湘教版2018-2019学年八年级上册期末数学测试卷及答案

合集下载

湘教版八年级数学上册期末考试题及答案【精品】

湘教版八年级数学上册期末考试题及答案【精品】

湘教版八年级数学上册期末考试题及答案【精品】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .85.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC于点D ,则CD 的长是________.三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知关于x ,y 的方程组325x y a x y a-=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB ,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、B6、B7、B8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、03、13k <<.4、x >3.5、26、85三、解答题(本大题共6小题,共72分)1、原方程组的解为=63x y ⎧⎨=-⎩2、1a b-+,-1 3、(1)a ≥2;(2)-5<x <14、(1)略;(2)结论:四边形ACDF 是矩形.理由见解析.5、(1)略(2)90°(3)AP=CE6、(1)2元;(2)至少购进玫瑰200枝.。

湘教版八年级数学上册期末考试卷及答案【一套】

湘教版八年级数学上册期末考试卷及答案【一套】

湘教版八年级数学上册期末考试卷及答案【一套】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是( )A .4B .±4C .8D .±8 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm10.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。

湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷一、选择题(每题3分,共24分)1.点A 的位置如图所示,则点A 所表示的数可能是( ) A .-2.6 B .- 2 C .-23D .1.4 2.若x <y 成立,则下列不等式成立的是( )A .x -2<y -2B .4x >4yC .-x +2<-y +2D .-3x <-3y3.下列计算正确的是( )A .(a 2)3=a 5B .a 2·a =a 3C .a 9÷a 3=a 3D .a 0=14.若一个三角形的两边长分别是3和6,则第三边长不可能是( )A .6B .7C .8D .95.使式子3-x x有意义的实数x 的取值范围是( ) A .x ≤3 B .x ≤3且x ≠0 C .x <3 D .x <3且x ≠06.下列尺规作图,能判断AD 是△ABC 边上的高的是( )7.下列说法:①“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆命题;②命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;③命题“如果-a =5,那么a =-5”的逆命题为“如果-a ≠5,那么a ≠-5”,其中正确的有( )A .0个B .1个C .2个D .3个8.将一副三角板按如图所示的方式放置,则∠CAF 等于( )A .50°B .60°C .75°D .85°二、填空题(每题4分,共32分)9.实数-3,-1,0,3中,最小的数是________.10.若分式x x 2+2的值为正数,则实数x 的取值范围是________. 11.化简x 1-x +1x -1的值为________. 12.不等式3(x -1)≤x +2的正整数解是________.13.已知0<a <2,化简:a +a 2-4a +4=________.14.已知射线OM .以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =________度. 15.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.16.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(17题8分,18题9分,19题5分,20题6分, 21,22题每题8分,23,24题每题10分,共64分)17.计算:(1)16+⎝ ⎛⎭⎪⎫-12-1×(π-1)0-|7-3|+3-27;(2)(-2)2-9+(2-1)0+⎝ ⎛⎭⎪⎫13-1;(3)(3+1)(3-1)+12;(4)⎝ ⎛⎭⎪⎫2a 2-b 2-1a 2-ab ÷a a +b.18.解不等式(组)或分式方程:(1)3x +24≥2x -13-1;(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),12x -2(x -2)≤4+3x ;(3)3x -1-2x +1=6x 2-1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷,其中x =2+1.20.如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF=CE .求证:△ABE ≌△CDF .21.某商店用1 000元购进一种水果来销售,过了一段时间,又用2 800元购进这种水果,所购进的数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克;(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价的半价出售,出售完全部水果后,利润不低于3 100元,则最初每千克水果的标价至少是多少元?22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB,AC于点E,D,连接BD.(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.在△ABC中,点Q是BC边上的中点,过点A作与线段BC相交的直线l,过点B作BN⊥l于N,过点C作CM⊥l于M.(1)如图①,若直线l经过点Q,求证:QM=QN.(2)如图②,若直线l不经过点Q,连接QM,QN,那么(1)中的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.(提示:直角三角形斜边上的中线等于斜边的一半.)24.已知等边三角形ABC和等边三角形BDE,点D始终在射线AC上运动.(1)如图①,当点D在AC边上时,连接CE,求证:AD=CE.(2)如图②,当点D不在AC边上而在AC边的延长线上时,连接CE,(1)中的结论是否成立?并给予证明.(3)如图③,当点D不在AC边上而在AC边的延长线上时,条件中“等边三角形BDE”改为“以BD为斜边作Rt△BDE,且∠BDE=30°”,其余条件不变,连接CE并延长,与AB的延长线交于点F,求证:AD=BF.答案一、1.B 2.A 3.B 4.D 5.B 6.D 7.B 8.C二、9.-3 10.x >0 11.-112.1,2 点拨:去括号,得3x -3≤x +2,移项、合并同类项,得2x ≤5,系数化为1,得x ≤2.5,则不等式的正整数解为1,2.13.2 点拨:∵0<a <2,∴a -2<0,∴a +a 2-4a +4=a +|a -2|=a +(2-a )=2.14.6015.-12 点拨:合并同类项,得(3+m )x >-5,结合题图把系数化为1,得x >-53+m ,则有-53+m=-2,解得m =-12. 16.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.① ∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°,解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、17.解:(1)原式=4-2-3+7-3=7-4.(2)原式=4-3+1+3=5.(3)原式=3-1+2 3=2+2 3.(4)原式=⎣⎢⎡⎦⎥⎤2(a +b )(a -b )-1a (a -b )·a +b a =⎣⎢⎡⎦⎥⎤2a a (a +b )(a -b )-a +b a (a -b )(a +b )·a +b a=a -b a (a +b )(a -b )·a +b a =1a 2.18.解:(1)3x +24≥2x -13-1,去分母,得3(3x +2)≥4(2x -1)-12,去括号,得9x +6≥8x -4-12,移项,得9x -8x ≥-4-12-6,合并同类项,得x ≥-22.(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),①12x -2(x -2)≤4+3x ,② 解①,得x <2,解②,得x ≥0.故不等式组的解集为0≤x <2.(3)3x -1-2x +1=6x 2-1, 去分母、去括号,得3x +3-2x +2=6,解得x =1,经检验x =1是增根,分式方程无解.19.解:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6=x +3-4x +3·2(x +3)(x -1)2 =2x -1,当x =2+1时,原式=22+1-1= 2. 20.证明:∵AB ∥CD ,∴∠BAC =∠DCA .∵AF =CE ,∴AF +EF =EF +CE ,即AE =CF .在△ABE 和△CDF 中,⎩⎨⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF (AAS).21.解:(1)设该商店第一次购进水果x 千克,则第二次购进这种水果2x 千克.由题意得1 000x +2=2 8002x ,解得x =200.经检验,x =200是所列分式方程的解.答:该商店第一次购进水果200千克.(2)设最初每千克水果的标价是 y 元,则(200+200×2-50)·y +50×12y -1 000-2800≥3 100,解得y ≥12.答:最初每千克水果的标价至少是12元.22.解:(1)∵AB =AC ,∠A =36°,∴∠ABC =∠C =12×(180°-36°)=72°.∵DE 垂直平分AB ,∴AD =BD ,∴∠DBA =∠A =36°,∴∠DBC =∠ABC -∠ABD =36°.(2)由(1)得∠DBC =36°,∠C =72°,∴∠BDC =180°-∠C -∠DBC =72°,∴∠C =∠BDC ,∴BC =BD .∵AD =BD ,∴AD =BC =4.23.(1)证明:∵点Q 是BC 边上的中点,∴BQ =CQ .∵BN ⊥l ,CM ⊥l ,∴∠BNQ =∠CM Q =90°.又∵∠BQN =∠CQM ,∴△BQN ≌△CQM (AAS).∴QM =QN .(2)解:仍然成立.证明:延长NQ 交CM 于E ,∵点Q 是BC 边上的中点,∴BQ =CQ ,∵BN ⊥l ,CM ⊥l ,∴BN ∥CM ,∴∠NBQ =∠ECQ ,又∵∠BQN =∠CQE ,∴△BQN ≌△CQE (ASA).∴QN =QE .∵CM ⊥l ,∴∠NME =90°,∴QM =QN .24.(1)证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(2)解:成立.证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC +∠CBD =∠DBE +∠CBD ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(3)证明:如图,延长BE 至H 使EH =BE ,连接CH ,DH .