一元一次方程培优训练(有答案)

合集下载

2020年秋苏科版七年级数学上册第4章一元一次方程4.1-4.3 阶段培优训练卷(有答案)

2020年秋苏科版七年级数学上册第4章一元一次方程4.1-4.3 阶段培优训练卷(有答案)

2020-2021苏科版七年级数学上册第4章一元一次方程4.1-4.3 阶段培优训练卷一、选择题1、已知下列方程:①x ﹣2=;②0.2x =1;③=x ﹣3;④x ﹣y =6;⑤x =0, 其中一元一次方程有( ) A .2个 B .3个 C .4个 D .5个2、已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( ) A .﹣2 B .2 C .±2 D .±1 3、若2(a+3)的值与4互为相反数,则a 的值为( )A .﹣1B .27-C .﹣5D .21 4、下列运用等式的性质对等式进行的变形中,错误的是( ) A .若a =b ,则B .若a =b ,则ac =bcC .若a (x 2+1)=b (x 2+1),则a =bD .若x =y ,则x ﹣3=y ﹣35、若a =b ,则下列等式:①a +2=b +2;②a -3=b -3,③4a =4b ;④-5a =-5b ;⑤ac =bc 仍成立的有 ( ) A .2个 B .3个 C .4个 D .5个 6、已知3x =-是方程(4)25k x k x +--=的解,则k 的值为( )A.-2B.2C.3D.57、若关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为 ( ) A. 9 B. 8 C. 5 D. 4 8、适合|2a+7|+|2a ﹣1|=8的整数a 的值的个数有( )A .5B .4C .3D .29、某轮船在静水中的速度为20km/h ,水流速度为4km/h ,从甲码头顺流航行到乙码头,再返回甲码头,共用5h (不计停留时间),求甲、乙两码头间的距离。

设甲、乙两码头的距离为xkm , 则所列方程正确的是( )A 、(20+4)x+(20-4)x=5B 、 20x+4x=5C 、5420=+x xD 、5420420=-++x x10、商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%, 则商品卖这两件商品总的盈亏情况是( )A 、亏损20元B 、盈利30元C 、亏损50元D 、不盈不亏11、一项工作,甲单独做需要6天完成,乙单独做需要8天完成,丙单独做需要12天完成。

2022年中考数学培优复习考点一元一次方程专项训练(含答案)

2022年中考数学培优复习考点一元一次方程专项训练(含答案)

一元一次方程专项训练一.选择题1.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个2.若代数式a+3的值为﹣2,则a等于()A.﹣2B.﹣3C.﹣4D.﹣53.下列变形错误的是()A.如果a=b,那么a+5=b+5B.如果a=b,那么a﹣c=b﹣c.C.如果ac=bc,那么a=bD.如果,那么a=b4.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折5.将连续的奇数1,3,5,7,9,…排成如图所示的数表,平移十字方框,方框内的5个数字之和可能是()A.405B.545C.2012D.20156.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.7.阅读下列解方程的过程,此过程从上一步到所给步有的产生了错误,则其中没有错误的是()解方程:.①;②2(10x﹣30)﹣5(10x+40)=160;③20x﹣60﹣50x+200=160;④﹣30x=300.A.①B.②C.③D.④8.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.69.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.610.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.某玩具店销售一种玩具,按规定会员购买打八折,非会员购买打九折,同样购买一样玩具,小芳用会员卡比小明不用会员卡购买少花了3元钱,则这种玩具用会员卡购买的价格是元.12.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.13.若关于x的方程2x+a=3与x+2a=7的解相同,则a的值为.14.关于x的方程2x﹣3=kx的解是整数,则整数k可以取的值是.15.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.三.解答题16.解方程:(1)5x+3(2﹣x)=10;(2)x=+4.17.小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.18.公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)求一个月通话多少分钟时两种方式的费用相同?(列方程解)19.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x =﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.20.已知数轴上三点A,O,B对应的数分别为﹣2,0,3,点P为数轴上任意一点,其对应的数为x.(1)AB的长为;(2)如果点P到点A、点B的距离相等,那么x的值是;(3)动点M从点O出发,以每秒3个单位长度的速度沿数轴正方向运动,点N从点B出发,以每秒1个单位长度的速度沿数轴正方向运动.求动点M经过几秒追上动点N?参考答案一.选择题1.解:下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x ﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有③④⑦,共3个.故选:C.2.解:根据题意,可得:a+3=﹣2,解得a=﹣5.故选:D.3.解:∵a=b,∴a+5=b+5,∴选项A不符合题意;∵a=b,∴a﹣c=b﹣c,∴选项B不符合题意;∵ac=bc,c=0时,a可以不等于b,∴选项C符合题意;∵,∴a=b∴选项D不符合题意.故选:C.4.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.5.解:设方框中间的数为x,则方框中的5个数字之和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x,平移十字方框时,方框中间的数x只能在第2或3或4列.A、405÷5=81,在第一列,故本选项不符合题意;B、545÷5=109,在第五列,故本选项不符合题意;C、2012÷5=402.4,数表中都是奇数,故本选项不符合题意;D、2015÷5=403,在第二列,故本选项符合题意;故选:D.6.解:设甲一共做了x天,由题意得:+=,故选:B.7.解:A、过程①中1.6变成16,错误,本选项不符合题意;B、过程②去分母正确,本选项符合题意;C、过程③去括号时应该为﹣200,错误,本选项不符合题意;D、过程④移项及合并同类项时应该化简为﹣30x=20错误,本选项不符合题意;故选:B.8.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.9.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:设这种玩具原价是x元,根据题意可得:0.9x﹣0.8x=3,解得:x=30,∴0.8x=24(元)答:这种玩具用会员卡购买的价格是24元.故答案为:24.12.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.13.解:联立方程得:,②×2﹣①得,3a=11,解得a=.故答案为:.14.解:移项、合并,得(2﹣k)x=3,解得x=,∵x为整数,k为整数,∴,,解得k=±1或3或5.故答案为:±1或3或5.15.解:根据题中的新定义化简得:3x+=2﹣x,去分母得:6x+1=4﹣2x,解得:x=.故答案为:.三.解答题16.解:(1)去括号得:5x+6﹣3x=10,移项得:5x﹣3x=10﹣6,合并得:2x=4,解得:x=2;(2)去分母得:3x=x﹣2+12,移项得:3x﹣x=﹣2+12,合并得:2x=10,解得:x=5.17.解:根据题意,x=3是方程4(2x﹣1)=3(x+m)﹣1的解,将x=3代入得4×(2×3﹣1)=3(3+m)﹣1,解得m=4,所以原方程为=﹣1,解方程得x=.18.解:(1)甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元.(2)设一个月通话x分钟时两种方式的费用相同,由题意得:18+0.10x=0.15x,解得x=360.答:一个月通话360分钟时两种方式的费用相同.19.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.天天向上独家原创-2022故m的值为﹣.20.解:(1)AB=|﹣2﹣3|=5.故答案为:5;(2)依题意,得:|x﹣(﹣2)|=|x﹣3|,即x+2=x﹣3或x+2=3﹣x,方程无解或x=0.5.故答案为:0.5;(3)设动点M经过t秒恰好追上动点N,依题意,得:3t=3+t,解得:t=1.5.答:动点M经过1.5秒恰好追上动点N.11 / 11。

2020-2021学年苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(有答案)

2020-2021学年苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(有答案)

2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷一、选择题1、下列方程中,是一元一次方程的是( )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +94、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( )A .2B .﹣2C .1D .﹣15、解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .47、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,则该方程的解是___ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC .x +x +1964=xD .x +x +1964=3x10、有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②;③;④40m+10=43m+1,其中正确的是( )A .①②B .②④C .②③D .③④ 二、填空题 11、若关于x 的方程32-m x ﹣3m +6=0是一元一次方程,则这个方程的解是12、代数式2a+1与1﹣a 互为相反数,则a=13、在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是______ 14、小华同学在解方程5x ﹣1=( )x+3时,把“( )”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=15、已知与互为倒数,则x 等于 16、一辆慢车从A 地开往300 km 外的B 地,同时,一辆快车从B 地开往A 地,已知慢车速度为40 km/h ,快车速度是慢车速度的1.5倍,它们出发 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a △b =ab ﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x +1)=1,则x =三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲 乙进价(元/件) 22 30售价(元/件) 29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(答案)一、选择题1、下列方程中,是一元一次方程的是(B )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( D )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +9解:∵5x ﹣7y =2,∴﹣2﹣7y =﹣5x ,∴选项A 符合题意;∵6x ﹣3=x +4,∴6x ﹣3=4+x ,∴选项B 不符合题意;∵8﹣x =x ﹣5,∴﹣x ﹣x =﹣5﹣8,∴选项C 不符合题意;∵x +9=3x ﹣1,∴3x ﹣1=x +9,∴选项D 不符合题意.故选:A .4、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( ) A .2 B .﹣2 C .1D .﹣1 解:将x=2代入方程可得:1﹣=,解得:a=﹣2,故选:B .5、解方程4x -2=3-x 的正确顺序是( C )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .4解:将x =2代入一元一次方程ax ﹣2=b 得2a ﹣b =2∵3b ﹣6a +2=3(b ﹣2a )+2∴﹣3(2a ﹣b )+2=﹣3×2+2=﹣4即3b ﹣6a +2=﹣4故选:B .7、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解, 则该方程的解是___x=2827_________ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是____1000____cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC.x+x+1964=x D.x+x+1964=3x解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.10、有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是(D)A.①②B.②④C.②③D.③④二、填空题11、若关于x的方程32mx﹣3m+6=0是一元一次方程,则这个方程的解是解:∵关于x的方程3x m﹣2﹣3m+6=0是一元一次方程,∴m﹣2=1,解得:m=3,此时方程为3x﹣9+6=0,解得:x=1,故答案为:x=112、代数式2a+1与1﹣a互为相反数,则a= ﹣213、在有理数范围内定义运算“☆”,其规则是a☆b=a3-b.若x☆2与4☆x的值相等,则x的值是__52____14、小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=解:设()处的数字为a,根据题意,把x=2代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为x=.故答案为:.15、已知与互为倒数,则x等于解:根据题意得:•=1,去分母得:3(x﹣2)=24,即x﹣2=8,解得:x=10,故答案为:1016、一辆慢车从A地开往300 km外的B地,同时,一辆快车从B地开往A地,已知慢车速度为40 km/h,快车速度是慢车速度的1.5倍,它们出发2或4h 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a△b=ab﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x+1)=1,则x=解:根据题中的新定义得:﹣3(x+1)﹣3(x+1)=1,去括号得:﹣3x﹣3﹣3x﹣3=1,移项合并得:﹣6x=7,解得:x=﹣,故答案为:﹣三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.解:(1)去括号,得4x -60+3x =3.移项,得4x +3x =3+60.合并同类项,得7x =63.方程两边同除以7,得x =9.(2)去分母,得3(3x -1)-2(5x -7)=1×12.去括号,得9x -3-10x +14=12.移项,得9x -10x =12+3-14.合并同类项,得-x =1.方程两边同除以-1,得x =-1.(3)方程变形,得10x 2-1=20x -83. 去分母,得15x -3=20x -8.移项,得15x -20x =-8+3.合并同类项,得-5x =-5.方程两边同除以-5,得x =1.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?解:设甲从A 地到达B 地走了x 小时,则甲走了10xkm,乙走了6xkm,根据题意可得,10x -6x =8 解得 x =2 则 10x =20(km )答:甲走了2小时,A 、B 两地的距离为20km21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?解:(1)甲商场的费用为:4000+(x -4000)80%=0.8x +800(元);乙商场的费用为:3000+(x -3000)90%=0.9x +300(元).(2)当x =6000时,甲商场的费用为:0.8+800=5600(元);当x =6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x +800=0.9x +300,解得x =5000.答:当x 为5000元时,在甲、乙两家商场购买所付的费用相同.22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.解:(1)设每套课桌椅的成本为x 元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x ,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.。

人教版七年级上册 一元一次方程培优专题(含答案)

人教版七年级上册 一元一次方程培优专题(含答案)

