间为3小时,收费2元;使用时间为4小时,收费3元.她发现当使用时间超过1小时后用车费与使用时间之间存在一次函数的关系.(1)设使用自行车的费用为y元,使用时间为x小时(x为大于1的整数),求y 与x的函数解析式;(2)若小聪此次使用公共自行车6小时,则她应付多少元费用?(3)若小聪此次使用公共自行车付费7元,请说明她所使用的时间的范围.23.(8分)在四边形ABCD中,已知AB=AD=8,∠A=60°,∠D=150°,四边形的周长为32.(1)连接BD,试判断△ABD的形状;(2)求BC的长.24.(10分)已知A、B两地相距40km,甲、乙两人沿同一公路从A 地出发到B 地,甲骑摩托车,乙骑自行车,图中CD 、OE 分别表示甲、乙离开A 地的路程y(k m)与时间x (h )的函数关系的图象,结合图象解答下列问题.(1)甲比乙晚出发 小时,乙的速度是 km/h;(2)在甲出发后几小时,两人相遇?(3)甲到达B 地后,原地休息0.5小时,从B 地以原来的速度和路线返回A 地,求甲在返回过程中与乙相距10km 时,对应x 的值.25.(10分)定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图1,在△A BC 中,CD 是AB 边上的中线.那么△ACD 和△B CD是“朋友三角形”,并且S △ACD =S △BCD .应用:如图2,在直角梯形ABCD 中,∠ABC=90°,AD ∥BC ,A B=AD=4,BC=6,点E 在BC 上,点F 在AD 上,BE=AF ,AE 与BF 交于点O.(1)求证:△A OB 和△AOF 是“朋友三角形”;(2)连接O D,若△AOF 和△D OF 是“朋友三角形”,求四边形CDO E的面积. 拓展:如图3,在△AB C中,∠A=30°,AB =8,点D在线段AB 上,连接C D,△A CD 和△BCD 是“朋友三角形”,将△ACD 沿CD 所在直线翻折,得到△A′C D,若△A′CD与△ABC重合部分的面积等于△ABC面积的,则△ABC的面积是(请直接写出答案).ﻬ2016-2017学年江苏省盐城市东台市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,每小题只有一个正确答案,请把你认为正确答案的代号填入表中相应空格内.1.(3分)(2007•邵阳)下列“QQ表情”中属于轴对称图形的是()A.ﻩB.C.ﻩD.【分析】根据轴对称图形的概念求解.【解答】解:A、B、D都不是轴对称图形,C关于直线对称.故选C.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(3分)(2017春•桂林期末)下列各点中,位于直角坐标系第二象限的点是()A.(2,1)ﻩB.(﹣2,﹣1)ﻩC.(2,﹣1)D.(﹣2,1)【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【解答】解:A、(2,1)在第一象限,故本选项错误;B、(﹣2,﹣1)在第三象限,故本选项错误;C、(2,﹣1)在第四象限,故本选项错误;D、(﹣2,1)在第二象限,故本选项正确.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)(2016秋•东台市期末)在实数、、﹣3.121221222、、3.14、中,无理数共有( )A.2个B.3个ﻩC.4个ﻩD.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,共2个.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(3分)(2016秋•东台市期末)满足下列条件的△ABC,不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=12:13:5C.∠A+∠B=∠CﻩD.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理可判定A、B,由三角形内角和可判定C、D,可得出答案.【解答】解:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=12:13:5时,设BC=12x,AC=13x,AB=5x,满足BC2+AB2=AC2,所以△ABC为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=180°,所以∠C=90°,所以△ABC为直角三角形;D、当∠A:∠B:∠C=3:4:5时,可设∠A=3x°,∠B=4x°,∠C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC为锐角三角形.故选D.【点评】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有①勾股定理的逆定理,②有一个角为直角的三角形.5.(3分)(2016秋•东台市期末)下列事件为必然事件的是()A.打开电视,正在播放东台新闻B.下雨后天空出现彩虹C.抛掷一枚质地均匀的硬币,落地后正面朝上D.早晨太阳从东方升起【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.【解答】解:∵打开电视,正在播放东台新闻是一个随机事件,∴选项A不正确;∵下雨后天空出现彩虹是一个随机事件,∴选项B不正确;∵抛掷一枚质地均匀的硬币,落地后正面朝上是一个随机事件,∴选项C不正确;∵早晨太阳从东方升起是一个必然事件,∴选项D正确.故选:D.【点评】此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6.(3分)(2016秋•东台市期末)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BCA=∠DCAﻩC.∠BAC=∠DACﻩD.∠B=∠D=90°【分析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【解答】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选B.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS、SAS、ASA、AAS和HL.7.(3分)(2016秋•东台市期末)下列命题:①无理数都是无限小数;②的平方根是±4;③等腰三角形的对称轴是它顶角的平分线;④三角形三边垂直平分线的交点一定在这个三角形的内部,正确的有()A.1个ﻩB.2个 C.3个ﻩD.4个【分析】根据无理数的定义,算术平方根的定义,平方根的定义,等腰三角形的对称性以及三角形的外心的位置对各小题分析判断即可得解.【解答】解:①无理数都是无限小数,正确;②=4,所以,的平方根是±2,故本小题错误;③等腰三角形的对称轴是它顶角的平分线所在的直线,故本小题错误;④三角形三边垂直平分线的交点一定在这个三角形的内部,错误,等腰直角三角形三边垂直平分线的交点在斜边的中点,故本小题错误;综上所述,命题正确的是①共1个.故选A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2016秋•东台市期末)若A(x1,y1),B(x2,y2)是一次函数y=ax﹣3x+5图象上的不同的两个点,记W=(x1﹣x2)(y1﹣y2),则当W<0时,a的取值范围是()A.a<0 B.a>0ﻩC.a<3 D.a>3【分析】根据W=(x1﹣x2)(y1﹣y2)<0可得出x1﹣x2与y1﹣y2异号,进而得出a﹣3<0,解之即可得出结论.【解答】解:∵W=(x1﹣x2)(y1﹣y2)<0,∴x1﹣x2与y1﹣y2异号,∴a﹣3<0,解得:a<3.故选C.【点评】本题考查了一次函数的性质,熟练掌握“当k<0时,y随x的增大而减小”是解题的关键.二、填空题:本大题共10小题,每小题2分,共20分.9.(2分)(2015•茂名)﹣8的立方根是﹣2 .【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(2分)(2006•临安市)P(3,﹣4)到x轴的距离是4.【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.【点评】本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.11.(2分)(2016秋•东台市期末)在一个不透明的摇奖箱内装有25个现状、大小、质地等完全相同的小球,其中只有5个球标有中奖标志,那么随机抽取一个小球中奖的概率是.【分析】根据题意,用标有中奖标志的球的个数除以不透明的摇奖箱内的球的总个数,求出随机抽取一个小球中奖的概率是多少即可.【解答】解:∵5÷25=,∴随机抽取一个小球中奖的概率是.故答案为:.【点评】此题主要考查了概率公式和应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12.(2分)(2016秋•东台市期末)直线y=2x﹣2不经过第二象限.【分析】根据一次函数的性质,可以判断y=2x﹣2不经过第几象限,本题得以解决.【解答】解:∵y=2x﹣2,∴函数y=2x﹣2经过第一、三、四象限,∴函数y=2x﹣2不经过第二象限,故答案为:二.【点评】本题考查一次函数的性质,解题的关键是明确一次函数的性质.13.(2分)(2016•南京)如图,四边形ABCD的对角线AC、BD相交于点O,△A BO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.14.(2分)(2016秋•东台市期末)等腰三角形中,如果有一个角等于110°,则它的底角是35°.【分析】题中没有指明已知的角是顶角还是底角,故应该分情况进行分析,从而求解.【解答】解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35.【点评】此题主要考查等腰三角形的性质,三角形内角和定理,体现了分类讨论的思想,熟练掌握等腰三角形的性质是解题的关键.15.(2分)(2016秋•东台市期末)如图所示的象棋盘上,若帅位于点(1,﹣2)上,相位于点(3,﹣2)上,则炮所在点的坐标是(﹣2,1).【分析】根据题意可以画出平面直角坐标系,从而可以写成炮所在点的坐标.【解答】解:由题可得,如下图所示,故炮所在的点的坐标为(﹣2,1),故答案为:(﹣2,1).【点评】本题考查坐标确定位置,解题的关键是明确题意,画出相应的平面直角坐标系.16.(2分)(2010•山西模拟)已知一次函数y=kx+b的图象如图所示.当x<2时,y的取值范围是y<0.【分析】观察图形知,直线与x轴交于(2,0).在交点右边,图象在x轴上方,即当x>2时,y>0;在交点左边,图象在x轴下方,即当x<2时,y<0.【解答】解:观察知,当x<2时,y<0.故答案为:y<0.【点评】此题考查运用观察法解一元一次不等式,运用观察法解一元一次不等式通常是从交点观察两边得解.17.(2分)(2017春•宜城市期末)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于10或6.【分析】分两种情况考虑,如图所示,分别在Rt△ABC与Rt△ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故答案为:10或6.【点评】此题考查了勾股定理,熟练掌握勾股定理利用分类讨论分析是解本题的关键.18.(2分)(2016秋•东台市期末)如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是5+.【分析】连接CD,由SAS定理可证△CDF和△ADE全等,从而可证∠EDF=90°,DE=DF.所以△DFE是等腰直角三角形;当E、F分别为AC、BC中点时,EF取最小值,根据三角形的中位线的性质得到EF,于是得到结论.【解答】解:连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE与△CFD中,,∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形,∵∠C=90°,AC=BC=5,∴AB=5,∴当,△CEF周长的最小时,EF取最小值,∴E、F分别为AC、BC中点时,EF的值最小,∴EF=AB=,∴△CEF周长的最小值=CE+CF+EF=AE+CE+EF=AC+EF=5+;故答案为:5+.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形、直角三角形性质等知识,找到EF∥BC时取最小值是解题关键.三、解答题:本大题共7小题,共56分,解答要求写出文字说明、证明过程或演算步骤.19.(8分)(2016秋•东台市期末)(1)计算:+﹣20160;(2)解方程:4x2﹣25=0.【分析】(1)原式利用平方根、立方根定义,以及零指数幂法则计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=2﹣3﹣1=﹣2;(2)方程整理得:x2=,开方得:x=±.【点评】此题考查了实数的运算,以及平方根,熟练掌握运算法则及平方根定义是解本题的关键.20.(6分)(2016秋•东台市期末)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷150份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图所示的两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为120 份,“严加干涉”部分对应扇形的圆心角度数30°;(2)把条形统计图补充完整;(3)若将“从来不管”和“稍加询问”视为“管理不严”,已知全校共1200名学生,请估计该校对孩子使用手机“管理不严”的家长有多少人.【分析】(1)根据从来不管的人数除以占的百分比,求出总人数,用严加干涉的百分比乘以360°求出“严加干涉”部分对应扇形的圆心角度数;(2)先计算稍加询问的人数,再补全条形图;(3)根据“从来不管”和“稍加询问”的百分比乘以1200计算即可.【解答】解:(1)30÷25%=120,×360°=30°故答案为:120,30°;(2)120﹣30﹣10=80,如图所示:(3)×1200=1100,答:该校对孩子使用手机“管理不严”的家长有1100人.【点评】此题考查了扇形统计图,条形统计图,以及用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.21.(6分)(2016秋•东台市期末)已知:如图:△ABC是等边三角形,点D、E分别是边BC、CA上的点,且BD=CE,AD、BE相交于点O.(1)求证:△ACD≌△BAE;(2)求∠AOB的度数.【分析】(1)根据等边三角形的性质求出∠BAC=∠C=60°,AC=BC,求出AE=CD,根据SAS推出全等即可;(2)根据全等三角形的性质求出∠CAD=∠ABE,根据三角形外角性质求出∠AOE =∠BAC=60°,即可得出答案.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,BC=AC,∵BD=CE,∴BC﹣BD=AC﹣CE,∴AE=CD,在△ACD和△BAE中∴△ACD≌△BAE(SAS);(2)解:∵△ACD≌△BAE,∴∠CAD=∠ABE,∴∠AOE=∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,∴∠AOB=180°﹣60°=120°.【点评】本题考查了等边三角形的性质,全等三角形的性质和判定的应用,能求出△ACD≌△BAE是解此题的关键.22.(8分)(2016秋•东台市期末)为了倡导低碳交通,方便市民出行,某市推出了公共自行车系统,收费以小时为单位,每次使用不超过1小时的免费,超过1小时后,不足1小时的部分按1小时收费,小聪同学通过调查得知,自行车使用时间为3小时,收费2元;使用时间为4小时,收费3元.她发现当使用时间超过1小时后用车费与使用时间之间存在一次函数的关系.(1)设使用自行车的费用为y元,使用时间为x小时(x为大于1的整数),求y 与x的函数解析式;(2)若小聪此次使用公共自行车6小时,则她应付多少元费用?(3)若小聪此次使用公共自行车付费7元,请说明她所使用的时间的范围.【分析】(1)根据题意设出y与x之间的函数关系式,然后根据题目中的数据即可求得y与x的函数解析式;(2)将x=6代入(1)中的函数关系式即可解答本题;(3)将y=7代入(1)中的函数关系式和根据题意可以写出她所使用的时间的范围.【解答】解:(1)设y与x的函数解析式为y=kx+b,,得,即y与x的函数解析式是y=x﹣1;(2)当x=6时,y=6﹣1=5,即若小聪此次使用公共自行车6小时,则她应付5元费用;(3)当y=7时,7=x﹣1,得x=8,∴小聪此次使用公共自行车付费7元,说明她所使用的时间的范围是7<x≤8.