常用大数据量、海量数据处理方法 (算法)总结

合集下载

大数据常用的算法

大数据常用的算法

大数据常用的算法标题:大数据常用的算法引言概述:随着大数据时代的到来,大数据算法成为处理海量数据的重要工具。

本文将介绍大数据常用的算法,帮助读者更好地了解大数据处理的方法和技术。

一、聚类算法1.1 K均值算法:是一种常用的聚类算法,通过迭代计算数据点之间的距离,将数据点划分为K个簇。

1.2 DBSCAN算法:基于密度的聚类算法,能够发现任意形状的簇,并对噪声数据点进行过滤。

1.3 层次聚类算法:通过构建树状结构的聚类,将数据点逐层聚合,形成层次化的簇结构。

二、分类算法2.1 决策树算法:通过构建树状结构的决策规则,将数据点划分为不同的类别。

2.2 逻辑回归算法:用于处理二分类问题,通过逻辑函数对数据进行分类。

2.3 随机森林算法:基于多个决策树的集成学习算法,提高了分类准确度和泛化能力。

三、关联规则挖掘算法3.1 Apriori算法:用于发现频繁项集和关联规则,帮助分析数据中的关联性。

3.2 FP-growth算法:基于频繁模式树的挖掘算法,能够高效地挖掘大规模数据集中的频繁项集。

3.3 Eclat算法:基于垂直数据表示的关联规则挖掘算法,适用于稠密数据集。

四、回归算法4.1 线性回归算法:通过线性模型对数据进行拟合,预测连续性变量的取值。

4.2 支持向量机回归算法:基于支持向量机理论的回归算法,能够处理非线性回归问题。

4.3 岭回归算法:通过加入正则化项,解决多重共线性问题,提高回归模型的泛化能力。

五、降维算法5.1 主成分分析算法:通过线性变换将高维数据转化为低维数据,保留数据的主要信息。

5.2 t-SNE算法:用于可视化高维数据,通过保持数据点之间的相对距离,将数据映射到二维或三维空间。

5.3 自编码器算法:通过神经网络模型学习数据的压缩表示,实现高维数据的降维和重构。

结论:大数据算法在数据处理和分析中发挥着重要作用,不同的算法适用于不同的场景和问题。

通过了解和应用这些常用算法,可以更好地处理和利用大数据资源,实现数据驱动的决策和创新。

大数据常用的算法

大数据常用的算法

大数据常用的算法一、概述在大数据时代,随着数据量的快速增长,人们需要更高效、准确地处理和分析海量数据。

大数据算法是指为了解决大数据量、高维度、高速度的数据处理和分析问题而设计的算法。

本文将介绍几种常用的大数据算法,包括聚类算法、分类算法、关联规则算法和推荐算法。

二、聚类算法1. K-means算法K-means算法是一种常用的聚类算法,它将数据集分成K个不同的簇,每个簇中的数据点与该簇的质心最为相似。

K-means算法的步骤如下:a. 随机选择K个初始质心。

b. 将每个数据点分配到最近的质心。

c. 更新质心位置,计算每个簇的平均值。

d. 重复步骤b和c,直到质心不再改变或达到最大迭代次数。

2. DBSCAN算法DBSCAN算法是一种基于密度的聚类算法,它将数据点分为核心点、边界点和噪声点。

DBSCAN算法的步骤如下:a. 随机选择一个未访问的数据点。

b. 如果该点的邻域内有足够数量的数据点,则形成一个新的簇,将该点及其邻域内的点加入簇中。

c. 重复步骤b,直到所有数据点都被访问。

三、分类算法1. 决策树算法决策树算法是一种常用的分类算法,它通过构建树形结构来对数据进行分类。

决策树算法的步骤如下:a. 选择一个属性作为根节点。

b. 根据该属性的取值将数据集划分为不同的子集。

c. 对每个子集递归地应用步骤a和b,直到满足停止条件。

d. 为每个叶节点分配一个类别。

2. 支持向量机算法支持向量机算法是一种常用的二分类算法,它通过找到一个最优超平面来将数据点分开。

支持向量机算法的步骤如下:a. 将数据映射到高维空间。

b. 在高维空间中找到一个最优超平面,使得两个类别的数据点距离超平面最远。

c. 根据超平面将数据点分为不同的类别。

四、关联规则算法1. Apriori算法Apriori算法是一种常用的关联规则挖掘算法,它通过计算频繁项集和关联规则来发现数据集中的关联关系。

Apriori算法的步骤如下:a. 找出数据集中的所有频繁项集。

大数据常用的算法

大数据常用的算法

大数据常用的算法在大数据时代,处理海量数据的需求日益增长。

为了更高效地处理和分析这些数据,大数据算法应运而生。

本文将介绍几种常用的大数据算法,包括朴素贝叶斯算法、K均值算法、随机森林算法和支持向量机算法。

一、朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理的分类算法。

它假设样本特征之间相互独立,通过计算给定特征下某个类别的概率来进行分类。

朴素贝叶斯算法在文本分类、垃圾邮件过滤等领域有广泛应用。

例如,我们可以使用朴素贝叶斯算法来判断一封邮件是否为垃圾邮件。

通过对邮件中的词语进行统计,计算出给定某些词语的情况下,该邮件为垃圾邮件的概率。

根据概率大小,我们可以将邮件分类为垃圾邮件或者非垃圾邮件。

二、K均值算法K均值算法是一种聚类算法,用于将数据集划分为K个不同的簇。

它通过计算数据点与簇中心的距离,并将数据点分配给距离最近的簇来实现聚类。

K均值算法在图象分割、客户细分等领域有广泛应用。

例如,我们可以使用K均值算法将一组学生按照成绩划分为不同的等级。

通过计算每一个学生与不同等级的平均成绩之间的距离,将学生分配到最近的等级中。

三、随机森林算法随机森林算法是一种集成学习算法,通过构建多个决策树来进行分类或者回归。

每一个决策树的结果投票决定最终的分类结果。

随机森林算法在图象识别、金融风控等领域有广泛应用。

例如,我们可以使用随机森林算法来预测一辆二手车的价格。