人教版七年级上册 解一元一次方程培优专题(含答案)一、单选题1.若关于x 的方程()2018201662018(1)k x x --=-+的解是整数,则整数k 的取值个数是( )A .2B .3C .4D .62.关于x 的方程253x a +=的解及方程220x +=的解相同,则a 的值是(). A .1 B .4 C .-1 D .-43.若3a 及96a -互为相反数,则a 的值为( ) A .32 B .32- C .3 D .3-4.解方程时,去分母后得到的方程是( )A .3(x ﹣5)+2(x ﹣1)=1B .3(x ﹣5)+2x ﹣1=1C .3(x ﹣5)+2(x ﹣1)=6D .3(x ﹣5)+2x ﹣1=65.若代数式32x +及代数式510x -的值互为相反数,则x 的值为()A.1B.0C.-1D.26.方程去分母后正确的结果是( )A. B.C. D.7.若方程:()2160x --=及的解互为相反数,则a 的值为( ) A.-13 B.13 C.73 D.-18.规定,若,则x =( )A.0B.3C.1D.29.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A.1 B.2C.3D.4 10.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A.x =-4B.x =-3C.x =-2D.x =-1 二、填空题11.代数式及代数式32x -的和为4,则x =_____.12.若1y =-是方程237y a -=的解,则关于x 的方程(31)42a x x a -=+-的解为_______________.13.()00ax b a -=≠,a 、b 互为相反数,则x 等于___________14.代数式31a -及2a 互为相反数,则a =___________15.请你写出一个一元一次方程_____,使它的解及一元一次方程3x x 1的解相同.(只需写出一个满足条件的方程即可)16.若代数式 4x 8- 及 3x 22+ 的值互为相反数,则x 的值是____.17.解一元一次方程时,“去分母”这一变形的依据是等式性质;去分母时,要在方程两边都乘各分母的最小公倍数,注意不要漏乘不含分母的项.(______)三、解答题18.m 为整数,关于x 的方程x=6-mx 的解为正整数,求m 的值19.已知y 1=2x +8,y 2=6﹣2x .当x 取何值时,y 1比y 2小5?20.已知3x =是方程()131234m x x ⎡⎤-⎛⎫++=⎢⎥ ⎪⎝⎭⎣⎦的解,求m 的值.21.已知3120x +=及方程|3|1x a +=-的解相同,求a 的值.22.列方程求解(1)m 为何值时,关于x 的一元一次方程4x ﹣2m=3x ﹣1的解是x=2x ﹣3m 的解的2倍.(2)已知|a ﹣3|+(b+1)2=0,代数式的值比12b ﹣a+m 多1,求m 的值.22.我们来定义一种运算: a b c d =ad-bc.例如2? 34? 5=2×5-3×4=-2;再如 21? 3x =3x-2.按照这种定义,当时,x 的值是多少?24.若24a =,2=b .a b的值;(1)求(2)若a+b>0,①求a,b的值;②解关于x的方程.25.如果方程的解及关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.参考答案1.D【解析】【分析】整理方程,得到mx=b的形式,根据k、x都是整数,确定k的个数.【详解】(k−2018)x−2016=6−2018(x+1)整理,得kx=4,由于x、k均为整数,所以当x=±1时,k=±4,当x=±2时,k=±2,当x=±4时,k=±1,所以k的取值共有6个.故选:D.【点睛】本题考查一元一次方程的解,本题所给的方程较繁琐,能将方程整理为mx=b 是解题的关键,还需注意在最终判断k的个数时不能忽略负数.2.A【解析】【分析】利用一元一次方程的解法解出方程2x+2=0,根据同解方程的定义将解得的x的值代入13解答.【详解】解方程2x+2=0,得x=−1,由题意得,−2+5a=3,解得,a=1,故选A.【点睛】本题考查同解方程,解决本题的关键是理解方程解的定义,注意细心运算. 3.C【解析】【分析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】解:根据题意得:去分母得:2a+a-9=0,解得:a=3.故选:C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.4.C【解析】【分析】根据一元一次方程的解法即可求出答案.【详解】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点睛】本题考查了一元一次方程的解法,解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.5.A【解析】【分析】根据互为相反数相加得零列式求解即可.【详解】由题意得x++51032x-=0,解之得x=1.故选A.【点睛】本题考查了相反数的定义,一元一次方程的解法,根据题意正确列出方程是解答本题的关键.6.B【解析】【分析】方程两边乘以8去分母得到结果,即可做出判断.【详解】方程去分母后正确的结果是2(2x−1)=8−(3−x),故选B.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 7.A【解析】试题解析:∵2(x-1)-6=0,∴x=4,∵,∴x=3a-3,∵原方程的解互为相反数,∴4+3a-3=0,解得,a=1.3故选A.8.C【解析】【分析】根据规定,可将转化为方程:()()2133x x ---=,解方程即可.【详解】因为,所以可得()()2133x x ---=,解得1x =,故选C.【点睛】本题主要考查新定义运算,解决本题的关键是要根据新定义规则列出方程.9.C【解析】【详解】设被阴影盖住的一个常数为k ,原方程整理得,k=-32y+12,把代入k=-32y+12,中得,k=-32×(53-)+12==3,故选C. 10.B【解析】∵|m﹣2|+(n﹣1)2=0,∴2010,,-=-=m n∴21,,==m n∴方程2m x n+=,解得3x+=可化为:41x=-.故选B.点睛:(1)一个代数式的绝对值、一个代数式的平方都是非负数;(2)若两个非负数的和为0,则这两个非负数都为0.11.﹣1.【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:,去分母得:219612x x-+-=,移项合并得:44-=,x解得:1x=-,故答案为:﹣1.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.x=8 13【解析】【分析】先把y=−1代入方程2y−3a=7求出a的值,然后把a的值代入方程a(3x−1)=4x+a−2即可求解.【详解】解:∵y=−1是方程2y−3a=7的解,∴−2−3a=7,∴a=−3,把a=−3代入方程a(3x−1)=4x+a−2得:−3(3x−1)=4x−5,解得:x=813,故答案为:x=813.【点睛】本题考查了一元一次方程解的定义以及解一元一次方程,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.【解析】【分析】由于a≠0,可以把方程移项后两边同时除以a,而a、b互为相反数,由此即可得到方程的解.【详解】ax-b=0(a≠0),移项得:ax=b(a≠0),系数化1得:,∵a、b互为相反数,∴x=-1.故填-1.【点睛】本题考查解一元一次方程,相反数.能通过解方程的一般步骤将方程化为的形式,并根据相反数的定义,得出互为相反数的两个数(数不为0)的商为-1是解决此题的关键.14.1 5 .【解析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】根据题意得:3120a a-+=.移项、合并同类项得51a=,解得.故填1 5 .【点睛】本题考查相反数和解一元一次方程,能根据相反数的定义列出a的方程是解决此题的关键.15.答案不唯一,如2x=3等【解析】【分析】先解方程3x−x=−1,求出方程的解,再根据只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a,b是常数且a≠0);根据题意,写一个符合条件的方程即可.【详解】x−x=−1,方程3解得x=1.5,符合条件的方程有很多,如2x=3等.故答案是:答案不唯一,如2x=3等.【点睛】考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.16.-2【解析】【分析】根据相反数的定义即可列出方程求出x的值.【详解】由题意可知:4x-8+3x+22=0,∴x=-2,故答案是:-2【点睛】考查一元一次方程,解题的关键是熟练运用一元一次方程的解法.17.正确【解析】【分析】根据解一元一次方程的步骤即可判断.【详解】解:去分母要在方程乘两边乘分母得最小公倍数,否则会加大计算量;根据等式的性质,不含分母的项也要乘此最小公倍数.故答案为:正确.【点睛】此题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为一.18.0或1或2或5.【解析】【分析】方程整理后,根据解为正整数,求出m的值即可.【详解】解:方程整理得:(1+m)x=6,解得:x=,由解为正整数,得到m+1=1或m+1=2或m+1=3或m+1=6,解得:m=0或m=1或m=2或m=5,故m的值为0或1或2或5.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.当x取﹣74时,y1比y2小5.【解析】【分析】y2﹣y1=5即6-2x-(2x+8)=5,解出即可.【详解】解:根据题意得:y2﹣y1=(6﹣2x)﹣(2x+8)=5,解得:x=﹣74,即当x=﹣74时,y1比y2小5.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 20..【解析】【分析】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,解关于m的方程即可求出m的值.【详解】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,得:,解得:.【点睛】本题考查一元一次方程的解.使一元一次方程两边等式恒成立的未知数的值叫做一元一次方程的解.21.1a=±【解析】【分析】求出第一个方程的解,把x 的值代入第一个方程,求出方程的解即可.【详解】解:解方程3120x +=得4x =-,把4x =-代入方程|3|1x a +=-,得33a =,所以1a =±.【点睛】本题考查了同解方程和解一元一次方程的应用,关键是得出关于a 的方程.22.(1)-14;(2)0.【解析】试题分析:(1)分别表示出两方程的解,根据解的关系确定出m 的值即可; (2)根据题意列出方程,利用非负数的性质求出a 及b 的值,代入计算即可求出m 的值.试题解析:解:(1)方程4x ﹣2m =3x ﹣1,解得:x =2m ﹣1.方程x =2x ﹣3m ,解得:x =3m .由题意得:2m ﹣1=6m ,解得:m =﹣14; (2)由|a ﹣3|+(b +1)2=0,得到a =3,b =﹣1,代入方程21()122b a m b a m -+--+=,得: 51(3)122m m ----+=,整理得:, 去分母得:m ﹣5+1+6﹣2m =2解得:m =0.点睛:此题考查了解一元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.x=-32.【解析】【详解】试题分析:认真阅读新定义的运算,然后直接代入运算格式,再解方程即可.试题解析:根据运算的规则 ,可化为2(2x -1)-2x=(x-1)-(-4)× 12, 化简可得-2x=3,即x=-32.24.(1)0或4或-4(2)①a=b=2②x=1【解析】试题分析:(1)根据乘方和绝对值求出a 、b 的值,然后代入求值即可;(2)根据前面求出的a 、b 的值,确定符合条件的a 、b ,然后代入求解方程即可.试题解析:因为:24a =,2b =所以a=±2,b =±2(1)当a=2,b=2时,a-b=0;当a=2,b=-2时,a-b=4;当a=-2,b=2时,a-b=-4;当a=-2,b=-2时,a-b=0故a-b 的值为0或±4.(2)①因为a+b >0,所以a=2,b=2,②把a=b=2代入方程.可得方程.解得x=125.x=10;a=-4;11.【解析】【分析】根据题意,可先求出方程的解,再将x 的值代入方程()431621x a x a -=-++中,解出a 的值,代入代数式,求2a 1a -+的值即可。

人教版数学七年级上习题试卷第三章 一元一次方程(培优)(解析版)

人教版数学七年级上习题试卷第三章 一元一次方程(培优)(解析版)

