最新高考数学易错题汇总及正解20例
高考数学压轴专题(易错题)备战高考《不等式》技巧及练习题附答案
新高中数学《不等式》专题解析一、选择题1.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.2.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x x ⎛- ⎪⎝⎭的展开式中2x 项的系数为( ) A .60 B .80C .90D .120【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案. 【详解】如图所示:画出可行域和目标函数,32z x y =-+,即322zy x =+,故z 表示直线与y 截距的2倍, 根据图像知:当1,1x y =-=时,32z x y =-+的最大值为5,故5n =.52x x ⎛- ⎪⎝⎭展开式的通项为:()()35552155221rr r r r r r r T C x C xx ---+⎛=⋅-=⋅⋅-⋅ ⎪⎝⎭, 取2r =得到2x 项的系数为:()225252180C -⋅⋅-=.故选:B .【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.3.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.4.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3 C .4 D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得()22m n m nm n m +--≤=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.5.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.6.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B 45C 5D 25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.7.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A 85B .8C 165D .163【答案】D 【解析】 【分析】222424512x y x y ----=+222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=+,所以24x y --可看作为可行域内的动点到直线240x y --=5点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+, 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.8.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.11.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C . 6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭ ()122152522333n m m n ⎛⎫≥+⨯=+⨯= ⎪ ⎪⎝⎭. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.12.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A .4B .3C .2D 【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即AF BF AB +≤,所以MN AB ≤,故选B .考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.13.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( )A .B .(4,C .4+D .(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 112A A -=-,即cos 1A A =-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.14.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.15.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( ) A .14-B .1 C.D1【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】 由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当m =. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.16.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( )A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞ C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.17.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.18.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以23323323236a b a b a b ab++>=>>,综上选B. 【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.19.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.20.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.。
答案高中高考数学(函数部分)易错题汇总及解析
高中高考数学(函数部分)易错题汇总及解析一、选择题:1, 答案:B解析:结合数轴解答。
本题易错点在于集合M 的判断,易认为集合M 为}2211|{><<<=x x x x P 或或,而误选C,2. 答案:C解析:可从集合B 中()()1,2f f ,的象的和等于()3f 入手分析显然有110,000,011,011-+=+=+-=-+=四种情况分别对应的映射有:2个、1个、2个、2个共有个。
3.解析:此题根据复合函数的单调性求解时,转化为求二次函数的单调减区间但易忽视定义域的限制。
4. 答案:C 解析:根据同增异减的规律可知二交函数在区间]2,(a -∞上为减函数,则易知以a 为底的对数函数为增函数,易忽略当x 在区间]2,(a -∞上取值时,真数为零的限制。
5. 答案:A解析:根据导数解答,分出变量但注意等号是否取得。
6. 答案:A解析:数形结合,根据题意易知函数f (x )在[]2,4上为增函数利用单调性即可比较大小。
7. 答案:B解析:可将选项逐次判断。
8.答案:D解析:数形结合9. 答案:B 解析:由条件1(2)()f x f x +=可推出函数为周期为4的函数,故根据周期性即得 10. 答案:D 解析:由132log <a=log a a 根据单调性分类讨论即得。
11. 答案:D解析:代入化简注意开方时由于01,0a x <<>故x x aa ->。
12答案:C解析:根据定义判断13.答案:A 解析:分a>1和a<1讨论解决14. 答案:D解析:将问题可转化为二次函数220x x a ---=(2x ≠±)有一解时实数a 的取值范围,注意二次函数可有一解或有两解但一解为2或-2。
15. 答案:A 解析:易知d cx bx ax x f +++=23)(=()(1ax x x --a,b,c,d 的关系,再利用当0<x<1时,f (x )小于零得关于b 答案:一、选择题:BCCCAABBBDDCADA二、(17))3,0()0,3(⋃-,(18))23,(-∞,(19))4,(--∞,(20)3,(21)-4,(22))4,0[, (23)-4,(24)]3,1[-,三、解答题:25、211|||1|2||2|1|<≤-⇒⎪⎩⎪⎨⎧>-≤≤-m m m m m 。
高中高考数学易错易混易忘题分类汇总及解析
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B = ,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B = 易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B = 知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a=或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
AB时,【练1】已知集合{}2|40A x x x =+=、()22|2110B x x a x a =+++-=,若B A ⊆,则实数a 的取值范围是。
答案:1a=或1a ≤-。
【易错点2】求解函数值域或单调区间易忽视定义域优先的原则。
例2、已知()22214y x ++=,求22x y +的取值范围【易错点分析】此题学生很容易只是利用消元的思路将问题转化为关于x 的函数最值求解,但极易忽略x、y 满足()22214y x ++=这个条件中的两个变量的约束关系而造成定义域范围的扩大。
最新高考数学复习 易错题精选
高考数学复习易做易错题精选平面向量一、选择题:1.在ABC ∆中,︒===60,8,5C b a ,则⋅的值为 ( )A 20B 20-C 320D 320-错误认为,60BC CA C =︒∴选,从而出错.略解: ︒=120,故⋅202185-=⎪⎭⎫⎝⎛-⨯⨯=. 2.关于非零向量a 和b,有下列四个命题:(1)“b a b a +=+”的充要条件是“a 和b的方向相同”;(2)“b a b a -=+” 的充要条件是“a 和b 的方向相反”; (3)“b a b a -=+” 的充要条件是“a 和b 有相等的模”; (4)“b a b a -=-” 的充要条件是“a 和b 的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 4错误分析:对不等式b a b a b a+≤±≤-取等号的条件认识不清.答案: B.3.已知O 、A 、B 三点的坐标分别为O(0,0),A(3,0),B(0,3),点P 在线段AB 上且 AP =t AB (0≤t≤1)则² 的最大值为( )A .3B .6C .9D .12正确答案:C 错因:学生不能借助数形结合直观得到当|OP |cos α最大时,OA ²OP 即为最大。
4.若向量 a =(cos α,sin α) , b =()ββsin ,cos , a 与b 不共线,则a 与b 一定满足( )A . 与的夹角等于α-βB .∥C .(+)⊥(-)D . ⊥正确答案:C 错因:学生不能把a 、b 的终点看成是上单位圆上的点,用四边形法则来处理问题。
5.已知向量 =(2cos ϕ,2sin ϕ),ϕ∈(ππ,2), =(0,-1),则 与 的夹角为( )A .π32-ϕB .2π+ϕ C .ϕ-2π D .ϕ正确答案:A 错因:学生忽略考虑与夹角的取值范围在[0,π]。
6.o 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( -)²(+-2)=0,则∆ABC 是( )A .以AB 为底边的等腰三角形B .以BC 为底边的等腰三角形 C .以AB 为斜边的直角三角形D .以BC 为斜边的直角三角形正确答案:B 错因:学生对题中给出向量关系式不能转化:2不能拆成(+)。
(完整版)高中数学易错题
高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。
高考数学压轴专题(易错题)备战高考《不等式》解析含答案