∵BE =EH ,DE ⊥BH ,∴DB =DH ,∠BDE =∠HDE =30°,∴∠BDH =60°,∴△DBH 是等边三角形,∴BD =BH ,∠DBH =60°.∵△ABC 是等边三角形,∴∠ABC =60°,AB =CB .∴∠ABC +∠CBD =∠DBH +∠CBD ,即∠ABD =∠CBH .在△ABD 和△CBH 中,⎩⎨⎧AB =CB ,∠ABD =∠CBH ,BD =BH ,∴△ABD ≌△CBH (SAS),∴AD =CH ,∠A =∠HCB =∠ABC =60°,∴BF ∥CH ,∴∠F =∠ECH ,在△EBF 和△EHC 中,⎩⎨⎧∠BEF =∠HEC ,∠F =∠ECH ,BE =HE ,∴△EBF ≌△EHC (AAS),∴BF =CH ,∴AD =BF .湘教版八年级数学上册期末试卷2一、选择题(每题3分,共30分)1.若分式x 2-9x -3的值为0,则x 的值是( ) A .3 B .-3 C .±3 D .92.下列长度的三条线段能围成三角形的是( )A .1,2,3.5B .4,5,9C .20,15,8D .5,15,83.要使式子1+2x x -2有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x ≥12且x ≠2 D .x ≥-12且x ≠24.化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A.1a B .a C.a +1a -1 D.a -1a +15.如图,已知∠1=∠2,AC =AD ,添加下列条件:①AB =AE ;②BC =DE ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -507.不等式x -72+1<3x -22的负整数解有( ) A .1个 B .2个 C .3个 D .4个8.已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-59.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( ) A.13 B.12 C.23 D .不能确定10.如图,E ,D 分别是△ABC 的边AC ,BC 上的点,若AB =AC ,AD =AE ,则( )A .当∠B 为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值二、填空题(每题3分,共24分)11.计算:45-25×50=________. 12.⎝ ⎛⎭⎪⎫-120=________,⎝ ⎛⎭⎪⎫13-1=________,用科学记数法表示-0.000 005 03为__________.13.关于x 的不等式组⎩⎨⎧x >m -1,x >m +2的解集是x >-1,则m =________. 14.若317-a 与33a -1互为相反数,则3a 的值为________.15.若关于x 的分式方程3-2kx x -3=23-x-2有增根,则k =________. 16.等腰三角形的顶角大于90°,如果过它顶角的顶点作一直线能将它分成两个等腰三角形,则顶角的度数一定是________.17.如图,在△ABC 中,AB =AC ,DE 垂直平分AB 交AC 于点E ,垂足为点D .若△ABC 的周长为28,BC =8,则△BCE 的周长为________.18.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(20,21题每题6分,24,25题每题12分,其余每题10分,共66分)19.(1)计算:212+3113-513-2348;(2)已知x =2+3,y =2-3,求代数式⎝ ⎛⎭⎪⎫x +y x -y -x -y x +y ·⎝ ⎛⎭⎪⎫1x 2-1y 2的值.20.解分式方程:(1)2-x 3+x =12+1x +3; (2)2x +9x +3-1x -3=5-3x -2x .21.已知x =1是不等式组⎩⎪⎨⎪⎧3x -52≤x -2a ,3(x -a )<4(x +2)-5的解,求a 的取值范围.22.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一直线上,连接BD交AC于点F.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.23.如图,AD是△ABC的角平分线.(1)若AB=AC+CD,求证:∠ACB=2∠B;(2)当∠ACB=2∠B时,AC+CD与AB的数量关系如何?说说你的理由.24.某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?25.已知△ABC和△DEF均为等边三角形,点D在△ABC的边AB上,点F在直线AC上;(1)若点C和点F重合(如图①),求证:AE∥BC;(2)若点F在AC的延长线上(如图②),(1)中的结论还能成立吗?给出你的结论并证明.答案一、1.B2.C3.D点拨:根据二次根式和分式有意义的条件,即被开方数大于或等于0,分母不等于0,可以得到⎩⎨⎧1+2x ≥0,x -2≠0,解得x ≥-12且x ≠2.故选D. 4.A 点拨:原式=a +1a (a -1)·(a -1)2(a +1)(a -1)=1a . 5.B 6.A 7.A8.A 点拨:⎝ ⎛⎭⎪⎫-33×(-221)=233×21=27=28,因为25<28<36,所以5<28<6,故选A.9.B 点拨:过P 作PF ∥BC 交AC 于点F .由△ABC 为等边三角形,易得△APF也是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ .又∵PF ∥CQ ,∴易得△PFD ≌△QCD .∴DF =DC .∵PE ⊥AF ,且PF =P A ,∴AE =EF .∴DE =DF +EF =12CF +12AF =12AC =12×1=12.10.B 点拨:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED =∠γ=∠CDE +∠C .由∠ADC =∠ADE +∠CDE = ∠CDE +∠C +∠CDE =2∠CDE +∠C =∠B +∠BAD ,可得2∠CDE = ∠BAD =∠α,∴∠CDE =12∠α.故当∠α为定值时,∠CDE 也为定值.二、11. 512.1;3;-5.03×10-613.-3 点拨:因为m +2>m -1,所以m +2=-1,所以m =-3.14.-2 点拨:由题知317-a =-33a -1,可得17-a =-(3a -1),∴2a =-16,∴a =-8.∴3a =-2.15.56 点拨:因为原分式方程有增根,所以增根为x =3.原分式方程化为整式方程为3-2kx =-2-2(x -3),把x =3代入,解得k =56.16.108° 点拨:在△ABC 中,设∠B =∠C =α.如图①,若AC =CD ,DA =DB ,则∠DAB =α.∴∠CDA =2α=∠CAD ,∴∠BAC =3α.由α+α+3α=180°,得α=36°,∴∠BAC =3α=108°.如图②,若AD =CD ,AD =BD ,则∠BAD =∠CAD =α,∴4α=180°,∴α=45°,∴∠BAC =2α=90°,不合题意.17.18 点拨:因为△ABC 的周长为AB +AC +BC =AB +AC +8=28,AB =AC ,所以AB =AC =10.又因为DE 垂直平分AB ,所以AE =BE .所以△BCE 的周长为BE +EC +BC =AE +EC +BC =AC +BC =10+8=18. 18.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.①∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°, 解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、19.解:(1)原式=43+3×233-433-23×43=43+23-43=2 3.(2)原式=(x +y )2-(x -y )2(x +y )(x -y )·y 2-x 2x 2y 2=4xy -(x +y )(y -x )·(y +x )(y -x )x 2y 2=-4xy . 当x =2+3,y =2-3时,原式=-44-3=-4. 20.解:(1)方程两边同乘2(x +3),得2(2-x )=x +3+2.整理,得-3x =1,所以x =-13.经检验,x =-13是原分式方程的解.(2)方程两边同乘x (x +3)(x -3),得(2x +9)(x -3)x -x (x +3)=5x (x +3)(x -3)-(3x -2)(x +3)(x -3).整理,得-12x =-18,所以x =32.经检验,x =32是原分式方程的解.21.解:∵x =1是原不等式组的解,∴⎩⎪⎨⎪⎧3-52≤1-2a ,①3(1-a )<4×(1+2)-5,② 解不等式①,得a≤1,解不等式②,得a >-43.故a 的取值范围为-43<a ≤1.22.(1)证明:∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE.(2)解:BD ⊥CE .理由如下:由(1)可知△BAD ≌△CAE ,∴∠ABD =∠ACE .∵∠BAC =90°,∴∠ABD +∠AFB =90°.又∵∠AFB =∠DFC ,∴∠ACE +∠DFC =90°,∴∠BDC =90°,即BD ⊥CE .23.(1)证明:延长A C 至E ,使CE =CD ,连接DE .∵AB =AC +CD ,∴AB =AE .∵AD 平分∠BAC ,∴∠BAD =∠EAD .在△BAD 与△EAD 中,⎩⎨⎧AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△BAD ≌△EAD .∴∠B =∠E.∵CD =CE ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠ACB =2∠E =2∠B .(2)解:AB =AC +CD .理由:在AC 的延长线上取点F ,使CF =CD ,连接DF . ∴∠CDF =∠F ,又∵∠ACB =∠CDF +∠F ,∴∠ACB =2∠F .∵∠ACB =2∠B ,∴∠B =∠F .在△BAD 与△F AD 中,⎩⎨⎧∠B =∠F ,∠BAD =∠F AD (角平分线的定义),AD =AD ,∴△BAD ≌△F AD .∴AB =AF =AC +CF =AC +CD .24.解:(1)设第一批这种衬衫购进了x 件,则第二批购进了12x 件.根据题意,可得4 500x -10=2 10012x,解得x =30,经检验,x =30是原方程的根,且符合题意.∴12x =12×30=15(件).答:两次分别购进这种衬衫30件,15件.(2)设第二批衬衫每件的售价为m 元.第一批衬衫每件的进价为4 500÷30=150(元),第二批衬衫每件的进价为150-10=140(元),∴(200-150)×30+15(m -140)≥1 950,解得m ≥170.答:第二批衬衫每件至少要售170元.25.(1)证明:∵△ABC 与△CDE 均为等边三角形,∴BC =AC ,DC =EC ,∠B =∠BCA =∠DCE =60°,∴∠BCD =∠ACE .易得△BCD ≌△ACE ,∴∠B =∠EAC .又∵∠B =∠ACB ,∴∠EAC =∠ACB .∴AE ∥BC .(2)解:若点F 在AC 的延长线上,(1)中的结论仍然成立,即AE ∥BC . 证明:过点F 作FM ∥BC 交AB 的延长线于点M .∵△ABC 为等边三角形,∴△AFM 也是等边三角形.∴∠M =∠AFM =60°.同(1)可证△FDM ≌△FEA ,∴∠EAF=∠M=60°. ∴∠AFM=∠EAF.∴AE∥FM.又∵FM∥BC,∴AE∥BC.。