通过构建多个决策树,每一个决策树根据不同的特征对车辆进行分类,最终通过投票得出预测的价格区间。

四、支持向量机算法支持向量机算法是一种二分类算法,通过构建超平面将数据点划分为两个类别。

它通过最大化两个类别之间的间隔来实现分类。

支持向量机算法在文本分类、图象识别等领域有广泛应用。

例如,我们可以使用支持向量机算法来判断一封邮件是否为垃圾邮件。

通过将邮件中的特征转化为向量表示,构建超平面将垃圾邮件和非垃圾邮件分开。

综上所述,朴素贝叶斯算法、K均值算法、随机森林算法和支持向量机算法是大数据处理中常用的算法。

大数据常用的算法

大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则)在大数据时代,数据挖掘是最关键的工作。

大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。

其主要基于人工智能,机器学习,模式学习,统计学等。

通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。

目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。

大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。

这些方法从不同的角度对数据进行挖掘。

(1)分类。

分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。

可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。

(2)回归分析。

回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。

它可以应用到对数据序列的预测及相关关系的研究中去。

在市场营销中,回归分析可以被应用到各个方面。

如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。

(3)聚类。

聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。

属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。

(4)关联规则。

关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。

关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。

大数据常用的算法

大数据常用的算法

大数据常用的算法一、介绍在大数据时代,海量的数据需要被高效地处理和分析,而大数据算法就是为了解决这个问题而诞生的。

大数据算法可以帮助我们从海量数据中提取有用的信息和知识,以支持决策和预测。

本文将介绍几种常用的大数据算法,包括关联规则挖掘、聚类分析、分类算法和推荐系统算法。

二、关联规则挖掘关联规则挖掘是一种用于发现数据集中的频繁项集和关联规则的算法。

它可以帮助我们发现数据集中的潜在关联关系,以便做出相应的决策。

常用的关联规则挖掘算法包括Apriori算法和FP-Growth算法。

Apriori算法通过迭代的方式生成候选项集,并使用支持度和置信度进行剪枝,最终得到频繁项集和关联规则。

FP-Growth算法则通过构建FP树来高效地发现频繁项集和关联规则。

三、聚类分析聚类分析是一种将数据集中的对象划分为不同的组或类别的算法。

聚类分析可以帮助我们发现数据集中的内在结构和模式,以便进行更深入的分析。

常用的聚类分析算法包括K-means算法和层次聚类算法。

K-means算法通过迭代的方式将数据点划分为K个簇,使得簇内的数据点相似度最大化,簇间的数据点相似度最小化。

层次聚类算法则通过不断合并最相似的簇来构建聚类树,最终得到聚类结果。

四、分类算法分类算法是一种将数据点分配到不同类别的算法。

分类算法可以帮助我们对未知数据进行预测和分类。

常用的分类算法包括决策树算法、朴素贝叶斯算法和支持向量机算法。

决策树算法通过构建一棵树来进行分类,每个节点表示一个特征,每个分支表示一个特征值,叶子节点表示一个类别。

朴素贝叶斯算法则基于贝叶斯定理进行分类,假设特征之间相互独立。

支持向量机算法则通过构建超平面来进行分类,使得不同类别的数据点之间的间隔最大化。

五、推荐系统算法推荐系统算法是一种根据用户的历史行为和偏好来推荐个性化内容的算法。

推荐系统算法可以帮助我们提供个性化的推荐,提高用户的满意度和体验。

常用的推荐系统算法包括基于内容的推荐算法、协同过滤算法和深度学习算法。

海量数据处理方法

海量数据处理方法

海量数据处理方法随着互联网的迅猛发展,海量数据的产生和积累已经成为了一种常态。

如何高效地处理海量数据成为了一个非常重要的问题。

针对海量数据的处理,有以下几种常见的方法:1.分布式计算:分布式计算是指将一个大规模的计算任务分解为多个小任务,并在多个计算节点上同时进行计算。

每个计算节点都能独立地处理一部分数据,然后将计算结果进行合并得到最终结果。

分布式计算能够充分利用多台计算机的计算能力,加快数据处理的速度。

2. MapReduce:MapReduce(映射-归约)是一种分布式计算模型,广泛应用于海量数据处理。

其核心思想是将数据处理任务划分为两个阶段:映射和归约。

映射阶段将输入数据分割成若干片段,并在多个计算节点上同时进行处理。

归约阶段将映射阶段得到的中间结果进行合并得到最终结果。