【高中数学】数学《不等式》高考知识点一、选择题1.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( ) A .{}13x x -≤< B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<< 【答案】C【解析】【分析】 解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð.【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤. {}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C.【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.2.设a b c ,,为非零实数,且a c b c >>,,则( )A .a b c +>B .2ab c >C .a b 2c +>D .112a b c+> 【答案】C【解析】【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案.【详解】 ,a c b c >>,故2a b c +>,2a b c +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误;故选:C .【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.3.若,x y 满足约束条件360,60,1,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则z x y =-的最小值为( )A .4B .0C .2-D .4-【答案】D【解析】【分析】画出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入即可求解.【详解】 由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,目标函数z x y =-,可化为直线y x z =-当直线y x z =-经过A 时,z 取得最小值, 又由3601x y y -+=⎧⎨=⎩,解得(3,1)A -, 所以目标函数的最小值为min 314z =--=-.故选:D .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.4.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .7【答案】A【解析】【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值.【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由200x y x y +-=⎧⎨-=⎩得(1,1)A , 由3z x y =+得3y x z =-+,平移3y x =-,易知过点A 时直线在y 上截距最小,所以3114min z =⨯+=.故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.5.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( )A .(,1)(3,)-∞-+∞UB .(1,3)-C .(1,3)D .(,1)(3,)-∞+∞U 【答案】A【解析】【分析】由0ax b ->的解集,可知0a >及1b a=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集.【详解】由0ax b ->的解集为()1,+?,可知0a >且1b a=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U ,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.6.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( ) A .116 B .18 C .1 D .2【答案】A【解析】【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解.【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-, 则1222yx x y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.7.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n +的最小值为( ) A .3 B .1 C .2 D .32 【答案】D【解析】【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n+的最小值. 【详解】 画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.8.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( )A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D【解析】【分析】 分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6.故选:D.【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( )A .[1,)-+∞B .(,1]-∞-C .(1,)-+∞D .(,1)-∞- 【答案】A【解析】【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.若,,则( ) A .B .C .D . 【答案】C 【解析】【分析】【详解】 试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误, 因为选项C 正确,故选C .【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.11.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.12.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( )A .[5,)+∞B .[2,)+∞C .[1,)+∞D .[0,)+∞ 【答案】A【解析】【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫ ⎪⎝⎭,所以2Z x y =+的最大值为5, 因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a 的取值范围是5a ≤,故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.13.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( ) A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4] 【答案】B【解析】【分析】作出可行域,1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值.【详解】 作出可行域,如图阴影部分(含边界),1y x +表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】 本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1y x+表示动点(,)P x y 与定点(0,1)Q -连线斜率,由直线与可行域的关系可得结论.14.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m +=有实数根的概率为( )A .18B .17C .16D .15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】若方程20x nx m +=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形. 故选:A .【点睛】 本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.15.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r ,则z 的最大值是( )A .2B .3C .4D .5【答案】C【解析】【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可.【详解】 解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r ,可图知当目标函数图象经过点()1,2B 时,z 取最大值, 即24z x y =+=.故选:C.【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.16.已知M、N是不等式组1,1,10,6xyx yx y≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN的最大值是()A17B.342C.32D.172【答案】A【解析】【分析】先作可行域,再根据图象确定MN的最大值取法,并求结果.【详解】作可行域,为图中四边形ABCD及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN的最大值为21417+选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.17.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3B .(),1-∞-C .()1,1-D .()3,1- 【答案】C【解析】【分析】解一元二次不等式求得M ,然后求两个集合的交集.【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C.【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.18.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.19.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.20.设变量,x y 满足约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y =+的最大值为( )A .2B .3C .4D .5【答案】D【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】 根据约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z =5x +y 可化为y =-5x +z ,即表示斜率为-5,截距为z 的动直线,由图可知,当直线5z x y =+过点()1,0A 时,纵截距最大,即z 最大,由211x y x y +=⎧⎨+=⎩得A (1,0) ∴目标函数z =5x +y 的最小值为z =5故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.。
高三数学错题整理与解析
高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。
对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。
本文将对高三数学错题进行整理分类,并给出详细的解答和解析。
一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。
解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。
2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。
求$a$、$b$、$c$的值。
解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。
将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。
将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。