湘教版八年级上册数学期末考试试卷附答案

湘教版八年级上册数学期末考试试卷附答案

湘教版八年级上册数学期末考试试题一、选择题。

(每小题只有一个答案正确)1.已知a b <,下列式子成立的是( )A .22a b +>+B .44a b <C .33a b -<-D .如果0c <,那么a b c c< 2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( ) A .B .C .D . 3.下列计算24(2)a -的结果中,正确的是( )A .616aB .68aC .816aD .88a4.三角形的两边长分别为5cm 和7cm ,则第三边长可能为( )A .1cmB .2cmC .5cmD .12cm5.若关于x 的分式方程3x x -=2﹣3-m x 有增根,则m 的值为( ) A .﹣3B .2C .3D .不存在 6.分式方程23121x x x --=+的解为( ) A .16x =- B .16x = C .13x = D .12x = 7.不等式组2351x x ⎧-≥⎪⎨⎪+<-⎩的解集为( )A .6x ≥-B .6x >-C .6x ≤-D .6x <-8.如图,在锐角△ABC 中,8AB =,16ABC S ∆=,BAC ∠的平分线交BC 于点D ,且AD BC ⊥,点,M N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .4B .5C .6D .8二、填空题9.已知:△ABC ≌△A′B′C′,∠A=∠A′=80°,∠B=∠B′=60°,则∠C ′=_______度.10.如图,在△ABC 中,∠C =90°,点D 在AC 上,DE ∥AB ,若∠CDE =165°,则∠B 的度数为_______.11.化简2242()44224x x x x x x -+÷++++的结果是_______. 12.如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .则CAD ∠=_______.13.已知:11x x -=,则221x x+=_______. 14.某市为绿化环境计划植树3000棵,实际劳动中每天植树的数量比原计划多30%,结果提前5天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为_______. 15.如图,在Rt ABC 中,90C ∠=︒,22B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=_______°.16.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______.三、解答题17.解方程4233x x x x -=--.1823(2)3-+-+.19.解不等式组2121533324()2x x x x --⎧+≥⎪⎪⎨⎪-≤-⎪⎩.20.先化简,再求值:2231693x x x x x x x x -++÷+-+-,其中x =21.如图,已知:AB =AC ,BD =CD ,点P 是AD 延长线上的一点.求证:PB =PC .22.如图,C 为线段AB 上一点,AD ∥EB ,AC =BE ,AD =BC .CF 平分∠DCE .(1)求证:△ACD ≌△BEC ;(2)问:CF 与DE 的位置关系?23.某商店准备购进A ,B 两种商品, A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?24.在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上,如果∠BAC =90°,则∠BCE 为多少?说明理由; (2)设∠BAC =α,∠BCE =β.①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.参考答案1.B【分析】根据不等式的基本性质,注意判断选项,即可得到答案.【详解】∵a b <,∴22a b +<+,故A 不成立,∵a b <,∴44a b <,故B 成立,∵a b <,∴33a b ->-,故C 不成立,∵a b <,0c <, ∴a b c c>,故D 不成立. 故选B .【点睛】本题主要考查不等式的基本性质,熟练掌握不等式的基本性质,是解题的关键. 2.A【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A 是作BC 边上的高,C 是作AB 边上的高,D 是作AC 边上的高. 故选A.考点:三角形高线的作法3.C【分析】根据积的乘方法则,即可得到答案.【详解】24(2)a -=(-2)4∙(a 2)4=816a ,故选C .【点睛】本题主要考查积的乘方法则,熟练掌握“积的乘方,等于各个因式的乘方的积”是解题的关键.4.C【分析】根据三角形的三边长关系,求出第三边长范围,进而即可得到答案.【详解】∵三角形的两边长分别为5cm 和7cm ,∴7-5<第三边<5+7,即:2<第三边<12,故选C .【点睛】本题主要考查三角形的三边长关系,熟练掌握三角形的任意两边之差小于第三边,任意两边之差大于第三边,是解题的关键.5.C【详解】解:方程两边都乘x -3,得x -2(x -3)=m∵原方程有增根,∴最简公分母x -3=0,解得x =3,当x =3时,m =3故m 的值是3故选C .6.B【分析】通过去分母,去括号,移项合并同类项,未知数系数化为1,即可求解.【详解】23121x x x--=+, 去分母得: (23)12(1)x x x x x --+=+,化简得:-6x=-1,解得:x=16, 经检验:x=16是方程的解, ∴分式方程的解为:x=16. 故选B .【点睛】本题主要考查解分式方程,熟练掌握解分式方程的步骤,是解题的关键,注意分式方程的解要检验.7.D【分析】分别求出每个不等式的解,再取公共部分,即可求解.【详解】2351x x ⎧-≥⎪⎨⎪+<-⎩①②, 由①得:x≤-6,由②得:x <-6,∴不等式组的解为:6x <-.故选D .【点睛】本题主要考查解一元一次不等式组,熟练掌握“大大取大,小小取小,大小小大中间找”,是解题的关键.8.A【分析】作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′,根据AD 是∠BAC 的平分线可知M′H =M′N′,则BM′+M′N′为所求的最小值,最小值为BH 的长,进而即可求解.【详解】解:如图,作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′, ∵AD 是∠BAC 的平分线,∴M′H =M′N′,则BM′+M′N′= BM′+ M′H=BH ,∴BH 是点B 到直线AC 上各个点的最短距离,∴BM MN +的最小值= BH ,∵BAC ∠的平分线交BC 于点D ,且AD BC ⊥,∴∠BAD=∠CAD ,∠ADC=∠ADB=90°,AD=AD ,∴∆BAD ≅∆CAD ,∴AC=AB=8, ∴12AC∙BH=16ABC S ∆=, ∴BH=4,即BM MN +的最小值是4.【点睛】本题考查的是最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,化两条线段的和的最小值为一条垂线段的长.9.40°【分析】根据全等三角形的性质以及三角形内角和定理,即可求解.【详解】∵△ABC≌△A′B′C′,∠A=∠A′=80°,∠B=∠B′=60°,∴∠C′=∠C=180°-80°-60°=40°,故答案是:40°.【点睛】本题主要考查全等三角形的性质以及三角形内角和定理,熟练掌握上述性质和定理是解题的关键.10.75°【分析】利用平角的定义可得∠ADE=15°,再根据平行线的性质知∠A=∠ADE=15°,再由内角和定理可得答案.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°−∠C−∠A=180°−90°−15°=75°.故答案是:75°.本题考查的是平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,内错角相等.11.2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x x x x x ⎡⎤+-+÷⎢⎥+++⎣⎦ =()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦ =()222x x x x+⋅+ =2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.12.30°【分析】AB =AC =BC =CD ,即可求出∠CAD =∠D ,,进而即可求解.【详解】解:∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°,∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,故答案是:30°.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,熟练掌握等腰三角形和等边三角形的性质,是解题的关键.13.3【分析】根据完全平方公式的变形公式,即可求解.【详解】 ∵11x x-=, ∴221x x +=2212123x x ⎛⎫-+=+= ⎪⎝⎭, 故答案是:3.【点睛】本题主要考查完全平方公式的变形公式,熟练掌握222()2a b a b ab +=-+,是解题的关键. 14.3000300051.2x x-= 【分析】设原计划每天植树x 棵,则实际每天植树(1+20%)x =1.2x ,根据“原计划所用时间−实际所用时间=5”列方程即可.【详解】解:设原计划每天植树x 棵,则实际每天植树(1+20%)x =1.2x , 根据题意可得:3000300051.2x x -=, 故答案为:3000300051.2x x -=. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系. 15.56°【分析】根据直角三角形两锐角互余得∠BAC =68°,由角平分线的定义得∠BAM =34°,由线段垂直平分线可得△AQM 是直角三角形,故可得∠AMQ +∠BAM =90°,即可求出α.【详解】解:∵△ABC 是直角三角形,∠C =90°,∴∠B +∠BAC =90°,∵∠B=22°,∴∠BAC=90°−∠B=90°−22°=68°,由作图知:AM是∠BAC的平分线,∴∠BAM=12∠BAC=34°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°−∠BAM=90°−34°=56°,∴α=∠AMQ=56°.故答案为:56°.【点睛】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的定义,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a-+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x ax b≥⎧⎨≤⎩,则解集是1≤x≤b ,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b <4.故答案是:3≤b <4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.2x =-【分析】通过去分母,去括号、移项、合并同类项,即可求解.【详解】解:方程两边同乘()3x -,得()423x x x --=-,去括号、移项、合并同类项,得36x =-,解得2x =-.检验:2x =-时,30x -≠,∴2x =-是原分式方程的解.【点睛】本题主要考查解分式方程,熟练掌握去分母,去括号、移项、合并同类项,未知数系数化为1是解题的关键.18.1【分析】先算立方根,乘方以及绝对值,再算加减法,即可求解.【详解】原式=243-+-=1【点睛】本题主要考查实数的混合运算,熟练掌握立方根,乘方以及绝对值,是解题的关键. 19.28117x -≤≤ 【分析】分别求出各个不等式的解,再取各个解的公共部分,即可得到答案.【详解】 解:2121533324()2x x x x --⎧+≥⎪⎪⎨⎪-≤-⎪⎩①②, 由①得:3(2x-1)+15≥5(2-x),即:11x≥-2,解得:211x ≥-, 由②得:3x-2≤6-4x ,即:7x≤8,解得:87x ≤, ∴不等式组的解为:28117x -≤≤. 【点睛】 本题主要考查解一元一次不等式组,熟练掌握“大大取大,小小取小,大小小大中间找”是解题的关键.20.11x -,【分析】通过约分和通分对分式进行化简,再代入求值,即可求解.【详解】原式=()23(1)133x xx x x x x -++÷+-- =()2331(1)3x x x x x x x ---⋅++- =11(1)x x x x -++ =21(1)(1)x x x x x -++ =(1)(1)(1)x x x x +-+ =1x x- =11x-,当x=1. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.21.见详解【分析】先证明△ABD ≌△ACD ,得∠BAP =∠CAP ,再证明△ABP ≌△ACP ,即可得到结论.【详解】证明:在△ABD 和△ACD 中,AB AC AD AD BD CD ⎧⎪⎨⎪⎩===,∴△ABD ≌△ACD ,∴∠BAP =∠CAP ,在△ABP 和△ACP 中,AB AC BAP CAP AP AP ⎧⎪∠∠⎨⎪=⎩==,∴△ABP ≌△ACP ,∴PB =PC .【点睛】本题考查全等三角形的判定和性质,,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)CF ⊥DE .【分析】(1)根据平行线性质求出∠A =∠B ,根据SAS 推出即可;(2)根据全等三角形的性质推出CD =CE ,根据等腰三角形性质可得CF ⊥DE.【详解】证明:(1)∵AD ∥BE ,∴∠A =∠B ,在△ACD 和△BEC 中,AD BC A B AC BE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BEC (SAS );(2)∵△ACD ≌△BEC ,∴CD =CE ,又∵CF 平分∠DCE ,∴CF ⊥DE .【点睛】本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS 、ASA 、AAS 、SSS ,全等三角形的对应边相等,对应角相等. 23.(1)A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)该商店有5种进货方案.【分析】(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元,由题意得关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】解:(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元, 由题意得:3000180020x x =-, 解得:x =50,经检验,x =50是原方程的解且符合实际意义.50−20=30(元),答:A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得:()5030401560402a a a a ⎧+-≤⎪⎨-≥⎪⎩, 解得:403≤a≤18, ∵a 取整数,∴a 可为14,15,16,17,18,答:该商店有5种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.24.(1)90°;(2)①α+β=180°,理由见详解;②点D 在直线BC 上移动,α+β=180°或α=β.【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°;(2)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC−∠DAC =∠DAE−∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°;②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°−∠ABC−∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD≌△ACE是解本题的关键.。

湘教版八年级数学上册期末测试卷及完整答案

湘教版八年级数学上册期末测试卷及完整答案

湘教版八年级数学上册期末测试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、31 3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .2 5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是________.2.因式分解:2218x -=__________.3.若m+1m =3,则m 2+21m=________. 4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值:21(1)11x x x ÷+--,其中21x =-.3.解不等式组:3221152x x x x -<⎧⎪++⎨<⎪⎩,并把解集表示在数轴上;4.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .5.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).(1)求k 、m 的值;(2)已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x => 的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、B7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、2(x +3)(x ﹣3).3、74、2≤a+2b ≤5.5、406、45︒三、解答题(本大题共6小题,共72分)1、x=12、11x +,23、31x -<<4、(1)略(2)略5、(1) k 的值为3,m 的值为1;(2)0<n ≤1或n ≥3.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。

2018-2019学年最新湘教版八年级数学上学期期末复习考试模拟试题及答案解析-精编试题

2018-2019学年最新湘教版八年级数学上学期期末复习考试模拟试题及答案解析-精编试题

湘教版最新八年级数学上学期期末考试复习试卷(1)一、选择题(题型注释)1.下列式子:22222213,,,,,x y a x x a b a xy yπ----其中是分式的个数( ). A .2 B .3 C .4 D .52.若代数式2-x x 有意义,则实数x 的取值范围是( ) A .2≠x 且1x ≠ B .0x ≥ C .0x > D .20≠≥x x 且3.已知b a 11-=2,则ba ab -的值为( ) A.0.5 B.﹣0.5 C.2 D.﹣24.下列说法中,正确的...是( ) ①3243->- ②a 一定是正数③无理数一定是无限小数④ 16.8万精确到十分位⑤2)8(-的算术平方根是 8A .①②③B .④⑤C .②④D .③⑤5.如图所示,,,,AB DE AC DF AC DF =∥∥下列条件中,不能判断ABC DEF △≌△的是( )A .AB=DEB .∠B=∠EC .EF=BCD .EF ∥BC6.下列说法正确的是( ).A .“邻补角相等吗?”是一个命题B .“同位角相等”的逆命题是假命题C .“相等的角是对顶角”是真命题D .“如果两条直线不相交那么一定平行”是真命题7.在△ABC 中,边AB 的垂直平分线分别交AB 、AC 于点D ,E ,若AD 为4㎝,△ABC 的周长为26㎝,则△BCE 的周长为 ㎝.8.不等式组31526x x ->⎧⎨⎩,≤的解集在数轴上表示正确的是( )9.在二次根式5.1,131,21231453-b a ,,,,中,最简二次根式的有( ) A 、2个 B 、3个 C 、4个 D 、5个10.修一段长为800米的公路,修完200米后,在余下的工作中,工作效率是原来的2倍,结果共用了5天完成任务.设原来每天修路X 米.根据题意,下面所列方程正确的是( ) A.80020052x x += B .20080052x x+= C .20060052x x += D .60020052x x +=二、填空题(题型注释)11.若关于x 的分式方程311x m x x -=--产生增根,则m 的值为 . 12.已知关于x 的方程232x m x +=-的解是正数,则m 的取值范围是 。