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式,利用一次函数的函数关系式解答问题.23.(8分)(2016秋•东台市期末)在四边形ABCD中,已知AB=AD=8,∠A=60°,∠D=150°,四边形的周长为32.(1)连接BD,试判断△ABD的形状;(2)求BC的长.【分析】(1)直接利用等边三角形的判定方法分析得出答案;(2)利用勾股定理求出BC的长.【解答】解:(1)∵AB=AD=8,∠A=60°,∴△ABD是等边三角形;(2)∵∠BDC=150°﹣60°=90°,∴设BC=x 由勾股定理可知:x2=(16﹣x)2+82,解得:x=10,∴BC=10.【点评】此题主要考查了等边三角形的判定、勾股定理,正确应用勾股定理是解题关键.24.(10分)(2016秋•东台市期末)已知A、B两地相距40km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑自行车,图中CD、OE分别表示甲、乙离开A地的路程y(km)与时间x(h)的函数关系的图象,结合图象解答下列问题.(1)甲比乙晚出发1小时,乙的速度是10 km/h;(2)在甲出发后几小时,两人相遇?(3)甲到达B地后,原地休息0.5小时,从B地以原来的速度和路线返回A地,求甲在返回过程中与乙相距10km时,对应x的值.【分析】(1)根据函数图象可以解答本题;(2)根据题意和函数图象可以求得当甲出发多长时间时,两人相遇;(3)根据题意可以求得甲返回时的函数解析式和乙的函数解析式,从而可以解答本题.【解答】解:(1)由图象可得,甲比乙晚出发1小时,乙的速度是:20÷2=10km/h,故答案为:1,10;(2)设甲出发x小时,两人相遇,[40÷(2﹣1)]x=10(x+1),解得,x=,即在甲出发小时后,两人相遇;(3)设OE所在直线的解析式为y=kx,20=2k,得k=10,∴OE所在直线的解析式为y=10x;设甲车在返回时对应的函数解析式为y=ax+b,则,得,即甲车在返回时对应的函数解析式为y=﹣40x+140,∴|﹣40x+140﹣10x|=10,解得,,x 2=3,即甲在返回过程中与乙相距10k m时,对应x 的值是或3. 【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.(10分)(2016秋•东台市期末)定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图1,在△ABC 中,CD是AB 边上的中线.那么△AC D和△BCD 是“朋友三角形”,并且S △A CD =S △BCD .应用:如图2,在直角梯形AB CD 中,∠ABC =90°,AD ∥BC,AB=A D=4,BC=6,点E 在B C上,点F在AD 上,BE=AF,AE 与BF 交于点O.(1)求证:△AOB 和△AOF 是“朋友三角形”;(2)连接OD ,若△AOF 和△DOF 是“朋友三角形”,求四边形CDOE 的面积.拓展:如图3,在△ABC 中,∠A=30°,AB=8,点D在线段AB 上,连接CD,△ACD 和△BCD 是“朋友三角形”,将△A CD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,则△ABC的面积是 8或8(请直接写出答案).【分析】应用:(1)由AAS 证明△A OF≌△EOB,得出OF=OB ,AO 是△A BF 的中线,即可得出结论;(2)△AOE 和△DOE 是“友好三角形”,即可得到E是AD 的中点,则可以求得△ABE 和梯形ABCD 的面积的面积,根据S 四边形CDOF =S 矩形ABCD ﹣2S△ABF 即可求解.拓展:画出符合条件的两种情况:①求出四边形A′D CB 是平行四边形,求出BC 和A′D 推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC 的面积.即可求出△ABC 的面积【解答】(1)证明:∵A D∥B C,∴∠OA F=∠OEB ,在△AO F和△EOB 中,,∴△AOF ≌△EOB (AAS ),∴OF =OB,则AO 是△ABF 的中线.∴△AOB 和△A OF是“朋友三角形”;(2)解:∵△A OF 和△DOF 是“朋友三角形”,∴S △A OF =S△DOF ,∵△AOF ≌△EOB ,∴S △AOB =S △EOB ,∵△A OB 和△AO F是“朋友三角形”∴S △AOB =S△AOF ,∴S △AOF =S △DOF =S △AO B=S △E OB ,=×4×2=4,∴四边形C DOE 的面积=S 梯形ABCD ﹣2S △ABE =×(4+6)×4﹣2×4=12; 拓展:解:分为两种情况:①如图1所示:∵S△ACD =S △BCD .∴A D=BD=AB=4,∵沿CD 折叠A 和A′重合,∴AD=A′D=A B=×8=4,∵△A′CD 与△ABC 重合部分的面积等于△A BC面积的,∴S△DOC =S △AB C=S △BDC =S △A DC =S △A′DC ,∴DO =OB ,A′O=CO ,∴四边形A′DC B是平行四边形,∴BC=A′D=4,过B 作BM ⊥AC于M,∵A B=8,∠BAC=30°,∴BM =AB=4=BC,即C 和M 重合,∴∠ACB=90°,由勾股定理得:AC ==4, ∴△ABC 的面积=×BC ×AC=×4×4=8;②如图2所示:∵S △ACD =S △BCD .∴AD=BD=AB ,∵沿CD折叠A 和A′重合,∴AD=A′D=AB=×8=4,∵△A′CD 与△A BC 重合部分的面积等于△ABC 面积的,∴S △DOC =S △ABC =S △BDC =S △ADC =S △A′DC ,∴DO=O A′,B O=CO ,∴四边形A′BDC 是平行四边形,∴A′C=B D=4,过C 作CQ ⊥A′D 于Q,∵A′C=4,∠DA′C=∠BAC =30°,∴CQ=A′C=2,∴S △ABC =2S △AD C=2S △A′D C =2××A′D ×C Q=2××4×2=8;即△ABC 的面积是8或8; 故答案为:8或8.【点评】此题是几何变换综合题,主要考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据已知题意和所学的定理进行推理.题目比较好,但是有一定的难度.。
2016-2017学年八年级上期末教学质量数学试卷含答案6
(第 题图)① ②(第 题图)八 年 级 教 学 质 量 监 测数 学注意:本试卷分选择题和非选择题两部分,共 分,考试时间 分钟.一、选择题(每小题 分,共计 分,把答案填在答题卷上)、下列各数中最小的是✌. . .-3.-⇨ 、关于实数2,下列说法错误的是✌.可以化成小数 .是无理数 .是 的平方根 .它的值在 到 之间 、在函数xxy -=2中,自变量⌧的取值范围是 ✌.⌧ .⌧♎且⌧♊ .⌧ .⌧ 且⌧♊、数据 , , , , 的中位数是✌. . ..、如图,阴影部分是一个长方形,它的面积是1cmBA 5cm20cm10cm✌. 2cm . 2cm . 2cm . 2cm、在以下四种沿✌折叠的方法中,不一定能判定纸带两条边线♋、♌互相平行的是✌.如图♊,展开后测得 .如图♋,展开后测得 且 .如图♌,测得 .如图♍,展开后再沿 折叠,两条折痕的交点为 ,测得 ✌, 、某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是✌ 中位数 平均数 加权平均数 众数、在 ✌中, ✌= , - ,则 的度数为 ✌. . . . 、下列叙述错误的是✌ 所有的命题都有条件和结论 所有的命题都是定理 所有的定理都是命题 所有的公理都是真命题 、关于一次函数b x y +-=2(♌为常数),下列说法正确的是✌ ⍓随⌧的增大而增大 当♌ 时,直线与坐标轴围成的面积是 图象一定过第一、三象限 与直线⍓ ⌧相交于第四象限内一点、如图,雷达探测器测得六个目标✌, , , ,☜,☞出现按照规定的目标表示方法,目标☜,☞的位置表示为☜☎, ✆,☞☎, ✆,按照此方法在表示目标✌, , ,☜的位置时,其中表示不正确的是 ✌.✌☎, ✆ . ☎,✆ . ☎, ✆ . ☎, ✆(第 题图)(第 题图)(第 题图)、如图,长方体的长为 ♍❍,宽为 ♍❍,高为 ♍❍.若一只蚂蚁沿着长方体的表面从点✌爬到点 ,需要爬行的最短路径是✌.55+20 . .5+510 .215二、填空题(每小题 分,共计 分,把答案填在答题卷上)、实数- 的立方根是 、如果用( , )表示七年级八班,那么八年级七班可表示成 、计算()()3535-+ ♉♉♉♉♉♉♉♉;717÷;9± 、不透明的布袋中装着三个小球,小球上标有- 三个数,这三个球除了标的数不同外,其余均相同 从布袋中任意摸出一个球,记下小球上所标之数后放回,⑤⑤,这样一共摸了 次 若记下的 个数之和等于- ,平方和等于 ,则在这 次摸球中,摸到球上所标之数是 的次数是 三、解答题(本大题有 题,其中 题 分, 题 分, 题 分, 题 分, 题 分, 题 分, 题 分,共 分,把答案填在答题卷上)OCBA、( 分)解下列方程:( )⎩⎨⎧-=-=-102304y x y x( )⎪⎩⎪⎨⎧=-=-243143y x yx、( 分)九年级甲、乙两名同学期末考试的成绩(单位:分)如下:根据表格中的数据,回答下列问题:()甲的总分为 分,则甲的平均成绩是 分,乙的总分为 分, 的成绩好一些()经计算知2S 甲 ,2S 乙 .你认为不偏科;(填❽甲❾或者❽乙❾)( )中招录取时,历史和体育科目的权重是 ,请问谁的成绩更好一些?、( 分)小明和小华做游戏,游戏规则如下:( )每人每次抽取四张卡片,如果抽到白色卡片,那么加上..卡片上的数或算式;如果抽到底板带点的卡片,那么减去..卡片上的数或算式 ( )比较两人所抽的 张卡片的计算结果,结果大者为胜者。
2016-2017初二上学期数学期末考试试卷及答案解析
2021-2021学年八年级[上]数学期末考试试卷一.选择题〔共10小题〕1.〔2021•XX〕如图,在△ABC和△DEC中,AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是〔〕A.B C=EC,∠B=∠E B.B C=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D 2.〔2021•XX州〕如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,那么△EDF的面积为〔〕A.11 B.5.5 C.7D.3.53.〔2021•贺州〕如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,那么BF的长是〔〕A.4cm B.6cm C.8cm D.9cm 4.〔2021•XX〕如图,a、b、c分别表示△ABC的三边长,那么下面与△ABC一定全等的三角形是〔〕A.B.C.D.5.〔2021•XX〕点〔3,2〕关于x轴的对称点为〔〕A.〔3,﹣2〕B.〔﹣3,2〕C.〔﹣3,﹣2〕D.〔2,﹣3〕6.〔2021•XX〕如图,将△ABC沿直线DE折叠后,使得点B与点A重合.AC=5cm,△ADC的周长为17cm,那么BC的长为〔〕A.7cm B.10cm C.12cm D.22cm 7.〔2021•XX〕等腰三角形的两边长分别为3和6,那么这个等腰三角形的周长为〔〕A.12 B.15 C.12或15 D.188.〔2021•XX〕以下各运算中,正确的选项是〔〕A.3a+2a=5a2B.〔﹣3a3〕2=9a6C.a4÷a2=a3D.〔a+2〕2=a2+4 9.〔2021•XX〕以下分解因式正确的选项是〔〕A.3x2﹣6x=x〔3x﹣6〕B.﹣a2+b2=〔b+a〕〔b﹣a〕C.4x2﹣y2=〔4x+y〕〔4x﹣y〕D.4x2﹣2xy+y2=〔2x﹣y〕210.〔2021•XX州〕把x2y﹣2y2x+y3分解因式正确的选项是〔〕A.y〔x2﹣2xy+y2〕B.x2y﹣y2〔2x﹣y〕C.y〔x﹣y〕2D.y〔x+y〕2二.填空题〔共10小题〕11.〔2021•资阳〕如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD 翻折,使点C落在AB边上的点E处,假设点P是直线AD上的动点,那么△PEB的周长的最小值是_________.12.〔2021•黔西南州〕如图,△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,那么∠E= _________度.13.〔2021•枣庄〕假设,,那么a+b的值为_________.14.〔2021•内江〕假设m2﹣n2=6,且m﹣n=2,那么m+n=_________.15.〔2021•XX〕分解因式:3a2﹣12ab+12b2=_________.16.〔2021•XX〕使分式的值为零的条件是x=_________.17.〔2021•XX〕使式子1+有意义的x的取值X围是_________.18.〔2021•XX〕假设分式的值为0,那么a的值是_________.19.在以下几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进展化简:_________.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是_________.三.解答题〔共8小题〕21.〔2021•XX〕实数a满足a2+2a﹣15=0,求﹣÷的值.22.〔2021•XX〕先化简,再求值:÷〔﹣a﹣2b〕﹣,其中a,b满足.23.〔2007•资阳〕设a1=32﹣12,a2=52﹣32,…,a n=〔2n+1〕2﹣〔2n﹣1〕2〔n为大于0的自然数〕.〔1〕探究a n是否为8的倍数,并用文字语言表述你所获得的结论;〔2〕假设一个数的算术平方根是一个自然数,那么称这个数是“完全平方数〞.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数〔不必说明理由〕.24.在△ABC中,假设AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F〔如图〔1〕〕,那么可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上〞,请探究以下两个问题:〔1〕假设∠AED+∠AFD=180°〔如图〔2〕〕,那么DE与DF是否仍相等?假设仍相等,请证明;否那么请举出反例.〔2〕假设DE=DF,那么∠AED+∠AFD=180°是否成立?〔只写出结论,不证明〕25.〔2021•XX〕如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动〔与A、C不重合〕,Q是CB延长线上一点,与点P同时以一样的速度由B向CB延长线方向运动〔Q不与B重合〕,过P作PE⊥AB 于E,连接PQ交AB于D.〔1〕当∠BQD=30°时,求AP的长;〔2〕当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.26.〔2005•XX〕将一X矩形纸片沿对角线剪开,得到两X三角形纸片,再将这两X三角形纸片摆放成如以下列图的形式,使点B、F、C、D在同一条直线上.〔1〕求证:AB⊥ED;〔2〕假设PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.27.〔2021•沙河口区一模〕如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停顿.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.〔1〕当CM与AB垂直时,求点M运动的时间;〔2〕当点A′落在△ABC的一边上时,求点M运动的时间.28.点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,〔1〕如图1,假设∠ACD=60°,那么∠AFB=_________;如图2,假设∠ACD=90°,那么∠AFB=_________;如图3,假设∠ACD=120°,那么∠AFB=_________;〔2〕如图4,假设∠ACD=α,那么∠AFB=_________〔用含α的式子表示〕;〔3〕将图4中的△ACD绕点C顺时针旋转任意角度〔交点F至少在BD、AE中的一条线段上〕,变成如图5所示的情形,假设∠ACD=α,那么∠AFB与α的有何数量关系?并给予证明.2021-2021学年八年级[上]数学期末考试试卷参考答案与试题解析一.选择题〔共10小题〕1.〔2021•XX〕如图,在△ABC和△DEC中,AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是〔〕A.B C=EC,∠B=∠E B.B C=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进展判定即可.解答:解:A、AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;应选:C.