根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。
将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。
综上所述,$a = b$,$c = \frac{1}{4}$。
二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。
高考数学压轴专题(易错题)备战高考《函数与导数》易错题汇编含答案解析
新《函数与导数》专题解析一、选择题1.若点1414(log 7,log 56)在函数()3f x kx =+的图象上,则()f x 的零点为( ) A .1 B .32C .2D .34【答案】B 【解析】 【分析】将点的坐标代入函数()y f x =的解析式,利用对数的运算性质得出k 的值,再解方程()0f x =可得出函数()y f x =的零点.【详解】141414141414log 56log 4log 1412log 212(1log 7)32log 7=+=+=+-=-Q ,2k ∴=-,()2 3.f x x =-+故()f x 的零点为32,故选B.【点睛】本题考查对数的运算性质以及函数零点的概念,解题的关键在于利用对数的运算性质求出参数的值,解题时要正确把握零点的概念,考查运算求解能力,属于中等题.2.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.3.3ax ⎛ ⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.4.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.5.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).A B .C .2D .【答案】D 【解析】试题分析:因为函数()lg f x x =,0a b >>,()()f a f b = 所以lg lg a b =- 所以1a b=,即1ab =,0a b >>22a ba b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥=当且仅当2a b a b-=-,即a b -=时等号成立所以22a b a b +-的最下值为故答案选D考点:基本不等式.6.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】 【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e 1e ln 1e x x x x a --=+-()0x >,则方程()1e 1e ln 1e x x x x a --=+-在()0,∞+上有解,即方程()11ln 1e ex x a ++-=在()0,∞+上有解, 设()()11ln 1e ex x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q ,令()=e 1xm x x --,则()=e 10xm x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x eϕϕ>=-, 所以11ea >-, 故选:D 【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.7.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,)31x -,则可得正六棱柱容器的容积为()())()32921224V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)12x -,所以正六棱柱容器的容积为()())()329214V x x x x x x x =+-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.8.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.31.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.9.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号, 故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.10.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.11.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则()()20192024f f +=( )A .-5B .5C .0D .4043【答案】B 【解析】 【分析】根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】由(8)()0f x f x ++=,得(8)()f x f x +=-,所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=, 且奇函数()y f x =是定义在R 上的函数,所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==. 又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==. 所以(2019)(2024)5f f +=. 故选:B. 【点睛】此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.12.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞ C .()1,+∞D .()+∞【答案】B 【解析】 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x xf x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin ,142x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.13.函数()3ln 2xf x x x=+的图象在点()()1,1f 处的切线方程为( ) A .64y x =- B .75y x =- C .63=-y x D .74y x =-【答案】B 【解析】 【分析】首先求得切线的斜率,然后求解切线方程即可.【详解】由函数的解析式可得:()221ln '6x f x x x-=+, 则所求切线的斜率()221ln1'16171k f -==+⨯=, 且:()012121f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-. 本题选择B 选项. 【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.14.[]()x a,b ,f x m ∀∈≥恒成立,等价于[]()x a,b ,[f x ]m min ∈≥15.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数; 当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.16.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( )A .3,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .5,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】 【分析】对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】由题意可得32431y x x a '=-+<在()0,x ∈+∞上有解,设()3243f x x x a =-+(0x >),()()2126621f x x x x x '=-=-,令()0f x '<,得102x <<;令()0f x '>,得12x >, ∴()f x 在1(0,)2单调递减,在1(,)2+∞单调递增,∴()min 11124f x f a ⎛⎫==-< ⎪⎝⎭,解得:54a <.故选:C. 【点睛】本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.17.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.18.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛⎫-∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭UD .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C【解析】【分析】 对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围.【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2], 因为a +2-2a =2-a >0,所以a +2>2a ,所以此时函数g (x )的值域为(2a ,+∞),由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],当a≥23时,-a+2≤2a,由题得21,1222aaa a-+≤⎧∴≤≤⎨+≥⎩.当0<a<23时,-a+2>2a,由题得2a<1,所以a<12.所以0<a<12.综合得a的范围为a<12或1≤a≤2,故选C.【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.曲线3πcos02y x x⎛⎫=≤≤⎪⎝⎭与x轴以及直线3π2x=所围图形的面积为()A.4B.2C.52D.3【答案】B【解析】【分析】【详解】试题分析:()332222(0cos)sin2S x dx xππππ=-=-=⎰,选B.考点:定积分的几何意义20.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是().(取lg30.4771≈,lg20.3010≈)A.16 B.17 C.24 D.25【答案】D【解析】【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n ⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果. 【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.。
高考数学复习易做易错题选
高考数学复习易做易错题选一、选择题;1.设ABCD 是空间四边形;E ;F 分别是AB ;CD 的中点;则BC AD EF ,,满足( )A 共线B 共面C 不共面D 可作为空间基向量2.在正方体ABCD-A 1B 1C 1D 1,O 是底面ABCD 的中心;M 、N 分别是棱DD 1、D 1C 1的中点;则直线OM( )A 是AC 和MN 的公垂线B 垂直于AC 但不垂直于MNC 垂直于MN ;但不垂直于ACD 与AC 、MN 都不垂直3.已知平面α∥平面β;直线L ⊂平面α,点P ∈直线L,平面α、β间的距离为8;则在β内到点P 的距离为10;且到L 的距离为9的点的轨迹是( )A 一个圆B 四个点C 两条直线D 两个点4.正方体ABCD-A 1B 1C 1D 1中;点P 在侧面BCC 1B 1及其边界上运动;并且总保持A P ⊥BD 1,则动点P 的轨迹( )A 线段B 1C B BB 1的中点与CC 1中点连成的线段C 线段BC 1D CB 中点与B 1C 1中点连成的线段5. 下列命题中;① 若向量a 、b 与空间任意向量不能构成基底;则a ∥b 。
② 若a ∥b ; b ∥c ;则c ∥a .③ 若 OA 、OB 、OC 是空间一个基底;且 OD =31OA +31 OB +31OC ,则A 、B 、C 、D 四点共面。
④ 若向量 a + b ; b + c ; c + a 是空间一个基底;则 a 、 b 、 c 也是空间的一个基底。
其中正确的命题有( )个。