2018-2019学年湘教版数学八年级上册期末测试卷及答案

2018-2019学年湘教版数学八年级上册期末测试卷及答案

2018-2019学年八年级上学期期末质量检测数 学 试 卷总分:100分一、选择题(每小题只有一个正确答案,本大题共8个小题,每小题3分,共24分)1、下列四个实数中,是无理数的为( )A .0B .C .-2D .132、已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为( )A.千克B.千克C. 千克D. 千克3、化简211x x x x ---的结果是( ) A.+1 B. -1 C.— D.4、下列运算正确正确的是( )A. B. 21164-⎛⎫= ⎪⎝⎭ C. D. 5、等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A .16B .18C .20D .16或206、如果,那么m 的取值范围是( )A .B .C .D .7、如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,连接AD 、AE ,如果只添加一个条件使∠DAB=∠EAC ,则添加的条件不能为( )A . BD=CEB . AD=AEC . DA=DED . BE=CD8、如图,已知:,点、、……在射线上,点、、……在射线上,、、……均为等边三角形,若,则556A B A ∆的边长为( )A. 6B. 16 C 32 D. 64342110-⨯62.110-⨯52.110-⨯42.110-⨯x x x x 2(5)5-=-632x x x ÷=325()x x =71m =-01m <<12m <<23m <<34m <<MON ∠=30A 1A 2A 3ON B 1B 2B 3OM A B A ∆112A B A ∆223A B A ∆334OA =11第8题NM B 3B 2B 1A 4A 3A 2A 1O 第7题图二、填空题:(每小题3分,共24分)9、4的算术平方根是 . 10、计算:26⨯= .11、不等式组⎩⎨⎧≤->5121x x 的正整数解是 。

湘教版八年级数学上册期末测试题(附参考答案)

湘教版八年级数学上册期末测试题(附参考答案)

湘教版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每题3分,共36分。

每小题只有一个选项符合题目要求。

1. 计算:a 2−5aa−5=( )A.a-5 B.a+5C.5 D.a2.如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A.-√2B.√2C.√5D.π3.下列各组线段中,不能构成三角形的是( )A.1,2,3 B.2,3,4C.3,4,5 D.4,5,64.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的度数是( )A.90°B.80°C.60°D.40°5.如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的依据是( )A.SAS B.ASAC.AAS D.SSS6.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A.8 B.6C.5 D.47.如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧交于点D,E,经过点D,E作直线分别交AB,AC于点M,N,连接BN,下列结论正确的是( )A.AN=NC B.AN=BNC.MN=12BC D.BN平分∠ABC8.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A.2+xx−y B.2xx−yC.2+xxy D.x2x+y9.已知a-1>0,则下列结论正确的是( )A.-1<-a<a<1 B.-a<-1<1<a C.-a<-1<a<1 D.-1<-a<1<a10.若关于x的不等式组{4(x−1)>3x−1,5x>3x+2a的解集为x>3,则a的取值范围是( )A.a>3 B.a<3C.a≥3 D.a≤311.如图,在等边三角形ABC中,D,E分别是BC,AC的中点,P是线段AD上的一个动点,当△PCE的周长最小时,点P的位置在( )A .A 点处B .D 点处C .AD 的中点处D .△ABC 三条高的交点处12.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-3二、填空题:本题共6个小题,每小题3分,共18分。

湘教版八年级上册数学期末测试卷及答案

湘教版八年级上册数学期末测试卷及答案

湘教版八年级上册数学期末测试卷及答案成绩好坏,不足为怪,只要努力,无愧天地!祝你八年级数学期末考试取得好成绩,期待你的成功!下面是店铺为大家整编的湘教版八年级上册数学期末测试卷,大家快来看看吧。

湘教版八年级上册数学期末测试题一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.下列分式中,是最简分式的是( )A. B.C. D.2.当分式的值为0时,字母x的取值应为( )A.﹣1B.1C.﹣2D.23.下列计算正确的是( )A.2﹣3=﹣8B.20=1C.a2•a3=a6D.a2+a3=a54.(﹣8)2的立方根是( )A.4B.﹣4C.8D.﹣85.若代数式有意义,则x必须满足条件( )A.x≠﹣B.x>C.x>﹣D.x≥﹣6.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是( )A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定7.下列命题是假命题的是( )A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点8.下列长度的三根线段,能构成三角形的是( )A.3cm,10cm,5cmB.4cm,8cm,4cmC.5cm,13cm,12cmD.2cm,7cm,4cm9.不等式组的解集为( )A.x>﹣1B.x≤3C.110.计算÷ × 的结果估计在( )A.5至6之间B.6至7之间C.7至8之间D.8至9之间11.已知关于x的方程﹣ =0的增根是1,则字母a的取值为( )A.2B.﹣2C.1D.﹣112.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°二、填空题(每小题3分,共6小题,满分18分)13.最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为m.14.分式方程 =﹣4的解是x= .15.计算:• =.16.如图,将三角尺的直角顶点放在直尺的一边上,使∠1=60°,∠2=100°,则∠3=°.17.如图,已知∠BAC=∠DAC,则再添加一个条件,可使△ABC≌△ADC.18.如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE 交AC于点E,交AB于点D,连接CD,则△BCD的周长为.三、解答题:(19题每小题8分,20题6分,满分14分)19.(1)计算:﹣(2)计算:(2 ﹣5 )﹣( ﹣ )20.解下列不等式≤ ﹣1,并将解集在数轴上表示出来.四、分析与说理:(每小题8分,共2小题,满分16分)21.已知:如图所示,AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.22.已知:如图所示,在边长为4的等边△ABC中,AD为BC边上的中线,且AD=2 ,以AD为一边向左作等边△ADE.(1)求:△ABC的面积;(2)判断AB与DE的位置关系是什么?请予以证明.五、实践与应用(每小题8分,共2小题,满分16分)23.已知北海到南宁的铁路长210千米.动车投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少?(列方程解答)24.张华老师揣着200元现金到星光文具店购买学生期末考试的奖品.他看好了一种笔记本和一种钢笔,笔记本的单价为每本5元,钢笔的单价为每支2元.张老师计划购买两种奖品共50份,求他最多能买笔记本多少本?(列不等式解答)六、阅读与探究(每小题10分,共2小题,满分20分)25.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:= = = =|1+ |=1+解决问题:①在括号内填上适当的数:= = = =| |=②根据上述思路,试将予以化简.26.已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为线段BC 上一动点(点D不与B、C重合),以AD为边向右作正方形ADEF,连接FC,探究:无论点D运动到何处,线段FC、DC、BC三者的长度之间都有怎样的数量关系?请予以证明.湘教版八年级上册数学期末测试卷参考答案一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.下列分式中,是最简分式的是( )A. B.C. D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、,不是最简分式;C、,不是最简分式;D、,不是最简分式;故选A2.当分式的值为0时,字母x的取值应为( )A.﹣1B.1C.﹣2D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x+2=0且x﹣1≠0,解得x=﹣2,故选:C.3.下列计算正确的是( )A.2﹣3=﹣8B.20=1C.a2•a3=a6D.a2+a3=a5【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.【分析】根据同底数幂的乘法,零次幂,负整数指数幂,可得答案.【解答】解:A、2﹣3= = ,故A错误;B、20=1,故B正确;C、a2•a3=a2+3=a5,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;故选:B.4.(﹣8)2的立方根是( )A.4B.﹣4C.8D.﹣8【考点】立方根.【分析】先求出(﹣8)2,再利用立方根定义即可求解.【解答】解:∵(﹣8)2=64,64的立方根是4,∴(﹣8)2的立方根是4.故选:A.5.若代数式有意义,则x必须满足条件( )A.x≠﹣B.x>C.x>﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意得:2x+1≥0,解得x≥﹣ .故选:D.6.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是( )A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定【考点】等腰三角形的性质.【分析】本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可能是底角,因此要分类讨论.【解答】解:当50°是底角时,顶角为180°﹣50°×2=80°,当50°是顶角时,底角为÷2=65°.故这个等腰三角形的另外两个内角度数分别是50°,80°或65°,65°.故选:C.7.下列命题是假命题的是( )A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点【考点】命题与定理.【分析】根据实数与数轴的关系,绝对值的性质,对顶角相等以及三角形重心的定义对各选项分析判断即可得解.【解答】解:A、实数与数轴上的点一一对应,是真命题,故本选项错误;B、如果两个数的绝对值相等,那么这两个数必定也相等,是假命题,应为如果两个数的绝对值相等,那么这两个数必定也相等或互为相反数,故本选项正确;C、对顶角相等,是真命题,故本选项错误;D、三角形的重心是三角形三条中线的交点,是真命题,故本选项错误.故选B.8.下列长度的三根线段,能构成三角形的是( )A.3cm,10cm,5cmB.4cm,8cm,4cmC.5cm,13cm,12cmD.2cm,7cm,4cm【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、5+3<10,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、12+5>13,能够组成三角形,符合题意;D、2+4<8,不能够组成三角形,不符合题意.故选:C.9.不等式组的解集为( )A.x>﹣1B.x≤3C.1【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集为﹣1故选D.10.计算÷ × 的结果估计在( )A.5至6之间B.6至7之间C.7至8之间D.8至9之间【考点】估算无理数的大小.【分析】利用二次根式的乘除法得到原式= ,然后根据算术平方根的定义得到 < < .【解答】解:原式= = ,因为 < < ,所以6< <7.故选B.11.已知关于x的方程﹣ =0的增根是1,则字母a的取值为( )A.2B.﹣2C.1D.﹣1【考点】分式方程的增根.【分析】去分母得出整式方程,把x=1代入整式方程,即可求出答案.【解答】解:﹣ =0,去分母得:3x﹣(x+a)=0①,∵关于x的方程﹣ =0的增根是1,∴把x=1代入①得:3﹣(1+a)=0,解得:a=2,故选A.12.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:D.。

湘教版2018-2019学年八年级(上)期末数学期末学业水平测试试卷

湘教版2018-2019学年八年级(上)期末数学期末学业水平测试试卷

2018-2019学年八年级(上)期末数学期末学业水平测试试卷一、选择题(每小题3分,共24分)1.下列四个实数中,是无理数的是()A.B.C.D.02.下面列出的不等式中,正确的是()A.“m不是正数”表示为m<0B.“m不大于3”表示为m<3C.“n与4的差是负数”表示为n﹣4<0D.“n不等于6”表示为n>63.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形4.如果x是4的算术平方根,那么x的平方根是()A.4B.2C.±D.±45.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形6.下列命题:①若|a|>|b|,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等.④线段垂直平分线上的点到线段两端的距离相等.以上命题的逆命题是真命题的有()A.0个B.1个C.2个D.3个7.有下列二次根式:①;②;③;④,其中,为最简二次根式的是()A.①②B.①③C.③④D.②④8.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0B.a>1C.a<0D.a<1二、填空题(每小题3分,共24分)9.英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示为米.10.若分式的值为零,则x的值为.11.=.12.计算(x﹣2)﹣3(yz﹣1)3=.13.如图,在△ABC中,BC的垂直平分线ED交AB于点E,交BC于点D,连接CE.如果△AEC的周长为12,AC=5,那么AB的长为.14.如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数是和﹣1,则点C所对应的实数是.15.当1<x<2时,化简+|1﹣x|的正确结果是.16.的整数部分为a,小数部分为b,则=.三、计算:(本大题共2个小题,每小题5分,共10分)17.(5分)()﹣2+π0+|1﹣|﹣18.(5分)﹣+18×﹣四、(本大题共2个小题,每小题6分,共12分)19.(6分)解方程:=.20.(6分)先化简,再求值:(1﹣)÷,其中x=.五、(本大题共2个小题,每小题7分,共14分)21.(7分)解不等式组:,并把解集在数轴上表示出来.22.(7分)某班有60名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离的人数是指导前的2倍,已知这60名同学全部撒离的时间比指导前快30秒.求指导前平均每秒撤离的人数.六、(本大题共2个小题,每小题8分,共16分)23.(8分)如图:已知A,D,E三点在同一条直线上,且AB=AC,DB=DC.(1)求证:∠BAD=∠CAD;(2)连接BC,求证:AD⊥BC.24.(8分)已知a=,b=,(1)求ab,a+b的值;(2)求的值.七、(本大题共2个小题,每小题10分,共20分)25.(10分)某工地因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:挖掘土石方量(单位:m3/台•时)(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案.26.(10分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使F A⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:ME⊥BC.参考答案ACBCD CDB9.5×10﹣8米.10.1.11.﹣2.12.x6y3z﹣3.13.7.14.2+1.15.1.16..17.解:原式=4+1+﹣1﹣2=4﹣.18.解:原式=0.5﹣3+18×﹣5=0.3﹣3+6﹣5=﹣2.5+.19.解:去分母得:x+2=2,解得:x=0,经检验:x=0是分式方程的解.∴该分式方程的解为:x=0.20.解:(1﹣)÷===,当x=时,原式==1+.21.解:解不等式5x+2≥3(x﹣1),得:x≥﹣,解不等式1﹣>x﹣2,得:x<,则不等式组的解集为﹣≤x<,将不等式组的解集表示在数轴上如下:22.解:设指导前平均每秒撤离x人,则指导后平均每秒撤离2x人,根据题意得:﹣=30,解得:x=1,经检验,x=1是所列分式方程的解,且符合题意.答:指导前平均每秒撤离1人.23.(1)证明:在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD.(2)证明:连接BC.∵AB=AC,∠BAD=∠CAD,∴AD⊥BC.24.解:(1)∵a===+,b===﹣,∴ab=(+)×(﹣)=1,a+b=++﹣=2;(2)=+=(﹣)2+(+)2=5﹣2+5+2=10.25.解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得:.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣n,∴方程的解为或.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820元<850元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.26.证明:(1)∵∠BAC=90°,AF⊥AE,∴∠1+∠EAC=90°∠2+∠EAC=90°∴∠1=∠2,又∵AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠FCA=90°﹣∠ACB=90°﹣45°=45°,∴∠B=∠FCA,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.。