点评:此题考察三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,假设有两边一角对应相等时,角必须是两边的夹角.2.〔2021•XX州〕如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,那么△EDF的面积为〔〕A.11 B.5.5 C.7D.3.5考点:角平分线的性质;全等三角形的判定与性质.专题:计算题;压轴题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN〔HL〕,∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5应选B.点评:此题考察了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.3.〔2021•贺州〕如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,那么BF的长是〔〕A.4cm B.6cm C.8cm D.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC〔ASA〕,∴BF=AC=8cm,应选C.点评:此题考察了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.4.〔2021•XX〕如图,a、b、c分别表示△ABC的三边长,那么下面与△ABC一定全等的三角形是〔〕A.B.C.D.考点:全等三角形的判定.分析:根据全等三角形的判定方法进展逐个验证,做题时要找准对应边,对应角.解答:解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.应选B.点评:此题重点考察了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,此题是一道较为简单的题目.5.〔2021•XX〕点〔3,2〕关于x轴的对称点为〔〕A.〔3,﹣2〕B.〔﹣3,2〕C.〔﹣3,﹣2〕D.〔2,﹣3〕考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点〔3,2〕关于x轴的对称点为〔3,﹣2〕,应选:A.点评:此题主要考察了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6.〔2021•XX〕如图,将△ABC沿直线DE折叠后,使得点B与点A重合.AC=5cm,△ADC的周长为17cm,那么BC的长为〔〕A.7cm B.10cm C.12cm D.22cm考点:翻折变换〔折叠问题〕.分析:首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC的长.解答:解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12〔cm〕,∵AD=BD,∴BD+CD=12cm.应选:C.点评:此题主要考察了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.〔2021•XX〕等腰三角形的两边长分别为3和6,那么这个等腰三角形的周长为〔〕A.12 B.15 C.12或15 D.18考点:等腰三角形的性质;三角形三边关系.分析:因为长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.应选B.点评:此题考察了等腰三角形的性质和三角形的三边关系;没有明确腰和底边的题目一定要想到两种情况,分类进展讨论,还应验证各种情况是否能构成三角形进展解答,这点非常重要,也是解题的关键.8.〔2021•XX〕以下各运算中,正确的选项是〔〕A.3a+2a=5a2B.〔﹣3a3〕2=9a6C.a4÷a2=a3D.〔a+2〕2=a2+4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法那么、幂的乘方及积的乘方法那么、同底数幂的除法法那么,分别进展各选项的判断即可.解答:解:A、3a+2a=5a,原式计算错误,故本选项错误;B、〔﹣3a3〕2=9a6,原式计算正确,故本选项正确;C、a4÷a2=a2,原式计算错误,故本选项错误;D、〔a+2〕2=a2+4a+4,原式计算错误,故本选项错误;应选B.点评:此题考察了同底数幂的除法、幂的乘方与积的乘方,解答此题的关键是熟练掌握各局部的运算法那么.9.〔2021•XX〕以下分解因式正确的选项是〔〕A.3x2﹣6x=x〔3x﹣6〕B.﹣a2+b2=〔b+a〕〔b﹣a〕C.4x2﹣y2=〔4x+y〕〔4x﹣y〕D.4x2﹣2xy+y2=〔2x﹣y〕2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x〔x﹣2〕,故本选项错误;B、﹣a2+b2=〔b+a〕〔b﹣a〕,故本选项正确;C、4x2﹣y2=〔2x+y〕〔2x﹣y〕,故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.应选B.点评:此题主要考察了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.10.〔2021•XX州〕把x2y﹣2y2x+y3分解因式正确的选项是〔〕A.y〔x2﹣2xy+y2〕B.x2y﹣y2〔2x﹣y〕C.y〔x﹣y〕2D.y〔x+y〕2考点:提公因式法与公式法的综合运用.分析:首先提取公因式y,再利用完全平方公式进展二次分解即可.解答:解:x2y﹣2y2x+y3=y〔x2﹣2yx+y2〕=y〔x﹣y〕2.应选:C.点评:此题主要考察了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进展二次分解,注意分解要彻底.二.填空题〔共10小题〕11.〔2021•资阳〕如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD 翻折,使点C落在AB边上的点E处,假设点P是直线AD上的动点,那么△PEB的周长的最小值是1+.考点:轴对称-最短路线问题;含30度角的直角三角形;翻折变换〔折叠问题〕.专题:压轴题.分析:连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE 的周长最小,最小值是BE+PE+PB=BE+CD+DE=BC+BE,先求出BC和BE长,代入求出即可.解答:解:连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,CD=DE=1,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DE=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠B=60°,DE=1,∴BE=,BD=,即BC=1+,∴△PEB的周长的最小值是BC+BE=1++=1+,故答案为:1+.点评:此题考察了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.12.〔2021•黔西南州〕如图,△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,那么∠E= 15度.考点:等边三角形的性质;三角形的外角性质;等腰三角形的性质.专题:压轴题.分析:根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.点评:此题考察了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.13.〔2021•枣庄〕假设,,那么a+b的值为.考点:平方差公式.专题:计算题.分析:第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.解答:解:∵a2﹣b2=〔a+b〕〔a﹣b〕=,a﹣b=,∴a+b=.故答案为:.点评:此题考察了平方差公式,熟练掌握平方差公式是解此题的关键.14.〔2021•内江〕假设m2﹣n2=6,且m﹣n=2,那么m+n=3.考点:因式分解-运用公式法.分析:将m2﹣n2按平方差公式展开,再将m﹣n的值整体代入,即可求出m+n的值.解答:解:m2﹣n2=〔m+n〕〔m﹣n〕=〔m+n〕×2=6,故m+n=3.故答案为:3.点评:此题考察了平方差公式,比较简单,关键是要熟悉平方差公式〔a+b〕〔a﹣b〕=a2﹣b2.15.〔2021•XX〕分解因式:3a2﹣12ab+12b2=3〔a﹣2b〕2.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.解答:解:3a2﹣12ab+12b2=3〔a2﹣4ab+4b2〕=3〔a﹣2b〕2.故答案为:3〔a﹣2b〕2.点评:此题考察了用提公因式法和公式法进展因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进展因式分解,注意因式分解要彻底.16.〔2021•XX〕使分式的值为零的条件是x=﹣1.考点:分式的值为零的条件.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:由题意,得x+1=0,解得,x=﹣1.经检验,x=﹣1时,=0.故答案是:﹣1.点评:此题考察了分式的值为零的条件.假设分式的值为零,需同时具备两个条件:〔1〕分子为0;〔2〕分母不为0.这两个条件缺一不可.17.〔2021•XX〕使式子1+有意义的x的取值X围是x≠1.考点:分式有意义的条件.分析:分式有意义,分母不等于零.解答:解:由题意知,分母x﹣1≠0,即x≠1时,式子1+有意义.故填:x≠1.点评:此题考察了分式有意义的条件.从以下三个方面透彻理解分式的概念:〔1〕分式无意义⇔分母为零;〔2〕分式有意义⇔分母不为零;〔3〕分式值为零⇔分子为零且分母不为零.18.〔2021•XX〕假设分式的值为0,那么a的值是3.考点:分式的值为零的条件.专题:探究型.分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.解答:解:∵分式的值为0,∴,解得a=3.故答案为:3.点评:此题考察的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.19.在以下几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进展化简:.考点:最简分式.专题:开放型.分析:在这几个式子中任意选一个作分母,任意另选一个作分子,就可以组成分式.因而可以写出的分式有很多个,把分式的分子分母分别分解因式,然后进展约分即可.解答:解:==,故填:.点评:此题主要考察分式的定义,分母中含有字母的有理式就是分式.并且考察了分式的化简,首先要把分子、分母分解因式,然后进展约分.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是.考点:最简分式.分析:首先将分子、分母均乘以100,假设不是最简分式,那么一定要约分成最简分式.此题特别注意分子、分母的每一项都要乘以100.解答:解:分子、分母都乘以100得,,约分得,.点评:解题的关键是正确运用分式的根本性质.三.解答题〔共8小题〕21.〔2021•XX〕实数a满足a2+2a﹣15=0,求﹣÷的值.考点:分式的化简求值.分析:先把要求的式子进展计算,先进展因式分解,再把除法转化成乘法,然后进展约分,得到一个最简分式,最后把a2+2a﹣15=0进展配方,得到一个a+1的值,再把它整体代入即可求出答案.解答:解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴〔a+1〕2=16,∴原式==.点评:此题考察了分式的化简求值,关键是掌握分式化简的步骤,先进展通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.22.〔2021•XX〕先化简,再求值:÷〔﹣a﹣2b〕﹣,其中a,b满足.考点:分式的化简求值;解二元一次方程组.专题:探究型.分析:先根据分式混合运算的法那么把原式进展化简,再求出a、b的值代入进展计算即可.解答:解:原式=÷﹣=×﹣=﹣=﹣,∵,∴,∴原式=﹣=﹣.点评:此题考察的是分式的化简求值,熟知分式混合运算的法那么是解答此题的关键.23.〔2007•资阳〕设a1=32﹣12,a2=52﹣32,…,a n=〔2n+1〕2﹣〔2n﹣1〕2〔n为大于0的自然数〕.〔1〕探究a n是否为8的倍数,并用文字语言表述你所获得的结论;〔2〕假设一个数的算术平方根是一个自然数,那么称这个数是“完全平方数〞.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数〔不必说明理由〕.考点:因式分解-运用公式法.专题:规律型.分析:〔1〕利用平方差公式,将〔2n+1〕2﹣〔2n﹣1〕2化简,可得结论;〔2〕理解完全平方数的概念,通过计算找出规律.解答:解:〔1〕∵a n=〔2n+1〕2﹣〔2n﹣1〕2=4n2+4n+1﹣4n2+4n﹣1=8n,〔3分〕又n为非零的自然数,∴a n是8的倍数.〔4分〕这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数〔5分〕说明:第一步用完全平方公式展开各〔1〕,正确化简〔1分〕.〔2〕这一列数中从小到大排列的前4个完全平方数为16,64,144,256.〔7分〕n为一个完全平方数的2倍时,a n为完全平方数〔8分〕说明:找完全平方数时,错一个扣〔1〕,错2个及以上扣〔2分〕.点评:此题考察了公式法分解因式,属于结论开放性题目,通过一系列的式子,找出一般规律,考察了同学们的探究发现的能力.24.在△ABC中,假设AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F〔如图〔1〕〕,那么可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上〞,请探究以下两个问题:〔1〕假设∠AED+∠AFD=180°〔如图〔2〕〕,那么DE与DF是否仍相等?假设仍相等,请证明;否那么请举出反例.〔2〕假设DE=DF,那么∠AED+∠AFD=180°是否成立?〔只写出结论,不证明〕考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:〔1〕过点D作DM⊥AB于M,DN⊥AC于N,根据角平分线上的点到角的两边的距离相等可得DM=DN,再根据∠AED+∠AFD=180°,平角的定义得∠AFD+∠DFN=180°,可以推出∠DFN=∠AED,然后利用角角边定理证明△DME与△DNF全等,根据全等三角形对应边相等即可证明;〔2〕不一定成立,假设DE、DF在点D到角的两边的垂线段上或垂线段与点A的两侧,那么成立,假设是同侧那么不成立.解答:解:〔1〕DE=DF.理由如下:过点D作DM⊥AB于M,DN⊥AC于N,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN,∵∠AED+∠AFD=180°,∠AFD+∠DFN=180°,∴∠DFN=∠AED,∴△DME≌△DNF〔AAS〕,∴DE=DF;〔2〕不一定成立.如图,假设DE、DF在点D到角的两边的垂线段与顶点A的同侧那么一定不成立,经过〔1〕的证明,假设在垂线段上或两侧那么成立,所以不一定成立.点评:此题考察了角平分线的性质,全等三角形的判定与性质,从题目提供信息找出求证的思路是解题的关键,读懂题目信息比较重要.25.〔2021•XX〕如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动〔与A、C不重合〕,Q是CB延长线上一点,与点P同时以一样的速度由B向CB延长线方向运动〔Q不与B重合〕,过P作PE⊥AB 于E,连接PQ交AB于D.〔1〕当∠BQD=30°时,求AP的长;〔2〕当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题;动点型.分析:〔1〕〕由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,那么PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=〔6+x〕,求出x的值即可;〔2〕作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度一样,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF 是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.