A 1B 2C 3D 46.给出下列命题;①分别和两条异面直线AB 、CD 同时相交的两条直线AC 、BD 一定是异面直线②同时与两条异面直线垂直的两直线不一定平行③斜线b 在面α内的射影为c ;直线a ⊥c ;则a ⊥b ④有三个角为直角的四边形是矩形;其中真命题是( )7.已知一个正四面体和一个正八面体的棱长相等;把它们拼接起来;使一个表面重合;所得多面体的面数有( )A 、7B 、8C 、9D 、108.下列正方体或正四面体中;P 、Q 、R 、S 分别是所在棱的中点;这四个点不共面的一个图是( )9. a 和b 为异面直线;则过a 与b 垂直的平面( )A 、有且只有一个B 、一个面或无数个C 、可能不存在D 、可能有无数个10.给出下列四个命题;(1)各侧面在都是正方形的棱柱一定是正棱柱. (2)若一个简单多面体的各顶点都有3条棱;则其顶点数V 、面数F 满足的关系式为2F-V=4.(3)若直线l ⊥平面α;l ∥平面β;则α⊥β.(4)命题“异面直线a 、b 不垂直;则过a 的任一平面与b 都不垂直”的否定.其中;正确的命题是( )A .(2)(3)B .(1)(4)C .(1)(2)(3)D .(2)(3)(4) 11.如图;△ABC 是简易遮阳棚;A ;B 是南北方向上两个定点;正东方向射出的太阳光线与地面成40°角;为了使遮阴影面ABD 面积最大;遮阳棚ABC 与地面所成的角应为( )A .75°B .60°C .50°D .45°12.一直线与直二面角的两个面所成的角分别为α;β;则α+β满足( )A 、α+β<900B 、α+β≤900C 、α+β>900D 、α+β≥900。
高考数学易错题解题方法 15例
设直线 PF1 的斜率为 k,则 PF1: y k (x 4) 4 , 即 kx y 4k 4 0 . ∵ 直 线 PF1 与 圆 C 相 切 ,
∴ | k 0 4k 4 | 5 .解得 k 11, 或k 1 .
k2 1
2
2
当 k= 11 时,直线 PF1 与 x 轴的交点横坐标为 36 ,不合题意,舍去.
(1)求 m 的值与椭圆 E 的方程;
(2)设 Q 为椭圆 E 上的一个动点,求 AP AQ 的取值范围.
【错解分析】本题易错点(1)在于计算椭圆的方程的量本 身就大,方法和计算技巧的运用很重要。
解:(1)点 A 代入圆 C 方程,得 (3 m)2 1 5 .
∵m<3,∴m=1.圆 C: (x 1)2 y2 5 .
13
12
y
P2
P1
P0
O
x
2
坐标为 4 ,则 cos 的值等于
.
5
答案: 3 3 4 10
【错解分析】本题常见错误写成 3 3 4 的相反数,这样的错误常常是忽略角度所在的象限。 10
【解题指导】本题主要考察三角函数的定义,及对两角和与差公式的理解。
【练习 7】已知 sin x sin cos , cos x sin cos ,则cos 2x
6 7 8 9
为( ) A.(1005,1004) C.(2009,2008)
B.(1004.1003) D.(2008,2007)
5
0
1
10 x
4
3
2
11
【范例 7】如图,点 P 是单位圆上的一个顶点,它从初始位置 P0 开
始沿单位圆按逆时针方向运动角
(
0
【高考数学】高三易错题138道
高三易错题一:集合与命题易错题错误原因分析1.已知集合{}220,M x x x m x R =-+=∈非空,则集合M 中所有元素之和为.入选理由:集合的互异性考的比较隐蔽2.已知A 是由实数组成的数集,满足:A a ∈则A a∈-11;且A ∉1.(1)若A ∈2,则A 中至少含有哪些元素;(2)A 能否为单元素集合?若能,求出集合A ;若不能,说明理由;(3)若A a ∈,则a11-是A 中的元素吗?说明理由.入选理由:集合新定义的理解3.已知集合A {|25}x x =-≤≤,B {|121}x m x m =+≤≤-,满足B A ⊆,求实数m 的取值范围入选理由:交并集运算注意∅是否存在以及端点处是否可取4.非空集合P 满足(1){}54321,,,,⊆P ;(2)若a P ∈,则6a P -∈,符合上述两个条件的集合P 的个数是_______________入选理由:子集个数的运算。
对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n 21n -22n-.高三易错题二:不等式易错题错误原因分析1.已知41,145a c a c -≤-≤--≤-≤,试求9a c -的取值范围.入选理由:待定系数法的应用2.解关于x 的不等式2(2)20mx m x +-->,并写出解集入选理由:字母讨论不全,没有条理导致分类不全3.若不等式20ax bx c ++>的解集为()1,2,求不等式20cx bx a ++>的解集。
入选理由:韦达定理的应用4.入选理由:图像法求不等式8.若不等式()11m x x ≤++-的解集为全集,求实数m 的求值范围.入选理由:绝对值函数的值域高三易错题三:函数16.已知18361log 9,18,,log 455n m m n -==试用表示.入选理由:对数的基本性质可否熟练高三易错题三:三角比和三角函数易错题错误原因分析1.已知sin sin(2)(1),m m βαβ=+≠求证:1tan()tan .1mmαβα++=-入选理由:角的拼凑(由结论去找条件)9.将一块圆心角为120︒,半径为20cm的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.入选理由:模拟考试中得分率很低高三易错题四:数列1.已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围入选理由:数列单调性与函数单调性的区别错误原因分析2.设等差数列{}n a 的前n 项和为n S ,若{}nS 也是等差数列,且公差和{}n a 的公差相同,则数列{}n a 的首项和公差的和_________1=+d a ;入选理由:等差数列和前n 项和的公式入选理由:奇数项和偶数项之间的关系(相除和相减)项的和在等差数列10.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-求数列{a n }的通项公式;入选理由:对于分式递推公式。
高考数学高频易错题举例解析,DOC
高考数学高频易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。
也就是在转化过程中,没有注意转化的等价性,会经常出现错误。
本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。
加强思维的严密性训练。
● 忽视等价性变形,导致错误。
?,但与不等价。
【例1时受a 和)3(f =∴●忽视隐含条件,导致结果错误。
【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是思路分析本例只有一个答案正确,设了3个陷阱,很容易上当。
利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα有的学生一看到449-,常受选择答案(A )的诱惑,盲从附和。
这正是思维缺乏反思性的体现。
如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。
原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆?.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18。
这时就可以作出正确选择,只有(B )正确。
(2)已知(x+2)2+=1,求x 2+y 2的取值范围。
错解分析从而当 【例错解∴分析21,第二 由ab ≤(2b a +)2=41得:1-2ab ≥1-21=21,且221b a ≥16,1+221ba ≥17, ∴原式≥21×17+4=225(当且仅当a=b=21时,等号成立), ∴(a+a 1)2+(b+b1)2的最小值是。
●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=n n S ,求.n a错误解法.222)12()12(1111----=-=+-+=-=n n n n n n n n S S a错误分析显然,当1=n 时,1231111=≠==-S a 。
备战2023年高考数学考试易错题-易错点 一元二次不等式及一元二次方程
专题 一元二次不等式、一元二次不等式易错知识1.解分式不等式时要注意分母不能为零;2.“大于取两边,小于取中间”使用的前提条件是二次项系数大于零; 3.解决有关一元二次不等式恒成立问题要注意给定区间的开闭; 4. 有关一元二次方程根的分布条件列不全致错;5. 解一元二次不等式时要注意相应的一元二次方程两根的大小关系;易错分析一、忽视分式不等式中的分母不能为零致错1.不等式2x +1≤1的解集是________.【错解】由2x +1≤1得2x +1-1≤0,得2-x -1x +1≤0,得x -1x +1≥0,得(x -1)(x +1)≥0,得x ≤-1或x ≥1,所以原不等式的解集为{x |xx ≤-1或x ≥1}.【错因】因为x +1为分母,所以x +1不等于零。
【正解】由2x +1≤1得2x +1-1≤0,得2-x -1x +1≤0,得x -1x +1≥0,得x -1=0或(x -1)(x +1)>0,得x =1或x <-1或x >1,得x <-1或x ≥1,所以原不等式的解集为{x |x <-1或x ≥1}.二、忽视一元二次不等式中的二次项系数不能为零致错2.若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是( )A .(-2,2)B .(2,+∞)C .(-2,2]D .[-2,2]一元二次不等式、一元二次不等式分式不等式忽视分母不为零解一元二次不等式忽视二次项系数的正负一元二次方程根的分布条件列举不全一元二次不等式恒成立忽视区间的开闭解一元二次不等式忽视两根的大小关系【错解】原不等式可整理为(2-m )x 2+(4-2m )x +4>0.若该不等式恒成立,必须满足⎩⎪⎨⎪⎧2-m >0,(4-2m )2-4×4(2-m )<0,解得-2<m <2.综上知实数m 的取值范围是(-2,2), 选A .【错因】没有对二次项系数m 讨论。
高考数学复习易做易错题归纳汇总
高考数学复习易做易错题归纳汇总不等式部分(二)二填空题:1.设220,0,12b a b a ≥≥+=,则的最大值为 错解:有消元意识,但没注意到元的范围。
正解:由220,0,12b a b a ≥≥+=得:2212b a =-,且201b ≤≤,原式=求出最大值为1。
2.若,,x y R +∈a 的最小值是,2m n +≥≤≤a3.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 。
错解一、因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4。
错解二、22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1)。
错解分析:解一等号成立的条件是11,11,1x y x y x y x y====+=且即且与相矛盾。
解二等号成立的条件是2,xy xy xy==即104xy <≤相矛盾。
正解:z=11()()x y x y ++=1y x xy xy x y +++=21()222x y xy xy xy xy xy xy+-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤ ⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值254。
4.若对于任意x ∈R ,都有(m -2)x 2-2(m -2)x -4<0恒成立,则实数m 的取值范围是 。
正确答案:(-2,2) 。
错误原因:容易忽视m =2。
5.不等式ax 2+ bx + c >0 ,解集区间(-21,2),对于系数a 、b 、c ,则有如下结论: ① a >0 ②b >0 ③ c >0 ④a + b + c >0 ⑤a – b + c >0,其中正确的结论的序号是________________________________. 正确答案 2 、3、 4错因:一元二次函数的理解6.不等式(x -2)x 2-2x -3 ≥0的解集是 . 正确答案:{}13x x x =-≥或 7.不等式1x a x 22+>+的解集为(-∞,0),则实数a 的取值范围是_____________________。
(完整版)高中数学易错题(含答案)