2018-2019学年最新湘教版八年级数学上学期期末模拟测试卷及答案解析-精编试题

2018-2019学年最新湘教版八年级数学上学期期末模拟测试卷及答案解析-精编试题

湘教版最新八年级数学上学期期末测试一、选择题(每题3分)1、下列四个图案中,是轴对称图形的是 ( )2、如果把分式xyy x +中的x 和y 都扩大10倍,则分式的值( ) A 、扩大10倍 B 、缩小10倍 C 、不变 D 、扩大100倍3、已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或17D .10或124、下列各式由左边到右边的变形中,是分解因式的为( ).A .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-第8题图 B D C E A 第9题图B C D A 第10题图 第6题图5、△ABC 中,∠A :∠B :∠C=1:2:3,最小边BC=3cm,最长边AB 的长为( )A.9cmB. 8 cmC. 7 cmD.6 cm6、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( ) A 180° B 220° C 240° D . 300°7、下列运算正确的是 ( )A.4222x x x =+B.532.x x x =C.64216)2(x x =-D.(x+3y)(x-3y)=223y x -8、如图,将两根钢条AA'、BB'的中点O 连在一起,使AA'、BB'可以绕着点O 自由转动,就做成了一个测量工件,则A'B'的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( )A 、SASB 、ASAC 、SSSD 、AAS9、如图,在△ABC 中,AB =AC ,D 是AB 的中点,且DE ⊥AB 于点D ,AB=10,BC=4,则△BEC 的周长( )A 、14;B 、6;C 、9;D 、1210、如图:在△ABC 中,∠ACB=900,CD 是高,∠A=︒30,BD=4cm,则AD=( )cmA 、14;B 、6;C 、9;D 、12二、填空题(每题3分)11、16的算术平方根是 。

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试题一、选择题(每小题3分,共30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+4 3.在,,,,中,分式的个数是()A.2B.3C.4D.54.下列各式中,能与合并的二次根式是()A.B.C.D.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC 6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是.12.式子有意义时a的取值范围是.13.比较大小:﹣﹣2.(填“>”或“<”号)14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是cm.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是cm.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.17.(5分)解不等式,并将解集在数轴上表示出来.18.(7分)解分式方程:=.19.(7分)计算:÷﹣×+.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.答案与解析一、选择题(每小题3分,满分30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.【分析】根据算术平方根的定义解答.【解答】解:∵()2=,∴的算术平方根为.故选:A.【点评】本题考查了算术平方根的定义,注意分数的平方要加括号.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+4【分析】根据不等式的性质逐一进行判断即可.【解答】解:A.因为a<b,所以﹣5a>﹣5b,故本选项不合题意;B.因为a<b,所以,故本选项不合题意;C.因为a<b,所以,故本选项不合题意;D.因为a<b,所以a+4<b+4,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.3.在,,,,中,分式的个数是()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这三个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.4.下列各式中,能与合并的二次根式是()A.B.C.D.【分析】先将各选项二次根式化简,再利用同类二次根式的概念判断即可.【解答】解:A.=2与不是同类二次根式,此选项不符合题意;B.=2与不是同类二次根式,此选项不符合题意;C.=2与不是同类二次根式,此选项不符合题意;D.=3与是同类二次根式,此选项符合题意;故选:D.【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的定义:把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC【分析】根据等腰三角形“三线合一”的性质解答.【解答】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠DFB 的度数.【解答】解:∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠DFB+∠AFD=180°,∴∠DFB=180°﹣∠AFD=180°﹣15°=165°.故选:C.【点评】本题考查了三角形的外角性质以及邻补角,利用三角形外角的性质,求出∠AFD 的度数是解题的关键.7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等【分析】对各个命题逐一判断后找到正确的即可确定真命题.【解答】解:A、如果ab=0,那么a=0或b=0,原命题是假命题;B、,不是最简分式,原命题是假命题;C、直角三角形的两个锐角互余,是真命题;D、不是对顶角的两个角也可能相等,原命题是假命题;故选:C.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.【分析】根据三角形中线的定义判断即可.【解答】解:根据作图可知,选项B中,点D是AB的中点,故线段CD是△ABC的中线,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的中线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF【分析】根据全等三角形的判定方法进行判断即可.【解答】解:A、无法判定两个三角形全等;B、根据SSS能判定两个三角形全等;C、可用ASA判定两个三角形全等;D、可用SAS判定两个三角形全等.故选:A.【点评】本题考查全等三角形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4【分析】不等式组整理后,根据不等式组无解确定出a的范围即可.【解答】解:不等式组整理得:,由不等式组无解,得到a≥4.故选:D.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,5是整数,属于有理数;是分数,属于有理数;无理数π.故答案为:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.式子有意义时a的取值范围是a≥4.【分析】利用二次根式有意义的条件可得a﹣4≥0,再解不等式即可.【解答】解:由题意得:a﹣4≥0,解得:a≥4,故答案为:a≥4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.比较大小:﹣>﹣2.(填“>”或“<”号)【分析】先求出2=,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵2==>,∴﹣>﹣2,故答案为:>.【点评】本题考查了算术平方根和实数的大小比较,能熟记实数的大小比较法则是解此题的关键.14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是4(答案不唯一)cm.【分析】根据三角形三边关系,在三角形中任意两边之和大于第三边,任意两边之差小于第三边解答即可.【解答】解:根据三角形三边关系,∴三角形的第三边x满足:7﹣4<x<4+7,即3<x<11,∴x可以取4,5,6,7,8,9,10等无数个,故答案为:4(答案不唯一).【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是16cm.【分析】根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【解答】解:∵DE垂直平分AC,∴DA=DC,∵△ABD的周长为12cm,∴AB+BD+DA=AB+BD+DC=AB+BC=12(cm),∵AC=4cm,∴△ABC的周长=AB+BC+AC=16(cm),故答案为:16.【点评】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.【分析】直接利用二次根式的性质、立方根的定义、负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(5分)解不等式,并将解集在数轴上表示出来.【分析】两边同乘以6,去分母,去括号,移项,合并,系数化为1即可求解.【解答】解:2(x+4)﹣3(3x﹣1)>62x+8﹣9x+3>6﹣7x+11>6﹣7x>﹣5.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.18.(7分)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+2)=7x,去括号得:3x+6=7x,解得:x=,检验:当x=时,x(x+2)≠0,∴分式方程的解为x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)计算:÷﹣×+.【分析】先计算乘法和除法,再合并即可得.【解答】解:原式=﹣+2=4+【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式===,∵a=0,a=2时,原式没有意义,∴当a=3时,原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.【分析】根据全等三角形的判定和性质定理即可得到结论.【解答】解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?【分析】(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,根据数量=总价÷单价,结合用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,根据总价=单价×数量,结合总价不超过7200元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,依题意得:=,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴x+1.5=4.答:A型口罩的单价是4元,B型口罩的单价是2.5元.(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,依题意得:4y+2.5×2y≤7200,解得:y≤800.答:增加购买A型口罩的数量最多是800个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF 中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.【点评】此题主要考查了等腰三角形的判定,等边三角形的判定,关键是证明△DBE≌△ECF.11。