解答:解:〔1〕∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,那么PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=〔6+x〕,解得x=2,∴AP=2;〔2〕当点P、Q运动时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度一样,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,∴在△APE和△BQF中,∴△APE≌△BQF〔AAS〕,∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴当点P、Q运动时,线段DE的长度不会改变.点评:此题考察的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.26.〔2005•XX〕将一X矩形纸片沿对角线剪开,得到两X三角形纸片,再将这两X三角形纸片摆放成如以下列图的形式,使点B、F、C、D在同一条直线上.〔1〕求证:AB⊥ED;〔2〕假设PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.考点:翻折变换〔折叠问题〕;直角三角形全等的判定.专题:几何综合题;压轴题.分析:做此题要理解翻折变换后相等的条件,同时利用常用的全等三角形的判定方法来判定其全等.解答:证明:〔1〕由题意得,∠A+∠B=90°,∠A=∠D,∴∠D+∠B=90°,∴AB⊥DE.〔3分〕〔2〕∵AB⊥DE,AC⊥BD∴∠BPD=∠ACB=90°,∴在△ABC和△DBP,,∴△ABC≌△DBP〔AAS〕.〔8分〕说明:图中与此条件有关的全等三角形还有如下几对:△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.点评:此题考察了翻折变换及全等三角形的判定方法等知识点,常用的判定方法有SSS、SAS、AAS、HL等.27.〔2021•沙河口区一模〕如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停顿.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.〔1〕当CM与AB垂直时,求点M运动的时间;〔2〕当点A′落在△ABC的一边上时,求点M运动的时间.考点:翻折变换〔折叠问题〕.分析:〔1〕由Rt△ABC中,∠C=90°,CM与AB垂直,易证得△ACM∽△ABC,然后由相似三角形的对应边成比例,即可求得AM的长,即可得点M运动的时间;〔2〕分别从当点A′落在AB上时与当点A′落在BC上时去分析求解即可求得答案.解答:解:〔1〕∵Rt△ABC中,∠C=90°,CM⊥AB,∴∠A=∠A,∠AMC=∠ACB=90°,∴△ACM∽△ABC,∴,∵AC=3,BC=4,∴AB==5,∴AM==,∴点M运动的时间为:;〔2〕①如图1,当点A′落在AB上时,此时CM⊥AB,那么点M运动的时间为:;②如图2,当点A′落到BC上时,CM是∠ACB平分线,过点M作ME⊥BC于点E,作MF⊥AC于点F,∴ME=MF,∵S△ABC=S△ACM+S△BCM,∴AC•BC=AC•MF+BC•ME,∴×3×4=×3×MF+×4×MF,解得:MF=,∵∠C=90°,∴MF∥BC,∴△AMF∽△ABC,∴,即,解得:AM=,综上可得:当点A′落在△ABC的一边上时,点M运动的时间为:或.点评:此题考察了相似三角形的判定与性质、折叠的性质以及勾股定理等知识.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.28.点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,〔1〕如图1,假设∠ACD=60°,那么∠AFB=120°;如图2,假设∠ACD=90°,那么∠AFB=90°;如图3,假设∠ACD=120°,那么∠AFB=60°;〔2〕如图4,假设∠ACD=α,那么∠AFB=180°﹣α〔用含α的式子表示〕;〔3〕将图4中的△ACD绕点C顺时针旋转任意角度〔交点F至少在BD、AE中的一条线段上〕,变成如图5所示的情形,假设∠ACD=α,那么∠AFB与α的有何数量关系?并给予证明.考点:等边三角形的判定与性质.专题:证明题;探究型.分析:〔1〕如图1,首先证明△BCD≌△ECA,得出∠EAC=∠BDC,再根据∠AFB是△ADF的外角求出其度数.如图2,首先证明△ACE≌△DCB,得出∠AEC=∠DBC,又有∠FDE=∠CDB,进而得出∠AFB=90°.如图3,首先证明△ACE≌△DCB,得出∠EAC=∠BDC,又有∠BDC+∠FBA=180°﹣∠DCB得到∠FAB+∠FBA=120°,进而求出∠AFB=60°.〔2〕由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的内角和定理得∠CAE=∠CDB,从而得出∠DFA=∠ACD,得到结论∠AFB=180°﹣α.〔3〕由∠ACD=∠BCE得到∠ACE=∠DCB,通过证明△ACE≌△DCB得∠CBD=∠CEA,由三角形内角和定理得到结论∠AFB=180°﹣α.解答:解:〔1〕如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣〔180﹣∠ACD〕=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故填120°,90°,60°.〔2〕∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.〔3〕∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,那么∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,那么△ACE≌△DCB〔SAS〕.那么∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.点评:此题考察了全等三角形的判定及其性质、三角形内角和定理等知识.。
八年级上数学试题及答案
八年级数学试题(试卷满分:150分考试时间:90分钟)一、选择题:(本大题有12小题,每小题4分,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是()A.8 B.7 C.2 D.12.下列图形中,不是轴对称图形的是()A.B.C.D.3.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.94.如图,△ABE≌△ACF.若AB=5,AE=2,BE=4,则CF的长度是()A.4 B.3 C.5D.6(第4题图)(第5题图)(第6题图)5.如图,王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至少要再钉上木条的根数是()A.0 B.1 C.2 D.36.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去A.① B.② C.③ D.①和②7.等腰三角形的一个角是80°,则它的顶角的度数是()A.80° B.80°或20° C.80°或50° D.20°8.如图,将含30°角的三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()(第8题图)(第9题图)(第10题图)A.90°B.80°C.75°D.70°9.如图,△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于点E,且AC=6cm,则DE+BD等于()A.5cm B.4cm C.6cm D.7cm10.如图,△ABC中,BD是∠ ABC的角平分线,DE∥BC,交AB 于点E, ∠A=60o,∠BDC=95°,则∠BED的度数是()A.35o B.70o C.110o D.130o11.在等腰△ABC中,AB=AC,一腰上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或1012.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于点A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n> b+c B. m+n< b+c C.m+n= b+c D.无法确定二、填空题:(本大题有6小题,每小题4分,共24分)13.正六边形ABCDEF的每一个外角的度数是__________度.14.已知等腰三角形的两边长分别为2和5,则它的周长等于.15.已知M(a,3)和N(4,b)关于y轴对称,则a+b的值为.16.如图,AB=AC,,若使△ABE≌△ACF,则还需要添加的条件是 .(只要写出一个答案).17.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3=____ ______.(第16题图)(第17题图)(第18题图)18.如图,在△ABC中,AB=AC,∠BAC=64°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、解答题(19、20、21每小题8分,22-24每小题10分,共54分)19.如图,AB=AD,BC=DC,求证:∠ABC=∠ADC.(第19题图)20.如图,在△ABF与△CDE中,AB=CD,BF=DE,点A、E、F、C在同一条直线上,AE=CF,求证:A B∥CD.(第20题图)21.如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC;DE⊥AB,DF⊥AC;证明:AD⊥EF22.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高.求∠DBC的度数.(第22题图)22.已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF,.求证:AB∥DC(第23题图)24.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=70°时,求∠EBC的度数.(第24题图)四、解答题(本大题有2小题,每小题12分,共24分)25.如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.(1)在图1中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(图1)(图2)26.(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2016—2017学年上半期考试初二数学参考答案一、 选择题(4×12=48分)CBDAB CBDCC BA二、 填空题(4×6=24分)13. 60; 14. 12; 15. -1; 16.AE=AF(答案不唯一);17. 180° 18. 128°三、解答题(19、20、21每小题8分,22-24每小题10分,共54分)19.证明:连AC.证△ABC ≌△ADC(SSS)得∠ABC=∠ADC.20. 证明:由AE=CF 得AF=CE,再证△AB F ≌△CDE(SSS)得∠A=∠C 得A B ∥CD 21.22. 18°23. 证明:(略)24.(1)证明:(略)(2)35°25.(1)证明:∠MA N=120°,AC 平分∠MAN∴∠CAD=∠CAB=60°又∠ABC=∠ADC=90°∴AD=12AC AB=12AC ∴AB+AD=AC …………6分(2)结论仍成立.理由如下:作C E ⊥A M 、CF ⊥AN 于E 、F. 则∠CED=∠CFB=90°,∵AC 平分∠MAN∴CE =CF∵∠ABC+∠ADC=180°,∠CDE+∠ADC=180°∴∠CDE =∠ABC在△CDE 和△CBF 中,CDE CBF CED CFBCE CF ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△CDE≌△CBF(AAS),∴DE=BF∵∠MAN=120°,AC平分∠MAN∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,在Rt△ACE和Rt△ACF中,则AD+AB=AD+AF+BF= AD+AF+DE=AE+AF= ∴AD AB AC+=…………6分26. 证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;…………4分(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠C AE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;…………4分(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.…………4分。
玉田县八年级数学上学期期末试卷(含解析) 新人教版(2021年整理)
河北省唐山市玉田县2016-2017学年八年级数学上学期期末试卷(含解析)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省唐山市玉田县2016-2017学年八年级数学上学期期末试卷(含解析)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省唐山市玉田县2016-2017学年八年级数学上学期期末试卷(含解析)新人教版的全部内容。
2016-2017学年河北省唐山市玉田县八年级(上)期末数学试卷一、选择题(本大题共12个小题,1-6每小题2分,7—12每小题2分,共计30分)1.4的平方根是( )A.±2 B.﹣2 C.2 D.2.如果分式有意义,则x的取值范围是()A.全体实数B.x≠1 C.x=1 D.x>13.下列各命题中,是真命题的是( )A.同位角相等B.内错角相等C.邻补角相等D.对顶角相等4.用四舍五入法按要求对0。
05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0。
05(精确到千分位)C.0。
05(精确到百分位)D.0.0502(精确到0。
0001)5.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.6.化简(﹣)2的结果是( )A.﹣3 B.3 C.±3 D.97.如图,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是()A.∠B=∠E B.∠A=∠EDF C.∠BCA=∠F D.BC∥EF8.下列各式的计算中,正确的是()A. =×=6 B.(﹣1)2=3﹣1=2C. =×=9 D.3=9.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.∠CPD=∠DOC10.用反证法证明命题:在一个三角形中,最大的内角不小于60°,证明的第一步是( )A.假设最大的内角小于60°B.假设最大的内角大于60°C.假设最大的内角大等于60°D.假设最大的内角小等于60°11.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∠ACD=30°,那么下列结论正确的是( )A.AD=CD B.AC=AB C.BD=BC D.CD=AB12.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm二、填空题13.下列各式:①②③④是最简二次根式的是(填序号).14.如图,已知△ABC≌△FED,∠A=40°,∠B=106°,则∠EDF= .15.实数a在数轴上的位置如图,则|a﹣3|= .16.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为.17.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD= .18.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q 点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.19.已知,则= .20.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2016个等腰直角三角形的斜边长是.三、解答题21.计算:÷+×﹣6.22.阅读下列解题过程,并按要求回答:化简: +=﹣…①=﹣…②=…③=…④=﹣…⑤(1)上述计算过程在第几步出现错误,并指出错误原因;(2)请书写正确的化简过程.23.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.24.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?25.数学课上,老师要求学生证明:“到角的两边距离相等的点在这个角的平分线上",请你结合图形书写已知、求证,并完成证明过程:已知: .求证:.证明:26.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,且∠B=∠ADE,(1)如图1,当点D为BC中点时,试说明:.(2)如图2,联接CE,当EC⊥BC时,试说明:△ABC为等腰直角三角形.2016—2017学年河北省唐山市玉田县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,1-6每小题2分,7—12每小题2分,共计30分) 1.4的平方根是( )A.±2 B.﹣2 C.2 D.【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:A.2.如果分式有意义,则x的取值范围是()A.全体实数B.x≠1 C.x=1 D.x>1【考点】分式有意义的条件.【分析】直接利用分式有意义的条件得出x的值.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:B.3.下列各命题中,是真命题的是( )A.同位角相等B.内错角相等C.邻补角相等D.对顶角相等【考点】命题与定理.【分析】根据平行线的性质对A、B进行判断;根据邻补角的定义对C进行判断;根据对顶角的性质对D进行判断.【解答】解:A、两直线平行,同位角相等,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误;C、邻补角不一定相等,只有都为90度时,它们才相等,所以C选项错误;D、对顶角相等,所以D选项正确.故选D.4.用四舍五入法按要求对0。