MapReduce能够自动处理节点故障、数据分片和任务调度等问题,提高数据处理的可靠性和效率。

3. 数据压缩:对于海量数据的处理,数据压缩是一个重要的技术手段。

通过数据压缩能够降低数据的存储和传输成本,并提高数据处理的速度。

常见的数据压缩算法有LZO、GZIP、Snappy等。

数据压缩也能够减少磁盘IO,提高磁盘读写的效率。

4.数据分片:对于海量数据的处理,常常需要将数据分割成若干个小块进行处理。

数据分片可以有效地利用多台计算机的计算能力,并降低单个任务的复杂度。

数据分片可以根据数据的键、哈希函数等进行划分,保证每个分片之间的数据量均匀。

5.增量处理:海量数据处理往往需要对数据进行实时的处理,而不是一次性的处理。

增量处理是指对新到达的数据进行即时处理,而不需要重新处理整个数据集。

增量处理能够减少处理时间,并节省计算资源。

6.数据预处理:对于海量数据的处理,常常需要进行一些预处理,如数据清洗、去重、排序等。

数据预处理的目的是为了提高数据质量和减少后续处理的复杂度。

通过数据预处理能够减少冗余数据和噪声数据,提高后续处理的效果。

大数据常用的算法

大数据常用的算法

大数据常用的算法一、介绍在大数据时代,处理海量数据的能力对于企业和组织来说变得至关重要。

大数据算法是一种数学和统计方法的应用,用于从大规模数据集中提取有用的信息和洞察力。

本文将详细介绍几种常用的大数据算法。

二、K均值聚类算法K均值聚类算法是一种无监督学习算法,用于将数据集划分为K个不同的簇。

该算法的基本原理是通过计算数据点之间的距离来确定簇的中心,并将每个数据点分配到最近的中心。

K均值聚类算法在大数据分析和图像处理等领域得到了广泛应用。

三、决策树算法决策树算法是一种基于树状结构的分类和回归方法。

它通过对数据集进行递归划分来构建一棵决策树,每个节点代表一个属性,每个分支代表一个属性值,叶子节点代表一个类别或数值。

决策树算法在大数据分析和数据挖掘中常用于预测和分类任务。

四、随机森林算法随机森林算法是一种集成学习算法,通过构建多个决策树并对其结果进行集成来提高预测准确性。

随机森林算法在每棵决策树的构建过程中引入了随机性,以减少过拟合的风险。

它在大数据分类和回归问题中具有较高的准确性和鲁棒性。

五、支持向量机算法支持向量机算法是一种二分类方法,通过在特征空间中找到一个最优超平面来分离两个不同类别的数据点。

支持向量机算法在大数据分类和回归问题中具有良好的泛化能力和鲁棒性。

它在文本分类、图像识别和生物信息学等领域得到了广泛应用。

六、朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理的分类方法,假设特征之间相互独立。

该算法通过计算给定类别的条件概率来进行分类。

朴素贝叶斯算法在大数据文本分类和垃圾邮件过滤等任务中表现出色。

七、神经网络算法神经网络算法是一种模拟人脑神经元之间相互连接的计算模型。

它通过多个神经元的层次化组织来学习和处理数据。

神经网络算法在大数据模式识别、语音识别和自然语言处理等领域具有强大的学习和适应能力。

八、聚类算法聚类算法是一种将数据集中的对象划分为相似组或簇的方法。

聚类算法通过计算数据点之间的相似度或距离来确定簇的划分。

高效处理大数据的四种方法

高效处理大数据的四种方法

高效处理大数据的四种方法随着科技的不断发展和数据的爆炸增长,大数据已经成为了人们生活和工作中不可或缺的一部分。

然而,高效处理大数据却是一个复杂的挑战。

在本文中,我将介绍四种高效处理大数据的方法,以帮助读者更好地处理和分析海量的数据。

方法一:并行计算并行计算是一种将大数据划分为多个小任务并同时处理的方法。

采用并行计算的好处是能够同时利用多个处理器或计算机资源,提高处理数据的速度和效率。

在并行计算中,常用的技术包括分布式系统、多线程编程和图形处理器(GPU)等。

通过将大数据分割为多个小部分,并由多个处理单元同时处理,能够减少数据的传输和计算时间,从而提高了大数据的处理速度和效率。

方法二:数据压缩数据压缩是一种通过减少数据占用的存储空间以提高处理速度和效率的方法。

当处理大规模的数据时,数据压缩可以减少物理存储介质的开销,并提高数据的传输速度。

常用的数据压缩算法包括哈夫曼编码、Lempel-Ziv-Welch(LZW)编码和差分编码等。

通过选择合适的压缩算法和参数,可以大幅度减少存储空间和传输时间,使得大数据的处理更加高效。

方法三:分布式存储和计算分布式存储和计算是一种将大数据分散存储在多个节点上,并通过并行计算的方式对数据进行处理的方法。

在分布式系统中,数据通常存储在多个节点上,并由多个计算节点同时进行计算。

这种方式可以充分利用集群系统的资源,并实现数据的快速处理。

常见的分布式存储和计算框架包括Hadoop和Spark等。

通过使用这些框架,可以将大数据分布式存储和并行处理,从而提高数据处理的速度和效率。

方法四:增量计算增量计算是一种将大数据划分为小批次,并逐步处理的方法。

通过将大数据分成多个小批次,并逐一处理每个批次,可以降低计算和存储的复杂性,提高处理效率。

在增量计算中,常用的技术包括流处理和迭代计算等。

通过增量计算,可以高效处理大数据,并及时获取计算结果,满足实时业务需求。

综上所述,高效处理大数据是一个复杂的问题,但我们可以采用并行计算、数据压缩、分布式存储和计算以及增量计算等四种方法来提高处理大数据的速度和效率。

常用大数据量、海量数据处理方法 总结

常用大数据量、海量数据处理方法  总结

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu goog le腾讯这样的一些涉及到海量数据的公司经常会问到。