最新湘教版2018-2019学年度第一学期八年级期末复习数学试卷

最新湘教版2018-2019学年度第一学期八年级期末复习数学试卷

绝密★启用前最新湘教版2018-2019学年度第一学期八年级期末复习数学试卷一、单选题(计30分)1.(本题3分)如果分式方程0223=--x x 无解,则x 的值是( ) A 、2 B 、0 C 、-1 D 、-22.(本题3分)如图,E 、B 、F 、C 四点在一条直线上,且EB =CF ,∠A =∠D ,增加下列条件中的一个仍不能证明△ABC ≌△DEF ,这个条件是( )A . DF ∥ACB . AB =DEC . ∠E =∠ABCD . AB ∥DE 3.(本题3分)在722,,2π,0.1010010001,5,327中,无理数的个数是( )A . 1B . 2C . 3D . 44.(本题3分)已知非等腰三角形的两边长分别是2 cm 和9 cm,如果第三边的长为整数,那么第三边的长为( )A . 8 cm 或10 cmB . 8 cm 或9 cmC . 8 cmD . 10 cm5.(本题3分)某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为( )A .B .C .D .6.(本题3分)设n 为正整数,且n <6<n +1,则n 的值为( ) A . 1 B . 2 C . 3 D . 47.(本题3分)下列二次根式是最简二次根式的是( ) A .B .C .21D .8.(本题3分)如图,在Rt △ABC 中,∠C=90°,点D 为AB 边中点,DE ⊥AB ,并与AC 边交于点E .如果∠A=15°,BC=1,那么AC 等于( )A . 2B .C .D .9.(本题3分)某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小芳得分不低于80分.设她答对了x 道题,则根据题意可列出不等式为( ) A . 10x ﹣2(20﹣x )≥80 B . 10x ﹣(20﹣x )>80 C . 10x ﹣5(20﹣x )≥80 D . 10x ﹣5(20﹣x )>8010.(本题3分)太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km 都需付8元车费),超过3km 以后,每增加1km ,加收1.6元(不足1km 按1km 计),某人从甲地到乙地经过的路程是xkm ,出租车费为16元,那么x 的最大值是( ) A . 11 B . 8 C . 7 D . 5 二、填空题(计32分)11.(本题4分)计算: = ____.12.(本题4分)一个氧原子的直径为0.000000000148m ,用科学记数法表示为_____m . 13.(本题4分)已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.(本题4分)如图,AB 垂直平分CD ,AD=4,BC=2,则四边形ACBD 的周长是_____.15.(本题4分)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.16.(本题4分)若x <y ,且(m ﹣2)x >(m ﹣2)y ,则m 的取值范围是_____. 17.(本题4分)如果a ,b 分别是2016的两个平方根,那么a +b ﹣ab=___.18.(本题4分)若实数a 、b 、c 在数轴上对应点的位置如图,则化简:2|a+c|+222c bc b -+3|a ﹣b|=_____.三、解答题(计58分)19.(本题7分)(1)解方程:(2)解不等式组20.(本题7分)先化简,再求值:,其中a=3+1.21.(本题7分)计算:12+(31)﹣2﹣|1﹣3|﹣(π+1)022.(本题7分)如图,已知AB=AD ,AC=AE ,∠1=∠2,求证:BC=DE .23.(本题7分)在数轴上画出表示5的点.24.(本题7分)班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?25.(本题8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?26.(本题8分)如图,AD 平分∠BAC ,EF 垂直平分AD 交BC 的延长线于F ,连接AF .求证:∠B=∠CAF ..本卷由系统自动生成,请仔细校对后使用,答参考答案1.A【解析】知识要点:分式方程的解思路分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答过程:解:当分母x-2=0时方程无解,解x-2=0得x=2时方程无解.则x的值是2.故选A.试题点评:本题考查了分式方程无解的条件,是需要识记的内容2.B【解析】【分析】由EB=CF可求得EF=BC,结合∠A=∠D,根据全等三角形的判定方法,逐项判断即可.【详解】∵EB=CF,∴EB+BF=BF+CF,即EF=BC,且∠A=∠D,∴当DF∥AC时,可得∠DFE=∠C,满足AAS,可证明全等;当AB=DE时,满足ASS,不能证明全等;当∠E=∠ABC时,满足ASA,可证明全等;当AB∥DE时,可得∠E=∠ABC,满足ASA,可证明全等;故选B.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.3.B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:在所列6个数中无理数有、这两个,故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.A【解析】【分析】根据三角形的三边关系求得第三边的取值范围,再根据第三边为整数即可得出答案.【详解】解:根据三角形的三边关系,得7cm<第三边<11cm,故第三边为8,9,10,又∵三角形为非等腰三角形,∴第三边≠9.故选:A.【点睛】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边. 5.A【解析】【分析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.【详解】本卷由系统自动生成,请仔细校对后使用,答现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.依题意得:,故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 6.B【解析】【分析】先估算出的范围,再得出选项即可.【详解】∵2<<3,∴n=2,故选B.【点睛】本题考查了估算无理数的大小,能估算出的大小是解此题的关键.7.B【解析】【分析】根据最简二次根式的概念判断即可.【详解】,不是最简二次根式;是最简二次根式;,不是最简二次根式;,不是最简二次根式;故选:B【点睛】考查最简二次根式的概念,掌握最简二次根式的定义是解题的关键.8.C【解析】【分析】根据线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠ABE=∠A=15°,利用三角形外角的性质求得∠BEC =30°,再根据30°角直角三角形的性质即可求得结论.【详解】∵点D为AB边中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=15°,∴∠BEC=∠A+∠ABE=30°,∵∠C=90°,∴BE=AE=2BC=2,CE=BC=,∴AC=AE+CE=2+,故选C.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、30°角直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.9.C【解析】【分析】小芳答对题的得分:10x;小芳答错或不答题的得分:﹣5(20﹣x).不等关系:小芳得分不低于80分.【详解】设她答对了x道题,根据题意,得10x﹣5(20﹣x)≥80.故选:C.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.10.B【解析】【分析】根据等量关系,即(经过的路程﹣3)×1.6+起步价8元≤16.列出不等式求解.【详解】可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x﹣3)×1.6+8≤16,解得:x≤8.即此人从甲地到乙地经过的路程最多为8km.故选:B.【点睛】考查了一元一次方程的应用.关键是掌握正确理解题意,找出题目中的数量关系.11.【解析】【分析】根据零指数幂、负指数幂的运算法则解答即可.【详解】解:,故答案为.【点睛】本题主要考查了零指数幂, 负指数幂的运算, 用到的知识点为: 负指数为正指数的倒数; 任何非0数的0次幂等于1.12.1.48×10﹣10.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于0.000000000148有10个0,所以可以确定n=﹣10.【详解】解:0.000 000 000 148=1.48×10﹣10.故答案为:1.48×10﹣10.【点睛】此题考查科学记数法表示较小的数的方法,准确确定n值是关键.13.7【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【详解】∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴又∵c为奇数,∴c=7,故答案为:7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.【解析】【分析】根据线段的垂直平分线的性质即可解决问题.【详解】解:∵AB垂直平分线段CD,∴AC=AD=4,BC=BD=2,∴四边形ACBD的周长为4+4+2+2=12,故答案为12.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x,x=,此时无输出值当x>时,数值越来越大,会有输出值;当x<时,数值越来越小,不可能大于10,永远不会有输出值故x≤,故答案为x≤.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.【解析】【分析】原不等式两边同时乘以m-2后不等号改变方向,则m-2<0,则m<2.【详解】∵若x<y,且(m-2)x>(m-2)y,∴m-2<0,则m<2;故答案为m<2.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.17.2016【解析】【分析】先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.【详解】∵a,b分别是2016的两个平方根,∴∵a,b分别是2016的两个平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣2016,∴a+b﹣ab=0﹣(﹣2016)=2016,故答案为:2016.【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.18.﹣5a+4b﹣3c.【分析】直接利用数轴结合二次根式、绝对值的性质化简得出答案.【详解】由数轴可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案为:-5a+4b-3c.【点睛】此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键.19.(1)解:原方程两边同乘以6x,得3(x+1)=2x•(x+1)整理得2x2﹣x﹣3=0(3分)解得x=﹣1或检验:把x=﹣1代入6x=﹣6≠0,把x=代入6x=9≠0,∴x=﹣1或是原方程的解,故原方程的解为x=﹣1或(6分)(若开始两边约去x+1由此得解可得3分)(2)解:解不等式①得x<2(2分)解不等式②得x>﹣(14分)∴不等式组的解集为﹣1<x<2(6分)略20.【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【详解】原式==,当a=+1时,原式=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21.【解析】【分析】先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【详解】解:原式【点睛】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.22.详见解析..【解析】【分析】先证明∠BAC=∠DAE,在利用“SAS”可判断△ABC≌△ADE,然后根据全等三角形的性质可结论【详解】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE,在△ABC和△ADE中∴△ABC≌△ADE,∴BC=DE.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.见解析.【解析】【分析】作一个直角三角形,两直角边长分别是1和2,这个直角三角形的斜边长就是,然后在数轴上表示出即可.【详解】如图所示:首先过O作垂线,再截取AO=2,然后连接A和表示1的点B,再以O为圆心,AB长为半径画弧,与原点右边的坐标轴的交点为.【点睛】本题考查的知识点是勾股定理的应用,解题关键是找出以为斜边的直角三角形的直角边长.24.(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里【解析】【分析】(1)根据“大巴车行驶全程所需时间=小车行驶全程所需时间+小车晚出发的时间+小车早到的时间”列分式方程求解可得;(2)根据“从学校到相遇点小车行驶所用时间+小车晚出发时间=大巴车从学校到相遇点所用时间”列方程求解可得.【详解】(1)设大巴的平均速度为x公里/时,则小车的平均速度为1.5x公里/时,根据题意,得:=++解得:x=40.经检验:x=40是原方程的解,∴1.5x=60公里/时.答:大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)设苏老师赶上大巴的地点到基地的路程有y公里,根据题意,得:+=解得:y=30.答:苏老师追上大巴的地点到基地的路程有30公里.【点睛】本题考查了分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.25.(1)甲80件,乙20件;(2)x≤90【解析】【分析】(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【详解】解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得30x+20(100﹣x)=2800,解得x=80,则100﹣x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得:30x+20(100﹣x)≤2900,解得:x≤90,【点睛】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.26.证明见解析.【解析】【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【详解】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠B=∠CAF.【点睛】熟练掌握线段垂直平分线的性质及角平分线的性质.。