第三章一元一次方程(培优)-七年级数学上册单元培优达标强化卷(解析)一、选择题1.将3x−7=2x变形正确的是()A. 3x+2x=7B. 3x−2x=−7C. 3x+2x=−7D. 3x−2x=7【答案】D解:等式两边都加7得:3x=2x+7,等式两边都减2x得:3x−2x=7.2.已知关于x的方程(m−2)x|m−1|=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 0或2【答案】B【解析】解:根据题意得:|m−1|=1,整理得:m−1=1或m−1=−1,解得:m=2或0,把m=2代入m−2得:2−2=0(不合题意,舍去),把m=0代入m−2得:0−2=−2(符合题意),即m的值是0,3.方程2x+1=3与2−a−x3=0的解相同,则a的值为()A. 0B. 3C. 5D. 7【答案】D4.若多项式4x−5与2x−12的值相等,则x的值是()A. 1B. 32C. 23D. 2【答案】B解:由题意得,4x−5=2x−12,去分母,2(4x−5)=2x−1,去括号,8x−10=2x−1,最后移项,8x−2x=−1+10,合并同类项,6x=9,系数化为1,x=32.5.已知:|m−2|+(n−1)2=0,则方程2m+x=n的解为()A. x=−4B. x=−3C. x=−2D. x=−1【答案】B解:∵|m−2|=0,(n−1)2=0m=2,n=1,将m=2,n=1代入方程2m+x=n,得4+x=1移项,得x=−3.6.某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是()A. 100元B. 110元C. 120元D. 130元【答案】A解:设这件产品的进价为x元,x(1+20%)−10=x[1+(20%−10%)],解得,x=100即这件商品的进价为100元,7.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A. 440+x40+60=1 B. 440+x40×60=1C. 440+x40+x60=1 D. 440+x60=1【答案】C【解析】解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:4 40+x40+x60=1.8.下列说法中,正确的是()A. 若ac =bc ,则a =bB. 若a c =bc ,则a =b C. 若a 2=b 2,则a =bD. 若|a|=|b|,则a =b【答案】B【解析】解:A.若ac =bc ,当c ≠0,则a =b ,故此选项错误; B .若ac =bc ,则a =b ,正确;C .若a 2=b 2,则|a|=|b|,故此选项错误;D .若|a|=|b|,则a =±b ,故此选项错误;9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A. 要亏本4%B. 可获利2%C. 要亏本2%D. 既不获利也不亏本【答案】A【解析】解:设这两台空调调价后的售价为x ,两台空调进价分别为a 、b . 调价后两台空调价格为:x =a(1+20%);x =b(1−20%). 解得:a =56x ,b =54x , 调价后售出利润为:2x−(a+b)a+b=2x−(56x+54x)56x+54x =−0.04=−4%,10. 小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A.B.C.D.【答案】B 【解析】解:A 、设最小的数是x . x +x +7+x +7+1=19, x =43,故本选项不符合题意; B 、设最小的数是x . x +x +6+x +7=19, x =2.故本选项符合题意.C 、设最小的数是x . x +x +1+x +7=19, x =113,故本选项不符合题意.D 、设最小的数是x . x +x +1+x +7+1=19, x =103,故本选项不符合题意.故选:B .二、填空题 11. 若代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y的取值无关,则方程3ax +b =0的解为________ 【答案】1 解:(1−a−14)x 2−5y +4−12(ax 2+2by +16)=(1−a −14)x 2−5y +4−12ax 2−by −8 =(1−a −14−12a)x 2−(5+b)y −4 =(54−34a)x 2−(5+b )y −4 ∵代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y 的取值无关,∴54−34a =0,5+b =0,∴a =53,b =−5,∴3ax +b =0为53·3x −5=0, ∴5x −5=0, 解得:x =1. 故答案为1.12. 如果a ,b 为定值,关于x 的一次方程2kx+a 3−x−bk 6=2,无论k 为何值时,它的解总是1,则a +2b = . 【答案】−32【解析】解:将x =1代入方程2kx+a 3−x−bk 6=2,∴2k+a 3−1−bk 6=2,∴4k +2a −1+bk =12, ∴4k +bk =13−2a ,∴k(4+b)=13−2a,由题意可知:b+4=0,13−2a=0,∴a=132,b=−4,∴a+2b=132−8=−32.故答案为:−3213.若(a−2)x|a|−1−2=0是关于x的一元一次方程,则a=______.【答案】−2【解析】解:(a−2)x|a|−1−2=0是关于x的一元一次方程,∴a−2≠0,|a|−1=1,解得a=−2.14.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是__________元.【答案】140解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80%−x=28,解得:x=140.答:这件衣服的成本是140元;故答案为140.15.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为______元.【答案】200【解析】解:设这双鞋的实际售价为x元,根据题意,得0.8x=x−40x=200.16.已知关于x的方程x−m2=x+m3与方程x−12=3x−2的解互为倒数,则m2−2m−3的值为_________.【答案】0解:x−12=3x−2,解得:x=35,∴方程x−m2=x+m3的解为x=53,代入可得:56−m2=53+m3,解得:m=−1,∴m2−2m−3=1+2−3=0.17.用“∗”表示一种运算,其意义是a∗b=a−2b,如果x∗(3∗2)=3,则x=______.【答案】1【解析】解:3∗2=3−2×2=−1,∵x∗(3∗2)=3,∴x∗(−1)=3,x−2×(−1)=3,x+2=3,x=1,18.有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是______小时.【答案】3解:设停电时间为x小时,根据题意得:1−x6=2(1−x4),解得:x=3.19.如果x=1是方程2−13(m−x)=2x的解,那么关于y的方程m(y−3)−2= m(2y−5)的解是______ .【答案】y=0解:∵x=1是方程2−13(m−x)=2x的解,∴2−13(m−1)=2×1,解得m=1,∴关于y的方程为y−3−2=2y−5,移项得,y−2y=−5+2+3,合并同类项得,−y=0,系数化为1得,y=0.20.如图,已知点A、B是直线上两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过___________秒时线段PQ的长为5厘米.【答案】13或1或3或9解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5−4,解得t=13;②点P、Q都向右运动,由题意,得:2t−t=5−4,解得t=1;③点P、Q都向左运动,由题意,得:2t−t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t−4+t=5,解得t=3.综上所述,经过13或1或3秒或9秒时线段PQ的长为5厘米.故答案为13或1或3或9.三、解答题21.已知关于x的方程3[x−2(x−a3)]=4x和3x+a12−1−5x8=1有相同的解,那么这个解是多少?【答案】解:由方程(1)得x=27a,由方程(2)得x=27−2a21,由题意得27a=27−2a21,解得a=2714,代入解得x=2728.∴可得这个解为2728.22.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同⋅为什么⋅(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些⋅为什么⋅【答案】解:(1)设甲、乙合作需要x天完成,由题意,得x30+x20=1,解得:x=12,∵12<15,∴甲、乙两人能履行该合同;(2)34÷(130+120)=9(天)设剩下的工程甲用y天完成,由题意,得y30=14,解得:y=152,9+152=16.5(天)>15(天),不合适;设剩下的工程乙用z天完成,由题意,得y20=14,解得y=5,9+5=14<15,合适,答:调走甲比较合适.23.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)若两车同时开出,相向而行多少小时后两车相遇?(2)若两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?【答案】解:(1)设两车相向而行x小时后两车相遇,根据题意得:160x+80x=360,解得:x=1.5.答:两车相向而行1.5小时后两车相遇;(2)设经过x小时后快车追上慢车,根据题意得:360+80×0.5+80×x=160x,解得:x=5.答:经过5小时后快车追上慢车.24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价−进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?x+15)件,【答案】解:(1)设第一次购进甲种商品x件,则购进乙种商品(12x+15)=6000,根据题意得:22x+30(12解得:x=150,x+15=90.∴12答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29−22)×150+(40−30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,−30)×90×3=1950+180,根据题意得:(29−22)×150+(40×y10解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.25.已知|a+4|+(b−2)2=0,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=___________,b=____________;(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由;(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.【答案】解:(1)−4 2 ;(2)设C点表示的数为x,根据题意得,①当点C在A、B之间时,有c+4=2(2−c),解得,c=0;②当点C在B的右侧时,有c+4=2(c−2),解得,c=8.故点C表示的数为0或8;(3)设运动的时间为t秒,根据题意得,2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:=0,P:−4−2×2=−8,Q:2+3×2=8,M:0−4×2=−8,N:−8+82∴MN=0−(−8)=8.11。

解一元一次方程专项练习(含答案)

解一元一次方程专项练习(含答案)