江苏省徐州市八年级(上)期末数学考试
江苏省徐州市八年级(上)期末数学考试————————————————————————————————作者:————————————————————————————————日期:2016-2017学年江苏省徐州市八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)的算术平方根是()A.± B.﹣ C.D.2.(3分)下列各组数中不能作为直角三角形的三边长的是()A.6,8,10 B.7,24,25 C.1.5,2,3 D.9,12,153.(3分)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS4.(3分)下列图形,对称轴最多的是()A.正方形B.等边三角形C.角D.线段5.(3分)平面直角坐标系中,点P(3026,﹣2017)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7.(3分)如图,在平面直角坐标系中,AD平分∠OAB,DB⊥AB,BC∥OA,若点B的横坐标为1,点D的坐标为(0,),则点C的坐标是()A.(0,2) B.(0,5) C.(0,)D.(0,+)8.(3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.二、填空题(本题有8小题,每小题3分)9.(3分)1.0247精确到百分位的近似数是.10.(3分)请写出一个介于6和7之间的无理数.11.(3分)点P(1,﹣2)关于y轴对称的点的坐标为.12.(3分)等腰三角形两边长分别是3和6,则该三角形的周长为.13.(3分)将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,所得图象对应的函数表达式为.14.(3分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=°.15.(3分)如图,在△ABC中,AB=AC,∠A=20°,边AC的垂直平分线交AC于点D,交AB于点E,则∠BCE等于°.16.(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.三、解答题(本题有8小题,共72分)17.(10分)(1)计算:20160+﹣(﹣)﹣2;(2)求x的值:4x2=9.18.(6分)如图,在2×2的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,如图中的△ABC为格点三角形,请你在下面四张图中分别画出一个与△ABC成轴对称的格点三角形(要求所画图形不重复).19.(8分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:BC=DE.20.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.21.(6分)已知正比例函数y1=﹣2x的图象如图.(1)在平面直角坐标系中,画出一次函数y2=2x﹣4的图象;(2)若y2<y1,则x的取值范围是.22.(8分)如图,在Rt△ABC中,∠BAC=90°,AD是中线,AE是高,AC=6,AD=5,求AE的长.23.(8分)如图,AD为△ABC的中线,AB=AC,∠BAC=45°,过点C作CE⊥AB,垂足为E,CE与AD交于点F.(1)求证:△AEF≌△CEB;(2)试探索AF与CD的数量关系,并说明理由.24.(8分)如图,在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,使顶点B的对应点B′落在直角边AC的中点上,求CE的长.25.(10分)某企业生产并销售某种产品,假设销售量与产量相等,图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段CD所表示的y2与x之间的函数表达式;(3)当该产品产量为90kg时,获得的利润是多少?2016-2017学年江苏省徐州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)(2016秋•徐州期末)的算术平方根是()A.± B.﹣ C.D.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵()2=,∴的算术平方根为,故选(C)【点评】本题考查算术平方根的概念,属于基础题型.2.(3分)(2016秋•徐州期末)下列各组数中不能作为直角三角形的三边长的是()A.6,8,10 B.7,24,25 C.1.5,2,3 D.9,12,15【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、62+82=102,故是直角三角形,故此选项不合题意;B、242+72=252,故是直角三角形,故此选项不合题意;C、22+1.52≠32,故不是直角三角形,故此选项符合题意;D、92+122=152,故是直角三角形,故此选项不合题意.故选C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.(3分)(2016秋•徐州期末)如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【解答】解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选B.【点评】本题考查了全等三角形的应用,准确识图,并熟记全等三角形的判定方法是解题的关键.4.(3分)(2016秋•徐州期末)下列图形,对称轴最多的是()A.正方形B.等边三角形C.角D.线段【分析】根据轴对称图形的对称轴的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做轴对称图形的对称轴.【解答】解:A、有4条对称轴,即两条对角线所在的直线和两组对边的垂直平分线;B、有3条对称轴,即各边的垂直平分线;C、有1条对称轴,即底边的垂直平分线;D、有2条对称轴.故选:A.【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线是它的对称轴.5.(3分)(2016秋•徐州期末)平面直角坐标系中,点P(3026,﹣2017)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(3026,﹣2017)在第四象限,故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(3分)(2016秋•徐州期末)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定【分析】先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣2的大小,根据函数的增减性进行解答即可.【解答】解:∵直线y=﹣2x+3中,k=﹣2<0,∴此函数中y随x的增大而减小,∵3>﹣2,∴y1<y2.故选B.【点评】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,根据题意判断出函数的增减性是解答此题的关键.7.(3分)(2016秋•徐州期末)如图,在平面直角坐标系中,AD平分∠OAB,DB⊥AB,BC∥OA,若点B的横坐标为1,点D的坐标为(0,),则点C的坐标是()A.(0,2) B.(0,5) C.(0,)D.(0,+)【分析】根据角平分线的性质得出DB=OD,再解答即可.【解答】解:∵AD平分∠OAB,DB⊥AB,∴DB=OD=,∵点B的横坐标为1,∴BC=1,∴CD=,∴OC=OD+DC=,∴点C的坐标是(0,),故选D【点评】此题考查角平分线的性质,关键是根据角平分线的性质得出DB=OD.8.(3分)(2016•荆门)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是A;故选:A.【点评】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.二、填空题(本题有8小题,每小题3分)9.(3分)(2016秋•徐州期末)1.0247精确到百分位的近似数是 1.02.【分析】把千分位上的数字4进行四舍五入即可.【解答】解:1.0247精确到百分位的近似数是1.02.故答案为1.02.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.10.(3分)(2016秋•徐州期末)请写出一个介于6和7之间的无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:写出一个介于6和7之间的无理数,故答案为:.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.11.(3分)(2014•咸宁)点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【解答】解:点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.(3分)(2017•双柏县一模)等腰三角形两边长分别是3和6,则该三角形的周长为15.【分析】由三角形的三边关系可知,其两边之和大于第三边,两边之差小于第三边.【解答】解:由三角形的三边关系可知,由于等腰三角形两边长分别是3和6,所以其另一边只能是6,故其周长为6+6+3=15.故答案为15.【点评】本题主要考查了三角形的三边关系问题,能够利用三角形的三边关系求解一些简单的计算、证明问题.13.(3分)(2016秋•徐州期末)将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,所得图象对应的函数表达式为y=﹣x+1.【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【解答】解:∵将一次函数y=﹣x+3的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣x+3﹣2,即y=﹣x+1.故答案为y=﹣x+1.【点评】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.14.(3分)(2016秋•徐州期末)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB= 80°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△ABC≌△DCB,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AOB=∠ACB+∠DBC=40°+40°=80°.故答案为:80.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.15.(3分)(2016秋•徐州期末)如图,在△ABC中,AB=AC,∠A=20°,边AC 的垂直平分线交AC于点D,交AB于点E,则∠BCE等于60°.【分析】根据等角对等边可得∠ACB=(180°﹣20°)÷2=80°,再根据线段垂直平分线的性质可得AE=CE,进而可得∠ACE=∠A=20°,然后可得∠BCE的度数.【解答】解:∵AB=AC,∠A=20°,∴∠ACB=(180°﹣20°)÷2=80°,∵DE是AC的垂直平分线,∴AE=CE,∴∠ACE=∠A=20°,∴∠ECB=80°﹣20°=60°,故答案为:60.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握等边对等角.16.(3分)(2015•威海模拟)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.三、解答题(本题有8小题,共72分)17.(10分)(2016秋•徐州期末)(1)计算:20160+﹣(﹣)﹣2;(2)求x的值:4x2=9.【分析】(1)先计算20160、、(﹣)﹣2的值,再计算最后的结果;(2)方程的两边都除以4后,利用平方的意义,求出x的值.【解答】解:(1)因为20160=1,=﹣2,(﹣)﹣2=4,所以20160+﹣(﹣)﹣2=1﹣2﹣4=﹣5;(2)4x2=9,所以x2=所以x=±【点评】本题考查了0指数、负整数指数、实数的运算及平方的意义.0指数的意义:a0=1(a≠0);负整数指数幂的意义:a﹣p=(a≠0).18.(6分)(2016秋•徐州期末)如图,在2×2的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,如图中的△ABC为格点三角形,请你在下面四张图中分别画出一个与△ABC成轴对称的格点三角形(要求所画图形不重复).【分析】根据轴对称图形的概念,画出图形即可.【解答】解:与△ABC成轴对称的格点三角形如图所示,.【点评】本题考查作图﹣轴对称变换,考查学生的动手能力,解题的关键是理解轴对称图形的概念,本题主要属于基础题.19.(8分)(2008•常州)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:BC=DE.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS).∴BC=DE.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(8分)(2011•沈阳)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【分析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.【点评】本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.21.(6分)(2016秋•徐州期末)已知正比例函数y1=﹣2x的图象如图.(1)在平面直角坐标系中,画出一次函数y2=2x﹣4的图象;(2)若y2<y1,则x的取值范围是x<1.【分析】(1)利用两点法画图象;(2)由图象得出取值.【解答】解:(1)当x=0时,y=﹣4;当y=0时,x=2,∴与x轴交点为(2,0),与y轴交点为(0,﹣4),图象如下:(2)由图象得:交点为(1,﹣2),若y2<y1,则x的取值范围是x<1.故答案为:x<1.【点评】本题考查了一次函数和正比例函数的图象和性质,熟练掌握利用两点法画一次函数的图象:①与x轴交点为,②与y轴交点;并利用数形结合的方法解决问题.22.(8分)(2016秋•徐州期末)如图,在Rt△ABC中,∠BAC=90°,AD是中线,AE是高,AC=6,AD=5,求AE的长.【分析】由直角三角形斜边上的中线性质求出BC,由勾股定理求出AB,再由三角形的面积关系即可求出AE.【解答】解:如图所示:∵∠BAC=90°,AD是中线,∴BC=2AD=10,在Rt△ABC中,由勾股定理得:AB===8,∵AE是高,∴AB•AC=BC•AE,∴AE===4.8.