下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。

下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

l.Bloom filter适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集基本原理及要点:对于原理来说很简单,位数组+k个独立hash函数。

将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。

同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。

所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。

当hash函数个数k=(ln2)*(m/n)时错误率最小。

在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n 个元素的集合。

但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge大概就是nlg(1/E)1.44倍(lg 表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。

这样k 大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。

通常单个元素的长度都是有很多bit 的。

所以使用bloom filter内存上通常都是节省的。

扩展:Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。

最常用的四种大数据分析方法

最常用的四种大数据分析方法

最常用的四种大数据分析方法随着信息技术的发展和互联网的普及,大数据成为了当今社会中不可忽视的重要资源。

大数据分析作为对海量数据进行深入挖掘和分析的方法,已经广泛应用于各个领域。

本文将介绍最常用的四种大数据分析方法,包括描述性分析、预测分析、关联分析和文本分析。

描述性分析是大数据分析中最常用的一种方法。

它通过对数据的统计和可视化展示,总结数据的基本特征、趋势和规律。

其中,常用的统计指标包括均值、中位数、标准差等,通过这些指标可以直观地描述数据的分布情况和集中程度。

另外,可视化展示也是描述性分析的重要手段,通过绘制直方图、折线图等可视化图形,使数据更加直观、易于理解。

描述性分析广泛应用于市场营销、人口统计学、金融分析等领域。

预测分析是基于大数据的一种方法,通过对历史数据的分析和建模,预测未来的趋势和结果。

它可以帮助企业进行销售预测、股票走势预测、天气预报等。

预测分析依赖于统计模型和机器学习算法,其中常用的方法包括回归分析、时间序列分析、神经网络等。

通过对历史数据的学习和模式识别,预测分析可以给出未来的结果和可能性,帮助企业和决策者做出正确的决策。

关联分析是一种挖掘大数据中相互关系的方法。

它通过分析数据集中的不同变量之间的关联程度,找到其中的规律和关系。

关联分析常用于购物篮分析、用户行为分析等领域。

其中最经典的关联分析算法是Apriori算法,它可以帮助企业发现产品之间的关联性,从而进行差异化营销或推荐系统。

关联分析的结果可以帮助企业更好地了解用户需求和行为,提供个性化的服务。

文本分析是对大数据中海量文本进行分析和挖掘的方法。

随着社交媒体和网页的发展,大量的文本数据被生成,包括用户评论、新闻报道等。

文本分析可以帮助企业进行舆情分析、情感分析等。

它可以通过自然语言处理技术,提取文本中的关键词、主题和情感信息,帮助企业了解用户对产品或服务的态度和评价。

常用的文本分析方法包括词频统计、主题模型等。

以上就是最常用的四种大数据分析方法。

大数据常用的算法

大数据常用的算法

大数据常用的算法一、介绍在大数据时代,数据量庞大且复杂,如何从海量数据中提取有价值的信息成为了一项重要的任务。

为了解决这个问题,大数据算法应运而生。

大数据算法是一种用于处理大规模数据集的计算方法和技术,通过对数据进行分析、建模和预测,从中挖掘出有用的信息和模式。

二、常见的大数据算法1. 关联规则挖掘算法关联规则挖掘算法用于发现数据集中的频繁项集和关联规则。

频繁项集是指在数据集中经常同时出现的一组项,而关联规则则是描述这些项之间的关联关系。

常用的关联规则挖掘算法有Apriori算法和FP-Growth算法。

2. 分类算法分类算法用于将数据集中的样本划分到不同的类别中。

常见的分类算法有决策树、支持向量机(SVM)、朴素贝叶斯分类器和随机森林等。

这些算法通过学习已有的标记样本,建立分类模型,并用于对未知样本进行分类预测。

3. 聚类算法聚类算法用于将数据集中的样本划分为不同的群组,使得同一群组内的样本相似度较高,而不同群组之间的样本相似度较低。

常见的聚类算法有K-means算法、DBSCAN算法和层次聚类算法等。

4. 预测算法预测算法用于根据已有的数据,预测未来的趋势和结果。

常见的预测算法有线性回归、逻辑回归和支持向量回归等。

这些算法通过对已有数据的拟合,建立预测模型,并用于对未来数据进行预测。

5. 推荐算法推荐算法用于根据用户的历史行为和兴趣,向其推荐可能感兴趣的物品或服务。

常见的推荐算法有协同过滤算法、基于内容的推荐算法和基于深度学习的推荐算法等。

6. 图像处理算法图像处理算法用于对大规模图像数据进行处理和分析。

常见的图像处理算法有边缘检测算法、图像分割算法和图像识别算法等。