一、“移项+系数化1”针对练习(1)8x﹣5=3x;(2)6x﹣7=4x﹣5;(3)2x+17=32﹣3x;(4)7x+6=16﹣3x;(5)3x﹣4=2x+5;(6)4x﹣1=2x+5;(7)4﹣3x=6﹣5x;(8).(9)3x+7=32﹣2x;(10)5x+3=﹣2x﹣11;(11)3x﹣8=x+4;(12)5x+2=3x﹣18;(13)2﹣5x=3x+4;(14)5x﹣2x=9;(15)9﹣3y=5y+5.(16)5x﹣8=8x+1;(17)4x﹣1=2x+2.(18)3x+3=8﹣12x;(19)4x﹣2=2x+6;(20)3x﹣2=4x+1;(21)3x﹣6=2x+1;(22)x+4=x﹣2.(23);(24);(25).(26);(27)1.5:6=1:x.(28)6x﹣7=4x﹣5;(29)x+3x=﹣16;(30)9﹣3x=5x+5.(31);(32).(33);(34).(35)6x+6=2x﹣2;(36)3x+9=12;(二)“去括号”针对练习(1)3﹣5(x+1)=2x;(2)3(x﹣3)=x+1;(3)3(1﹣x)=1+2x;(4)8x=﹣2(x+4);(5)7﹣3(x﹣1)=﹣x;(6)2x﹣2(3x+1)=6;(7)5x﹣2(x﹣1)=3;(8)8﹣3(3x+2)=6;(9)x﹣3;(10)7x+2(3x﹣3)=20;(11)4﹣2x=﹣3(2﹣x);(12)4﹣3(2﹣x)=5x;(13)3(x+2)﹣2=x+2;(14)3(x﹣7)+5(x﹣4)=15;(15)x+2(x﹣3)=3(1﹣x);(16)2(3﹣x)=﹣4(x+5);(17)4﹣2(x+4)=2(x﹣1);(18)4(2x﹣1)﹣3(5x+1)=14;(19)3(2x﹣1)=5﹣2(x+2);(20)2((x﹣2)﹣3((4x﹣1)=5((1﹣x).(21)3(20﹣y)=6y﹣4(y﹣11);(22)1﹣3(x+1)=2(1﹣0.5x);(23)3(2x﹣7)=1﹣(x+8);(24);(25)3(x﹣1)+5(x﹣1)=16.(26)7x+2(3x﹣3)=20;(27)3x﹣4(x+1)=6﹣2(2x﹣5);(28)3(x﹣1)﹣2(x+10)=﹣6;(29)3(y﹣7)﹣5(4﹣y)=15;(30)2x﹣3(x﹣1)=5(1﹣x);(31)3x﹣2(x﹣1)=2+3(4﹣x).(32)5(x﹣4)+3(x+6)=14.(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);(34)2(x+1)=﹣5(x﹣2);(35)x﹣3=2(x﹣3)﹣6(1﹣x);(36)2(x+2)=3(x﹣1);(37)3x﹣2=5(x+2);(38)2(x+4)﹣10=5(x﹣2)+10x;(39)9y﹣2(﹣y+4)=3.(40)2(x﹣3)=1﹣3(x+1);(三)“去分母”针对练习(1);(2).(3).(4).(5)=1.(6);(7).(8).(11).(12).(13).(14).(15).(16).(17).(18).(19).(20).(23).(24).(25);(26).(27)﹣1.(28).(29).(30)5x=2x+5;(31)=.(32).(35).(36).(37)﹣1=.(38)=4.(39).(40).(41).(42)﹣1=.(43)=1.(44).(45)=1﹣.(46).(47).(48).(49).答案与解析(一)“移项+系数化1”针对练习(1)8x﹣5=3x;【解答】解:(1)移项得:8x﹣3x=5,合并同类项得:5x=5,系数化为1得:x=1,∴原方程的解为:x=1;(2)6x﹣7=4x﹣5;【解答】解:(1)移项,可得:6x﹣4x=﹣5+7,合并同类项,可得:2x=2,系数化为1,可得:x=1.(3)2x+17=32﹣3x;【解答】解:(1)2x+3x=32﹣17,5x=15,x=3;(4)7x+6=16﹣3x;【解答】解:(1)7x+6=16﹣3x,移项,得7x+3x=16﹣6,合并同类项,得10x=10,系数化为1,得x=1;(5)3x﹣4=2x+5;【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(6)4x﹣1=2x+5;【解答】解:(1)4x﹣1=2x+5,移项,得:4x﹣2x=5+1,合并同类项,得:2x=6,系数化为1,得:x=3;(7)4﹣3x=6﹣5x;﹣3x+5x=6﹣4,2x=2,x=1;(8)解方程:.【解答】解:,移项,得,合并同类项,得,系数化为1,得x=.(9)3x+7=32﹣2x;【解答】解:(1)移项合并得:5x=25,解得:x=5;(10)5x+3=﹣2x﹣11;【解答】解:(1)5x+3=﹣2x﹣11,移项,得5x+2x=﹣11﹣3,合并同类项,得7x=﹣14,系数化成1,得x=﹣2;(11)3x﹣8=x+4;【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(12)5x+2=3x﹣18;【解答】解:(1)5x+2=3x﹣18,移项,5x﹣3x=﹣18﹣2,合并同类项,2x=﹣20,系数化为1,x=﹣10;(13)2﹣5x=3x+4;移项,得﹣5x﹣3x=4﹣2,合并同类项,得﹣8x=2,系数化为1,得x=;(14)5x﹣2x=9;【解答】解:(1)5x﹣2x=9,合并同类项,得3x=9,系数化为1,得x=3;(15)9﹣3y=5y+5.【解答】(2)9﹣3y=5y+5,移项,得﹣3y﹣5y=5﹣9,合并同类项,得﹣8y=﹣4,系数化为1,得.(16)5x﹣8=8x+1;【解答】解:(1)5x﹣8=8x+1移项得:5x﹣8x=1+8,合并同类项得;﹣3x=9,系数化为1得;x=﹣3;(17)4x﹣1=2x+2.【解答】解:(1)移项,可得:4x﹣2x=2+1,合并同类项,可得:2x=3,系数化为1,可得:x=1.5.(18)3x+3=8﹣12x;【解答】解:(1)3x+3=8﹣12x,移项,得3x+12x=8﹣3,合并同类项,得15x=5,系数化为1,得x=;(19)4x﹣2=2x+6;【解答】解:(1)4x﹣2=2x+6,移项,得4x﹣2x=6+2,合并同类项,得2x=8,系数化为1,得x=4;(20)3x﹣2=4x+1;【解答】解:(1)移项,可得:3x﹣4x=1+2,合并同类项,可得:﹣x=3,系数化为1,可得:x=﹣3.(21)3x﹣6=2x+1;【解答】解:(1)3x﹣6=2x+1,移项,得3x﹣2x=6+1,合并同类项,得x=7;(22)x+4=x﹣2.【解答】(2)x+4=x﹣2,移项,得﹣=﹣2﹣4,合并同类项,得﹣=﹣6,系数化为1,得x=9.(23);【解答】解:(1)移项,可得:x=5%+14,合并同类项,可得:x=14.05,系数化为1,可得:x=.(24);【解答】(2)合并同类项,可得:1.4x=2.1,系数化为1,可得:x=1.5.(25).【解答】(3)∵,∴1.6x=,系数化为1,可得:x=.(26);【解答】解:(1)整理原方程,得:;系数化为1,得:x=;所以原方程的解为:x=;(27)1.5:6=1:x.【解答】(2)整理原方程,得:1.5x=6;系数化为1,得:x=4;所以原方程的解为:x=4.(28)6x﹣7=4x﹣5;【解答】解:(1)6x﹣7=4x﹣5,6x﹣4x=﹣5+7,2x=2,x=1;(29)x+3x=﹣16;【解答】解:(1)4x=﹣16,x=﹣4;(30)9﹣3x=5x+5.【解答】(2)﹣3x﹣5x=5﹣9,﹣8x=﹣4,x=.(31);【解答】解:(1),去分母,得:18x=2,系数化为1,得:x=;(32).【解答】(2).整理方程,得:=12,去分母,得:8x=36,系数化为1,得:x=.(33);【解答】解:(1)x系数化为1得:x=;(34).【解答】(2)方程整理得:x=6×,即x=4,解得:x=8.(35)6x+6=2x﹣2;【解答】解:(1)移项得:6x﹣2x=﹣2﹣6,合并同类项得:4x=﹣8,解得:x=﹣2;(36)3x+9=12;【解答】解:(1)移项得,3x=12﹣9,合并同类项得,3x=3,两边都除以3得,x=1;(二)“去括号”针对练习(1)3﹣5(x+1)=2x;【解答】(1)3﹣5(x+1)=2x,3﹣5x﹣5=2x,﹣5x﹣2x=5﹣3,﹣7x=2,x=﹣;(2)3(x﹣3)=x+1;【解答】解:(2)去括号,得3x﹣9=x+1,移项,得3x﹣x=9+1,合并,得2x=10,系数化为1,得x=5;(3)3(1﹣x)=1+2x;【解答】解:(3)去括号,得3﹣3x=1+2x,移项,得﹣3x﹣2x=1﹣3,合并同类项,得﹣5x=﹣2,解得x=0.4;(4)8x=﹣2(x+4);【解答】(4)去括号,可得:8x=﹣2x﹣8,移项,可得:8x+2x=﹣8,合并同类项,可得:10x=﹣8,系数化为1,可得:x=﹣0.8.(5)7﹣3(x﹣1)=﹣x;【解答】(5)7﹣3(x﹣1)=﹣x,7﹣3x+3=﹣x,﹣3x+x=﹣3﹣7,﹣2x=﹣10,x=5;(6)2x﹣2(3x+1)=6;【解答】解:(6)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(7)5x﹣2(x﹣1)=3;【解答】解:(7)原方程去括号得:5x﹣2x+2=3,移项得:5x﹣2x=3﹣2,合并同类项得:3x=1,系数化为1得:x=;(8)8﹣3(3x+2)=6;【解答】解:(8)去括号得:8﹣9x﹣6=6,移项合并得:﹣9x=4,解得:x=﹣;(9)x﹣3;【解答】(9)x﹣3,5(3x﹣6)=12x﹣90,15x﹣30=12x﹣90,15x﹣12x=﹣90+30,3x=﹣60,x=﹣20;(10)7x+2(3x﹣3)=20;【解答】解:(10)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(11)4﹣2x=﹣3(2﹣x);【解答】解:(11)4﹣2x=﹣3(2﹣x),去括号得:4﹣2x=﹣6+3x,移项合并得:5x=10,系数化为1得:x=2;(12)4﹣3(2﹣x)=5x;【解答】解:(12)4﹣3(2﹣x)=5x,去括号,得:4﹣6+3x=5x,移项,得:3x﹣5x=﹣4+6,合并同类项,得:﹣2x=2,系数化为1,得:x=﹣1;(13)3(x+2)﹣2=x+2;【解答】解:(13)3(x+2)﹣2=x+2;3x+6﹣2=x+2,3x﹣x=2﹣6+2,2x=﹣2x=﹣1.(14)3(x﹣7)+5(x﹣4)=15;【解答】解:(14)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(15)x+2(x﹣3)=3(1﹣x);【解答】解:(15)x+2(x﹣3)=3(1﹣x),去括号,得:x+2x﹣6=3﹣3x,移项、合并同类项,得:6x=9,系数化为1,得:;(16)2(3﹣x)=﹣4(x+5);【解答】(16)2(3﹣x)=﹣4(x+5),去括号,得6﹣2x=﹣4x﹣20,移项,得4x﹣2x=﹣20﹣6,合并同类项,得2x=﹣26,系数化为1,得x=﹣13;(17)4﹣2(x+4)=2(x﹣1);【解答】解:(17)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:;(18)4(2x﹣1)﹣3(5x+1)=14;【解答】解:(18)原方程去括号得:8x﹣4﹣15x﹣3=14,移项得:8x﹣15x=14+4+3,合并同类项得:﹣7x=21,系数化为1得:x=﹣3;(19)3(2x﹣1)=5﹣2(x+2);【解答】解:(19)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=;(20)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【解答】(20)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=﹣.(21)3(20﹣y)=6y﹣4(y﹣11);【解答】解:(21)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(22)1﹣3(x+1)=2(1﹣0.5x);【解答】(22)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;(23)3(2x﹣7)=1﹣(x+8);【解答】解:(23)3(2x﹣7)=1﹣(x+8),6x﹣21=1﹣x﹣86x+x=﹣7+21,7x=14,x=2;(24);【解答】(24),去分母,得2x﹣1+3=18(2x﹣1),去括号,得2x﹣1+3=36x﹣18,移项,得2x﹣36x=﹣18+1﹣3,合并同类项,得﹣34x=﹣20,系数化为1,得x=;(25)3(x﹣1)+5(x﹣1)=16.【解答】解:(25)3(x﹣1)+5(x﹣1)=16,去括号,得3x﹣3+5x﹣5=16,移项,得3x+5x=16+3+5,合并同类项,得8x=24,系数化成1,得x=3;(26)7x+2(3x﹣3)=20;【解答】解:(26)7x+2(3x﹣3)=20,去括号,得7x+6x﹣6=20,移项,得7x+6x=20+6,合并同类项,得13x=26,系数化成1,得x=2;(27)3x﹣4(x+1)=6﹣2(2x﹣5);【解答】解:(27)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;;(28)3(x﹣1)﹣2(x+10)=﹣6;【解答】解:(28)去括号得,3x﹣3﹣2x﹣20=﹣6,移项得,3x﹣2x=﹣6+3+20,合并同类项得,x=17;(29)3(y﹣7)﹣5(4﹣y)=15;【解答】解:(29)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(30)2x﹣3(x﹣1)=5(1﹣x);【解答】解:(30)2x﹣3(x﹣1)=5(1﹣x),去括号得:2x﹣3x+3=5﹣5x,移项得:2x﹣3x+5x=5﹣3,合并同类项得:4x=2,把系数化为1得:x=.(31)3x﹣2(x﹣1)=2+3(4﹣x).【解答】(31)3x﹣2(x﹣1)=2+3(4﹣x),去括号,得3x﹣2x+2=2+12﹣3x,移项,得3x﹣2x+3x=2+12﹣2,合并同类项,得4x=12,系数化为1,得x=3.(32)5(x﹣4)+3(x+6)=14.【解答】(32)去括号,可得:5x﹣20+3x+18=14,移项,可得:5x+3x=14+20﹣18,合并同类项,可得:8x=16,系数化为1,可得:x=2.(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);【解答】解:(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);去括号得:2x﹣4﹣4x+1=3﹣3x移项得:2x﹣4x+3x=3+4﹣1,合并得:x=6;(34)2(x+1)=﹣5(x﹣2);【解答】解:(34)2(x+1)=﹣5(x﹣2),去括号得:2x+2=﹣5x+10,移项得:2x+5x=10﹣2,合并同类项得:7x=8,系数化为1得:;(35)x﹣3=2(x﹣3)﹣6(1﹣x);【解答】解:(35)x﹣3=2(x﹣3)﹣6(1﹣x),去括号,得x﹣3=2x﹣6﹣6+6x,移项,得x﹣2x﹣6x=﹣6﹣6+3,合并同类项,得﹣7x=﹣9,系数化成1,得x=;(36)2(x+2)=3(x﹣1);【解答】(36)去括号得:2x+4=3x﹣3,移项得:2x﹣3x=﹣3﹣4,合并同类项得:﹣x=﹣7,解得:x=7;(37)3x﹣2=5(x+2);【解答】解:(37)去括号得,3x﹣2=5x+10,移项合并得:2x=﹣12,解得:x=﹣6;(38)2(x+4)﹣10=5(x﹣2)+10x;【解答】解:(38)去括号得:2x+8﹣10=5x﹣10+10x,移项得:2x﹣5x﹣10x=﹣10﹣8+10,合并同类项得:﹣13x=﹣8,解得:x=;(39)9y﹣2(﹣y+4)=3.【解答】(39)去括号得:9y+2y﹣8=3,移项得:9y+2y=3+8,合并同类项得:11y=11,解得:y=1.(40)2(x﹣3)=1﹣3(x+1);【解答】解:(40)去括号得:2x﹣6=1﹣3x﹣3,移项得:2x+3x=1﹣3+6,合并同类项得:5x=4,解得:x=0.8;(三)“去分母”针对练习(1);【解答】(1)去分母,可得:3(3y﹣1)﹣12=2(5y﹣7),去括号,可得:9y﹣3﹣12=10y﹣14,移项,可得:9y﹣10y=﹣14+3+12,合并同类项,可得:﹣y=1,系数化为1,可得:y=﹣1.(2).【解答】(2).去分母,可得:4(5y+4)+3(y﹣1)=24﹣(5y﹣5),去括号,可得:20y+16+3y﹣3=24﹣5y+5,移项,可得:20y+3y+5y=24+5﹣16+3,合并同类项,可得:28y=16,系数化为1,可得:y=.(3).【解答】(3)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:.(4).【解答】(4),去分母,得:6﹣2(2x﹣1)=3+x,去括号,得:6﹣4x+2=3+x,移项、合并同类项,得:﹣5x=﹣5,系数化为1,得:x=1.(5)=1.【解答】(5)3(x﹣2)+2(5﹣2x)=6,3x﹣6+10﹣4x=6,3x﹣4x=6+6﹣10,﹣x=2,x=﹣2.(6);【解答】(6),去分母,得2(2x﹣1)=3(3x+5),去括号,得4x﹣2=9x+15,移项,得4x﹣9x=2+15,合并同类项,得﹣5x=17,系数化为1,得x=﹣;(7).【解答】(7),去分母,得2(3x﹣2)﹣(5x+1)=18,去括号,得6x﹣4﹣5x﹣1=18,移项,得6x﹣5x=18+4+1,合并同类项,得x=23.(8).【解答】(8),去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.(9).【解答】(9)分母化为整数得:,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,即:9x=10x﹣4,移项、合并同类项得:x=4.(10).【解答】(10),去分母,得:2(2x+1)﹣(x﹣1)=6,去括号,得:4x+2﹣x+1=6,移项,合并同类项,得3x=3,系数化为1,得:x=1.(11).【解答】(11)去分母得:2(2x﹣1)﹣(x+2)=12,去括号得:4x﹣2﹣x﹣2=12,移项得:4x﹣x=12+2+2,合并同类项得:3x=16,系数化为1得:,∴原方程的解为:.(12).【解答】(12),3(3x﹣1)=6﹣(x﹣1),9x﹣3=6﹣x+1,9x+x=6+1+3,10x=10,x=1;(13).【解答】(13),4(2x﹣1)﹣12x=3(2x+1)﹣12,8x﹣4﹣12x=6x+3﹣12,8x﹣12x﹣6x=3﹣12+4,﹣10x=﹣5,x=.(14).【解答】(14)原方程去分母得:2(7﹣5x)=4﹣(3x﹣1),去括号得:14﹣10x=4﹣3x+1,移项得:﹣10x+3x=4+1﹣14,合并同类项得:﹣7x=﹣9,系数化为1得:x=.(15).【解答】(15),去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=.(16).【解答】(16),去分母得,2(2x﹣3)=5(3x﹣1)+10,去括号得,4x﹣6=15x﹣5+10,移项得,4x﹣15x=﹣5+10+6,合并同类项得,﹣11x=11,x的系数化为1得,x=﹣1.(17).【解答】(17)原方程去分母得:3x﹣2=6+2(x﹣1),去括号得:3x﹣2=6+2x﹣2,移项得:3x﹣2x=6﹣2+2,合并同类项得:x=6.(18).【解答】(18)去分母得:3(2x+1)﹣12=12x﹣2(5x﹣3),去括号得:6x+3﹣12=12x﹣10x+6,移项合并得:4x=15,解得:x=.(19).【解答】(19)方程去分母得:18x+3x﹣3=18﹣4x+4,移项合并得:25x=25,解得:x=1.(20).【解答】(20)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=﹣.(21).【解答】(21),去分母,得2x+1=6﹣2(5x﹣2),去括号,得2x+1=6﹣10x+4,移项,得2x+10x=6+4﹣1,合并同类项,得12x=9,系数化成1,得x=.(22).【解答】(22),3(3y﹣1)﹣12=2(5y﹣7),9y﹣3﹣12=10y﹣14,9y﹣10y=﹣14+12+3,﹣y=1,y=﹣1.(23).【解答】(52)去分母得:10y﹣5(y﹣1)=30﹣2(y+2),去括号得:10y﹣5y+5=30﹣2y﹣4,移项得:10y﹣5y+2y=30﹣4﹣5,合并同类项得:7y=21,解得:y=3.(24).【解答】(24),去分母,方程两边同时乘以最小公倍数6,2(2x+1)=3(x﹣1),去括号,4x+2=3x﹣3,移项,合并同类项,4x﹣3x=﹣3﹣2,系数化为1,x=﹣5.(25);【解答】(25),去分母,得3(3y﹣1)﹣2(5y﹣7)=12,去括号,得9y﹣3﹣10y+14=12,移项,得9y﹣10y=12+3﹣14,合并同类项,得﹣y=1,系数化为1,得y=﹣1;(26).【解答】(26),原方程可化为,去分母,得4(x﹣20)+3(30﹣7x)=12,去括号,得4x﹣80+90﹣21x=12,移项,得4x﹣21x=12+80﹣90,合并同类项,得﹣17x=2,系数化为1,得x=﹣.(27)﹣1.【解答】(51)去分母得:4(2y﹣1)=3(y+2)﹣12,去括号得:8y﹣4=3y+6﹣12,移项合并得:5y=﹣2,解得:y=﹣.(28).【解答】(28),去分母,得7(1﹣2x)=3(3x+1)﹣63,去括号,得7﹣14x=9x+3﹣63,移项,得﹣14x﹣9x=3﹣63﹣7,合并同类项,得﹣23x=﹣67,系数化成1,得x=.(29).【解答】(29)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=﹣.(30)5x=2x+5;【解答】解:(30)5x=2x+5,5x﹣2x=5﹣,3x=5,x=;(31)=.【解答】(31)=,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.(32).【解答】(32)整理得:,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;.(33).【解答】(33)去分母得,4(2x﹣6)﹣3(x+18)=12,去括号得,8x﹣24﹣3x﹣54=12,移项得,8x﹣3x=12+24+54,合并同类项得,5x=90,系数化为1得,x=18.(34).【解答】(34)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,.(35).【解答】(35),去分母得:3(x+2)﹣2(x﹣1)=12,去括号得:3x+6﹣2x+2=12,移项合并得:x=4.(36).【解答】(36),去分母,得:4x﹣2(2x+3)=24﹣(8﹣x),去括号,得:4x﹣4x﹣6=24﹣8+x,移项,得:4x﹣4x﹣x=24﹣8+6,合并同类项,得:﹣x=22,系数化为1,得:x=﹣22.【解答】(37)﹣1=去分母得:3(x+1)﹣6=2(2﹣3x),去括号得:3x+3﹣6=4﹣6x,移项并合并得:9x=7,系数化为1得:x=.(38)=4.【解答】(38)去分母,可得:3(x﹣3)+2(x﹣1)=24,去括号,可得:3x﹣9+2x﹣2=24,移项,可得:3x+2x=24+9+2,合并同类项,可得:5x=35,系数化为1,可得:x=7.(39).【解答】(39),去分母,得2(2x+1)﹣(5x﹣1)=﹣6,去括号,得4x+2﹣5x+1=﹣6,移项,得4x﹣5x=﹣6﹣1﹣2,合并同类项,得﹣x=﹣9,系数化为1,得x=9.(40).【解答】(40).2(2x+1)﹣(10x+1)=4,4x+2﹣10x﹣1=4,4x﹣10x=4﹣2+1,﹣6x=3.x=﹣0.5.【解答】(41)1﹣=,去分母得:15﹣3(x﹣3)=5(4﹣x),去括号得:15﹣3x+9=20﹣5x,移项得:﹣3x+5x=20﹣15﹣9,合并同类项得:2x=﹣4,把系数化为1得:x=﹣2.(42)﹣1=.【解答】(42)去分母得:3(3y﹣1)﹣12=2(5y﹣7),去括号得:9y﹣3﹣12=10y﹣14,移项得:9y﹣10y=﹣14+3+12,合并得:﹣y=1,解得:y=﹣1.(43)=1.【解答】(43)﹣=1,5(x+2)﹣3(2x﹣3)=15,5x+10﹣6x+9=15,5x﹣6x=15﹣10﹣9,﹣x=﹣4,x=4.(44).【解答】(44),去分母得:3(3x+5)=2×2x,去括号得:9x+15=4x,移项得:9x﹣4x=﹣15,合并同类项得:5x=﹣15,系数化为1得:x=﹣3.(45)=1﹣.【解答】(45)=1﹣,去分母,得2(2x﹣1)=4﹣(3﹣x),去括号,得4x﹣2=4﹣3+x,移项,得4x﹣x=4﹣3+2,合并同类项,3x=3,系数化成1,得x=1.(46).【解答】(46)去分母,得5×3x﹣2(4x﹣2)=﹣10,去括号,得15x﹣8x+4=﹣10,移项,得15x﹣8x=﹣10﹣4,合并同类项,得7x=﹣14,系数化为1,得x=﹣2.(47).【解答】(47)去分母得:2(1+2x)=3(1﹣x),去括号得:2+4x=3﹣3x,移项得:4x+3x=3﹣2,合并同类项得:7x=1,解得:x=.(48)解方程:.【解答】(50)解:,去分母,得2x+3(30﹣x)=30,去括号,得2x+90﹣3x=30,移项,得2x﹣3x=30﹣90,合并同类项,得﹣x=﹣60,系数化为1,得x=60.(49).【解答】(49)去分母,得3(x+2)﹣2(2x﹣3)=24,去括号,得3x+6﹣4x+6=24,移项,得3x﹣4x=24﹣6﹣6,合并,得﹣x=12,系数化为1,得x=﹣12.。