高中数学易错题一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.52.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=06.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是_________.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是_________.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是_________.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为_________.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为_________.13.△ABC中,AB=AC,,则cosA的值是_________.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为_________.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=_________.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.高中数学易错题参考答案与试题解析一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.5考点:三角形中的几何计算.专题:计算题.分析:设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,进而求得x和y的关系式,进而表示出xy的表达式,利用二次函数的性质求得xy的最大值.解答:解:如图,设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,即=4,所以4x=12﹣3y,y=,求xy最大,也就是那个矩形面积最大.xy=x•=﹣•(x2﹣3x),∴当x=时,xy有最大值3故选B.点评:本题主要考查了三角函数的几何计算.解题的关键是通过题意建立数学模型,利用二次函数的性质求得问题的答案.2.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.考点:三角形中的几何计算.专题:计算题.分析:直接利用正弦定理,两角差的正弦函数,即可求出三角形的外接圆的直径即可.解答:解:由正弦定理可知:====.故选D.点评:本题是基础题,考查三角形的外接圆的直径的求法,正弦定理与两角差的正弦函数的应用,考查计算能力.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.考点:三角形中的几何计算.专题:数形结合;转化思想.分析:画出图形,利用点到直线的距离之间的转化,三角形两边之和大于第三边,求出最小值与最大值.解答:解:由题意△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,在图(1)中,d=CE+PE+PF>CD==,在图(2)中,d=CE+EP+FP<CE+EG<AC=4;∴d的取值范围是;故选D.点评:本题是中档题,考查不等式的应用,转化思想,数形结合,逻辑推理能力,注意,P为△ABC内任一点,不包含边界.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.考点:三角形中的几何计算.专题:计算题.分析:由题意可知双曲线的焦点坐标就是A,B,利用正弦定理以及双曲线的定义化简即可得到答案.解答:解:由题意可知双曲线的焦点坐标就是A,B,由双曲线的定义可知BC﹣AB=2a=10,c=6,===;故选D.点评:本题是基础题,考查双曲线的定义,正弦定理的应用,考查计算能力,常考题型.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=0考点:三角形中的几何计算.专题:计算题.分析:通过向量求出直线的斜率,利用点斜式方程求出最新的方程即可.解答:解:过点A(1,﹣2),且与向量平行的直线的斜率为﹣,所以所求直线的方程为:y+2=﹣(x﹣1),即:3x+4y+5=0.故选C.点评:本题是基础题,考查直线方程的求法,注意直线的方向向量与直线的斜率的关系,考查计算能力.6.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④考点:三角形中的几何计算;恒过定点的直线.专题:应用题.分析:①由于基本不等式等号成立的条件不具备,故的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程,求出它与两坐标轴的交点,根据条件可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条.③将函数y=cos2x的图象向右平移个单位,可以得到函数y﹣sin(2x﹣)的图象,故③不正确.④若△ABC中,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形.解答:解:①∵≥2=2,(当且仅当x=0时,等号成立),故当x>0时,的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程为y﹣3=k(x﹣2),它与两坐标轴的交点分别为(2﹣,0),(0,3﹣2k),根据直线与两坐标轴围成的面积为13=,化简可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条,故②正确.③将函数y=cos2x的图象向右平移个单位,可以得到函数y=cos2(x﹣)=sin[﹣(2x﹣)]=sin()=﹣sin(2x﹣)的图象,故③不正确.④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形,故④正确.故选B.点评:本题基本不等式取等号的条件,过定点的直线,三角函数的图象变换,诱导公式的应用,检验基本不等式等号成立的条件,是解题的易错点.二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是[,4].考点:向量在几何中的应用;三角形中的几何计算.专题:综合题.分析:设三边分别为a,b,c,利用正弦定理和余弦定理结合向量条件利用三角形面积公式即可求出三边长.欲求x+y+z的取值范围,利用坐标法,将三角形ABC放置在直角坐标系中,通过点到直线的距离将求x+y+z的范围转化为,然后结合线性规划的思想方法求出范围即可.解答:解:△ABC为Rt△ABC,且∠C=90°,设三角形三内角A、B、C对应的三边分别为a,b,c,∵(1)÷(2),得,令a=4k,b=3k(k>0)则∴三边长分别为3,4,5.以C为坐标原点,射线CA为x轴正半轴建立直角坐标系,则A、B坐标为(3,0),(0,4),直线AB方程为4x+3y﹣12=0.设P点坐标为(m,n),则由P到三边AB、BC、AB的距离为x,y,z.可知,且,故,令d=m+2n,由线性规划知识可知,如图:当直线分别经过点A、O时,x+y+z取得最大、最小值.故0≤d≤8,故x+y+z的取值范围是.故答案为:[].点评:本题主要考查了解三角形中正弦定理、余弦定理、平面向量数量积的运算、简单线性规划思想方法的应用,综合性强,难度大,易出错.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=4.考点:二倍角的余弦;三角形中的几何计算.专题:计算题.分析:首先根据三角形的面积公式求出b的值,然后将所给的式子写成+=3进而得到acosC+ccosA+a+c=6,再根据在三角形中acosC+ccosA=b=2,即可求出答案.解答:解:∵S=absinC=asinC∴b=2∴acos2+ccos2=3∴+=3即a(cosC+1)+c(cosA+1)=6∴acosC+ccosA+a+c=6∵acosC+ccosA=b=2∴2+a+c=6∴a+c=4故答案为:4.点评:本题考查了二倍角的余弦以及三角形中的几何运算,解题的关键是巧妙的将所给的式子写成+=3的形式,属于中档题.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是.考点:三角形中的几何计算.专题:计算题.分析:先根据求得sin(A+B)的值,进而求得sinC的值,根据同角三角函数的基本关系求得cosC,根据韦达定理求得a+b和ab的值,进而求得a2+b2,最后利用余弦定理求得c的值.解答:解:∵,∴sin(A+B)=∴sinC=sin(π﹣A﹣B)=sin(A+B)=∴cosC==∵a,b是方程的两根∴a+b=2,ab=2,∴a2+b2=(a+b)2﹣2ab=8∴c===故答案为:点评:本题主要考查了三角形中的几何计算,余弦定理的应用,韦达定理的应用.考查了考生综合运用基础知识的能力.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是.考点:三角形中的几何计算;正弦定理.专题:计算题;解三角形.分析:构造以BC为正三角形的外接圆,如图满足,即可观察推出|AM|的取值范围.解答:解:构造以BC为正三角形的外接圆,如图,显然满足题意,由图可知红A处,|AM|值最大为,A与B(C)接近时|AM|最小,所以|AM|∈.故答案为:.点评:本题考查三角形中的几何计算,构造法的应用,也可以利用A的轨迹方程,两点减距离公式求解.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.考点:棱柱的结构特征;三角形中的几何计算.专题:计算题.分析:由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.解答:解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.点评:本小题主要考查棱柱的结构特征、三角形中的几何计算等基础知识,考查空间想象力.属于基础题.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为1或.考点:三角形中的几何计算.专题:计算题.分析:先利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2;再分∠A=30°以及∠C=30°两种情况分别求出对应的面积.解答:解:因为2,转化为边长和角所以有2acosB=c可得:cosB==⇒a2=b2⇒a=b=2.当∠A=30°=∠B时,∠C=120°,此时S△ABC=×2×2×sinC=;当∠C=30°时,∠A=∠B=75°,此时S△ABC=×2×2×sinC=1.故答案为:或1.点评:本题主要考查余弦定理的应用以及三角形中的几何计算.解决本题的关键在于利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2.13.△ABC中,AB=AC,,则cosA的值是.考点:三角形中的几何计算.专题:计算题.分析:根据AB=AC可推断出B=C,进而利用三角形内角和可知cosA=cos(π﹣2B)利用诱导公式和二倍角公式化简整理,把cosB的值代入即可.解答:解:∵AB=AC,∴B=C∴cosA=cos(π﹣2B)=cos2B=2cos2B﹣1=﹣1=﹣故答案为:﹣点评:本题主要考查了三角形中的几何计算,二倍角公式的应用.考查了学生综合运用三角函数基础知识的能力.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为x+y+z=3.考点:三角形中的几何计算.专题:计算题.分析:设等边三角形的边长为a,高为h将P与三角形的各顶点连接,进而分别表示出三角形三部分的面积,相加应等于总的面积建立等式求得x+y+z的值.解答:解:设等边三角形的边长为a,高为h将P与三角形的各顶点连接根据面积那么:ax+ay+az=ah所以x+y+z=h因为等边三角形的边长为2,所以高为h=3所以x.y.z所满足的关系是为:x+y+z=3故答案为:3点评:本题主要考查了三角形中的几何计算.考查了学生综合分析问题的能力和转化和化归的思想.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为.考点:三角形中的几何计算.专题:计算题.分析:根据已知可得△AOC是等边三角形,从而得到OA=AC=2,则可以利用勾股定理求得AD的长.解答:解:(2)∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=2,∵∠OAD=90°,∠D=30°,∴AD=•AO=.