这些算法通过对图像进行特征提取和模式识别,实现图像的自动处理和分析。

三、应用场景1. 金融领域大数据算法在金融领域的应用非常广泛。

通过对大量的金融数据进行分析和建模,可以实现风险评估、信用评分、欺诈检测和股票预测等功能。

2. 零售领域大数据算法在零售领域可以用于用户行为分析、商品推荐和销售预测等。

大数据常用的算法

大数据常用的算法

大数据常用的算法一、介绍大数据算法是在处理大规模数据集时使用的数学和统计方法。

它们被广泛应用于数据挖掘、机器学习和人工智能等领域,帮助分析师和数据科学家从海量数据中提取有价值的信息和模式。

本文将介绍几种常用的大数据算法,包括K均值聚类、决策树、随机森林和支持向量机。

二、K均值聚类K均值聚类是一种常见的无监督学习算法,用于将数据集划分为K个不同的簇。

其基本思想是通过最小化每个数据点与其所属簇中心的距离来实现聚类。

具体步骤如下:1. 随机选择K个初始聚类中心。

2. 将每个数据点分配给最近的聚类中心。

3. 更新聚类中心为每个簇的平均值。

4. 重复步骤2和3,直到聚类中心不再变化或达到预定的迭代次数。

三、决策树决策树是一种基于树状结构的分类和回归算法。

它通过在每个节点上选择最佳的特征进行分割,将数据集划分为不同的子集,直到达到预定的停止条件。

决策树的优点是易于理解和解释,适用于处理具有多个特征的大数据集。

常用的决策树算法包括ID3、C4.5和CART。

四、随机森林随机森林是一种集成学习算法,通过构建多个决策树并对其进行组合来提高预测准确性。

每个决策树都是基于随机选择的特征子集和数据集的随机抽样构建的。

随机森林的主要优点是能够处理高维度数据和处理缺失值,同时具有较高的预测准确性。

五、支持向量机支持向量机是一种常用的监督学习算法,用于分类和回归问题。

它通过在特征空间中构建一个最优的超平面来实现分类。

支持向量机的主要思想是找到能够最大化类别间间隔的超平面,从而使分类误差最小化。

支持向量机在处理大规模数据集时具有较高的效率和准确性。

六、总结大数据算法是处理大规模数据集的关键工具,能够帮助分析师和数据科学家从海量数据中提取有价值的信息和模式。

本文介绍了几种常用的大数据算法,包括K 均值聚类、决策树、随机森林和支持向量机。

每种算法都有其特定的应用场景和优缺点,根据具体问题和数据集的特征选择合适的算法进行分析和建模。

大数据常用的算法

大数据常用的算法

大数据常用的算法引言概述:随着大数据时代的到来,大数据算法变得越来越重要。

大数据算法是指在处理海量数据时,能够高效地提取实用信息的一种数学模型和方法。

本文将介绍几种常用的大数据算法,并详细阐述它们的原理和应用。

正文内容:一、聚类算法1.1 K-means算法:通过计算数据点之间的距离,将数据点划分为不同的簇。

它的应用包括客户细分、图象分割等。

1.2 DBSCAN算法:基于密度的聚类算法,能够识别出任意形状的簇。

它在异常检测和噪声数据过滤上有广泛应用。

二、分类算法2.1 决策树算法:通过对数据的特征进行分析,构建一颗树状结构,用于分类和预测。

它在金融风险评估和医学诊断等领域有广泛应用。

2.2 支持向量机算法:通过将数据映射到高维空间,找到一个最优超平面来进行分类。

它在文本分类和图象识别上有很好的效果。

三、关联规则挖掘算法3.1 Apriori算法:通过挖掘频繁项集和关联规则,发现数据中的相关性。

它在市场篮子分析和推荐系统中被广泛使用。

3.2 FP-growth算法:通过构建FP树和挖掘频繁模式,实现高效的关联规则挖掘。

它在网络入侵检测和用户行为分析等方面有应用。

四、回归算法4.1 线性回归算法:通过拟合线性模型,预测因变量与自变量之间的关系。

它在销售预测和房价预测等领域有广泛应用。

4.2 随机森林算法:通过构建多个决策树,综合预测结果,提高预测准确率。

它在金融风险评估和医学诊断等方面有应用。

五、推荐算法5.1 协同过滤算法:通过分析用户的历史行为和兴趣,给用户推荐相关的物品。

它在电商推荐和社交网络中有广泛应用。

5.2 基于内容的推荐算法:通过分析物品的特征和用户的偏好,给用户推荐相似的物品。

它在音乐推荐和新闻推荐等方面有应用。

总结:综上所述,大数据常用的算法包括聚类算法、分类算法、关联规则挖掘算法、回归算法和推荐算法。

这些算法在不同领域有着广泛的应用,能够匡助我们从海量数据中提取实用的信息,做出准确的预测和决策。

大数据技术总结报告

大数据技术总结报告

大数据技术总结报告引言随着互联网和移动互联网的快速发展,大规模的数据量迅速积累。

如何高效地处理和分析这些海量数据,从中提取有价值的信息,成为了企业和组织面临的重要挑战。

为了解决这一问题,大数据技术应运而生。

本报告对大数据技术进行总结和概述,包括其定义、特点、应用领域以及常见的技术工具和算法等内容。

定义和特点大数据技术是一种通过利用分布式计算、存储和处理技术,针对大规模数据集进行收集、整理、分析和挖掘的技术方法。

大数据技术的特点主要包括以下几个方面:•数据量大:大数据技术主要应对的是海量的数据,数据量通常以TB、PB甚至EB来衡量。

•数据类型多样:大数据技术需要处理各种类型的数据,如结构化数据、半结构化数据和非结构化数据等。

•数据流速快:大数据技术需要能够快速处理实时的数据流,以满足各种场景下的实时需求。

•数据价值高:大数据技术可以从海量数据中提取隐藏的信息和知识,为决策和业务提供有力的支持。

应用领域大数据技术在各个领域都有广泛的应用,下面列举了一些常见的应用领域:1.电商行业:大数据技术可以用于用户行为分析、商品推荐、精准营销等方面,提高用户购物体验和销售效果。