第三章 一元一次方程 单元培优检测试题 2023-2024学年人教版数学七年级上册

第三章 一元一次方程 单元培优检测试题 2023-2024学年人教版数学七年级上册

2023-2024学年人教版数学七年级上册第三章一元一次方程单元培优检测试题一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.若方程(m−2)x|2m−3|=6是关于x的一元一次方程,则m的值为( )A. 2B. 1C. 1或2D. 任何数2.在方程:5x+8y=4;x+5=0;x2+5x−2=0;2πx=4中,一元一次方程的个数为( )A. 1个B. 2个C. 3个D. 4个3.下列运用等式性质正确的是( )A. 如果a=b,那么a+c=b−cB. 如果a=b,那么ac =bcC. 如果ac =bc,那么a=b D. 如果a=3,那么a2=3a24.下列式子的变形中,正确的是( )A. 由6+x=10得x=10+6B. 由8x=4−3x得8x−3x=4C. 由3x+5=4x得3x−4x=−5D. 由2(x−1)=3得2x−1=35.一元一次方程x+3x=8的解是( )A. x=−1B. x=0C. x=1D. x=26.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为( )A. 2B. −2C. 1D. −17.下列移项正确的有.( )①12−x=−5,移项,得12−5=x;②−7x+3=−13x−2,移项,得13x−7x=−3−2;③2x+3=3x+4,移项,得2x−4=3x−3;④−5x−7=2x−11,移项,得11−7=2x−5x.A. 1个B. 2个C. 3个D. 4个8.已知关于x的方程2x+a−9=0的解是x=2,则a的值为( )A. 5B. 4C. 3D. 29.下列方程变形中,正确的是.( )A. 方程3x−2=2x+1,移项,得3x−2x=−1+2B. 方程3−x=2−5(x−1),去括号,得3−x=2−5x+1C. 方程23x=32,未知数系数化为1,得x=1D. 方程x−12=1化成x−1=210.解方程1−x+12=x4,去分母,去括号得( )A. 1−2x+2=xB. 1−2x−2=xC. 4−2x+2=xD. 4−2x−2=x11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中.( )A. 亏了10元钱B. 赚了10钱C. 赚了20元钱D. 亏了20元钱12.《孙子算经》中有一道题,原文是:今有四人共车,一车空;三人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余1辆车;若每3人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )A. x4+1=x−93B. x+14=x3−9 C. x4−1=x+93D. x4+1=x+93二、填空题(本大题共8小题,共24.0分)13.已知(a−3)x|a|−2−5=2是关于x的一元一次方程,则a=.14.将方程4x+3y=6变形成用含y的代数式表示x,则x=.15.已知x=−2是方程a(x+3)=12a+x的解,则a=.16.若4x−1与7−2x的值互为相反数,则x=.17.用符号※定义一种新运算a※b=ab+2(a−b),若3※x=0,则x的值为.18.某人在解方程2x−13=x+a2−1去分母时,方程右边的−1忘记乘6,算得方程的解为x=2,则a的值为.19.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2023次相遇在边.三、解答题(本大题共6小题,共60.0分。

解一元一次方程培优专项练习题

解一元一次方程培优专项练习题

解一元一次方程培优专项练习题一:选择题1、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =- 2、根据“x 的3倍与5的和比x 的 少2”可列方程()A 、B 、C 、D 3、若方程 是关于x 的一元一次方程,则字母系数a 、b 和c 的值满足( )A 、 ,b=0,c 为任意数B 、C 、D 、 4、方程063=+x 的解的相反数是( )A.2 B.-2 C.3 D.-3 5、 当x=2时,代数式ax-2的值是4,那么,当x=-2时,这个代数式的值是( ) A 、-4 B 、-8 C 、8 D 、26、方程x (x+1)=0的根是()A 、0 B 、1 C 、0和1 D 、0和-17、已知关于x 的方程432x m -=的解是x=m,则m 的值是( )A.2 B.-2 C.2或7 D.-2或78、方程 的解是()A 、 B 、 C 、 D 、 二、填空题1、6、已知 是关于x 的一元一次方程,求m=2、已知代数式15+a 与)5(3-a 的值相等,那么=a ___.3、若3x+2与-5x-8互为相反数,则x-2的值为_______。4、已知方程x+1=-1与方程2x-k=-x 有相同的解,那么-k=5、若 是同类项,则3x+2y= 。