故答案为:.点评:本题考查和圆有关的比例线段,考查同弧所对的圆周角等于弦切角,本题在数据运算中主要应用含有30°角的直角三角形的性质,本题是一个基础题.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=.考点:三角形中的几何计算.专题:计算题.分析:先利用三个内角成等差数列求得A,根据,∠B=30°求得C,然后利用tan30°=表示出a,代入三角形面积公式求得b.解答:解:三角形ABC中,三个内角A,B,C成等差数列A+B+C=3A=180°∴∠A=60°∵∠A=30°,∴C=90S=ab=∵tan30°=∴a=∴b=故答案为:点评:本题主要考查了三角形的几何计算.考查了学生基础知识综合运用的能力.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.考点:三角形中的几何计算.专题:计算题.分析:设出BD,利用余弦定理分别在△ABC,△ABD中表示出AB,进而建立等式求得b﹣x=2acosC代入四边形ABCD的面积表达式中,利用正弦函数的性质求得问题的答案.解答:解:设BD=x,则由余弦定理可知b2+a2﹣2abcosC=AB2=a2+x2+2axcosC∴b﹣x=2acosC.∵S=(absinC)﹣(axsinC)=a(b﹣x)sinC=a2•sin2C,∴当C=时,S有最大值.点评:本题主要考查了三角形的几何计算.注意灵活利用正弦定理和余弦定理以及其变形公式.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.考点:三角形中的几何计算;二倍角的正弦.专题:计算题.分析:(1)利用同角三角函数关系及三角形内角的范围可求;(2)利用正弦定理可知b=2a,再利用余弦定理,从而求出a、b的值,进而可求面积.解答:解:(1)由题意,,∴(2)由sinB=2sinA可知b=2a,又22=a2+b2﹣2abcosC,∴a=1,b=2,∴点评:此题考查学生灵活运用三角形的面积公式,灵活运用正弦、余弦定理求值,是一道基础题题.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.考点:三角形中的几何计算;正弦定理的应用;余弦定理的应用.专题:计算题;综合题.分析:(1)由三角形的面积公式,结合余弦定理求出的值,进而有sinA=.(2)利用,结合正弦定理,求出b+c的值,利用三角形的面积公式和基本不等式求出面积的最大值.解答:解:(1)得进而有(2)∵,∴即所以故当b=c=8时,S最大=.点评:本题是中档题,考查三角函数的化简,正弦定理、余弦定理的应用,三角形的面积公式以及基本不等式的应用,考查计算能力,逻辑推理能力.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.考点:三角形中的几何计算;正弦定理.专题:计算题.分析:(1)利用余弦定理和题设等式求得cosA的值,进而求得A.(2)利用正弦定理把题设中的正弦转化成边的关系,进而求得bc的值,最后利用三角形面积公式求得答案.解答:解:(1)因为b2+c2﹣a2=2bccosA=bc所以所以(2)因为sin2B+sin2C=2sin2A所以b2+c2=2a2=2因为b2+c2﹣a2=bc所以bc=1所以=点评:本题主要考查了正弦定理和余弦定理的应用.注意挖掘题设中关于边,角问题的联系.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?考点:三角形中的几何计算.专题:综合题.分析:(1)由题意画出简图,设CN=x,则QD=5﹣x,路灯高BD为h,利用三角形相似建立方程解德;(2)由题意当小迪移到BD所在线上(设为DH),连接AH交地面于E,则DE长即为所求的影长,利用三角形相似建立方程求解即可.解答:解:如图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯的底部.由题中已知得MN=PQ=1.6m,NQ=5m,CD=10m(1)设CN=x,则QD=5﹣x,路灯高BD为h∵△CMN∽△CBD,即⇒又△PQD∽△ACD即⇒由①②式得x=2.5m,h=6.4m,即路灯高为6.4m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求的影长.∵△DEH∽△CEA⇒⇒解得DE=m,即他在A路灯下的身影长为m.点评:此题考查了学生理解题意的能力,还考查了利用三角形相似及方程思想求解变量及学生的计算能力.22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.考点:三角形中的几何计算.专题:计算题.分析:(1)求AB长,关键是求sinB,sinC,利用已知条件可求;(2)根据三角形的面积公式,故关键是求sinA的值,利用sinA=sin(B+C)=sinBcosC+cosBsinC可求解答:解:(1)设AB、BC、CA的长分别为c、a、b,,∴,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为.∴sinA=sin(B+C)=sinBcosC+cosBsinC=﹣﹣﹣﹣﹣﹣﹣(12分)故所求面积﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题的考点是三角形的几何计算,主要考查正弦定理得应用,考查三角形的面积公式,关键是正确记忆公式,合理化简.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②考点:三角形中的几何计算.专题:计算题;分类讨论.分析:(1)先根据正弦定理以及大角对大边求出角C,再根据三角形内角和为180°即可求出角A.(2)分情况分别代入三角形的面积计算公式即可得到答案;(3)直接根据前两问的结论填写即可.解答:解:(1)∵,…(2分)∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°…(2分)(2)∵S=bcsinA∴A=90°,S=bcsinA=;A=30°,S=bcsinA=.…(2分)(3)点评:本题主要考查三角形中的几何计算.解决本题的关键在于根据正弦定理以及大角对大边求出角C.24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.考点:三角形中的几何计算;解三角形.专题:计算题;数形结合.分析:(1)由正弦定理知===2R,根据题目中所给的条件,不难得出弦AB的长;(2)若∠C是钝角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可证得结果;(3)根据图形进行分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分成三类讨论即可.解答:解:(1)在△ABC中,BC=2,∠ABC=45°===2R⇒b=2sinA=∵A为锐角∴A=30°,B=45°∴C=75°∴AB=2Rsin75°=4sin75°=;(2)∠C为钝角,∴cosC<0,且cosC≠1cosC=<0∴a2+b2<c2<(2R)2即a2+b2<4R2(8分)(3)a>2R或a=b=2R时,△ABC不存在当时,A=90,△ABC存在且只有一个∴c=当时,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个∴c=2RsinC=2Rsin2AC=当时,∠B总是锐角,∠A可以是钝角,可是锐角∴△ABC存在两个∠A<90°时,c=∠A>90°时,c=点评:本题考查三角形中的几何计算,综合考查了三角形形状的判断,解三角形,三角形的外接圆等知识,综合性很强,尤其是第三问需要根据a,b两边以及直径的大小比较确定三角形的形状.再在这种情况下求第三边的表达式,本解法主观性较强.难度较大.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.考点:三角形中的几何计算.专题:计算题.分析:(Ⅰ)根据∥和两向量的坐标可求得,利用正弦定理把边转化成角的正弦,然后利用两角和公式化简整理求得cosA的值,进而求得A(Ⅱ)把A的值代入,利用两角和公式整理后,利用正弦函数的性质求得2cos2B+sin(A﹣2B)的最小值.解答:解:(Ⅰ)由得.由正弦定理得,.∴.∵A,B∈(0,π),∴sinB≠0,,∴.(Ⅱ)解:∵∴2cos2B+sin(A﹣2B)==,.2cos2B+sin(A﹣2B)的最小值为点评:本题主要考查了三角形中的几何计算,正弦定理的应用和两角和公式的化简求值.注意综合运用三角函数的基础公式,灵活解决三角形的计算问题.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.考点:正弦定理的应用;三角形中的几何计算.专题:计算题.分析:(1)由已知结合正弦与余弦定理=化简可求b,由余弦定理可得,cosA=代入可求cosA,及A(2)代入三角形的面积公式可求解答:解:(1)∵∵∴=化简可得,b2﹣2b﹣8=0∴b=4由余弦定理可得,cosA==∴;(2)==点评:本题主要考查了解三角形的基本工具:正弦定理与余弦定理的应用,解题的关键是具备综合应用知识解决问题的能力27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.考点:三角函数中的恒等变换应用;三角形中的几何计算.专题:计算题.分析:(Ⅰ)利用正弦定理化简(2a+c)cosB+bcosC=0,得到三角形的角的关系,通过两角和与三角形的内角和,求出B的值;(Ⅱ)通过S=,利用B=以及a+c=4,推出△ABC面积S的表达式,通过平方法结合a的范围求出面积的最大值.解答:解(Ⅰ)由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sinCcosB+cosCsinB=0得2sinACcosB+sin(C+B)=0,因为A+B+C=π,所以sin(B+C)=sinA,得2sinAcosB+sinA=0,因为sinA≠0,所以cosB=﹣,又B为三角形的内角,所以B=.(Ⅱ)因为S=,由B=及a+c=4得S===,又0<a<4,所以当a=2时,S取最大值…(3分)点评:本题是中档题,考查三角形面积的最值,三角形的边角关系,三角函数的公式的灵活应用,考查计算能力.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.考点:三角函数的恒等变换及化简求值;三角形中的几何计算.专题:综合题.分析:(1)由,推出,利用坐标表示化简表达式,结合余弦定理求角C;(2)利用(1)中c2=a2+b2﹣ab,应用正弦定理和基本不等式,求三角形ABC的面积S的最大值.解答:解答:解:(1)∵∴且,由正弦定理得:化简得:c2=a2+b2﹣ab由余弦定理:c2=a2+b2﹣2abcosC∴,∵0<C<π,∴(2)∵a2+b2﹣ab=c2=(2RsinC)2=6,∴6=a2+b2﹣ab≥2ab﹣ab=ab(当且仅当a=b时取“=”),所以,.点评:本题考查数量积判断两个平面向量的垂直关系,正弦定理,余弦定理的应用,考查学生分析问题解决问题的能力,是中档题.。
高考数学压轴专题(易错题)备战高考《不等式》易错题汇编含解析