湘教版八年级上册数学期末考试试卷带答案

湘教版八年级上册数学期末考试试卷带答案

湘教版八年级上册数学期末考试试卷带答案(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--八年级上册数学期末考试试题一.填空题:(本大题10小题,每小题3分,满分30分)1.(3分)64的平方根是.2.(3分)分式方程的解为.3.(3分)如图,已知AB、CD相交于点P,AP=BP,请增加一个条件,使△ADP≌△BCP(不能添加辅助线),你增加的条件是.4.(3分)如图,在直角△ABC中,斜边AB上的垂直平分线交直角边BC于D,交AB于E,若BC=10cm,AC=6cm,则△ADC的周长为cm.5.(3分)已知△ABC的三个内角的度数之比∠A:∠B:∠C=2:3:5,则∠B=°,∠C=°.6.(3分)化简:= .7.(3分)满足不等式4x﹣1<x﹣7的解集是.8.(3分)计算|﹣|+2的结果是.9.(3分)如图:在等腰直角△ABC中,CA=CB,CD⊥AB于D,AB=10,则CD= .10.(3分)观察下列各等式:=﹣,=﹣,=﹣,…,根据你发现的规律计算:+++…+= .二.选择题:(每题4分,满分40分)11.(4分)使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2 C.x>﹣2 D.x<212.(4分)小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.B. C.D.13.(4分)下列命题,是真命题的是()A.直角三角形的一个内角为32°,则另外一个锐角为68°B.如果ab=0,那么a=0C.如果a2=b2,那么a=bD.直角三角形中的两个锐角不能都大于45°14.(4分)等腰三角形的两条边长分别是2cm和5cm,则该三角形的周长为()A.9cm B.12cm C.9cm或12cm D.7cm15.(4分)在﹣35,,…,,,,这六个实数中无理数有()A.2个B.3个C.4个D.5个16.(4分)有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.17.(4分)不等式x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.18.(4分)将一副三角板按如图所示摆放,图中∠α的度数是()A.75°B.90°C.105°D.120°19.(4分)下列计算错误的是()A.×=7B.(﹣1)2016(+1)2016=1C.=﹣8 D.3﹣=320.(4分)若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6<m≤7D.3≤m<4三.解答题(本题满分50分,解答需写出必要的解题步骤)21.(6分)计算:|﹣2|+(π﹣2016)0+﹣(﹣)﹣2.22.(6分)解不等式组:.23.(6分)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.24.(6分)阅读理解:大家知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,所以我们可以用来表示的小数部分.请你解答:已知:x是的整数部分,y是的小数部分,求x﹣y+的值.25.(8分)先化简,再求值:(﹣)+,其中a=2,b=.26.(8分)某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人(不含司机)和10件行礼,乙种汽车每辆最多能载30人(不含司机)和20件行礼.设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.27.(10分)已知某项工程由甲、乙两队合做12天可以完成,共需工程费用27720元.乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.参考答案与试题解析一.填空题:(本大题10小题,每小题3分,满分30分)1.(3分)(2010•婺源县校级模拟)64的平方根是±8.【考点】平方根.【分析】直接根据平方根的定义即可求解.【解答】解:∵(±8)2=64,∴64的平方根是±8.故答案为:±8.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)(2016秋•湘潭期末)分式方程的解为x=4 .【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+2=6,解得:x=4,经检验x=4是分式方程的解.故答案为:x=4【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3.(3分)(2016秋•湘潭期末)如图,已知AB、CD相交于点P,AP=BP,请增加一个条件,使△ADP≌△BCP(不能添加辅助线),你增加的条件是CP=DP .【考点】全等三角形的判定【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理添加一个条件即可.【解答】解:CP=DP,理由是:∵在△ADP和△BCP中∴△ADP≌△BCP(SAS),故答案为:CP=DP.【点评】本题考查了全等三角形的判定定理的应用,能熟记判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.(3分)(2016秋•湘潭期末)如图,在直角△ABC中,斜边AB上的垂直平分线交直角边BC于D,交AB于E,若BC=10cm,AC=6cm,则△ADC的周长为16 cm.【考点】勾股定理;线段垂直平分线的性质【分析】由线段的垂直平分线的性质知BD=AD,结合三角形的周长可得答案.【解答】解:∵DE是边AB的垂直平分线,BC=10cm,AC=6cm,∴AD=BD,∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=17cm;故答案为:16.【点评】此题主要考查线段的垂直平分线的性质等几何知识:线段的垂直平分线上的点到线段的两个端点的距离相等.做题中,对线段进行等量代换是正确解答本题的关键.5.(3分)(2016秋•湘潭期末)已知△ABC的三个内角的度数之比∠A:∠B:∠C=2:3:5,则∠B=54 °,∠C=90 °.【考点】三角形内角和定理.【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,求出∠C、∠B即可.【解答】解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=2:3:5,∴∠C=×180°=90°,∠B=×180°=54°,故答案为:54,90.【点评】本题考查了三角形内角和定理的应用,能正确运用定理进行计算是解此题的关键,注意:三角形的内角和等于180°.6.(3分)(2016•广东模拟)化简:= 1 .【考点】分式的加减法.【专题】计算题.【分析】先将第二项变形,使之分母与第一项分母相同,然后再进行计算.【解答】解:原式=.故答案为1.【点评】本题考查了分式的加减运算,要注意将结果化为最简分式.7.(3分)(2016秋•湘潭期末)满足不等式4x﹣1<x﹣7的解集是x<﹣2 .【考点】解一元一次不等式【分析】移项、合并同类项、系数化成1即可求解.【解答】解:移项,得4x﹣x<﹣7+1,合并同类项,得3x<﹣6,系数化成1得x<﹣2.故答案是:x<﹣2.【点评】本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.8.(3分)(2016秋•湘潭期末)计算|﹣|+2的结果是+.【考点】二次根式的加减法.【分析】由于<,故|﹣|=﹣.【解答】解:原式=﹣+2=+.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.9.(3分)(2016秋•湘潭期末)如图:在等腰直角△ABC中,CA=CB,CD⊥AB于D,AB=10,则CD= 5 .【考点】等腰直角三角形.【分析】由已知可得Rt△ABC是等腰直角三角形,得出AD=BD=AB=5,再由直角三角形斜边的中线等于斜边的一半得出CD=BD=5.【解答】解:∵∠ACB=90°,CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD=AB=5,∠CDB=90°,∴CD=BD=5.故答案为5【点评】本题主要考查了等腰直角三角形,解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.10.(3分)(2016秋•湘潭期末)观察下列各等式:=﹣,=﹣,=﹣,…,根据你发现的规律计算:+++…+= .【考点】规律型:数字的变化类【分析】根据等式的变化找出变化规律“=﹣”,依此规律将原式展开即可得出结论.【解答】解:∵=﹣,=﹣,=﹣,…,∴=﹣,∴+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律“=﹣”是解题的关键.二.选择题:(每题4分,满分40分)11.(4分)(2007•河南)使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2 C.x>﹣2 D.x<2【考点】分式有意义的条件【分析】本题主要考查分式有意义的条件:分母不等于0,故可知x+2≠0,解得x的取值范围.【解答】解:∵x+2≠0,∴x≠﹣2.故选B.【点评】本题考查的是分式有意义的条件.当分母不为0时,分式有意义.12.(4分)(2016秋•湘潭期末)小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.B. C.D.【考点】由实际问题抽象出分式方程【专题】应用题.【分析】有工作总量180或120,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“小明打120个字所用的时间和小张打180个字所用的时间相等”.等量关系为:小明打120个字所用的时间=小张打180个字所用的时间.【解答】解:小明打字速度为x个/分钟,那么小明打120个字所需要的时间为:;易得小张打字速度为(x+6)个/分钟,小张打180个字所需要的时间为:;∴可列方程为:,故选C.【点评】解决本题的关键是根据不同的工作量用的时间相等得到相应的等量关系.13.(4分)(2016秋•湘潭期末)下列命题,是真命题的是()A.直角三角形的一个内角为32°,则另外一个锐角为68°B.如果ab=0,那么a=0C.如果a2=b2,那么a=bD.直角三角形中的两个锐角不能都大于45°【考点】命题与定理【分析】根据命题的正确和错误进行判断解答即可.【解答】解:A、直角三角形的一个内角为32°,则另外一个锐角为58°,错误;B、如果ab=0,那么a=0或b=0,错误;C、如果a2=b2,那么a=b或a=﹣b,错误;D、直角三角形中的两个锐角不能都大于45°,正确;故选D【点评】此题考查命题问题,解答此题的关键是要熟知真命题与假命题的概念.14.(4分)(2016秋•湘潭期末)等腰三角形的两条边长分别是2cm和5cm,则该三角形的周长为()A.9cm B.12cm C.9cm或12cm D.7cm【考点】等腰三角形的性质;三角形三边关系【分析】根据2cm和5cm可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2cm为腰时,三边为2cm,2cm,5cm,由三角形三边关系定理可知,不能构成三角形,当5cm为腰时,三边为5cm,5cm,2cm,符合三角形三边关系定理,周长为:5+5+2=12cm.故选B.【点评】本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据2,5,分别作为腰,由三边关系定理,分类讨论.15.(4分)(2016秋•湘潭期末)在﹣35,,…,,,,这六个实数中无理数有()A.2个B.3个C.4个D.5个【考点】无理数【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:…,,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像…,等有这样规律的数.16.(4分)(2016秋•湘潭期末)有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式)【专题】应用题.【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17.(4分)(2016秋•湘潭期末)不等式x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:x﹣2≤0,解得x≤2,故B正确.故选:B.【点评】本题考查了在数轴上表示不等式的解集不等式的解集,在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.18.(4分)(2012•聊城)将一副三角板按如图所示摆放,图中∠α的度数是()A.75°B.90°C.105°D.120°【考点】三角形的外角性质;三角形内角和定理【专题】探究型.【分析】先根据直角三角形的性质得出∠BAE及∠D的度数,再由三角形外角的性质即可得出结论.【解答】解:∵图中是一副直角三角板,∴∠BAE=45°,∠D=60°,∠DAE=90°,∴∠DAF=90°﹣∠BAE=90°﹣45°=45°,∴∠α=∠DAF+∠D=45°+60°=105°.故选C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.19.(4分)(2016秋•湘潭期末)下列计算错误的是()A.×=7B.(﹣1)2016(+1)2016=1C.=﹣8 D.3﹣=3【考点】立方根;算术平方根.【分析】根据立方根和二次根式的乘法的计算方法进行计算,即可解答.【解答】解:A,原式=7,故本选项不符合题意;B,原式=[(﹣1)(+1)]2016=(2﹣1)2016=1,故本选项不符合题意;C,原式=﹣8,故本选项不符合题意;D,原式=2,故本选项符合题意;故选:D.【点评】本题考查了立方根和算术平方根,熟练掌握立方根和算术平方根的计算方法是解题的关键.20.(4分)(2016秋•湘潭期末)若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6<m≤7D.3≤m<4【考点】一元一次不等式组的整数解【分析】首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组只有1个整数解即可求得m的范围.【解答】解:,解①得x<m,解②得x≥3.则不等式组的解集是3≤x<m.∵不等式组有4个整数解,∴不等式组的整数解是3,4,5,6.∴6<m≤7.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三.解答题(本题满分50分,解答需写出必要的解题步骤)21.(6分)(2016秋•湘潭期末)计算:|﹣2|+(π﹣2016)0+﹣(﹣)﹣2.【考点】二次根式的混合运算;零指数幂;负整数指数幂【分析】根据实数的混合运算顺序和法则依次计算可得.【解答】解:原式=2﹣+1+3﹣4=2﹣.【点评】本题主要考查实数的混合运算,熟练掌握实数的混合运算顺序和法则是解题的关键.22.(6分)(2016秋•湘潭期末)解不等式组:.【考点】解一元一次不等式组【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:x﹣1≥0得:x≥1;解4﹣2x>0得:x<2所以不等式组的解集为:1≤x<2【点评】本题考查了一元一次不等式组的解法,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.(6分)(2016•同安区一模)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【考点】全等三角形的判定【专题】证明题.【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC.【解答】证明:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).【点评】本题考查了三角形全等的判定方法和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.结合图形做题,由∠1=∠2得∠ACB=∠DCE是解决本题的关键.24.(6分)(2016秋•湘潭期末)阅读理解:大家知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,所以我们可以用来表示的小数部分.请你解答:已知:x是的整数部分,y是的小数部分,求x﹣y+的值.【考点】估算无理数的大小.【分析】根据11<10+<12,可得的整数部分和小数部分,再进一步求x﹣y+的值即可.【解答】解:∵11<10+<12,∴x=11,y=,所以可得x﹣y+=11﹣=12.【点评】此题考查估算无理数的大小,估算出10+的大小是解决问题的关键.25.(8分)(2016•长沙)先化简,再求值:(﹣)+,其中a=2,b=.【考点】分式的化简求值.【专题】探究型.【分析】先对所求式子进行化简,然后根据a=2,b=可以求得化简后式子的值,本题得以解决.【解答】解:(﹣)+===,当a=2,b=时,原式=.【点评】本题考查分式的化简求值,解题的关键是会对所求的式子化简并求值.26.(8分)(2011•运河区二模)某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人(不含司机)和10件行礼,乙种汽车每辆最多能载30人(不含司机)和20件行礼.设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.【考点】一元一次不等式组的应用【分析】设租用甲种汽车x辆,则租用乙种汽车(8﹣x)辆,根据有290名老师和100件行李,以及甲种汽车每辆最多能载40人(不含司机)和10件行李,乙种汽车每辆最多能载30人(不含司机)和20件行李可列方程求解.【解答】解:(1)由租用甲种汽车x辆,则租用乙种汽车(8﹣x)辆.由题意得:解得:5≤x≤6.即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.【点评】本题考查一元一次不等式组的应用,关键是根据人数和行李数作为不等量关系列不等式组求解.27.(10分)(2016秋•湘潭期末)已知某项工程由甲、乙两队合做12天可以完成,共需工程费用27720元.乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【考点】分式方程的应用.【分析】(1)设甲需要x天,则乙需要天,根据甲、乙两队合做12天可以完成整个工作任务列出方程求解可得;(2)设甲每天的费用是y元;乙每天的费用是(y﹣250)元,根据总工程费用为27720元列出方程求解可得y的值,再分别计算可得.【解答】解:(1)设甲需要x天,则乙需要天,根据题意可得:,解得:x=20,经检验x=20是原分式方程的解,则=30,答:甲单独完成这项工程需20天,乙队单独完成这项工程各需30天;(2)设甲每天的费用是y元;乙每天的费用是(y﹣250)元根据题意可得:12y+12(y﹣250)=27720解得:y=1280元.1280﹣250=1030 元甲单独完成共需要费用:1280×20=25600元乙单独完成共需要费用:1030×30=30900元.因此甲单独完成需要的费用低.选甲工程队单独完成.【点评】本题主要考查分式方程的应用,理解题意找到题目蕴含的相等关系并列出方程式解题的关键.。