6、当k= 时,多项式 中不含xy 项。

7、已知-2是方程3|a|-x=1-2x 的解,那么a= 。

三、解答题1、解方1:(1)23579x x x -=++ (2)2x-3=3x-(x-2) (3)32)32(63=+-x2、解方程2:(1)3157146x x ---= (2)322126x x x -+-=-2353-=+x x 2353+=+x x ()2353-=+x x ()2353+=+x x 31()0122=++-c bx x a 21=a 0,0,21=≠≠c b a 0,0,21≠≠=c b a 为任意数c b a ,0,21≠=012=-x 2121-21±2±()()081122=++--x m x m 8213222+-+--x xy y kxy x 122213++y x ab b a 与(3)42331+-=--y y y (4) 42311212--=+-x x x3、解方程3:(1)35.012.02=+--x x (2)301.032.01=+-+x x四:能力提高1、解方程:(1) (2)(3)(4)(5) (6)(7) (8)()()()121212345--=+--x x x 633252212+-+=+--x x x x 2503.002.003.05.09.04.0-=+-+x x x 146151413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 3221221413223x x =-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-22136132432-⎪⎭⎫ ⎝⎛---=+--x x x x ()()()()4614351241131+-=++-++x x x x 012.015018.021024.017---=-x x x2、解答题(1)关于x 的方程27x-32=11m 和x+2=2m 有相同的根,求m 的值(2)如果方程 的解也是当成|3x-2|=m 的解,求m 的值?(3)已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k 的解?(4)方程|x-5|+2x=-5的解是多少?方程|5x+6|=6x-5的解是多少?(5)当a 为何值时,关于x 的方程 ①有唯一解?②无解?(6)求适合下列条件的x① ② ③23252+-=-x x ()6612131--=+x ax a x 023=--x x 5342=++-x x 56151xx -=--。

【精选】 一元一次方程单元培优测试卷

【精选】 一元一次方程单元培优测试卷

一、初一数学一元一次方程解答题压轴题精选(难)1.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.2.已知有理数,定义一种新运算:⊙ =(a+1).如:⊙ =(2+1)(1)计算(-3)⊙的值;(2)若⊙(-4)=6,求的值.【答案】(1)解:∵⊙ =(a+1),∴(-3)⊙ = ,= ,= ,= ;(2)解:∵⊙(-4)=6,∴,即,解得 .【解析】【分析】(1)根据⊙ =(a+1),直接代入计算即可;(2)根据新定义可得方程,解方程即可.3.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。

(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?【答案】(1)解:由题意得:y=80+2x,答:弹簧的长度是(80+2x)厘米(2)解:∵y=80+2x,∴当x=6时,y=80+2×6=92,答:弹簧的长度是92厘米(3)解:∵y=80+2x,∴当y=120时,120=80+2x,∴x=20,答:所挂物体的质量是20千克。

【精选】七年级数学上册 一元一次方程(培优篇)(Word版 含解析)

【精选】七年级数学上册 一元一次方程(培优篇)(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

第四章_一元一次方程_培优训练(含答案)

第四章_一元一次方程_培优训练(含答案)

一元一次方程 培优训练一、选择题1.如果ma =mb ,那么下列等式不一定成立的是 ( )A .ma +1=mb +1B .ma -3=mb -3C .-12ma =-12mb D .a =b2.一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本为x 元,依题意,下列所列方程正确的是 ( )A .600×0.8-x =20B .600×0.8=x -20C .600×8-x =20D .600×8=x -203.一轮船往返于A 、B 两港之间,逆水航行需3小时,顺水航行需2小时,水流速度为3千米/时,则轮船在静水中的速度是( )A .18千米/时B .15千米/时C .12千米/时D .20千米/时4.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额°1100元,那么此人住院的医疗费是( )A .1000元B .1250元C .1500元D .2000元 5.某商店出售甲、乙两种商品,售价都是1800元,其中甲商品获利20%,乙商品亏损20%,如果同时出售甲、乙商品各一件,那么 ( )A .共获利150元B .共亏损150元C .不获利也不亏损D .以上答案都不对6.植树节时,某班平均每人植树6棵,如果只由女生完成,每人应植树15棵,如果只由男生完成,每人应植树( )棵. A .9 B .10 C .12 D .147.一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行 ( )A .0.5小时B .1小时C .1.2小时D .1.5小时 8.哥哥今年的年龄是弟弟的2倍,弟弟说:“六年前,我们俩的年龄和为15岁”,若用x 表示哥哥今年的年龄,则可列方程( ) A .152=+xx B .1526)6(=-+-x xC .152)6(=+-xx D .15)62()6(=-+-xx 二、填空题9.若方程3x +1=7的解也是方程4x -3a =-1的解,则a 2-2a =_______.10.某班全体学生进行了一次篮球投篮练习,每人投球10个,每投进一个球得1分,得分的部分情况如表所示,已知该班学生中,至少得3分的人的平均得分为6分,得分不到8分的人的平均得分为3分,那么该班学生有_______人.11.方程2008261220082009x x x x ++++=⨯ 的解是x =_______. 12.汽车A 从甲站出发开往乙站,同时汽车B 、C 从乙站出发与A 相向而行开往甲站,途中A 与B 相遇后15分钟后再与C 相遇,已知A 、B 、C 的速度分别是每小时90km ,80km ,70km ,那么甲、乙两站的路程是_______km . 13.对于任意实数a 、b 、c 、d 制定了一种新运算a cb d=ad -bc .则当23x-45-=25时,x =_______.三、解答题14.若关于x 的方程(m -1)x m+4=0是一元一次方程,求m 的值,并求出方程的解.15.若方程12111252x x x +--=-与方程62223a x ax x -+=-的解相同,求22a a a -的值.16.已知方程a -2x =-4的解为x =4,求式子a 3-a 2-a 的值.17.解关于x 的方程:2ax -3b =4x +9有无穷多个解,求(a +b)2011的值.18.北京市2012年生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?19.剃须刀由刀片和刀架组成.某时期甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换).有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少把力架?多少片刃片?20.某通信运营商的短信收费标准为:发送网内短信0.1元/条,发送网际短信0.15元/条,该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费19元,小王该月发送网内、网际短信各多少条?21.有一个允许单向通过的窄道口,通常情况下,每分钟可以通过9人,一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36人等待通过(假定先到先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤情况下提前了6分钟通过道口,维持秩序的时间是多少?22.在“五一”黄金周期间,小明、小亮等同学随家人一同到西安华山游玩,如图是购买门票时,小明与他爸爸的对话:问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.23.(1)在2011年6月的日历中(如图(1),任意圈出一竖列上相邻的三个数,设中间的一个为x,则用含x的代数式表示这三个数(从小到大排列)分别是_______.(2)现将连续自然数1到2011按图(2)中的方式排成一个长方形阵列,用一个正方形框出16个数.①图中框出的这16个数的和是_______;②在图(2)中,要使一个正方形框出的16个数之和分别等于2000,2010,是否可能?若不可能,试说明理由,若有可能,请求出该正方形框出的16个数中的最小数和最大数.24.民航规定:旅客可以免费携带a千克物品,若超过a千克,则要收取一定的费用,当携带物品的质量为b千克(b>a)时,所交的费用为Q=10b-200(单位:元)(1)小明携带了35千克物品,质量大于a千克,他应交多少费用?(2)小王交了100元费用,他携带了多少千克物品?(3)若收费标准以超重部分的质量m(千克)计算,在保证所交费用Q不变的情况下,用m表示Q.25.根据有关规定:企业单位职工,当年按如下办法缴纳养老保险费,如果个人月工资在当地职工去年人均月工资的60%到300%范围内,那么需按个人月工资7%缴纳;如果个人月工资超过当地职工去年人均月工资的300%,那么超过的部分不再缴纳;如果个人月工资低于当地职工去年人均月工资的60%,那么仍需按去年人均月工资的60%来计算缴纳.已知某市企业单位职工去年人均月工资为930元.(1)该市企业单位职工,今年个人月缴纳的养老保险费最多为多少元?最少为多少元?(2)根据上表中的已知数据填空.26.某地区的民用电,按白天时段和晚间时段规定了不同的单价,某户8月份白天时段用电量比晚间时段用电量多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的用电量虽比8月份的用电量多20%,但9月份的电费却比8月份的电费少10%.求该地区晚间时段民用电的单价比白天时段的单价低的百分数.27.王先生看到银行公布的存款利率如下表所示:王先生要将一笔钱存入银行5年,他可以选择一次存5年,也可以分几次存够5年,每次都将所有本息一并存入.回答:(1)有多少种获息不同的存取方案?(2)在各种获息不同的存取方案中,哪一种方案获息最高?对此请你提出自己的建议和设想并说明理由.(注:①银行利率按单利计算,如100存入银行3年的利息是100×2.7%×3)=8.1元;②为简化运算,本题不考虑利息税)。

第五章 一元一次方程培优训练测试题(含解析)

第五章 一元一次方程培优训练测试题(含解析)

第五章:一元一次方程培优训练测试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.若方程2512-=+-x kx x 的解为1-,则k 的值为( )A.10B.4-C.6-D.8- 2.一组数2,1,3,x ,7,,如果满足“从第三个数起,若前两个数依次为a 、b ,则紧随其后的数就是2a ﹣b ”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为( )A.-9B.-1C.5D.213.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人4.一条公路,甲队单独修需6天,乙队单独修需12天,若甲、乙两队同时分别从两端开始修,全 部修完需要( )A .2天B .3天C .4天D .5天 5.在排成每行七天的日历表中取下一个33⨯方块(如图), 若所有日期数之和为135,则n 的值为( )A .13B .14C .15D .96.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( ) A .5B .4C .3D .27.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的 轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5B .6C .5D .48.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②4314010+=+n n ;③4314010-=-n n ;④40m +10=43m +1.其中正确的是( )9.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润率是5%,则出售时此商品可打( )折A. 五B.六C.七D.八二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.将方程15.013.03.02=+--x x 的分母化为整数,方程变为_______________12.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元13.关于x 的方程()2136+-=-x a ax 的解为2-=x ,则_______=a14.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为__________ 15.已知875cb a ==,且923=+-c b a ,则__________342=-+c b a 16.在等式()x x a 321+=+中,若x 是负整数,则整数a 的取值是_______三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列方程: (1)2221625312--=+--x x x ; (2)01.002.01.02.02.018xx x +=--18(本题8分).已知:关于x 的方程2(x-1)+1=x 与3(x+m)=m-1有相同的解,求:以y 为未知数的方程2333ym my -=-的解.19(本题8分).关于x 的方程1634=--+ax a x 的解是x=1,对于同样的a ,求另一个关于x 的方程1436=--+ax a x 的解.20(本题10分)(1).x 等于什么数时,代数式323-x 的值比414-x 的值的2倍小1? (2).若已知M=x 2+3x-5,N=3x 2+5,并且6M=2N-4,求x.21(本题10分).某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?22(本题12分).(1)一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数. (2)小李在解方程132253=--+mx x 去分母时方程右边的1没有乘以6,因而得到方程的解为4-=x ,求出m 的值并正确解出方程.23.(本题12分)把正整数1,2,3,4,…,2018排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示 出来,从大到小依次是 , , ; (2)当被框住的4个数之和等于416时,x 的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.。

一元一次方程培优训练

一元一次方程培优训练

一元一次方程培优训练1.解方程:111107(1)21()3(2)33623x x x x x +-⎡⎤⎡⎤--=--⎢⎥⎢⎥⎣⎦⎣⎦ 0.20.450.0150.01(2)0.52.50.250.015x x x ++-=-215(3)13x --= (4)121x x -=-+2. 已知(m 2-1)x 2-(m+1)x+8=0是关于x 的一元一次方程,求代数式199(m+x)(x-2m)+m 的值.3. 已知关于x 的方程a(2x-1)=3x-2无解,试求a 的值. 【一元一次方程ax=b 的解由a ,b 的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b ≠0,方程变为0·x=b ,则方程无解.】4. 已知方程2ax=(a+1)x+6,求a为何整数时,方程的解是正整数5.若(3a+2b)x2+ax+b=0是关于x的一元一次方程,且x有唯一解,求这个解.6、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?7、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方体盒子,容积是cm.求原来正方形铁皮的边长4500038.某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25 %,第二件亏损25 %,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣服的成本价会一样吗?算一算9.某种商品换季处理,若按标价的7.5折出售将亏25元,而按标价的9折出售将赚20元,问这种商品的标价是多少?进价是多少?10.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?11.有一个蓄水池,装有甲、乙两个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,丙管为排水管,且单独开丙管18分钟可把满池的水放完,问三管齐开,几分钟可注满空水池?12.某手表每小时比标准时间慢3分钟,若在凌晨4时30分与标准时间对准,则当天上午该手表指示的时间是10时50分时,标准时间是多少?13.一组割草人要把两片草地割完,大片是小片的2倍,上午人们都在大的一片上割草,午后人们对半分开,一半人仍留在大草地上,另一半去割小的一片,到傍晚时,大的一片刚好割完,小的一片还剩下一小块,这一小块由一人用一整天刚好割完,问这组割草人有多少人?。