2.金融行业:大数据技术可以用于风险管理、信用评估、欺诈检测等方面,提高金融机构的运营效率和风险控制能力。

3.医疗行业:大数据技术可以用于疾病预测、基因组学研究、药物研发等方面,提高医疗机构的诊断准确性和治疗效果。

4.能源行业:大数据技术可以用于能源消耗预测、电力负荷管理、智能电网建设等方面,提高能源利用效率和环境保护水平。

5.交通运输行业:大数据技术可以用于交通拥堵预测、出行路线规划、车辆调度等方面,提高交通运输的效率和安全性。

技术工具和算法大数据技术涉及到很多技术工具和算法,下面介绍了一些常见的技术工具和算法:1.Hadoop:Hadoop是一个开源的分布式计算框架,主要用于处理大规模数据集的存储和计算。

它包括HDFS(Hadoop Distributed File System)和MapReduce两个核心组件。

大数据常用的算法

大数据常用的算法

大数据常用的算法一、介绍在大数据时代,海量的数据对我们来说是一项巨大的财富,但如何从这些数据中提取有价值的信息却是一项挑战。

大数据算法是用于处理和分析大规模数据集的数学和统计方法。

它们匡助我们从海量数据中发现模式、提取特征、进行预测和优化等。

本文将介绍几种常用的大数据算法及其应用。

二、常用的大数据算法1. K均值聚类算法K均值聚类算法是一种常用的无监督学习算法,用于将数据集分成K个不相交的簇。

该算法通过计算数据点与聚类中心之间的距离来确定数据点所属的簇。

它在大数据分析中被广泛用于图象分割、文本聚类和推荐系统等领域。

2. 决策树算法决策树算法是一种基于树结构的分类和回归方法。

它通过对数据集进行递归划分,构建一个树形模型来进行预测。

决策树算法具有可解释性强、易于理解和实现的特点,在金融风险评估、医疗诊断和客户分类等领域有广泛应用。

3. 支持向量机算法支持向量机算法是一种二分类模型,通过在高维空间中构建超平面来实现分类。

它通过最大化分类边界的间隔来提高模型的鲁棒性和泛化能力。

支持向量机算法在文本分类、图象识别和网络入侵检测等领域具有良好的效果。

4. 随机森林算法随机森林算法是一种集成学习方法,它结合了多个决策树模型来进行分类和回归。

随机森林算法通过随机选择特征和样本来减少模型的方差,提高模型的泛化能力。

它在金融风控、信用评分和销售预测等领域有广泛应用。

5. 神经网络算法神经网络算法是一种摹拟人脑神经元工作方式的机器学习算法。

它通过构建多层神经元网络来进行学习和预测。

神经网络算法具有强大的拟合能力和非线性建模能力,在图象识别、自然语言处理和语音识别等领域取得了重要突破。

三、大数据算法的应用案例1. 电商推荐系统电商推荐系统利用大数据算法分析用户的历史购买记录、浏览行为和个人偏好,为用户推荐个性化的商品。

通过使用K均值聚类算法和协同过滤算法,电商平台可以更好地理解用户需求,提高销售量和用户满意度。

2. 智能交通管理智能交通管理利用大数据算法分析交通流量、车辆位置和道路状况,优化交通信号灯控制和路线规划。

大数据处理方法总结

大数据处理方法总结

大数据处理方法总结第一章介绍大数据时代的到来使得数据处理成为当代的一项重要任务。

随着互联网、社交媒体、物联网等技术的快速发展,数据量呈指数级增长,传统的数据处理方法已经无法满足对大数据的高效处理需求。

因此,本文将总结大数据处理的各种方法,包括数据采集、存储、处理和分析等方面。

第二章数据采集数据采集是大数据处理的第一步,它涉及到如何从多个来源获取数据并将其整合成结构化或非结构化的格式。

常见的数据采集方法包括爬虫技术、数据抓取和API接口等。

爬虫技术通过模拟浏览器行为来抓取网页数据,数据抓取是通过特定软件或脚本从数据库或文件中提取数据,API接口是通过调用开放的数据接口来获取数据。

数据采集的关键在于选择合适的方法和技术,并能够处理各种可能的异常情况。

第三章数据存储数据存储是大数据处理中的重要环节,为了能够高效地存储和管理大规模的数据,需要采用适当的数据存储技术。

传统的关系型数据库在面对大数据处理时性能较差,因此,出现了许多新型的数据存储技术。

例如,分布式文件系统(如Hadoop的HDFS)能够将数据分散存储在多个节点上,分布式数据库(如Cassandra)能够将数据分布在不同的服务器上,列式数据库(如Vertica)则将数据以列的方式进行存储,提高了读取和查询的效率。