新数学高考《不等式》专题解析一、选择题1.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2.在下列函数中,最小值是2的函数是( ) A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()2f x =D .()42xx f x e e=+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误; C. ()2f x ==,故()3f x ≥,C 错误; D. ()4222xx f x e e =+-≥=,当4xxe e =,即ln 2x =时等号成立,D 正确.故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.3.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.4.已知实数x ,y满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C.D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形,又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2222211d -==+,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.5.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=,所以()2tan tan2tan2tan11tan tan13tan3tantanαββαβαββββ--===+++,又因为β为锐角,所以tan0β>,根据基本不等式213tantanββ≤=+当且仅当tanβ=时等号成立,因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tany x=在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π.故选:B.【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.6.对于函数()f x,若12,x x满足()()()1212f x f x f x x+=+,则称12,x x为函数()f x的一对“线性对称点”.若实数a与b和+a b与c为函数()3xf x=的两对“线性对称点”,则c 的最大值为()A.3log4B.3log41+C.43D.3log41-【答案】D【解析】【分析】根据已知有333b c a b ca++++=,可得13131ca b+=+-,只需求出3a b+的最小值,根据333a b a b+=+,利用基本不等式,得到3a b+的最小值,即可得出结论.【详解】依题意知,a与b为函数()3xf x=的“线性对称点”,所以333a b a b+=+=≥故34a b+≥(当且仅当a b=时取等号).又+a b与c为函数()3xf x=的“线性对称点,所以333b c a b ca++++=,所以3143131313a bca b a b+++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.7.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4 C .6 D .7 【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4,故选:B.【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.8.已知,x y满足33025010x yx yx y-+≥⎧⎪+≥⎨⎪+-≤⎩,则36yzx-=-的最小值为()A.157B.913C.17D.313【答案】D【解析】【分析】画出可行域,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率.直线330x y-+=与直线10x y+-=交于点13(,)22A-,由图可知,当可行域内的点为A时,PAk最小,故min333211362z-==--.故选:D.【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.已知点(2,0)M,点P在曲线24y x=上运动,点F为抛物线的焦点,则2||||1PMPF-的最小值为( ) A .3 B .2(51)-C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10.已知ABC V 外接圆的半径2R =,且223sin 2AA =.则ABC V 周长的取值范围为( ) A .(23,4]B .(4,43]C .(43,423]+D .(423,63]+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 112A A -=-,即cos 1A A =-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.11.若0a >,0b >,23a b +=,则36a b+的最小值为( ) A .5 B .6C .8D .9【答案】D 【解析】 【分析】把36a b +看成(36a b +)×1的形式,把“1”换成()123a b +,整理后积为定值,然后用基本不等式求最小值. 【详解】∵3613a b +=(36a b +)(a +2b ) =13(366b aa b+++12)≥1 3×(15+266b aa b⋅=)9等号成立的条件为66b aa b=,即a=b=1时取等所以36a b+的最小值为9.故选:D.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换,是基础题12.若变量x,y满足2,{239,0,x yx yx+≤-≤≥则x2+y2的最大值是A.4 B.9 C.10 D.12【答案】C【解析】试题分析:画出可行域如图所示,点A(3,-1)到原点距离最大,所以22max()10x y+=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.13.已知点()2,1A,O是坐标原点,点(),P x y的坐标满足:20230x yx yy-≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA=⋅u u u r u u u r,则z的最大值是()A.2B.3C.4D.5【答案】C【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.14.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+=()212222559x y x y x y x y y x ⎛⎫∴+=++=++≥+= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号)2x y ∴+的最小值为9故选:B【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.15.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3B .(),1-∞-C .()1,1-D .()3,1- 【答案】C【解析】【分析】解一元二次不等式求得M ,然后求两个集合的交集.【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C.【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.16.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .169πB .89πC .1627πD .827π 【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-, ∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.17.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.18.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) AB .5C .3D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2252d ⎛⎫==; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.19.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】 可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.20.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( ) A 3B 3C 3D 3【答案】B 【解析】【分析】【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M 是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos 3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB +≤,即AF BF AB +≤,所以MN AB ≤,故选B . 考点:抛物线的性质.【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.。
高考数学压轴专题(易错题)备战高考《空间向量与立体几何》易错题汇编附解析
数学《空间向量与立体几何》复习资料一、选择题1.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A .64B .62C .32D .34【答案】A 【解析】 【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且1136222BDE S BD OE ∆==⨯⨯=g , 即α截该正方体所得截面图形的面积为6. 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.2.已知某几何体的三视图如图所示,则该几何体的体积为A.273B.276C.274D.272【答案】D【解析】【分析】先还原几何体,再根据锥体体积公式求结果.【详解】几何体为一个三棱锥,高为33,底为一个直角三角形,直角边分别为333,,所以体积为1127=33333=322V⨯⨯⨯⨯,选D.【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.3.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为()A.132πB.7πC.152πD.8π【答案】B【解析】【分析】画出几何体的直观图,利用三视图的数据求解表面积即可.【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B . 【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6623)+B .6(8823)+C .8(632)+D .6(8832)+ 【答案】A 【解析】 【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可. 【详解】由题图可知,该鲁班锁玩具可以看成是一个棱长为222+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为22,则该几何体的表面积为2116(222)42282322S ⎡⎤=⨯+-⨯⨯⨯+⨯⨯⨯⎢⎥⎣⎦8(6623)=++.故选:A. 【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.5.四面体ABCD 的四个顶点都在球O 的表面上,AB BCD ⊥平面,BCD V 是边长为3的等边三角形,若2AB =,则球O 的表面积为( ) A .16π B .323π C .12π D .32π【答案】A 【解析】 【分析】先求底面外接圆直径,再求球的直径,再利用表面积2S D π=求解即可. 【详解】BCD V 外接圆直径23sin 3CD d CBD ===∠ , 故球的直径平方222222(23)16D AB d =+=+=,故外接球表面积216S D ππ== 故选:A 【点睛】本题主要考查侧棱垂直底面的锥体外接球表面积问题,先利用正弦定理求得底面直径d ,再利用锥体高h ,根据球直径22D d h =+求解即可.属于中等题型.6.《九章算术》卷五商功中有如下问题:今有刍甍(音meng ,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )A .3B .5C .6D .12【答案】B 【解析】 【分析】首先由三视图还原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积.【详解】由三视图换元为如图所示的几何体,该几何体分为三部分,中间一部分是直棱柱,两侧是相同的三棱锥,并且三棱锥的体积113113⨯⨯⨯=, 中间棱柱的体积131232V =⨯⨯⨯= , 所以该刍甍的体积是1235⨯+=. 故选:B 【点睛】本题考查组合体的体积,重点考查空间想象能力和计算能力,属于中档题型.7.