【点评】此题主要考查了勾股定理、直角三角形的性质以及三角形面积的计算,熟练掌握勾股定理是解决问题的关键.23.(8分)(2016秋•徐州期末)如图,AD为△ABC的中线,AB=AC,∠BAC=45°,过点C作CE⊥AB,垂足为E,CE与AD交于点F.(1)求证:△AEF≌△CEB;(2)试探索AF与CD的数量关系,并说明理由.【分析】(1)利用同角的余角相等,证明∠BAD=∠BCE,利用ASA证明即可解答;(2)由全等三角形的性质得出AF=BC,即可得出结论.【解答】(1)证明:∵CE⊥AB,∴∠AEC=90°,∵∠BAC=45°,∴∠ACE=90°﹣45°=45°,∴∠EAC=∠ACE,∴AE=CE.∵AB=AC,点D是BC的中点,∴AD⊥BC,BC=2CD,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠B+∠BCE=90°,∴∠BAD=∠BCE,在△AEF和△CEB中,,∴△AEF≌△CEB(ASA);(2)解:AF=2CD;理由如下:∵△AEF≌△CEB,∴AF=BC,∵BC=2CD,∴AF=2CD.【点评】本题考查了全等三角形的性质与判定、等腰直角三角形的判定与性质,解决本题的关键是熟记全等三角形的判定方法.24.(8分)(2016秋•徐州期末)如图,在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,使顶点B的对应点B′落在直角边AC的中点上,求CE的长.【分析】设CE=x,则BE=8﹣x;在Rt△B'CE中,根据勾股定理列出关于x的方程,解方程即可解决问题.【解答】解:∵点B′落在AC的中点,∴CB′=AC=3,设CE=x,则BE=8﹣x,由折叠得:B'E=BE=8﹣x,在Rt△B'CE中,由勾股定理得x2+32=(8﹣x)2解得:x=,即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用,解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系,借助勾股定理列方程进行解答.25.(10分)(2016秋•徐州期末)某企业生产并销售某种产品,假设销售量与产量相等,图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段CD所表示的y2与x之间的函数表达式;(3)当该产品产量为90kg时,获得的利润是多少?【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段线段CD经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)先将x=90代入(2)中所求的解析式,求出y2的值,再根据利润=每千克利润×产量列式即可求解.【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设y2与x之间的函数关系式为y2=kx+b,∵经过点(0,120)与(130,42),∴,解得:,∴线段CD所表示的一次函数的表达式为y2=﹣0.6x+120(0≤x≤130);(3)将x=90代入y2=﹣0.6x+120,得y2=﹣0.6×90+120=66,所以利润为(66﹣42)×90=2160(元).答:当该产品产量为90kg时,获得的利润是2160元.【点评】本题主要考查一次函数的应用,待定系数法求一次函数的表达式,解题的关键是从实际问题中抽象出一次函数模型,难度不大.。
浙江杭州富阳20162017学年八年级上学期期末数学试题(含解析)
浙江杭州富阳2016-2017学年八年级上学期期末数学试题(含分析)八年级(上)数学(Z)杭州市富阳区期末统考卷满分120分,考试时间100分钟一、选择题(每题3分,共30分)1.以以下长度的线段为边,能构成三角形的是().A.1cm,2cm,3cm B.15cm,8cm,6cmC.10cm,4cm,7cm D.3cm,3cm7cm【答案】C【分析】在三角形中,随意两边长需大于第三边.应选C.2.不等式:2x 3 1的解集在数轴上表示正确的选项是().A.B.1 0 1 23C.012D.13【答案】D【分析】解:2x 3 1 2x 4 x2.应选D.1 0 1 23 1 0 1 233.以下图,m∥n,等边三角形ABC的极点B在直线n上,边BC与直线n所夹的锐角为25,则的度数为().A.35B.30C.40D.25[根源:Z§xx§]A mαCBn【答案】A【分析】解:∵△ABC是等边三角形,∴C25602535.4.已知点A(a,b)在第三象限,则点B(a1,3b1)在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】解:∵A(a,b)在第三象限,∴a0,b0,1/10浙江杭州富阳2016-2017学年八年级上学期期末数学试题(含分析)又∵a 1 0,3b10,[根源:]B(a1,3b1)在第四象限.应选D.5.已知(2,y1),1,y2,(1.8,y3)是直线y3xb(b为常数)上的三个点,则y1,y2,y3的大2小关系是().A.y3y1y2B.y1y2y3C.y1y3y2D.y3y2y1【答案】B【分析】解:y3x b图像随x增大而减小,又11.8,22∴y1y2y3.应选B.6.若不等式组2x a10的解为0x1,则a的值为().2x a10A.1B.2C.3D.4【答案】A2x a102x1a1a x【分析】解:2,2x a102x a1a1x2又∵此不等式组解为0x1,∴1a0a1.2应选A.7.以下图,在△ABC中,ACB90,点D在BC上,E是AB的中点,AD与CE交于点F,且BDDA,若BAD20,则DFE等于().A.30B.40C.50D.60AEBFD C∴【答案】D∴【分析】解:∵DA BD,∴DABB20,∴BDA140,∴又∵在Rt△ABC中,E是AB中点,∴ECBEAE,ECBB20,2/10浙江杭州富阳 2016-2017学年八年级上学期期末数学试题(含分析)BEC1802020140,∴在四边形EFDB 中,EFD 360 21402060.应选D .x m2个,则m 的取值范围是(8.若对于x 的不等式组的整数解共有 ).52x ≤1A .3≤m4B .3m ≤4C .2≤m ≤4D .3m4【答案】Bx m ≤0x m【分析】解: 2x ≤1,5 x ≥2∴2≤xm ,又∵此不等式组有 2个整数解,∴3m ≤4.应选B .9.甲、乙两车从A 城出发匀速行驶至 B 城,在整个行驶过程中,甲、乙两车走开A 城的距离y(千米)与甲车行驶的时间t (小时)之间的函数关系以下图,则以下结论:①A ,B 两城相距300千米;②乙车出发后2.5小时追上甲车;③当甲、乙两车相距50千米时,t5 或 15,或t 5 或t 25 (单位为4 4 66小时)此中正确的结论有().A .①②B .②③C .①③D .①②③y(cm) 300甲乙O145t/h【答案】C【分析】解:从图中明显可知,A ,B 相距300km ,∴①正确,V 甲300 60km/h , V 乙= 300=100km/h ,【注意有文字】541设乙追上甲的时间为 t(h),∴(1t)60100tt1.5,即乙车出发后 1.5小时追上甲车,∴②错误当甲、乙两车相距50km 时,①甲比乙快50km ,则t50 550km 且60 ,此时乙还没出发;②甲比乙快6乙已经出发,则60t50 t(1)100t5 ;③乙比甲快50km ,且乙还没抵达终点,则4(t1)100%60t50 t15;④乙比甲快 50km 且乙已经抵达终点,则3005060tt25,∴46正确.3/10浙江杭州富阳2016-2017学年八年级上学期期末数学试题(含分析)应选C.10.以下图,加固钢架BAC,最多只好焊上9根等长的钢条:PP,PP,,PP,且PP PA,1223910121则A的取值范围是().A.18≤A22.5B.9≤A10C.15≤A18D.10≤A11.25BP3P5P1???AP2P4C【答案】B【分析】解:由题意,得若P10P9B≥90,则没法焊接第10根钢条,设A x,∵PA PP,112∴PPA x,12∴PPP2x,同理PPP3x,312324∴PPB10x,109∴10x≥90x≤9,又钢架BAC能够焊9根等长的钢条,CP8P990,即9x90,x10,综上9≤x 10.应选B.二、填空题(每题4分,共24分)11.写出命题“两直线平行,内错角相等”的抗命题:__________.【答案】内错角相等,两直线平行【分析】解:由抗命题与原命题关系可知.12.已知点P1(a,3)和点P2(3,b)对于y轴对称,则ab__________.【答案】6【分析】解:∵P(a,3)P(3,b)对于y轴对称,1和点2∴a3,b3,∴ab6.13.一次函数y kxb(k,b为常数,k0)的图像以下图,依据图像信息可求得对于x的方程kxb0的解为__________.4/10浙江杭州富阳 2016-2017学年八年级上学期期末数学试题(含分析)y=kx+b (2,3)(1,0) O x【答案】x 1【分析】解:∵ y kx b 与x 轴交点为(1,0),∴当y 0时,x1.14.以下图, AOB 60,OC 均分 AOB ,假如射线OA 上的点E 知足△OCE 是等腰三角形,那 么OEC 的度数为__________.BCOA【答案】120 或30 或75【分析】解:∵AOB60,OC 均分AOB ,∴①若OEOC ,则 OEC(180AOC)275;②若OC CE ,则 OEC COE 30;③若OEEC ,则 OEC1802AOC120.15.如图,在Rt △ABC 中,ACB 90,ACm ,BC n ,分别以三角形的三条边为边作正方形.(1)若三个正方形的地点如图 1所示,此中暗影部分的面积 S 1S 2S 3的值为__________.(结果用含,n 的代数式表示)(2)若三个正方形的地点如图 2所示,此中暗影部分的面积 S 1 S 2 S 3 S 4的值为__________.(结果用含m ,n的代数式表示)CS 2S 3S 1S 4ABS 2CS 3S 1A B图2图1mn【答案】9(m 2 n 2);【分析】解:5/10浙江杭州富阳 2016-2017学年八年级上学期期末数学试题(含分析)K S 1 S 3①S 4E ②S 2CAB1)∵ACB90,∴AB 2AC 2 CB 2m 2 n 2,∴S 1 S 2S 3 m 2 n 2 m 2 n 2 2(m 2 n 2).2)图中S 2全等于Rt △ABC ,过D 作DE ⊥AK 于E ,可证明△ADE ≌△ABC , ∴易得△DEK 全等于①,∴S 4 S △ABC , ∴S 1S 2S 3 S 4 2S △ABC S △ABCS △ABCmn .216.将函数y 2x b (b 为常数),的图像位于 x 轴下方的部分沿 x 轴翻折至其上方后,所得的折线是函数y|2xb|(b 为常数)的图像,若该图像在直线y 1下方的点的横坐标,x 知足0x4,则b的取值范围为__________.【答案】7≤b ≤1【分析】解:当 y 1时,|2xb|1x1b或x1b ,22∵图像在直线y1下方的点的横坐标 x 知足0 x 4,1 b1 b 10,又∵220 1 b ≤ 4 7≤b1∴27≤b ≤ 1.0≤1b49b ≤12( (三、解答题(共 66分) ( 17.(8分)解不等式: ( 1)3x12x4. (2)15x ≥3x1 1.23【答案】看法析.【分析】解:(1) 3x 1 2x 4 x14 x 5 .( 2)15x ≥3x1 1 3(1 5x)≥2(3x1) 6315x ≥6x8x ≤5 .2 32118 .(8分)以下图,已知A( 3, 3),B( 2, 1),C(1,2)是平面直角坐标系的三点.( 1)画出将△ABC 先向上平移5 个单位,再向右平移 3个单位后所对应 的△A 1B 1C 1.(2)若将点P(1,2)向上平移a 个单位后,点P 恰巧落在△A 1B 1C 1内(包含三角形三边),求a 的取值范围.6/10浙江杭州富阳2016-2017学年八年级上学期期末数学试题(含分析)6425B O5CA 2 46【答案】看法析.【分析】(1)图略.(2)由(1)可知,A1(0,2),B1(1,4),C1(2,3),y AC1112,当x1时,y 2.5,将点P(1,2)向上平移a个单位获得(1,2a),又恰巧落在∴x2△A1B1C1内,则5≤2a≤44,5≤a≤6.219.(10分)以下图,正比率函数ykx经过点A(1,3),AB⊥x轴于点B.1)求该正比率函数的表达式.2)求过点B且平行于OA的直线表达式.yA(O B x((【答案】看法析.(【分析】解:(1)把点A(1,3)代入y kx中,有k3,(y3x.(2)∵AB⊥x轴,(∴B(1,0),设过点B且平行于OA的线为l1,令l1:y kx b,(l1∥OA,(∴k3,(∴y 3x b,把(1,0)代入y 3x b中,有b3,(y3x3.((20.(10分)如图,△ABC和△DCE均是等腰三角形,CA CB,CD CE,BCA DCE.(1)求证:BDAE.2)若BAC70,求BPE的度数.7/10浙江杭州富阳2016-2017学年八年级上学期期末数学试题(含分析)ADPM N EB C【答案】看法析.【分析】解:(1)在BCD和ACE中,∵BCA DCE,BC AC∴BCD ACE,BCD ACE,CD CE∴△BCD≌△ACE,BDAE.(2)在四边形PMCN中,BPE 360ACD DMC ANC 360ACD DBC ACB DCE AEC,又∵△BCD≌△ACE,∴BDC AEC,∴BPE 360ACD DBC ACB DCE BDC 360 180DCE 180BCA,ACBC,BCA1802BAC40,BPE18040140.21.(10分)阅读以下资料:解答“已知x y2,且x1,y0,试确立x y的取值范围”有以下解法:解:由于x y2,因此x y2,又由于x1,因此y21,因此y1,因此1y0①,同理:1x2②,①②得:11y x02,因此x y的取值范围是0xy2.请模仿上述解法,达成以下问题:(1)已知x y3,且x2,y1,则x y的取值范围是多少.(2)已知y1,x1,若xya,求x y的取值范围(结果用含a的式子表示).【答案】看法析.【分析】解:(1)∵x y3,x3y,又∵x2,∴3y2y1,1y1①,同理2x4②,①②得 1 2 x y 41,∴x y的取值范围是1x y5,(2)∵x y a,8/10浙江杭州富阳 2016-2017学年八年级上学期期末数学试题(含分析)xay , 又∵x1,∴a y 1 y 1a ,∴1 y 1 a ,同理1 a x1 ,∴2 ax y2 a ,∴xy 的取值范围是2 a x y 2a .22.(10分)如图,平面直角坐标系中,将含30的三角尺的直角极点C 落在第二象限,其斜边两头点A 、B 分别落在x 轴、y轴上,且AB6cm .1)若OB3cm .①求点C 的坐标.②若点A 向右滑动(2711)cm ,求点B 向上滑动的距离. (2)点A 、B 分别在x 轴、y轴上滑动,则点 C 于点O 的距离的最大值__________cm .(直接写出答案)y CBA O x 【答案】看法析. 【分析】解:(1)①过点C 作CD ⊥x 轴,垂直为D ,在Rt △AOB 中,AB 6,OB 3,AB2OB BAO30,又∵CAO30, CAO60, 又∵AB6, CAB 30, CA33, ∴在Rt △CAD 中,AD1AC3 3,CD 9 ,2 22同理AO3 ,AD3 3,2∴OD333 3 3,C3 93223,.22②设A 向右滑行到点 A ,则B 向上滑行到点 B ,则OA33(2711)11,又ABAB6,[根源:]∴OB 36 (11) 25,[根源学+科+网Z+X+X+K]∴BB532,点B 向上滑动2cm .( 2)取AB 中点E ,连接CE ,OE ,∵ACBAOB90,[根源学*科*网]9/10浙江杭州富阳2016-2017学年八年级上学期期末数学试题(含分析)1∴CE E O AB 3cm,2CEEO≥CO,∴当CE EO CO(即C,E,O三点共线)时,CO最长6cm.【注意有文字】23.(10分)已知一次函数y3x6的图像与x轴、y轴分别订交于点A、B,点P在该函数的图像上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB端点A时,求d1d2的值.(2)直接写出d1d2的范围,并求当d1d23时点P的坐标.(3)若在线段AB上存在无数个P点,使d1ad26(a为常数),求a的值.yyO AO A x xBB备用图【答案】看法析.【分析】解:(1)由题意得P(2,0),当P为A时,则d10,d22,d1d22.(2)设P(x,3x6),则d1d2|3x6||x|,当x≥2时,d1d23x6x4x6≥2,当0≤x2时,d1d263xx62x,∴2d1d2≤6,当x0时,d1d263xx64x,∴d1d26,综上,d1d2≥2,当x≥2时,若d1d23,则4x63x 963,3x,44∴P 93,当0≤x2时,若d1d23,则62x3x33,,4,3x62 42∴P3,3.22(3)当0≤x≤2时,d1ad263x ax6(a3)x,若6(a3)x6,则(a3)x0,∴线段AB上存在无数个P点,使d1ad26,∴a30a3.10/10。