选择合适的数据存储技术需要综合考虑数据的特点、处理需求和成本等因素。

第四章数据处理数据处理是大数据处理过程中的核心环节,它包括数据清洗、数据转换和数据集成等步骤。

数据清洗是指在原始数据中去除重复、错误或不完整的数据,以确保数据的质量和准确性。

数据转换是将原始数据转换为目标格式,常见的转换操作包括数据筛选、聚合和计算等。

数据集成是将来自不同数据源的数据整合在一起,以便进行后续的分析和挖掘。

数据处理的关键在于选取合适的工具和算法,并能够高效地处理大规模的数据。

第五章数据分析数据分析是大数据处理的最终目标,通过对海量数据的分析和挖掘,可以发现隐藏在数据中的规律和信息。

大数据分析方法及技巧总结

大数据分析方法及技巧总结

大数据分析方法及技巧总结随着信息技术的快速发展,大数据分析已经成为当今社会中不可或缺的一个重要领域。

大数据分析的目标是从海量的数据中提取有价值的信息,并从中获取洞察力和决策支持。

为了达到这个目标,人们开发出了许多方法和技巧。

在本文中,我们将总结一些常用的大数据分析方法和技巧。

1. 数据清洗和预处理:在进行大数据分析之前,数据清洗和预处理是至关重要的一步。

这个过程包括数据的去除重复值、填充缺失值、处理异常值和规范化数据等。

数据清洗和预处理能够提高数据的质量,从而提高分析的可靠性和准确性。

2. 探索性数据分析:探索性数据分析(EDA)是一种用于发现数据模式和关联的方法。

通过可视化和统计技术,探索性数据分析可以帮助分析师理解数据的分布、关系和趋势。

在进行EDA时,可以利用直方图、散点图、箱线图等工具来揭示数据的特征和模式。

3. 机器学习算法:机器学习算法是大数据分析的重要工具之一。

通过训练模型来预测未知数据或识别数据中的模式和规律。

常用的机器学习算法包括决策树、支持向量机、随机森林和神经网络等。

根据不同的问题和数据类型,选择合适的机器学习算法可以提高分析的准确性和效率。

4. 聚类分析:聚类分析是一种将相似的数据点分组的方法。

通过识别数据中的分类模式,聚类分析可以帮助分析师发现数据的潜在结构和关系。

常用的聚类算法包括K均值聚类、层次聚类和DBSCAN等。

聚类分析可以帮助组织和概括大规模数据集,使其更易于理解和解释。

5. 关联规则挖掘:关联规则挖掘是一种发现数据集中频繁出现的关联项的方法。

通过发现这些关联项,可以洞察数据中可能存在的隐含关系和规律。

常用的关联规则挖掘算法包括Apriori算法和FP-growth算法。

关联规则挖掘可以帮助企业发现市场中的潜在机会,并制定相应的营销策略。

6. 时间序列分析:时间序列分析是一种用于预测和分析时间上相关数据的方法。

通过分析数据的趋势、季节性和周期性,时间序列分析可以帮助预测未来的趋势和行为。

大数据分析利用计算机处理和解读海量数据

大数据分析利用计算机处理和解读海量数据

大数据分析利用计算机处理和解读海量数据大数据分析:利用计算机处理和解读海量数据随着科技的发展,我们生活的方方面面都产生了大量的数据。

这些数据蕴藏着许多有价值的信息,然而,由于数据量庞大,人类难以直接从海量数据中获取有用的信息。

为了充分利用这些数据,大数据分析应运而生。

大数据分析是一种利用计算机技术来处理和解读海量数据的方法。

通过对大量的数据进行采集、存储、处理和分析,可以从中发现潜在的关联、模式和趋势,为决策和创新提供科学依据。

首先,大数据分析需要建立一个完善的数据采集和存储系统。

在数据采集过程中,我们需要确保数据的准确性和完整性。

一旦数据被采集到系统中,它们将会被存储在数据库中,以便后续的分析和处理。

接下来,大数据分析会对海量数据进行处理和清洗。

在这个阶段,我们会利用各种算法和模型来过滤掉一些无用的数据,以及修复一些错误和缺失的数据。

这样可以保证后续的分析过程更加准确和可靠。

然后,大数据分析会运用统计学和机器学习等技术对数据进行分析。

通过建立合适的模型和算法,我们能够从海量数据中挖掘出有意义的信息。

例如,我们可以分析用户的购买记录,以预测他们的消费偏好;我们可以分析社交媒体的数据,以了解公众对某个话题的关注度等。

最后,大数据分析会将分析结果可视化呈现,以便决策者更好地理解和应用这些信息。

可视化的方式可以包括各种图表、报告和仪表盘等。

决策者可以通过这些可视化的结果来进行战略规划、市场预测和风险管理等。

大数据分析在许多领域都有广泛的应用。

在商业领域中,大数据分析可以帮助企业了解市场需求、优化运营和提高竞争力。

在医疗领域中,大数据分析可以辅助医生进行诊断和治疗,提高患者的生活质量。

在政府领域中,大数据分析可以帮助政府实施更加智能的决策和治理。

然而,大数据分析也面临一些挑战。

首先,数据的质量和隐私问题一直是大数据分析的热点议题。

如何保证数据的准确性和隐私性,是一个需要解决的难题。

其次,大数据分析需要处理海量的数据,对计算能力和存储空间提出了更高的需求。

海量数据的处理

海量数据的处理

1.Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对 于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这 个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
实 际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几 大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。
问题实例:
1).海量日志数据,提取出某日访问次数最多的那个IP。 IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。
3.bit-map
适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
"it": {0, 1, 2}
"what": {0, 1}
检索的条件"what", "is" 和 "it" 将对应集合的交集。
正 向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引 中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很 容易看到这个反向的关系。