湘教版八年级数学上册期末试卷及参考答案

湘教版八年级数学上册期末试卷及参考答案

湘教版八年级数学上册期末试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤33.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<48.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.19二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣2()a b的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:(x -1)÷(x -21x x -),其中x 2+13.解不等式组:3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=5,求BD的长.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、D5、D6、D7、A8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、3m≤.4、x>3.5、49 136、②.三、解答题(本大题共6小题,共72分)1、2x=2、1+23、-7<x≤1.数轴见解析.4、(1)略;(2)10.5、(1)略;(2略;(3)BD=1.6、(1)2元;(2)至少购进玫瑰200枝.。

湘教版八年级数学上册期末测试卷(及参考答案)

湘教版八年级数学上册期末测试卷(及参考答案)

湘教版八年级数学上册期末测试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( ) A .3B .13C .13-D .3-2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c B .2a +2bC .2cD .03.已知23a b=(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b4.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .25.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx+c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .211x x+﹣2=0 D .x 2+2x =x 2﹣16.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( ) A .0B .1C .2D .37.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C. D.9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为________.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=________度.6.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________。

湘教版八年级数学上册期末试卷(及参考答案)

湘教版八年级数学上册期末试卷(及参考答案)

湘教版八年级数学上册期末试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.120192.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10 B.10-2aC.4 D.-44.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.25.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③7.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.若m+1m =3,则m 2+21m=________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD 于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.4.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.5.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).(1)求k 、m 的值;(2)已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x => 的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、B6、D7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、723、74、255.5、26、32三、解答题(本大题共6小题,共72分)1、x=12、11a ,1.3、m>﹣24、(1)略(2-15、(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。

湘教版八年级2018--2019学年度第一学期期末考试数学试卷

湘教版八年级2018--2019学年度第一学期期末考试数学试卷

绝密★启用前 湘教版八年级2018--2019学年度第一学期期末考试 数学试卷 望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!一、单选题(计30分) 1.(本题3分)下列二次根式中,属于最简二次根式的是( ) A . B . C . D . 2.(本题3分)用直尺和圆规作一个角等于已知角,如图,能得出的依据是( ) A .边边边 B .边角边 C .角边角 D .角角边 3.(本题3分)计算: 的结果是( ) A . 1 B . C . D . 4.(本题3分)若a ,b 均为正整数,且a>7,b>320,则a +b 的最小值是( ) A . 6 B . 5 C . 4 D . 3 5.(本题3分)若20121,,0.83a b c π--⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭,则a 、b 、c 的大小关系是( ) A . c b a >> B . a c b >> C . a b c >> D . c a b >> 6.(本题3分)底边上的高为8,底边长为12的等腰三角形的腰长为( ) A . 5 B . 8 C . 10 D . 12A . a+2<b+2B . a ﹣2<b ﹣2C . ﹣2a <﹣2bD . 8.(本题3分)下列选项中的运算正确..的是( ) A . B . C . D . 9.(本题3分)不等式组的解集是x >2,则m 的取值范围是( ) A . m≤2 B . m≥2 C . m≤1 D . m >110.(本题3分)若x 2=16,那么5﹣x 的算术平方根是( )A . ±1B . ±4C . 1或9D . 1或3二、填空题(计32分)11.(本题4 _________12.(本题4分)如图,,,将纸片的一角折叠,使点落在内,若,则的度数为__________.13.(本题4分)不等式2x+5<12的正整数解是____________;14.(本题4112()2-+- = .15.(本题4分)不等式10420x x -≥⎧⎨-⎩<的最小整数解是 .16.(本题4分)等腰三角形最多有 条对称轴.17.(本题4分)如图所示,在数轴上点A 和点B 之间表示整数的点有________个.18.(本题4分)如果a+6和2a ﹣15是一个数的平方根,则这个数为 . 三、解答题(计58分)19.(本题8分)计算:(). 20.(本题8分)解方程: (1)231x ﹣3=0 (2)27(x+1)3 +64=0. 21.(本题8分)解不等式: 3x >1-36x .22.(本题8分)如图,BD 是△ABC 的角平分线,DE ∥BC ,交 AB 于点 E ,∠A=45°,∠BDC=60°,求∠BDE 的度数。

湘教版八年级数学上册期末考试卷及答案【真题】

湘教版八年级数学上册期末考试卷及答案【真题】

湘教版八年级数学上册期末考试卷及答案【真题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A.132°B.134°C.136°D.138°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 二、填空题(本大题共6小题,每小题3分,共18分)181________.2.因式分解:2x =__________.2183.若一个正数的两个平方根分别是a+3和2﹣2a,则这个正数的立方根是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:(x+y )(x-y )-(4x 3y-8xy 3)÷2xy ,其中x=-1,y=12.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、C6、A7、B8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2(x +3)(x ﹣3).3、44、﹣2<x <25、49136、42.三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x = 2、223x y -+,14-. 3、0.4、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.5、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年八年级上学期期末质量检测数学试卷总分:100分一、选择题(每小题只有一个正确答案,本大题共8个小题,每小题3分,共24分)1、下列四个实数中,是无理数的为( )A.0BC.-2D.132、已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为()A.千克B.千克C. 千克D. 千克3、化简211x xx x---的结果是()A.+1B. -1C.—D.4、下列运算正确正确的是()B.21164-⎛⎫=⎪⎝⎭C. D.5、等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或206、如果,那么m的取值范围是()A.B.C.D.7、如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A. BD=CE B. AD=AE C.8、如图,已知:,点、、……在射线上,点、、……在射线上,、、……均为等边三角形,若,则556A B A∆的边长为()A. 6B. 16 C 32 D. 6442110-⨯62.110-⨯52.110-⨯42.110-⨯x x x x5=-632x x x÷=325()x x=1m=01m<<12m<<23m<<34m<<MON∠=30A1A2A3ON B1B2B3OM A B A∆112A B A∆223A B A∆334OA=11第8题43A21第7题图二、填空题:(每小题3分,共24分)9、4的算术平方根是 .10= .11、不等式组⎩⎨⎧≤->5121x x 的正整数解是 。

12、化简:= 。

13、已知,则a +b = 。

14、某渔船上的渔民在A 处观测到灯塔M 在北偏东60︒方向处, 这艘渔船以每小时40海里的速度向正东方向航行,1小时后到达B 处,在B 处观测到灯塔M 在北偏东300方向处. 则B 处与灯塔的距离BM 是 海里。

15、如图,在△ABC 中,AB=AC ,∠A=40°,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,则∠EBC 的度数为________°.16、计算:111112233420142015+++⨯⨯⨯⨯= .三、解答题:(共7大题,共52分)17、(1)(4分)计算:()-1201-2-+2π⎛⎫ ⎪⎝⎭(2)(422()224m m m m m m -÷+--10a -=第15题图北第15题图18、(6分)解不等式组23120x x +>⎧⎨-≥⎩0,并把解集在数轴上表示出来.19、(6分)解分式方程:253x x =+20、(7分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为的值代入求值.21、(8分)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片樟树叶一年的平均滞尘量比一片槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的樟树叶的片数与一年滞尘550毫克所需的槐树叶的片数相同,求一片槐树叶一年的平均滞尘量.22321(1)24a a a a -+-÷+-a22、(8分)在等边ABC △中,点D E ,分别在边BC AB ,上,且BD AE ,AD 与CE 交于点F .(1)求证:AEC BDA △≌△; (2)求DFC ∠的度数.23、(9分)已知ΔABC 中,AB =AC =10cm ,BC =8cm ,点D 为AB 的中点。

(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上有C 点向A 点运动。

①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,ΔBPD 与ΔCQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使ΔBPD 与ΔCQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ΔABC 三边运动,求经过多长时间点P 与点Q 第一次在ΔABC 的哪条边上相遇?2018-2019学年八年级上学期期末质量检测数 学 试 卷参 考 答 案一、选择题(每小题只有一个正确答案,本大题共8个小题,每小题3分,共24分)1、B2、C3、D4、B5、C6、B7、C8、B二、填空题(每小题3分,共24分)9、 2 10、 11、2,3 12、m-6 13、-6 14、40 15、30 16、20142015 三、解答题:17、每小题4分(1)5 (218、(6分)-1<2x ≤,图略(其中解法4分,画图2分)19、(6分)解:2(x +3)=5x ,解得x =2.经检验x =2是原方程的解.∴.(其中解法4分,检验2分) 20、(7分)(其中化简5分,求值2分) 21、(8分)解:设一片槐树叶一年的平均滞尘量为x 毫克,则一片樟树叶一年的平均滞尘量为(2x –4)毫克 …………………1分…………………4分 解得:x =22…………………6分经检验:x =22是方程的解…………………7分答:一片槐树叶一年的平均滞尘量为22毫克. …………………8分22、解:(1)证明:ABC △是等边三角形,60BAC B ∴==∠∠,AB AC =又AE BD =(SAS)AEC BDA ∴△≌△, ····································································· 4分 (2)解由(1)AEC BDA △≌△,得ACE BAD =∠∠ ················································································· 6分 DFC FAC ACE ∴=+∠∠∠2=x 21(2)(2)=2(1)a a a a a -+-⨯+-原式21a a -=-22211a a --===--当a=0时,原式100055024x x=-60FAC BAD =+=∠∠ . …………………8分23、(1)①全等∵AB=AC ∴∠B=∠C ∵BP=3×1=2,CQ=3×1=3 ∴BP=CQ∵PC=BC-BP=8-3=5 D 是AB 的中点即BD=12AB=5 ∴PC=BD 在△BPD 和△CPQ 中 BP=CQBD=PC∠B=∠C∴△BPD ≌△CPQ …………………3分②设点Q 的运动速度为x (x≠3)cm/s ,经过ts △BPD 与△CQP 全等;则可知PB=3tcm ,PC=8-3tcm ,CQ=xtcm ,据(1)同理可得当BD=PC ,BP=CQ 或BD=CQ ,BP=PC 时两三角形全等;①当BD=PC 且BP=CQ 时,8-3t=5且3t=xt ,解得x=3,∵x≠3,∴舍去此情况;(不讨论此种情况仍给满分)②BD=CQ ,BP=PC 时,5=xt 且3t=8-3t ,解得:x=154; 故若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为154cm/s 时, 能够使△BPD 与△CQP 全等.…………………6分(2)设两点相遇时间为 t s\ 依题意得: 3t+20=154t 解得 t=803s 即点P 走了 3 ×803= 80 cm (两个三角周长加上24 cm ) 从点B 开始计算,8 + 10 + 6 = 24 ,即点P 在边AB 上被点Q 追上。

所以经过803s 点P 与点Q 第一次在△ABC 的AB 边上相遇。

…………………9分。

相关文档
最新文档