解一元一次方程50道练习题(带答案)

解一元一次方程50道练习题(带答案)

解一元一次方程50道练习题(带答案)解一元一次方程50道练习题(带答案)
1. 问题:解方程2x + 5 = 9
解答:将已知方程写成标准形式,得到2x = 9 - 5 = 4
将方程两边同时除以2,得到x = 2
答案:x = 2
2. 问题:解方程3(x - 4) = 5
解答:将已知方程通过分配律展开,得到3x - 12 = 5
将方程两边同时加上12,得到3x = 17
将方程两边同时除以3,得到x = 17/3
答案:x = 17/3
3. 问题:解方程4 - 2x = 6x - 8
解答:将已知方程进行整理,得到-2x - 6x = -8 - 4
将方程进行合并,得到-8x = -12
将方程两边同时除以-8,注意要将负号带到分子,得到x = -12/-8
答案:x = 3/2
4. 问题:解方程6(x + 3) = 4(x - 2)
解答:将已知方程展开,得到6x + 18 = 4x - 8
将方程两边同时减去4x,得到2x + 18 = -8
将方程两边同时减去18,得到2x = -8 - 18
将方程两边同时除以2,得到x = -26/2
答案:x = -13
5. 问题:解方程2(x + 1) - 3(x - 2) = 4 - 2x
解答:将已知方程进行整理,得到2x + 2 - 3x + 6 = 4 - 2x 将方程两边同时减去2x,得到-2x + 8 = 4 - 2x
将方程两边同时加上2x,得到8 = 4
答案:此方程无解
......依次类推,解答剩下的题目。

七年级数学上册第三单元《一元一次方程》-解答题专项(培优专题)

七年级数学上册第三单元《一元一次方程》-解答题专项(培优专题)

一、解答题1.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是______克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.解析:(1)61014x+或8107x-;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x+或8107x-(2)根据题意得,610810 147x x+-=6101620 x x+=-6162010 x x-=--1030x-=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克. 【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.2.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生? 解析:10个家长,5个学生 【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可. 【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生, 根据题意得:100x +100×0.8(15﹣x )=1400, 解得:x =10, 15﹣x =5,答:小明他们一共去了10个家长,5个学生. 【点睛】本题考查了一元一次方程的应用. 3.利用等式的性质解下列方程: (1)x -2=5;(2)-23x =6; (3)3x =x +6.解析:(1)x =7;(2)x =-9;(3)x =3 【分析】(1)两边同时加上2即可求解; (2)两边同时乘-32即可求解; (3)两边同时减x ,然后同时除以2即可求解. 【详解】解:(1)等式两边加2,得x -2+2=5+2, 即x =7. (2)等式两边乘-32,得x =6×(-32), 即x =-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.4.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 6.已知16y x =-,227y x =+,解析下列问题: (1)当122y y =时,求x 的值; (2)当x 取何值时,1y 比2y 小3-. 解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解. 【详解】(1)由题意得:62(27)x x -=+ 解得215x =215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x18x ∴=.【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=13 8.【点睛】此题考查解一元一次方程,解题关键在于掌握方程的解法.8.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-4x-x=-2-4,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.9.关于x的方程357644m x mx+=-的解比方程4(37)1935x x-=-的解大1,求m的值.解析:623 m=-【分析】分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可. 【详解】解:357644m x m x +=-, 整理得:2(310)321m x m x +=-313x m =-解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:31131m--= 解得:623m =- 【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m 的式子表示x ,然后根据题意列出方程.10.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行. (1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离; (3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时. 【分析】(1)根据1h 后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得; (2)根据2h 后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得; (3)可分相遇前与相遇后两种情况讨论即可解答. 【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h 后甲、乙间的距离=60-25×1-15×1=20海里; (2)2h 后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t 小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.11.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.12.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱? (2)若此人将这两次购物合为一次购买是否更节省?为什么?解析:(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析. 【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可. 【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠; ②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠. 设他所购货物价值x 元,则90%×500+(x ﹣500)×80%=466, 解得x =520, 520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元), ∵573.2<600,∴此人将这两次购物合为一次购买更节省. 【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.13.某同学在给方程21133x x a-+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程. 解析:2a =,0x = 【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解. 【详解】把2x =代入211x x a -=+-, 得:2a = ∴原方程为:212133x x -+=- 去分母得:2123x x -=+- 移项得:2231x x -=-+ 合并同类项得:0x = 【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱. 【分析】(1)设当购买乒乓球x 盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可. 【详解】(1)设当购买乒乓球x 盒时,两种优惠办法付款一样, 则30×5+5(x −5)=(30×5+5x )×90% 5x +125=135+4.5x 5x +125−4.5x =135+4.5x −4.5x 0.5x +125=135 0.5x +125−125=135−125 0.5x =10 0.5x ×2=10×2 x =20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要: 30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要: (30×5+5×15)×90%=225×90%=202.5(元) 因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. 答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. ②在甲商店购买球拍5副、30盒乒乓球需要: 30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要: (30×5+5×30)×90%=300×90%=270(元) 因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 考点:1.一元一次方程的应用;2.方案型. 15.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 解析:(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【分析】(1)由题意可得关于x 的方程,解方程即得答案; (2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势. 【详解】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =;(2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)x3-2-1-0 1 2 3 4 1y 7 6543 2 1 0 2y8-6- 4- 2-246由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大. 【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键.16.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.解析:大正方形的面积是36cm 2 【分析】设小正方形的边长为x ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积. 【详解】设小正方形的边长为x ,则大正方形的边长为4+(5−x )cm 或(x +1+2)cm , 根据题意得:4+(5−x )=(x +1+2), 解得:x =3, ∴4+(5−x )=6, ∴大正方形的面积为36cm 2. 答:大正方形的面积为36cm 2. 【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.17.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.解析:(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.18.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少? 解析:6人 【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人. 【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键.19.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3. 【分析】(1)原式利用规定的运算方法计算即可求出值; (2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可. 【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5; 故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9, 整理得:5x =10, 解得:x =2, 故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数, ∴(2x−1)k−(−3)(x +k )=3+2k , ∴(2k +3)x =3,∴323x k =+, ∵k 是整数,∴2k +3=±1或±3, ∴k =0,−1,−2,−3. 【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键. 20.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 解析:(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m . 【分析】(1)先两边同时乘以5去分母,然后去括号解方程即可; (2)先两边同时乘以12去分母,然后去括号解方程即可; (3)先两边同时乘以6去分母,然后去括号解方程即可; (4)先两边同时乘以1去分母,然后去括号解方程即可; (5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可. 【详解】解:(1)103(4)510--=-x x10312510-+=-x x 351022--=--x x 832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y 224+16=-y28y =- 4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x 1218182-=-+x x616-=-x83x =;(4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x 1710121-+=-x x711-=x117x =-; (5)315x x +-= ①当x≤13时, ()315+-+=x x24x -=2x =-,-2<13,∴2x =-满足;②当x >13时,()315+-=x x46x =32x =3123>, ∴32x =满足, ∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx 644+3+6-=-x mx m()642+3-=m x m2+364=-mx m . 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键. 21.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?解析:(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样 【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解. 【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100ss s ++=+ 汽车运输的费用为•2002090022.590080ss s ++=+ 当17s +2000=22.5s +900,解得s =200 当s >200时,选择火车运输 当s <200时,选择汽车运输 当s =200时,两种方式都一样 【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 22.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由; (2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗? 解析:(1)王聪的说法不正确,见解析;(2)4x = 【分析】(1)根据等式的性质进行判断即可. (2)利用代入法求解即可. 【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =. 【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 23.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可; 【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元;按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元); 方案二总金额为2280009500247000x +=(元). 方案二比方案一优惠2500002470003000-=(元). 所以方案二更优惠,优惠3000元. 【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积. 24.解方程:(1)3(26)17x x +=--; (2)4(2)13(1)x x --=-; (3)4(1)5(3)11x x +--=; (4)14(1)(26)112x x --+=. 解析:(1)5x =-;(2)6x =;(3)8x =;(4)6x = 【分析】(1)去括号,移项及合并同类项,系数化为1即可求解. (2)去括号,移项及合并同类项,系数化为1即可求解. (3)去括号,移项及合并同类项,系数化为1即可求解. (4)去括号,移项及合并同类项,系数化为1即可求解. 【详解】(1)去括号,得61817x x +=--. 移项及合并同类项,得735x =-. 系数化为1,得5x =-.(2)去括号,得48133x x --=-. 移项,得43381x x -=-++. 合并同类项,得6x =.(3)去括号,得4451511x x +-+=. 移项,得4511415x x -=--. 合并同类项,得8x -=-. 系数化为1,得8x =.(4)去括号,得44311x x ---=.移项,得41143x x -=++. 合并同类项,得318x =. 系数化为1,得6x =. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 25.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底? (2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?解析:(1)80个(2)15张(3)6张;9张 【分析】(1)列方程求解即可得到结果; (2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可; 【详解】解:(1)设一张这样的铝片可做x 个瓶底. 根据题意,得9001200(20)x x =-. 解得80x =.2060x -=. 答:一张这样的铝片可做80个瓶底. (2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-. 解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多. 【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.26.甲、乙两人骑自行车分别从相距36km 的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米? 解析:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米 【分析】设甲骑自行车每小时行x 千米,先根据“甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙”用含x 的代数式表示出乙的速度,然后根据甲5小时骑行的路程-乙6小时骑行的路程=36千米即可列出方程,解方程即可求出结果. 【详解】解:设甲骑自行车每小时行x 千米,则乙骑自行车每小时行133623x ⎛⎫+- ⎪⎝⎭千米,即7126x ⎛⎫- ⎪⎝⎭千米. 依题意,得()755112366x x ⎛⎫-+-=⎪⎝⎭,解得18x =. 712211296x -=-=. 答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米. 【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 27.解方程:(1)36156x x -=--;(2)45173x x +=-; (3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 解析:(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可. (2)先移项,再合并同类项,最后系数化为1即可. (3)先移项,再合并同类项,最后系数化为1即可. (4)先移项,再合并同类项,最后系数化为1即可. 【详解】(1)移项,得36156x x +=-+. 合并同类项,得99x =-. 系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-.系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=.合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.28.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下: 设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=. 例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 解析:(1)①59;②25699;③518999;(2)见解析 【分析】(1)根据题目中的转化方法进行转化即可.(2)根据题目中的转化方法进行转化,并写出过程.【详解】 (1)①59;②25699;③518999. (2)从①②③中任选一个转化即可. ①设0.5x =,则10 5.5555x =⋯,所以105x x -=,解方程,得59x =,所以50.59=. ②设0.58x =,则10058.5858x =⋯,所以10058x x -=,解方程,得5899x =,所以。

七年级数学《第5章.一元一次方程》状元培优同步训练题(北师大版附答案)

七年级数学《第5章.一元一次方程》状元培优同步训练题(北师大版附答案)

2019-2020学年七年级数学《第5章.一元一次方程》状元培优单元测试题(北师大版附答案)一、选择题1、如果关于x的方程2x+k-4=0的解是x=-3.那么k的值是( )A.10 B.-10 C.2 D.-22、已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是( )A.2 B.3 C.4 D.53、出租车收费标准为:起步价6元(不超过3千米收费6元),3千米后每千米1.4元。