大数据常用的算法

大数据常用的算法

大数据常用的算法大数据时代的到来,给数据分析和处理带来了巨大的挑战。

为了更好地处理大规模的数据集,人们开辟了许多常用的算法。

这些算法在大数据领域发挥着重要作用,能够匡助人们从海量数据中提取有价值的信息。

一、数据预处理算法1. 数据清洗算法:数据清洗是指对原始数据进行去除噪声、修复缺失值、处理异常值等操作的过程。

常用的数据清洗算法有离群值检测、缺失值插补、重复值处理等。

2. 特征选择算法:特征选择是指从原始数据中选择出最具有代表性和重要性的特征,以减少数据集的维度和复杂度。

常用的特征选择算法有信息增益、卡方检验、相关系数等。

3. 特征转换算法:特征转换是将原始数据转换为更适合建模的形式,常用的特征转换算法有主成份分析(PCA)、线性判别分析(LDA)等。

二、数据挖掘算法1. 关联规则挖掘算法:关联规则挖掘是指从大规模数据集中发现项集之间的关联关系。

常用的关联规则挖掘算法有Apriori算法、FP-Growth算法等。

2. 分类算法:分类是指将数据集中的样本划分到不同的类别中。

常用的分类算法有决策树、支持向量机(SVM)、朴素贝叶斯等。

3. 聚类算法:聚类是指将数据集中的样本划分为若干个类别,使得同一类别内的样本相似度较高,不同类别之间的样本相似度较低。

常用的聚类算法有K-means算法、DBSCAN算法等。

4. 预测算法:预测是指根据已有的数据,通过建立模型来预测未来的结果。

常用的预测算法有线性回归、逻辑回归、神经网络等。

三、数据处理算法1. 排序算法:排序是指将数据集中的元素按照一定的规则进行罗列的过程。

常用的排序算法有冒泡排序、快速排序、归并排序等。

2. 查找算法:查找是指在数据集中查找指定元素的过程。

常用的查找算法有二分查找、哈希查找等。

3. 图算法:图算法是指在图结构上进行操作和计算的算法。

常用的图算法有最短路径算法、最小生成树算法等。

四、机器学习算法1. 监督学习算法:监督学习是指从有标签的训练数据中学习出一个模型,然后用该模型对新样本进行预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu goog le 腾讯这样的一些涉及到海量数据的公司经常会问到。

下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。

下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

1.Bloom filter适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集基本原理及要点:对于原理来说很简单,位数组+k个独立hash函数。

将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。

同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。

所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m 的大小及hash函数个数。

当hash函数个数k=(ln2)*(m/n)时错误率最小。

在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。

但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg 表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。

这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。

通常单个元素的长度都是有很多bit的。

所以使用bloom filter内存上通常都是节省的。

扩展:Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。

Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。

Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。

SBF采用counter中的最小值来近似表示元素的出现频率。

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用6 4字节,内存限制是4G,让你找出A,B文件共同的URL。

如果是三个乃至n个文件呢?根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。

现在可用的是340亿,相差并不多,这样可能会使出错率上升些。

另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

2.Hashing适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存基本原理及要点:hash函数选择,针对字符串,整数,排列,具体相应的hash方法。

碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

扩展:d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2 -left hashing。

2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h 2。

在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。

这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。

如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。

在查找一个key时,必须进行两次hash,同时查找两个位置。

问题实例:1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip 直接存入内存,然后进行统计。

3.bit-map适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码扩展:bloom filter可以看做是对bit-map的扩展问题实例:1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2. 5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。

或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

4.堆适用范围:海量数据前n大,并且n比较小,堆可以放入内存基本原理及要点:最大堆求前n小,最小堆求前n大。

方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。

这样最后得到的n个元素就是最小的n个。

适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例:1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

5.双层桶划分适用范围:第k大,中位数,不重复或重复的数字基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。

可以通过多次缩小,双层只是一个例子。

扩展:问题实例:1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2. 5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。

也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。

首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。

然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。

即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

6.数据库索引适用范围:大数据量的增删改查基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。

扩展:问题实例:7.倒排索引(Inverted index)适用范围:搜索引擎,关键字查询基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本:T0 = "it is what it is"T1 = "what is it"T2 = "it is a banana"我们就能得到下面的反向文件索引:"a": {2}"banana": {2}"is": {0, 1, 2}"it": {0, 1, 2}"what": {0, 1}检索的条件"what", "is" 和"it" 将对应集合的交集。

正向索引开发出来用来存储每个文档的单词的列表。

正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。

在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。

也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

扩展:问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

8.外排序适用范围:大数据的排序,去重基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树扩展:问题实例:1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。

返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1 m做hash有些不够,所以可以用来排序。

内存可以当输入缓冲区使用。

9.trie树适用范围:数据量大,重复多,但是数据种类小可以放入内存基本原理及要点:实现方式,节点孩子的表示方式扩展:压缩实现。

问题实例:1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。

要你按照query的频度排序。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。

请问怎么设计和实现?3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

10.分布式处理mapreduce适用范围:数据量大,但是数据种类小可以放入内存基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:问题实例:1).The canonical example application of MapReduce is a process to count the appearances ofeach different word in a set of documents:void map(String name, String document):// name: document name// document: document contentsfor each word w in document:EmitIntermediate(w, 1);void reduce(String word, Iterator partialCounts):// key: a word// values: a list of aggregated partial countsint result = 0;for each v in partialCounts:result += ParseInt(v);Emit(result);Here, each document is split in words, and each word is counte d initially with a "1" value bythe Map function, using the word as the result key. The framew ork puts together all the pairswith the same key and feeds them to the same call to Reduce, thus this function just needs tosum all of its input values to find the total appearances of that word.2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。

相关文档
最新文档