2016-2017学年第一学期八年级数学答案
2016—2017学年第一学期期末初中质量监测八年级数学科试题参考答案及评分说明(本答案仅供参考,允许解法多样化,本答案后面的分数为累计得分)一、选择题(每小题3分,共30分,每小题只有一个正确答案)1.A 2. D 3.C 4. B 5.A 6.C 7.B 8.D 9.D 10. A二、填空题(每小题3分,共24分)11.55° 12. 3 13.1 14.2.5×10-6 15.2)(y x m + 16.30°17. 30°18. 5三.解答题(共8小题,满分66分)19、(本题8分).(1)))(32(y x y x -+解:=223322y xy xy x -+- ----------------------2分=2232y xy x -+ ----------------------4分(2) xy xy y x y x 6)6312(2334÷-+解: =xy xy xy y x xy y x 66636122334÷-÷+÷-----------------2分=1212223-+y x y x -----------------4分20(本题6分).解:原式 = 222299124y x y xy x -++- -----------------2分= xy x 1252------------4分当2=x ,5=y 时,原式=5212252⨯⨯-⨯=100------------------6分21(本题7分).证明:∵ BE =CF ,∴BE+EC =CF+EC即BC =FE -----------------2分又∵ AB ∥DE∴DEF B ∠=∠-----------------4分在△ABC 和△DEF 中⎪⎩⎪⎨⎧∠=∠=∠=∠F ACB EF BC DEF B∴△ABC ≌△DEF(ASA) -----------------7分22(本题7分).解: )1(2311-=+-x x x ------------1分 方程两边同时乘以)1(2-x ,得得3)1(22=-+x x ------------------3分化简,得 54=x .------------------5分 解得:45=x . ------------------6分 检验:45=x 时,0)1(2≠-x ,即45=x 是原分式方程的解.-----------7分 23(本题8分).解:(1)ABC S ∆=3521⨯⨯=215----------2分 (2)略----------5分(3)A 1(1,5),B 1(1,0),C 1(4,3)----------8分 24(本题10分).解:(1)(共6分)△MBO 和△NOC 是等腰三角形,------------------2分∵OB 平分∠ABC ,∴∠MBO=∠OBC ,∵MN ∥BC ,∴∠MOB=∠OBC ,∴∠MBO=∠MOB ,∴MO=MB ,同理可证:ON=NC ,∴△MBO 和△NOC 是等腰三角形;------------------6分(2)(共4分)∵△MBO 和△NOC 是等腰三角形∴MO=MB ,ON=NC-----------------8分∵△AMN 的周长=AM+MO+ON+AN∴△AMN 的周长=AM+MB+AN+NC=AB+AC=14------------------10分 25(本题8分).解:设篮球的单价为x 元-----------------1分 依题意得,409001500-=x x -----------------3分 解得:x=100-----------------5分经检验:x=100是原分式方程的解,且符合题意-----------------6分 则足球的价钱为:100﹣40=60(元)-----------------7分答:篮球和足球的单价分别为100元,60元.-----------------8分 26(本题12分).(1)①90°;-----------------2分②证明:∵BP=4,BC=5∴PC=1又∵AB=1∴AB=PC-----------------3分∵AB⊥BC,CM⊥BC,DP⊥AP∴∠B=∠C=∠APD=90°-----------------4分∴∠BAP+∠APB= 90°,∠APB+∠CPD =90°∴∠BAP=∠CPD -----------------5分又∵AB=PC,∠B=∠C =90°∴△ABP≌△PCD(ASA)-----------------6分(2)PB=PC,理由如下:延长线段AP、DC交于点E-----------------7分∵DP平分∠ADC∴∠ADP=∠EDP∵DP⊥AP∴∠DPA=∠DPE=90°又∵∠ADP=∠EDP,DP=DP∴△DPA≌△DPE(ASA)-----------------9分∴PA=PE∵AB⊥BP,CM⊥CP∴∠ABP=∠ECP=90°又∵∠APB=∠EPC,PA=PE∴△APB≌△EPC(AAS)-----------------10分∴PB=PC(3)4-----------------12分。
八年级数学上学期质量检试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省资阳市简阳市养马中学2015-2016学年八年级数学上学期质检试题一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b24.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±86.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( )A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠310.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=__________.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是__________.13.若分式的值为0,则x的值为__________.14.若等腰三角形的边长分别为2和6,则它的周长为__________.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为__________.16.计算:(x3y)﹣1•(x2y)2=__________.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于__________.18.实数a在数轴上的位置如图,化简+|a﹣2|=__________.19.当x<3时,﹣|x﹣6|=__________.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为__________.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE__________DB(填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE__________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=__________(请你直接写出结果).28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=__________°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.2015-2016学年某某省资阳市简阳市养马中学八年级(上)质检数学试卷一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【解答】解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.【点评】此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.4.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、没把一个多项式转化成几个整式积的形式,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选;D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±8【考点】完全平方式.【分析】一个二项式的平方的形式我们就可以想到完全平方公式,16=42,由此来推算一次项的系数.【解答】解:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.【点评】这道题考我们的逆向思维,关键是我们能够反过来利用完全平方公式确定未知数.6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=【考点】由实际问题抽象出分式方程.【专题】行程问题;压轴题.【分析】设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程解决问题.【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.【点评】此题考查列分式方程解应用题,找出题中蕴含的等量关系是解决问题的关键.7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×【考点】二次根式的性质与化简.【分析】根据二次根式的性质,可判断A、B,根据二次根式的除法,可判断C,根据二次根式的乘法,可判断D.【解答】解:A、=3,故A错误;B、==5,故B错误;C、,故C错误;D、=×,故D正确.故选:D.【点评】本题考查了二次根式的性质与化简,二次根式的性质、二次根式的乘除发是解题关键.9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( ) A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠3【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的X围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.10.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A n的度数,进而可得出结论.【解答】解:∵在△ABA1中,∠B=52°,AB=A1B,∴∠BA1A===64°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===32°;同理可得,∠DA3A2=16°,∠EA4A3=8°,∴∠A n=,∴A2013为顶点的内角的度数===故选B.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=2.【考点】估算无理数的大小.【专题】计算题.【分析】利用”夹逼法“得出的X围,继而也可得出a的值.【解答】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.【点评】本题考查了平方差公式,由题设中代数式x+y,x﹣y的值,将代数式适当变形,然后利用“整体代入法”求代数式的值.13.若分式的值为0,则x的值为0.【考点】分式的值为零的条件;解一元二次方程-因式分解法.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣x=0,|x|﹣1≠0,由x2﹣x=0,得x(x﹣1)=0,∴x=0或x=1,由|x|﹣1≠0,得|x|≠1,∴x≠±1,综上,得x=0,即x的值为0.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.若等腰三角形的边长分别为2和6,则它的周长为14.【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为2和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:假设以2为等腰三角形的腰长,则三角形的各边长分别为2,2,6,不符合两边之和大于第三边;所以腰长只能为6,等腰三角形的周长为6+6+2=14.故填14.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为2019.【考点】代数式求值.【专题】计算题.【分析】原式前两项变形后,把已知等式代入计算即可求出值.【解答】解:∵x(x+3)=1,∴原式=2x(x+3)+2017=2+2017=2019.故答案为:2019.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.计算:(x3y)﹣1•(x2y)2=xy.【考点】负整数指数幂.【分析】根据积的乘方,可化成同底数幂的乘除法,根据同底数幂的乘除法,可得答案.【解答】解:原式=x﹣3y﹣1•x4y2=x﹣3+4y﹣1+2=xy,故答案为:xy.【点评】本题考查了负整指数幂,利用了积的乘方,同底数幂的乘法.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于7或11.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】因为已知条件给出的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.【解答】解:根据题意,①当15是腰长与腰长一半时,AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故填7或11.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确给出哪一部分长要一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.实数a在数轴上的位置如图,化简+|a﹣2|=1.【考点】二次根式的性质与化简;实数与数轴.【分析】利用数轴得出a的取值X围,进而化简求出即可.【解答】解:∵由实数a在数轴上的位置如图,∴1<a<2,∴+|a﹣2|=+|a﹣2|=a﹣1+2﹣a=1.故答案为:1.【点评】此题主要考查了二次根式的性质与化简,正确开平方去绝对值得出是解题关键.19.当x<3时,﹣|x﹣6|=﹣3.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式利用二次根式的性质化简,再利用绝对值的代数意义计算即可.【解答】解:∵x<3,即x﹣3<0,x﹣6<0,∴原式=|x﹣3|﹣|x﹣6|=﹣x+3+x﹣6=﹣3,故答案为:﹣3【点评】此题考查了二次根式的性质与化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【考点】等腰三角形的判定.【分析】分别根据当AB=BP1时,当AB=AP3时,当AB=AP2时,当AP4=BP4时,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.【点评】此题主要考查了等腰三角形的判定,利用分类讨论得出是解题关键.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式计算即可.【解答】解:原式=(98+2)×(98﹣2)=9600.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.【考点】二次根式的混合运算;负整数指数幂.【专题】计算题.【分析】(1)根据负整数指数幂和绝对值的意义得到原式=2﹣4﹣+2﹣,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣4﹣+2﹣=﹣2;(2)原式=1•••=•2a=a.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.记住负整数指数幂的意义.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3x2y﹣2x2y+6xy﹣3x2y﹣5xy=﹣2x2y+xy,∵(x﹣2)2+|y+1|=0,∴x﹣2=0,y+1=0,即x=2,y=﹣1,则原式=8﹣2=6.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】首先把分式进行化简,然后计算分式的除法,最后代入a、b的值计算即可.【解答】解:原式=ab(a+1)÷=ab(a+1)÷(a+1)=ab,则当a=+1,b=﹣1时,原式=(+1)(﹣1)=3﹣1=2.