小明坐车x(x>3)千米,应付车费()A、6元B、6x元C、(1.4x+1.8)元D、1.4x元4、已知=(a≠0,b≠0),下列变形错误的是( )A.= B.2a=3b C.= D.3a=2b5、下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6 B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣ D.若﹣,那么x=﹣36、解方程时,下列去括号正确的是()A. B.C. D.7、长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元 B.875元 C.550元 D.750元8、某商品的标价为200元,8折销售仍赚40元,则商品进价为( )A.140元 B.120元 C.160元 D.100元9、小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示,若返回时上坡下坡的速度仍保持不变,那么小明从学校骑车回家所用的时间是()A.37.2分钟 B.48分钟 C. 30分钟D.33分钟10、把方程中的分母化为整数,结果应为( ).A. B.C. D.11、已知关于的方程的解满足方程,则的值是( )A. B. C. 2 D. 312、整理一批图书,由一个人做要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作的,假设每个人的工作效率相同,具体先安排x人工作,则列方程正确的是()A.B.C. D.二、填空题13、已知:x=5是关于x的方程3x-2a=1的解,则a的值是.14、代数式的值为7,则的值为___15、王平家有5.4亩苹果树,他和爸爸、妈妈一起收摘,3天全部摘完. 结果妈妈比王平多摘0.6亩,而爸爸收摘的是王平的2倍. 若设王平摘了x亩,则妈妈摘了__________亩,爸爸摘了__________亩,它们应满足的方程为____________________.16、甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一样多.17、当m=_______时,代数式的值是2.18、若+1与互为相反数,则a=__________.19、根据如图所示的程序计算:(1)当输入x的值为时,输出结果为_______.(2)当输入的数为______时,输出的值为-4.三、计算题,解下列方程20、2x+18=﹣3x﹣2 21、.22、 [x﹣(x﹣1)]=(x+2). 23、.四、简答题24、关于x的方程x-2m=-3x+4与2-m=x的解互为相反数.(1)求m的值.(2)求这两个方程的解.25、已知关于的方程的解为非正数,求的取值范围.26、某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示).(2)若x=30,通过计算说明此时按哪种方案购买较为合算?27、在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568 (填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.参考答案一、选择题1、A2、B【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【解答】解:①是分式方程,故①错误;②0.3x=1,即0.3x﹣1=0,符合一元一次方程的定义.故②正确;③,即9x+2=0,符合一元一次方程的定义.故③正确;④x2﹣4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x﹣6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.3、C4、B5、D【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.6、D7、B8、B9、A10、B11、C12、B.二、填空题13、7;14、-1______.15、x+0.6,2x,x+(x+0.6)+2x=5.416、11+2x 31-2x,x=517、18、.【考点】解一元一次方程;相反数.【分析】根据题意列出方程+1+=0,直接解出a的值,即可解题.【解答】解:根据相反数和为0得:+1+=0,去分母得:a+3+2a﹣7=0,合并同类项得:3a﹣4=0,化系数为1得:a﹣=0,故答案为.【点评】本题考查了一元一次方程的求解,去分母、合并同类项、移项、化系数为1是解题的常用方法.19、(1) (2)6或-6三、计算题20、方程移项合并得:5x=﹣20,解得:x=﹣4;21、去分母得:3x﹣3﹣4+6x=6,移项合并得:9x=13,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22、x=-223、解:把中分子,分母都乘以5,得5x-20,把中的分子,分母都乘以20, 得20x-60.即原方程可化为5x-20-2.5=20x-60.移项得5x-20=-60+20+2.5,合并同类项,得-15x=-37.5,化系数为1,得x=2.5.四、简答题24、.解:(1)第一个方程的解x=0.5m+1;第二个方程的解:x=2-m,所以0.5m+1+2-m=0,m=6;(2)将m=6代入得:第一个方程的解为4;第二方程的解为-4;25、解:解关于x的方程,得.因为方程的解为非正数,所以有≤0,解得≥.26、解:(1)40x+3200 3600+36x(2)当x=30时,方案①:40x+3200=4400元,方案②:3600+36x=4680元,因为4400<4680,所以选择方案①购买合算27、(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【点评】本题主要考查了“顺数”、“逆数”、“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,计算“顺数”与“逆数”之差,分解因式是解题的关键.。

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题(含答案)-CAL-FENGHAI.-(YICAI)-Company One1一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x )=04、5x (2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x ) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x )-3(x+1) 14、1- 12 x=215、3- 13 x=2(x+1) 16、2(x- 34)=8-x17、12 (2x+1)+1=2(2-x ) 18、x- 13(x-5)= 2319、-x= -3(x-4) 20、7x ·(5 - 4· 12)= 5+x21、0.1+x 2 =2 22、 x-10.2 =3(x-1)23、x-10.3 + x+20.3 =2 24 、12 + 13x = 23 +125、 2x-10.5 = 2- 3x+20.3 26、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、 25(300+x )- 35(200+x )=400·110二、一元一次方程应用题1、 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

2、小华从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B 地,求A、B两地间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程培优训练基础篇一、选择题1.把方程103.02.017.07.0=--x x 中的分母化为整数,正确的是( ) A.132177=--x x B.13217710=--x x C.1032017710=--x x D.132017710=--x x2.与方程x+2=3-2x 同解的方程是( ) A.2x+3=11 B.-3x+2=1 C.132=-x D.231132-=+x x 3.甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是( )A.7x=6.5x+5B.7x+5=6.5xC.(7-6.5)x=5D.6.5x=7x-5 4.适合81272=-++a a 的整数a 的值的个数是( ) A. 5 B. 4 C. 3 D. 25.电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A.0.81a 元 B.1.21a 元 C.21.1a 元 D.81.0a 元6.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题。

A.17B.18C.19D.207.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间约是( ) A.1.6秒B.4.32秒C.5.76秒D.345.6秒8.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合作这项工程需天数为( ) A.y x +1 B.y x 11+ C.xy 1D. yx 111+9、若2x =-是关于x 的方程233x x a +=-的解,则代数式21a a -的值是( )A 、0B 、283-C 、29- D 、2910、一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为( )A 、142857B 、157428C 、124875D 、175248 二、填空题12.当m =_____时,方程(m -3)x |m|-2+m -3=0是一元一次方程。

13.若代数式b a a y x y x+--39123与是同类项,则a=_________,b=_______14.对于未知数为x 的方程x ax 21=+,当a 满足______________时,方程有唯一解,而当a 满足______________时,方程无解。

15.关于x 的方程:(p+1)x=p-1有解,则p 的取值范围是______ 16.方程∣2x-6∣=4的解是________ 17.已知0)3(|4|2=-++-y y x ,则=+y x 2__________18.如果2、 2、 5和x 的平均数为5,而3、 4、 5、 x 和y 的平均数也是5,那么x =_____,y =____. 19.若方程35+3(x-12003)=45,则代数式7+30(x-12003)的值是20.方程5665-=+x x 的解是21.已知:2+=x x ,那么273192011++x x 的值为22.一只轮船在相距80千米的码头间航行,顺水需4小时,逆水需5小时,则水流速度为 23.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一样多.24、关于x 的方程()()k x k m x m -=-有唯一解,则k 、m 应满足的条件是_________。

25、已知方程524x m mx x -=--的解在2与10之间(不包括2和10),则m 的取值为___________________________。

三、综合练习题: 26.解下列方程:(1)x x 1010019-=- (2)x x -=+343227.已知关于x 的方程x a x x 4)]3(2[3=--和185143=--+xa x 有相同的解,求这个相同的解。

28.已知431)120111(441=++x ,那么代数式20111872482011x x +•+的值。

29.已知关于x 的方程23)12(-=-x x a 无解,试求a 的值。

30.已知关于x 的方程917x kx -=的解为整数,且k 也为整数,求k 的值。

31.一运输队运输一批货物,每辆车装8吨,最后一辆车只装6吨,如果每辆车装7.5吨,则有3吨装不完。

运输队共有多少辆车?这批货物共有多少吨?32.一个两位数,十位上的数字是个位上数字的2倍,如果把个位上的数与十位上的数对调得到的数比原数小36,求原来的两位数.33.一个三位数满足的条件:①三个数位上的数字和为20;②百位上的数字比十位上的数字大5;③个位上的数字是十位上的数字的3倍。

这个三位数是几?34.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是多少?35.某企业生产一种产品,每件成本400元,销售价为510元,本季度销售了m件,于是进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售降低4%,销售量提高10%,要使销售利润保持不变,该产品每件成本价应降低多少元?36.一队学生去校外郊游,他们以每小时5千米的速度行进,经过一段时间后,学校要将一紧急的通知传给队长。

通讯员骑自行车从学校出发,以每小时14千米的速度按原路追上去,用去10分钟追上学生队伍,求通讯员出发前,学生队伍走了多长的时间。

41.一列车车身长200米,它经过一个隧道时,车速为每小时60千米,从车头进入隧道到车尾离开隧道共2分钟,求隧道长。

42.某地上网有两种收费方式,用户可以任选其一:(A)记时制:2.8元/小时,(B)包月制:60元/月。

此外,每一种上网方式都加收通讯费1.2元/小时。

(1)某用户上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(1个月),选用哪种上网方式比较合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式。

43.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?44.某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?培优篇讲解知识点一:定义例1:若关于x 的方程()0212=+-m x m 是一元一次方程,求m 的值,并求出方程的解。

解:由题意,得到⎩⎨⎧≠-=0112m m 1,12=∴=m m 或1-=m 当1=m 时,01=-m ,1=∴m 不合题意,舍去。

∴当1-=m 时,关于x 的方程()0212=+-m x m 是一元一次方程,即022=+-x ,1=∴x同步训练:1、当m = 时,方程()0332=-+--m x m m 是一元一次方程,这个方程的解是 。

例2:下列变形正确的是( )A .如果bx ax =,那么b a =B .如果()11+=+a x a ,那么1=xC .如果y x =,那么y x -=-55D .如果()112=+x a ,那么112+=a x 3、若mmy x 43,12+=+=,则用含x 的式子表示y = 。

知识点二:含绝对值的方程绝对值符号中含有未知数的一次方程叫含绝对值符号的一次方程,简称绝对值方程,解这类方程的基本思路是:脱去绝对值符号,将原方程转化为一元一次方程求解,其基本类型与解法是: 1、形如()0≥=+c c b ax 的最简绝对值方程这类绝对值方程可转化为两个普通一元一次方程:c b ax =+或c b ax -=+ 2、含多重或多个绝对值符号的复杂绝对值方程这类绝对值方程可通过分类讨论转化为最简绝对值方程求解。

解绝对值方程时,常常要用到绝对值的几何意义,去绝对值符号法则、常用的绝对值基本性质等与绝对值相关的知识、技能与方法。

例3:方程525-=+-x x 的解是 。

解,525--=-x x 525--=-∴x x ①或525+=-x x ② 由①得0=x ;由②得10-=x ,∴此方程的解是0=x 或10-=x 同步训练 1、若9=x 是方程a x =-231的解,则a = ;又若当1=a 时,则方程a x =-231的解是 。

例4:方程1735=--+x x 的解有( ) A .1个 B .2个 C .3个 D .无数个 解:运用“零点分段法”进行分类讨论由05=+x 得,5-=x ;又由073=-x 得,37=x 。

所以原方程可分为37,375,5>≤<--≤x x x 三种情况来讨论。

当5-≤x 时,方程可化为()()1735=-++-x x ,解得5.6=x 但5.6不满足5-≤x ,故当5-≤x 时,方程无解;当375≤<-x 时,方程可化为()1735=-++x x ,解得43=x ,满足37435≤<-; 当37>x 时,方程可化为()1735=--+x x ,解得5.5=x ,满足37>x 。

综上可知,原方程的解有2个,故选B 。

例5:(“希望杯”邀请赛)求方程431=-++x x 的整数解。

利用绝对值的几何意义借且数轴求解。

根据绝对值的几何意义知:此式表示点()x P 到A 点和B 点的距离之和4=+PB PA 。

又P AB ∴=,4 点只能在线段AB 上,即31≤≤-x 。

又x 为整数,∴整数x 只能是3,2,1,0,1-,共5个 知识点三:一元一次方程解的情况一元一次方程ax=b 的解由a ,b 的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b ≠0,方程变为0·x=b ,则方程无解例6、 解关于x 的方程(mx-n)(m+n)=0.分析 这个方程中未知数是x ,m ,n 是可以取不同实数值的常数,因此需要讨论m ,n 取不同值时,方程解的情况.3BA例8、 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.例9、若abc=1,解方程【分析】像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10、若a,b,c是正数,解方程:【分析】用两种方法求解该方程。

相关文档
最新文档