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2π B .3π C .4π D .6π 【答案】C 【解析】 【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa aV a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r ,所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r ,所以异面直线A F '与AC 所成的角为4π. 故选:C 【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.8.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为2sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为R === 因此,三棱锥P ABC -的外接球的表面积为22284433R πππ⎛=⨯= ⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.9.在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD (不包括端点)上的动点,且线段12PP 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 A .124B .112C .16D .12【答案】A 【解析】由题意在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD 上的动点,且线段12PP 平行于平面11121,AADD PP B AD B ∆~∆, 设1,(0,1)PB x x =∈,即122,PP P =到平面11AA B B 的距离为x , 所以四棱锥121PP AB 的体积为2111(1)1()326V x x x x =⨯⨯-⨯⨯=-,当12x =时,体积取得最大值124,故选A .点睛:本题考查了空间几何体的结构特征,及几何体的体积的计算,其中解答中找出所求四面体的底面面积和四面体的高是解答的关键,着重考查了分析问题和解答问题的能力,对于空间几何体的体积与表面积的计算时,要正确把握几何体的结构特征和线面位置关系在解答中的应用.10.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222B .232C 62+D 72【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =,1AD =()22min32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆周长的最小值为:72+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.11.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面. 【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确; ④:1AM DD 、不共面,所以是异面直线,故正确; 故选C. 【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.12.在ABC ∆中,设BAC α∠=,CA 与CB 所成的角是β,绕直线AC 将AB 旋转至AB ',则在所有旋转过程中,关于AB '与BC 所成的角γ的说法正确的是( )A .当4παβ-≥时,[],γαβαβ∈-+B .当4παβ-<-时,[],γβααβ∈-+C .当4παβ+≥时,[],γαβαβ∈-+D .当4παβ+<时,,γαβαβ∈⎡-+⎤⎣⎦ 【答案】D 【解析】 【分析】首先理解异面直线所成的角的范围是0,2πγ⎛⎤∈ ⎥⎝⎦,排除选项A,B,C,对于D 可根据 AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,再将异面直线所成的角,转化为相交直线所成的角,判断最大值和最小值. 【详解】因为γ是异面直线所成的角,所以0,2πγ⎛⎤∈ ⎥⎝⎦A.当4παβ-≥时,αβ+的范围有可能超过2π,比如,3,46ππαβ==,所以不正确; B.当4παβ-<-时,当3,46ππβα==,此时[],γβααβ∈-+,也不正确; C.当4παβ+≥,当3,46ππαβ==,此时[],γαβαβ∈-+,故也不正确; D. 4παβ+<时,AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,如图,过点A 作BC 的平行线AD ,且CAD β∠=,'AB 与BC 所成的角γ转化为AB '与AD 所成的角,由图象可知,当AB '是AB 时,角最大,为αβ+,当AB '在平面ABC 内时,不与AB 重合时,角最小,此时为αβ-故选:D【点睛】本题考查异面直线所成的角,重点考查轨迹,数形结合分析问题的能力,属于中档题型,本题的关键是判断,并画出AB 绕AC 旋转,形成以AC 为轴的圆锥.13.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .169πB .89πC .1627πD .827π 【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-, ∴圆柱的体积为23()(3)(02)2V r r r r π=-<<, 则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g …. 当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.14.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A .1∶2B .1∶3C .1∶5D .3∶2【答案】C【解析】【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C .【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.15.若a ,b 是不同的直线,α,β是不同的平面,则下列四个命题:①若a P α,b β∥,a b ⊥r r ,则αβ⊥;②若a P α,b β∥,a b ∥,则αβ∥;③若a α⊥,b β⊥,a b ∥,则αβ∥;④若a P α,b β⊥,a b ⊥r r ,则αβ∥.正确的个数为( ) A .0B .1C .2D .3 【答案】B【解析】【分析】对每一个选项逐一分析得解.【详解】命题①中α与β还有可能平行或相交;命题②中α与β还有可能相交;命题④中α与β还有可能相交;∵a b P ,a α⊥,∴b α⊥,又b β⊥,∴αβP .故命题③正确.故选B .【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平和空间想象能力.16.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )A .36πB .64πC .100πD .144π【答案】C【解析】【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解.【详解】解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC == 由1132322732DE ⨯⨯=,解得9DE =, 则21AE EF DE==. ∴球O 的直径为10DE EF +=,则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=.故选C .【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.17.某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A .22B .23C .4D .26【答案】B【解析】 解:如图所示,该几何体是棱长为2的正方体中的三棱锥P ABC - ,其中面积最大的面为:1232232PAC S V =⨯⨯= . 本题选择B 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.18.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】 根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案.【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂, 当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r 成立,反之当a b ⊥r r 时,此时a 与l 不一定是垂直的,所以a l ⊥是a b ⊥r r 的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.19.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A .2B .5C 13D 22【答案】D【解析】【分析】 根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥P ABC -.13PAC PAB S S ∆∆=22PAC S ∆=,2ABC S ∆=22.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.20.已知棱长为1的正方体被两个平行平面截去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积为( )A.B.C.D.【答案】B【解析】【分析】根据三视图得到几何体的直观图,然后再根据题中的数据求出几何体的表面积即可.【详解】由三视图可得,该几何体为如图所示的正方体截去三棱锥和三棱锥后的剩余部分.其表面为六个腰长为1的等腰直角三角形和两个边长为的等边三角形,所以其表面积为.故选B.【点睛】在由三视图还原空间几何体时,一般以主视图和俯视图为主,结合左视图进行综合考虑.热悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.求解几何体的表面积或体积时要结合题中的数据及几何体的形状进行求解,解题时注意分割等方法的运用,转化为规则的几何体的表面积或体积求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015高考数学易错题汇总及正解20例
(一)上海的经济环境对饰品消费的影响失分点1忽视空集致误
调研要解决的问题:例1已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m
-1},若A∪B=A.求实数m的取值范围.
手工艺品,它运用不同的材料,通过不同的方式,经过自己亲手动手制作。看着自己亲自完成的作品时,感觉很不同哦。不论是01年的丝带编织风铃,02年的管织幸运星,03年的十字绣,04年的星座手链,还是今年风靡一时的针织围巾等这些手工艺品都是陪伴女生长大的象征。为此,这些多样化的作品制作对我们这一创业项目的今后的操作具有很大的启发作用。正解∵A∪B=A,∴B⊆A.∵A={x|x2-3x-10≤0}={x|-2≤x≤5}.
当然,在竞争日益激烈的现代社会中,创业是件相当困难的事。我们认为,在实行我们的创业计划之前,我们首先要了解竞争对手,吸取别人的经验教训,制订相应竞争的策略。我相信只要我们的小店有自己独到的风格,价格优惠,服务热情周到,就一定能取得大多女孩的信任和喜爱。 即 解得p≤-4.
5、你认为一件DIY手工艺制品在什么价位可以接受?故当A∩R*=∅时,p的取值范围是(-4,+∞).
①若B=∅,则m+1>2m-1,即m<2,故m<2时,A∪B=A;
(1)政策优势②若B≠∅,如图所示类型的DIY手工艺制品?由B⊆A得 解得-3≤m≤3.
又∵m≥2,∴2≤m≤3.由①②知,当m≤3时,A∪B=A.
3、消费“多样化”补救训练1已知集合A={x|x2+(p+2)x+1=0,p∈R},若A∩R*=∅,则实数p的取值范围为____________.
众上所述,我们认为:我们的创意小屋计划或许虽然会有很多的挑战和困难,但我们会吸取和借鉴“漂亮女生”和“碧芝”的成功经验,在产品的质量和创意上多下工夫,使自己的产品能领导潮流,领导时尚。在它们还没有打入学校这个市场时,我们要巩固我们的学生市场,制作一些吸引学生,又有使学生能接受的价格,勇敢的面对它们的挑战,使自己立于不败之地。