【点评】本题考查了分式的化简求值,解这类题的关键是利用分解因式的方法化简分式.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【考点】分母有理化.【专题】阅读型.【分析】(1)运用第二种方法求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案,【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点评】本题主要考查了分母有理化,解题的关键是找准有理化因式.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?【考点】二元一次方程组的应用.【分析】设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程.【解答】解:设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元.【点评】本题考查了方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE=DB (填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作E F∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=2或4(请你直接写出结果).【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)当E为中点时,过E作EF∥BC交AC于点F,则可证明△BDE≌△FEC,可得到AE=DB;(2)类似(1)过E作EF∥BC交AC于点F,可利用AAS证明△BDE≌△FEC,可得BD=EF,再证明△AEF是等边三角形,可得到AE=EF,可得AE=DB;(3)分点E在AB上和在BA的延长线上,类似(2)证得全等,再利用平行得到.【解答】解:(1)如图1,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(3)因为AE=1,△ABC的边长为3,所以E点可能在线段AB上,也可能在BA的延长线上,当点E在AB时,同(2)可知BD=AE=1,则CD=BC+BD=1+3=4,当点E在BA的延长线上时,如图3,过点E作EF∥BC,交CA的延长线于点F,则∠F=∠FCB=∠B=60°,∠FEC+∠ECD=∠FEC+∠EDC=180°,∴∠EDB=∠FEC,且ED=EC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴EF=BD,又可判定△AEF为等边三角形,∴BD=EF=AE=1,∴CD=BC﹣BD=3﹣1=2,故答案为:2或4.【点评】本题主要考查全等三角形的判定和性质及等边三角形的性质和判定,利用全等得到BD=EF,再找EF和AE的关系是解题的关键.28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=40°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】常规题型.【分析】(1)可证△ABD≌△ACE,可得∠ACE=∠B,即可解题;(2)根据△ABD≌△ACE可分别求得∠BCE用m和用n分别表示,即可求得m、n的关系;(3)分两种情况分析,第1种,当D在线段BC的延长线上或反向延长线上时,第2种,当D在线段BC上时.【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠B,∵AB=AC,∠BAC=40°,∴∠ACE=∠B=70°,∴∠DCE=180°﹣70°﹣70°=40°;(2)∵△ABD≌△ACE(1)已证,∴∠ACE=∠B,∵AB=AC,∠BAC=m,∴∠ACE=∠B=∠ACB=,∴∠BCE=∠ACB+∠ACE=180°﹣m,∵∠BCE=180°﹣∠DCE=180°﹣n,∴m=n.(3)当D在线段BC的延长线上或反向延长线上时,m=n,当D在线段BC上时,m+n=180°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△ACE是解题的关键.。
2016~2017学年度第一学期期末考试八年级数学试卷参考答案及评分细则
2016~2017学年度第一学期期末考试八年级数学参考答案1.B2.B3.A4.D5.C6.C7.D8.B9.D 10.D11.2 12. 33x 13. 6± 14. ab 8 15. 9 16. 2317.解:两边同时乘以)1(2-x 得:3)1(2=+x ......4分解得: 21=x , ......6分检验:当21=x 时,0)1(2≠-x ......7分∴原分式方程的解为21=x .......8分18.解:原式x x x x x x 2)3)(3(333+-⨯+-++= ......4分32)3)(3(32-=+-⨯+=x x xx x x ......8分19. 证明:∵BE=CF , ∴BE+E C=CF+EC , 即BC=EF, …………2分∵AB ∥DE, ∴∠DEF=∠B , …………4分在△AB C 和△DE F 中,∵⎪⎩⎪⎨⎧=∠=∠=EFBC DEF B DEAB ∴△AB C ≌△DE F (SAS) …… 7分∴AC=DF. ………… 8分20.(1)解:原式)21)(21(22a a a a -+++= ......2分22)1()1(-+=a a ......4分(2) 原式)16(22-=x a ......6分)4)(4(2-+=x x a ......8分21. 解:(1)图略略 ......2分 2(1C ,)1 ......3分(2) 痕迹图略 ......5分 2(P ,)0 ......6分(3)3-=a ,21=b ......8分22.解(1)设单独完成此项工程,甲需x 天,则乙需x 2天, 由题意得:212155=+x x ,解得25=x ......3分检验:当25=x 时,02≠x ,∴原分式方程的解为25=x ,502=x ......5分答:甲需25天,乙需50天.(2)设乙每天的施工费用为y 万元,则甲每天的施工费用为)8.0(+y 万元,由题意得:2815)8.0(5=++y y , 2.1=y ,28.0=+y答:乙每天的施工费为2.1万元,甲每天的施工费用为2万元. ......7分(3) 20天或21天. ......10分23.(1) 证明:∵CA=CB ,∠CAB=900,点O 是AB 的中点,∴∠BCO=21∠CAB=450 , ∠A=∠B=450, ……2分∴∠BCO=∠B , ∴CO=OB. ……3分(2)连接CO,,在CB 上截取CQ=AM,连OQ, 可证△CQO ≌△AMO(SAS) ……4分 ∴OM=OQ,∠MOA =∠COD ,∵CO ⊥OA,∴MO ⊥OQ又∵△MON ≌△QON(SSS) ……5分∴∠MON=∠NOQ =21∠MOQ=450. ……6分(3)CQ=DQ, CQ ⊥DQ.证明:延长CQ 至H,,使QH=CQ,,连OH 、DH 、CD ,延长HQ 交AC 于I ,可证△OQH ≌△BQC(SAS) ∴OH =BC=AC, ∠QHO =∠BCQ, ……7分∴BC ∥HI, ∴∠AIO =∠ACB=900,∴在四边形ADOI 中,∠CAD+∠IOD=1800,又∠DOH+∠IDO=1800, ∴∠CAD =∠DOH, ……8分∴△CAD ≌△HOD(SAS) ∴DH =CD, ∠ADC =∠HDO,∵∠ADC+∠CDO=900, ∴∠HDO+∠CDO=900, ……9分∴CD ⊥DH,又点Q 是CH 的中点,∴DQ ⊥CQ ∴CQ=DQ. .....10分(另解:延长DO 交BC 于G ,连QD ,证△OGC ≌△QOD 亦可,参照给分.)24.解:(1)∵01)3(2=-++b a ,0)3(2≥+a ,01≥-b , 0)3(2=+∴a ,01=-b 3-=∴a ,1=b ,3(-∴A ,)0,1(B ,)0 ......2分 4==∴BC AB ,∵∠CBA=600 , ∴∠ODB=300 ∴BD=2OB=2, ∴CD=BC-BD=4-2=2. ......4分(2)延长EB 交y 轴于F ,连CE,△CEP 为等边三角形,可证△CDE ≌△CAP(SAS) ......6分∴∠CEB=∠CPA, ∴∠EBP=∠ECP=600, ∴∠FBO=∠DBO=600, ∴∠BFO=∠BDO=300,∴BD=BF, ∵BO ⊥DF,∴DO=OF ......7分 ∴点D 、F 关于x 轴对称,∴直线EB 必过点D 关于x 轴对称的对称点. ......8分(3)过D 作DI ∥AB 交AC 于I ,则△CDI 为等边三角形, ∴DI=CD =DB, ......9分 ∴∠MID =1200=∠DBN,∴△MDI ≌△NDB(AAS) ......10分 ∴NB =MI ,∴AN-AM=(AB+NB)-AM=AB+MI-AM=AB+AI=AB+BD=4+2=6. ......12分(另解:连AD ,在∠BDN 内作∠BDJ=300,DJ 交x 轴于J 亦可,参照给分.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016—2017学年度第一学期期终教学质量检测
八年级数学试卷
温馨提示:亲爱的同学,今天是展示你才能的时候了,只要你仔细审题.认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!
一、选择题(本题共10个小题,每小题3分,共30分) 1.下列计算正确的是( )
A . 5
3
2
x x x =+ B .6
3
2
x x x =⋅ C .532)(x x = D .2
35x x x =÷ 2.下列大学的校徽图案是轴对称图形的是( )
A .清华大学
B .北京大学
C .中国人民大学
D .浙江大学 3.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,则b a -的值为( ) A .-1 B .1 C .-3 D . 3
4.如图,△ABC ≌ΔADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( ) A .40° B .35° C .30° D .25° 5.下列各式变形中,是因式分解的是( )
A .1)(12222--=-+-b a b ab a B.)11(2222
2
x
x x x +=+ C .4)2)(2(2-=-+x x x D .)1)(1)(1(124-++=-x x x x
6.如果分式
2
312+--x x x 的值为零,那么x 等于( )
A .-1
B .1
C .-1或1
D .1或2 7.等腰三角形的一个角是48°,它的一个底角的度数是( )
A .48°
B .48°或42°
C .42°或66°
D .48°或66°
8.下列命题中,正确的是( )
A .三角形的一个外角大于任何一个内角
B .三角形的一条中线将三角形分成两个面积相等的三角形
C .两边和其中一边的对角分别相等的两个三角形全等
D .三角形的三条高都在三角形内部
9.如图所示的图形面积由以下哪个公式表示( ) A .)()(2
2
b a b
b a
a
b
a -
+-=-
B .2
2
2
2)(b ab a b a +-=- C .2
2
2
2)(b ab a b a ++=+ D .))((2
2
b a b a b a -+=-
10.如图,ΔABC 中,AB =AC ,AB 的垂直平分线交AC 于P 点, 若AB =5 cm ,BC =3 cm ,则ΔPBC 的周长等于( ) A .4 cm B .6 cm C .8 cm D .10 cm
(第4题)
(第10题)
(第9题)
二、填空题(本题共8个小题,每小题3分,共24分)
11.空气的平均密度为00124.03/cm g ,用科学记数法表示为__________3/cm g . 12.计算23)3(x -=_________. 13.分式
2x y xy +,23y x ,2
6x y xy
-的最简公分母为 . 14. 如图是某中学某班的班徽设计图案,其形状可以近似
看做为正五边形,则每一个内角为 度.
15.三角形三内角度数之比为1∶2∶3,最大边长是8cm ,则最小边的长是 . 16.已知237y x 与一个多项式之积是23342421728y x y x y x -+,则这个多项式是 . 17.若b a +=17,ab =60,则2
2
b a +=_________. 18. 如图,△ABC 中,∠BAC=120°,AD ⊥BC 于D ,
且AB+BD=DC ,则∠C=______°.
三.解答题(本大题共46分)
19.计算(本题共两小题,每小题6分,共12分) (1)分解因式:m mn mn 962
++
(2)计算:)2)(2()34(y x y x y x x -+-+
(第14题)
(第18题)
20.(本题8分)先化简代数式22321(1)24
a a a a -+-÷+-,再从-2,2,0三个数中选一个适当的数作为a 的值代入求值.
21.(本题8分)如图,在平面直角坐标系xOy 中,
A ()5,1-,
B ()0,1-,
C ()3,4-.
(1)请画出ABC △关于y 轴对称的A B C '''△ (其中A B C ''',,分别是A B C ,,不写画法);
(2)直接写出A B C ''',,三点的坐标:
(_____)(_____)(_____)A B C ''',,;
△ABC 的面积= .
22.(本题8分)秋冬交界时节,我国雾霾天气频发,PM2.5颗粒物是形成雾霾的罪魁祸首
(PM2.5是指大气中直径小于或等于2.5微米的颗粒物),据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的槐树叶的片数相同,求一片槐树叶一年的平均滞尘量.
23.(本题10分)已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC. (1)如图1,若点O 在BC 上,求证:AB =AC ;
(2)如图2,若点O 在△ABC 的内部,求证:AB =AC ;
(3)若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示.
淮南市2013—2014学年度第一学期期终教学质量检测
A 第23题图2
B C
O
第23题图1 O C E A B F
八年级数学试卷参考答案及评分标准
一
二.填空题
11. 3
1024.1-⨯; 12. 6
9x ; 13.226y x ; 14.108; 15.4cm ; 16. 34-+xy x ; 17.169; 18.20.
三.解答题
19.解:(1)原式= m mn mn 962
++
= )96(2++n n m ………………3分 = 2)3(+n m ………………6分
(2)原式= )2)(2()34(y x y x y x x -+-+
= )4(34222y x xy x --+ ………………3分 = 2
2
2
434y x xy x +-+
= 2
3y xy + ………………6分
20. 解:原式=
2
)
1()2)(2(21--+⋅+-a a a a a =12
--a a ………………5分 将0=a 代入上式,原式=
1
2
--=2 ………………8分 21. 解:(1)图略 ………………4分 (2)(1,5)、(1,0)、(4,3)、7.5 ………………8分 22. 解:设一片国槐树叶一年平均滞尘量为x 毫克,
则一片银杏树叶一年平均滞尘量为(2x —4)毫克 ………………2分
由题意得:
1000550
24x x
=- ………………4分
解方程,得:x=22 ………………6分
检验:将x=22带入x (2x-4)中,x (2x-4)≠0,
则x=22为此方程的根. ………………7分 答:一片国槐树叶一年平均滞尘量为22毫克. ………………8分
23.证:(1)过点O 分别作OE AB ⊥,OF AC ⊥,E F ,分别是垂足,
由题意知,OE OF =,OB OC =,
Rt Rt OEB OFC ∴△≌△,
B C ∴∠=∠,从而AB AC =. ………………4分
(2)过点O 分别作OE AB ⊥,OF AC ⊥,E F ,分别是垂足,
由题意知,OE OF =. 在Rt OEB △和Rt OFC △中,
OE OF = ,OB OC =, Rt Rt OEB OFC ∴△≌△. OBE OCF ∴∠=∠,
又由OB OC =知OBC OCB ∠=∠,
ABC ACD ∴∠=∠,
AB AC ∴=. ………………8分
解:(3)不一定成立. ·················································································· 10分
A
B C
E F
(成立)
A
B
C E F
A
B
E F O
C。